summaryrefslogtreecommitdiffstats
path: root/thirdparty
diff options
context:
space:
mode:
authorStuart Carnie <stuart.carnie@gmail.com>2024-02-20 05:52:00 +1100
committerRémi Verschelde <rverschelde@gmail.com>2024-08-20 12:11:06 +0200
commit2d0165574de6ac21aa2730215dcab60e4ce88d08 (patch)
treef1710c694c12f9360e853111a1ca396f285844bb /thirdparty
parent826de7976a6add282c7b14d4be2a7e6d775821d8 (diff)
downloadredot-engine-2d0165574de6ac21aa2730215dcab60e4ce88d08.tar.gz
Add Metal support for macOS (arm64) and iOS
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/README.md16
-rw-r--r--thirdparty/spirv-cross/GLSL.std.450.h114
-rw-r--r--thirdparty/spirv-cross/LICENSE202
-rw-r--r--thirdparty/spirv-cross/LICENSES/Apache-2.0.txt208
-rw-r--r--thirdparty/spirv-cross/LICENSES/LicenseRef-KhronosFreeUse.txt23
-rw-r--r--thirdparty/spirv-cross/LICENSES/MIT.txt19
-rw-r--r--thirdparty/spirv-cross/include/spirv_cross/barrier.hpp80
-rw-r--r--thirdparty/spirv-cross/include/spirv_cross/external_interface.h127
-rw-r--r--thirdparty/spirv-cross/include/spirv_cross/image.hpp63
-rw-r--r--thirdparty/spirv-cross/include/spirv_cross/internal_interface.hpp604
-rw-r--r--thirdparty/spirv-cross/include/spirv_cross/sampler.hpp106
-rw-r--r--thirdparty/spirv-cross/include/spirv_cross/thread_group.hpp114
-rw-r--r--thirdparty/spirv-cross/spirv.hpp2592
-rw-r--r--thirdparty/spirv-cross/spirv_cfg.cpp430
-rw-r--r--thirdparty/spirv-cross/spirv_cfg.hpp168
-rw-r--r--thirdparty/spirv-cross/spirv_common.hpp1943
-rw-r--r--thirdparty/spirv-cross/spirv_cross.cpp5668
-rw-r--r--thirdparty/spirv-cross/spirv_cross.hpp1182
-rw-r--r--thirdparty/spirv-cross/spirv_cross_containers.hpp756
-rw-r--r--thirdparty/spirv-cross/spirv_cross_error_handling.hpp99
-rw-r--r--thirdparty/spirv-cross/spirv_cross_parsed_ir.cpp1083
-rw-r--r--thirdparty/spirv-cross/spirv_cross_parsed_ir.hpp256
-rw-r--r--thirdparty/spirv-cross/spirv_cross_util.cpp77
-rw-r--r--thirdparty/spirv-cross/spirv_cross_util.hpp37
-rw-r--r--thirdparty/spirv-cross/spirv_glsl.cpp19109
-rw-r--r--thirdparty/spirv-cross/spirv_glsl.hpp1074
-rw-r--r--thirdparty/spirv-cross/spirv_msl.cpp18810
-rw-r--r--thirdparty/spirv-cross/spirv_msl.hpp1349
-rw-r--r--thirdparty/spirv-cross/spirv_parser.cpp1337
-rw-r--r--thirdparty/spirv-cross/spirv_parser.hpp103
-rw-r--r--thirdparty/spirv-cross/spirv_reflect.cpp710
-rw-r--r--thirdparty/spirv-cross/spirv_reflect.hpp91
32 files changed, 58550 insertions, 0 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md
index f241ce56d1..ddc28375f6 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -827,6 +827,22 @@ and solve conflicts and also enrich the feature set originally
proposed by these libraries and better integrate them with Godot.
+## spirv-cross
+
+- Upstream: https://github.com/KhronosGroup/SPIRV-Cross
+- Version: vulkan-sdk-1.3.290.0 (5d127b917f080c6f052553c47170ec0ba702e54f, 2024)
+- License: Apache 2.0
+
+Files extracted from upstream source:
+
+- All `.cpp`, `.hpp` and `.h` files, minus `main.cpp`, `spirv_cross_c.*`, `spirv_hlsl.*`, `spirv_cpp.*`
+- `include/` folder
+- `LICENSE` and `LICENSES/` folder, minus `CC-BY-4.0.txt`
+
+Versions of this SDK do not have to match the `vulkan` section, as this SDK is required
+to generate Metal source from Vulkan SPIR-V.
+
+
## spirv-reflect
- Upstream: https://github.com/KhronosGroup/SPIRV-Reflect
diff --git a/thirdparty/spirv-cross/GLSL.std.450.h b/thirdparty/spirv-cross/GLSL.std.450.h
new file mode 100644
index 0000000000..2686fc4ea7
--- /dev/null
+++ b/thirdparty/spirv-cross/GLSL.std.450.h
@@ -0,0 +1,114 @@
+/*
+ * Copyright 2014-2016,2021 The Khronos Group, Inc.
+ * SPDX-License-Identifier: MIT
+ *
+ * MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS KHRONOS
+ * STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS SPECIFICATIONS AND
+ * HEADER INFORMATION ARE LOCATED AT https://www.khronos.org/registry/
+*/
+
+#ifndef GLSLstd450_H
+#define GLSLstd450_H
+
+static const int GLSLstd450Version = 100;
+static const int GLSLstd450Revision = 3;
+
+enum GLSLstd450 {
+ GLSLstd450Bad = 0, // Don't use
+
+ GLSLstd450Round = 1,
+ GLSLstd450RoundEven = 2,
+ GLSLstd450Trunc = 3,
+ GLSLstd450FAbs = 4,
+ GLSLstd450SAbs = 5,
+ GLSLstd450FSign = 6,
+ GLSLstd450SSign = 7,
+ GLSLstd450Floor = 8,
+ GLSLstd450Ceil = 9,
+ GLSLstd450Fract = 10,
+
+ GLSLstd450Radians = 11,
+ GLSLstd450Degrees = 12,
+ GLSLstd450Sin = 13,
+ GLSLstd450Cos = 14,
+ GLSLstd450Tan = 15,
+ GLSLstd450Asin = 16,
+ GLSLstd450Acos = 17,
+ GLSLstd450Atan = 18,
+ GLSLstd450Sinh = 19,
+ GLSLstd450Cosh = 20,
+ GLSLstd450Tanh = 21,
+ GLSLstd450Asinh = 22,
+ GLSLstd450Acosh = 23,
+ GLSLstd450Atanh = 24,
+ GLSLstd450Atan2 = 25,
+
+ GLSLstd450Pow = 26,
+ GLSLstd450Exp = 27,
+ GLSLstd450Log = 28,
+ GLSLstd450Exp2 = 29,
+ GLSLstd450Log2 = 30,
+ GLSLstd450Sqrt = 31,
+ GLSLstd450InverseSqrt = 32,
+
+ GLSLstd450Determinant = 33,
+ GLSLstd450MatrixInverse = 34,
+
+ GLSLstd450Modf = 35, // second operand needs an OpVariable to write to
+ GLSLstd450ModfStruct = 36, // no OpVariable operand
+ GLSLstd450FMin = 37,
+ GLSLstd450UMin = 38,
+ GLSLstd450SMin = 39,
+ GLSLstd450FMax = 40,
+ GLSLstd450UMax = 41,
+ GLSLstd450SMax = 42,
+ GLSLstd450FClamp = 43,
+ GLSLstd450UClamp = 44,
+ GLSLstd450SClamp = 45,
+ GLSLstd450FMix = 46,
+ GLSLstd450IMix = 47, // Reserved
+ GLSLstd450Step = 48,
+ GLSLstd450SmoothStep = 49,
+
+ GLSLstd450Fma = 50,
+ GLSLstd450Frexp = 51, // second operand needs an OpVariable to write to
+ GLSLstd450FrexpStruct = 52, // no OpVariable operand
+ GLSLstd450Ldexp = 53,
+
+ GLSLstd450PackSnorm4x8 = 54,
+ GLSLstd450PackUnorm4x8 = 55,
+ GLSLstd450PackSnorm2x16 = 56,
+ GLSLstd450PackUnorm2x16 = 57,
+ GLSLstd450PackHalf2x16 = 58,
+ GLSLstd450PackDouble2x32 = 59,
+ GLSLstd450UnpackSnorm2x16 = 60,
+ GLSLstd450UnpackUnorm2x16 = 61,
+ GLSLstd450UnpackHalf2x16 = 62,
+ GLSLstd450UnpackSnorm4x8 = 63,
+ GLSLstd450UnpackUnorm4x8 = 64,
+ GLSLstd450UnpackDouble2x32 = 65,
+
+ GLSLstd450Length = 66,
+ GLSLstd450Distance = 67,
+ GLSLstd450Cross = 68,
+ GLSLstd450Normalize = 69,
+ GLSLstd450FaceForward = 70,
+ GLSLstd450Reflect = 71,
+ GLSLstd450Refract = 72,
+
+ GLSLstd450FindILsb = 73,
+ GLSLstd450FindSMsb = 74,
+ GLSLstd450FindUMsb = 75,
+
+ GLSLstd450InterpolateAtCentroid = 76,
+ GLSLstd450InterpolateAtSample = 77,
+ GLSLstd450InterpolateAtOffset = 78,
+
+ GLSLstd450NMin = 79,
+ GLSLstd450NMax = 80,
+ GLSLstd450NClamp = 81,
+
+ GLSLstd450Count
+};
+
+#endif // #ifndef GLSLstd450_H
diff --git a/thirdparty/spirv-cross/LICENSE b/thirdparty/spirv-cross/LICENSE
new file mode 100644
index 0000000000..d645695673
--- /dev/null
+++ b/thirdparty/spirv-cross/LICENSE
@@ -0,0 +1,202 @@
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/thirdparty/spirv-cross/LICENSES/Apache-2.0.txt b/thirdparty/spirv-cross/LICENSES/Apache-2.0.txt
new file mode 100644
index 0000000000..4ed90b9522
--- /dev/null
+++ b/thirdparty/spirv-cross/LICENSES/Apache-2.0.txt
@@ -0,0 +1,208 @@
+Apache License
+
+Version 2.0, January 2004
+
+http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION,
+AND DISTRIBUTION
+
+ 1. Definitions.
+
+
+
+"License" shall mean the terms and conditions for use, reproduction, and distribution
+as defined by Sections 1 through 9 of this document.
+
+
+
+"Licensor" shall mean the copyright owner or entity authorized by the copyright
+owner that is granting the License.
+
+
+
+"Legal Entity" shall mean the union of the acting entity and all other entities
+that control, are controlled by, or are under common control with that entity.
+For the purposes of this definition, "control" means (i) the power, direct
+or indirect, to cause the direction or management of such entity, whether
+by contract or otherwise, or (ii) ownership of fifty percent (50%) or more
+of the outstanding shares, or (iii) beneficial ownership of such entity.
+
+
+
+"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
+granted by this License.
+
+
+
+"Source" form shall mean the preferred form for making modifications, including
+but not limited to software source code, documentation source, and configuration
+files.
+
+
+
+"Object" form shall mean any form resulting from mechanical transformation
+or translation of a Source form, including but not limited to compiled object
+code, generated documentation, and conversions to other media types.
+
+
+
+"Work" shall mean the work of authorship, whether in Source or Object form,
+made available under the License, as indicated by a copyright notice that
+is included in or attached to the work (an example is provided in the Appendix
+below).
+
+
+
+"Derivative Works" shall mean any work, whether in Source or Object form,
+that is based on (or derived from) the Work and for which the editorial revisions,
+annotations, elaborations, or other modifications represent, as a whole, an
+original work of authorship. For the purposes of this License, Derivative
+Works shall not include works that remain separable from, or merely link (or
+bind by name) to the interfaces of, the Work and Derivative Works thereof.
+
+
+
+"Contribution" shall mean any work of authorship, including the original version
+of the Work and any modifications or additions to that Work or Derivative
+Works thereof, that is intentionally submitted to Licensor for inclusion in
+the Work by the copyright owner or by an individual or Legal Entity authorized
+to submit on behalf of the copyright owner. For the purposes of this definition,
+"submitted" means any form of electronic, verbal, or written communication
+sent to the Licensor or its representatives, including but not limited to
+communication on electronic mailing lists, source code control systems, and
+issue tracking systems that are managed by, or on behalf of, the Licensor
+for the purpose of discussing and improving the Work, but excluding communication
+that is conspicuously marked or otherwise designated in writing by the copyright
+owner as "Not a Contribution."
+
+
+
+"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
+of whom a Contribution has been received by Licensor and subsequently incorporated
+within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of this
+License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
+no-charge, royalty-free, irrevocable copyright license to reproduce, prepare
+Derivative Works of, publicly display, publicly perform, sublicense, and distribute
+the Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of this License,
+each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
+no-charge, royalty-free, irrevocable (except as stated in this section) patent
+license to make, have made, use, offer to sell, sell, import, and otherwise
+transfer the Work, where such license applies only to those patent claims
+licensable by such Contributor that are necessarily infringed by their Contribution(s)
+alone or by combination of their Contribution(s) with the Work to which such
+Contribution(s) was submitted. If You institute patent litigation against
+any entity (including a cross-claim or counterclaim in a lawsuit) alleging
+that the Work or a Contribution incorporated within the Work constitutes direct
+or contributory patent infringement, then any patent licenses granted to You
+under this License for that Work shall terminate as of the date such litigation
+is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the Work or
+Derivative Works thereof in any medium, with or without modifications, and
+in Source or Object form, provided that You meet the following conditions:
+
+(a) You must give any other recipients of the Work or Derivative Works a copy
+of this License; and
+
+(b) You must cause any modified files to carry prominent notices stating that
+You changed the files; and
+
+(c) You must retain, in the Source form of any Derivative Works that You distribute,
+all copyright, patent, trademark, and attribution notices from the Source
+form of the Work, excluding those notices that do not pertain to any part
+of the Derivative Works; and
+
+(d) If the Work includes a "NOTICE" text file as part of its distribution,
+then any Derivative Works that You distribute must include a readable copy
+of the attribution notices contained within such NOTICE file, excluding those
+notices that do not pertain to any part of the Derivative Works, in at least
+one of the following places: within a NOTICE text file distributed as part
+of the Derivative Works; within the Source form or documentation, if provided
+along with the Derivative Works; or, within a display generated by the Derivative
+Works, if and wherever such third-party notices normally appear. The contents
+of the NOTICE file are for informational purposes only and do not modify the
+License. You may add Your own attribution notices within Derivative Works
+that You distribute, alongside or as an addendum to the NOTICE text from the
+Work, provided that such additional attribution notices cannot be construed
+as modifying the License.
+
+You may add Your own copyright statement to Your modifications and may provide
+additional or different license terms and conditions for use, reproduction,
+or distribution of Your modifications, or for any such Derivative Works as
+a whole, provided Your use, reproduction, and distribution of the Work otherwise
+complies with the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise, any
+Contribution intentionally submitted for inclusion in the Work by You to the
+Licensor shall be under the terms and conditions of this License, without
+any additional terms or conditions. Notwithstanding the above, nothing herein
+shall supersede or modify the terms of any separate license agreement you
+may have executed with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade names,
+trademarks, service marks, or product names of the Licensor, except as required
+for reasonable and customary use in describing the origin of the Work and
+reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or agreed to
+in writing, Licensor provides the Work (and each Contributor provides its
+Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied, including, without limitation, any warranties
+or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR
+A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness
+of using or redistributing the Work and assume any risks associated with Your
+exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory, whether
+in tort (including negligence), contract, or otherwise, unless required by
+applicable law (such as deliberate and grossly negligent acts) or agreed to
+in writing, shall any Contributor be liable to You for damages, including
+any direct, indirect, special, incidental, or consequential damages of any
+character arising as a result of this License or out of the use or inability
+to use the Work (including but not limited to damages for loss of goodwill,
+work stoppage, computer failure or malfunction, or any and all other commercial
+damages or losses), even if such Contributor has been advised of the possibility
+of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing the Work
+or Derivative Works thereof, You may choose to offer, and charge a fee for,
+acceptance of support, warranty, indemnity, or other liability obligations
+and/or rights consistent with this License. However, in accepting such obligations,
+You may act only on Your own behalf and on Your sole responsibility, not on
+behalf of any other Contributor, and only if You agree to indemnify, defend,
+and hold each Contributor harmless for any liability incurred by, or claims
+asserted against, such Contributor by reason of your accepting any such warranty
+or additional liability. END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+To apply the Apache License to your work, attach the following boilerplate
+notice, with the fields enclosed by brackets "[]" replaced with your own identifying
+information. (Don't include the brackets!) The text should be enclosed in
+the appropriate comment syntax for the file format. We also recommend that
+a file or class name and description of purpose be included on the same "printed
+page" as the copyright notice for easier identification within third-party
+archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+
+you may not use this file except in compliance with the License.
+
+You may obtain a copy of the License at
+
+http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+
+distributed under the License is distributed on an "AS IS" BASIS,
+
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+
+See the License for the specific language governing permissions and
+
+limitations under the License.
diff --git a/thirdparty/spirv-cross/LICENSES/LicenseRef-KhronosFreeUse.txt b/thirdparty/spirv-cross/LICENSES/LicenseRef-KhronosFreeUse.txt
new file mode 100644
index 0000000000..430863bc98
--- /dev/null
+++ b/thirdparty/spirv-cross/LICENSES/LicenseRef-KhronosFreeUse.txt
@@ -0,0 +1,23 @@
+Copyright (c) 2014-2020 The Khronos Group Inc.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and/or associated documentation files (the "Materials"),
+to deal in the Materials without restriction, including without limitation
+the rights to use, copy, modify, merge, publish, distribute, sublicense,
+and/or sell copies of the Materials, and to permit persons to whom the
+Materials are furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Materials.
+
+MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS KHRONOS
+STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS SPECIFICATIONS AND
+HEADER INFORMATION ARE LOCATED AT https://www.khronos.org/registry/
+
+THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+FROM,OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS
+IN THE MATERIALS.
diff --git a/thirdparty/spirv-cross/LICENSES/MIT.txt b/thirdparty/spirv-cross/LICENSES/MIT.txt
new file mode 100644
index 0000000000..204b93da48
--- /dev/null
+++ b/thirdparty/spirv-cross/LICENSES/MIT.txt
@@ -0,0 +1,19 @@
+MIT License Copyright (c) <year> <copyright holders>
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is furnished
+to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice (including the next
+paragraph) shall be included in all copies or substantial portions of the
+Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
+OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
+OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
diff --git a/thirdparty/spirv-cross/include/spirv_cross/barrier.hpp b/thirdparty/spirv-cross/include/spirv_cross/barrier.hpp
new file mode 100644
index 0000000000..4ca7f4d77c
--- /dev/null
+++ b/thirdparty/spirv-cross/include/spirv_cross/barrier.hpp
@@ -0,0 +1,80 @@
+/*
+ * Copyright 2015-2017 ARM Limited
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef SPIRV_CROSS_BARRIER_HPP
+#define SPIRV_CROSS_BARRIER_HPP
+
+#include <atomic>
+#include <thread>
+
+namespace spirv_cross
+{
+class Barrier
+{
+public:
+ Barrier()
+ {
+ count.store(0);
+ iteration.store(0);
+ }
+
+ void set_release_divisor(unsigned divisor)
+ {
+ this->divisor = divisor;
+ }
+
+ static inline void memoryBarrier()
+ {
+ std::atomic_thread_fence(std::memory_order_seq_cst);
+ }
+
+ void reset_counter()
+ {
+ count.store(0);
+ iteration.store(0);
+ }
+
+ void wait()
+ {
+ unsigned target_iteration = iteration.load(std::memory_order_relaxed) + 1;
+ // Overflows cleanly.
+ unsigned target_count = divisor * target_iteration;
+
+ // Barriers don't enforce memory ordering.
+ // Be as relaxed about the barrier as we possibly can!
+ unsigned c = count.fetch_add(1u, std::memory_order_relaxed);
+
+ if (c + 1 == target_count)
+ {
+ iteration.store(target_iteration, std::memory_order_relaxed);
+ }
+ else
+ {
+ // If we have more threads than the CPU, don't hog the CPU for very long periods of time.
+ while (iteration.load(std::memory_order_relaxed) != target_iteration)
+ std::this_thread::yield();
+ }
+ }
+
+private:
+ unsigned divisor = 1;
+ std::atomic<unsigned> count;
+ std::atomic<unsigned> iteration;
+};
+}
+
+#endif
diff --git a/thirdparty/spirv-cross/include/spirv_cross/external_interface.h b/thirdparty/spirv-cross/include/spirv_cross/external_interface.h
new file mode 100644
index 0000000000..949654f5bf
--- /dev/null
+++ b/thirdparty/spirv-cross/include/spirv_cross/external_interface.h
@@ -0,0 +1,127 @@
+/*
+ * Copyright 2015-2017 ARM Limited
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef SPIRV_CROSS_EXTERNAL_INTERFACE_H
+#define SPIRV_CROSS_EXTERNAL_INTERFACE_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <stddef.h>
+
+typedef struct spirv_cross_shader spirv_cross_shader_t;
+
+struct spirv_cross_interface
+{
+ spirv_cross_shader_t *(*construct)(void);
+ void (*destruct)(spirv_cross_shader_t *thiz);
+ void (*invoke)(spirv_cross_shader_t *thiz);
+};
+
+void spirv_cross_set_stage_input(spirv_cross_shader_t *thiz, unsigned location, void *data, size_t size);
+
+void spirv_cross_set_stage_output(spirv_cross_shader_t *thiz, unsigned location, void *data, size_t size);
+
+void spirv_cross_set_push_constant(spirv_cross_shader_t *thiz, void *data, size_t size);
+
+void spirv_cross_set_uniform_constant(spirv_cross_shader_t *thiz, unsigned location, void *data, size_t size);
+
+void spirv_cross_set_resource(spirv_cross_shader_t *thiz, unsigned set, unsigned binding, void **data, size_t size);
+
+const struct spirv_cross_interface *spirv_cross_get_interface(void);
+
+typedef enum spirv_cross_builtin {
+ SPIRV_CROSS_BUILTIN_POSITION = 0,
+ SPIRV_CROSS_BUILTIN_FRAG_COORD = 1,
+ SPIRV_CROSS_BUILTIN_WORK_GROUP_ID = 2,
+ SPIRV_CROSS_BUILTIN_NUM_WORK_GROUPS = 3,
+ SPIRV_CROSS_NUM_BUILTINS
+} spirv_cross_builtin;
+
+void spirv_cross_set_builtin(spirv_cross_shader_t *thiz, spirv_cross_builtin builtin, void *data, size_t size);
+
+#define SPIRV_CROSS_NUM_DESCRIPTOR_SETS 4
+#define SPIRV_CROSS_NUM_DESCRIPTOR_BINDINGS 16
+#define SPIRV_CROSS_NUM_STAGE_INPUTS 16
+#define SPIRV_CROSS_NUM_STAGE_OUTPUTS 16
+#define SPIRV_CROSS_NUM_UNIFORM_CONSTANTS 32
+
+enum spirv_cross_format
+{
+ SPIRV_CROSS_FORMAT_R8_UNORM = 0,
+ SPIRV_CROSS_FORMAT_R8G8_UNORM = 1,
+ SPIRV_CROSS_FORMAT_R8G8B8_UNORM = 2,
+ SPIRV_CROSS_FORMAT_R8G8B8A8_UNORM = 3,
+
+ SPIRV_CROSS_NUM_FORMATS
+};
+
+enum spirv_cross_wrap
+{
+ SPIRV_CROSS_WRAP_CLAMP_TO_EDGE = 0,
+ SPIRV_CROSS_WRAP_REPEAT = 1,
+
+ SPIRV_CROSS_NUM_WRAP
+};
+
+enum spirv_cross_filter
+{
+ SPIRV_CROSS_FILTER_NEAREST = 0,
+ SPIRV_CROSS_FILTER_LINEAR = 1,
+
+ SPIRV_CROSS_NUM_FILTER
+};
+
+enum spirv_cross_mipfilter
+{
+ SPIRV_CROSS_MIPFILTER_BASE = 0,
+ SPIRV_CROSS_MIPFILTER_NEAREST = 1,
+ SPIRV_CROSS_MIPFILTER_LINEAR = 2,
+
+ SPIRV_CROSS_NUM_MIPFILTER
+};
+
+struct spirv_cross_miplevel
+{
+ const void *data;
+ unsigned width, height;
+ size_t stride;
+};
+
+struct spirv_cross_sampler_info
+{
+ const struct spirv_cross_miplevel *mipmaps;
+ unsigned num_mipmaps;
+
+ enum spirv_cross_format format;
+ enum spirv_cross_wrap wrap_s;
+ enum spirv_cross_wrap wrap_t;
+ enum spirv_cross_filter min_filter;
+ enum spirv_cross_filter mag_filter;
+ enum spirv_cross_mipfilter mip_filter;
+};
+
+typedef struct spirv_cross_sampler_2d spirv_cross_sampler_2d_t;
+spirv_cross_sampler_2d_t *spirv_cross_create_sampler_2d(const struct spirv_cross_sampler_info *info);
+void spirv_cross_destroy_sampler_2d(spirv_cross_sampler_2d_t *samp);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/thirdparty/spirv-cross/include/spirv_cross/image.hpp b/thirdparty/spirv-cross/include/spirv_cross/image.hpp
new file mode 100644
index 0000000000..a41ccdfbb4
--- /dev/null
+++ b/thirdparty/spirv-cross/include/spirv_cross/image.hpp
@@ -0,0 +1,63 @@
+/*
+ * Copyright 2015-2017 ARM Limited
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef SPIRV_CROSS_IMAGE_HPP
+#define SPIRV_CROSS_IMAGE_HPP
+
+#ifndef GLM_SWIZZLE
+#define GLM_SWIZZLE
+#endif
+
+#ifndef GLM_FORCE_RADIANS
+#define GLM_FORCE_RADIANS
+#endif
+
+#include <glm/glm.hpp>
+
+namespace spirv_cross
+{
+template <typename T>
+struct image2DBase
+{
+ virtual ~image2DBase() = default;
+ inline virtual T load(glm::ivec2 coord) const
+ {
+ return T(0, 0, 0, 1);
+ }
+ inline virtual void store(glm::ivec2 coord, const T &v)
+ {
+ }
+};
+
+typedef image2DBase<glm::vec4> image2D;
+typedef image2DBase<glm::ivec4> iimage2D;
+typedef image2DBase<glm::uvec4> uimage2D;
+
+template <typename T>
+inline T imageLoad(const image2DBase<T> &image, glm::ivec2 coord)
+{
+ return image.load(coord);
+}
+
+template <typename T>
+void imageStore(image2DBase<T> &image, glm::ivec2 coord, const T &value)
+{
+ image.store(coord, value);
+}
+}
+
+#endif
diff --git a/thirdparty/spirv-cross/include/spirv_cross/internal_interface.hpp b/thirdparty/spirv-cross/include/spirv_cross/internal_interface.hpp
new file mode 100644
index 0000000000..3ff7f8e258
--- /dev/null
+++ b/thirdparty/spirv-cross/include/spirv_cross/internal_interface.hpp
@@ -0,0 +1,604 @@
+/*
+ * Copyright 2015-2017 ARM Limited
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef SPIRV_CROSS_INTERNAL_INTERFACE_HPP
+#define SPIRV_CROSS_INTERNAL_INTERFACE_HPP
+
+// This file must only be included by the shader generated by spirv-cross!
+
+#ifndef GLM_FORCE_SWIZZLE
+#define GLM_FORCE_SWIZZLE
+#endif
+
+#ifndef GLM_FORCE_RADIANS
+#define GLM_FORCE_RADIANS
+#endif
+
+#include <glm/glm.hpp>
+
+#include "barrier.hpp"
+#include "external_interface.h"
+#include "image.hpp"
+#include "sampler.hpp"
+#include "thread_group.hpp"
+#include <assert.h>
+#include <stdint.h>
+
+namespace internal
+{
+// Adaptor helpers to adapt GLSL access chain syntax to C++.
+// Don't bother with arrays of arrays on uniforms ...
+// Would likely need horribly complex variadic template munging.
+
+template <typename T>
+struct Interface
+{
+ enum
+ {
+ ArraySize = 1,
+ Size = sizeof(T)
+ };
+
+ Interface()
+ : ptr(0)
+ {
+ }
+ T &get()
+ {
+ assert(ptr);
+ return *ptr;
+ }
+
+ T *ptr;
+};
+
+// For array types, return a pointer instead.
+template <typename T, unsigned U>
+struct Interface<T[U]>
+{
+ enum
+ {
+ ArraySize = U,
+ Size = U * sizeof(T)
+ };
+
+ Interface()
+ : ptr(0)
+ {
+ }
+ T *get()
+ {
+ assert(ptr);
+ return ptr;
+ }
+
+ T *ptr;
+};
+
+// For case when array size is 1, avoid double dereference.
+template <typename T>
+struct PointerInterface
+{
+ enum
+ {
+ ArraySize = 1,
+ Size = sizeof(T *)
+ };
+ enum
+ {
+ PreDereference = true
+ };
+
+ PointerInterface()
+ : ptr(0)
+ {
+ }
+
+ T &get()
+ {
+ assert(ptr);
+ return *ptr;
+ }
+
+ T *ptr;
+};
+
+// Automatically converts a pointer down to reference to match GLSL syntax.
+template <typename T>
+struct DereferenceAdaptor
+{
+ DereferenceAdaptor(T **ptr)
+ : ptr(ptr)
+ {
+ }
+ T &operator[](unsigned index) const
+ {
+ return *(ptr[index]);
+ }
+ T **ptr;
+};
+
+// We can't have a linear array of T* since T* can be an abstract type in case of samplers.
+// We also need a list of pointers since we can have run-time length SSBOs.
+template <typename T, unsigned U>
+struct PointerInterface<T[U]>
+{
+ enum
+ {
+ ArraySize = U,
+ Size = sizeof(T *) * U
+ };
+ enum
+ {
+ PreDereference = false
+ };
+ PointerInterface()
+ : ptr(0)
+ {
+ }
+
+ DereferenceAdaptor<T> get()
+ {
+ assert(ptr);
+ return DereferenceAdaptor<T>(ptr);
+ }
+
+ T **ptr;
+};
+
+// Resources can be more abstract and be unsized,
+// so we need to have an array of pointers for those cases.
+template <typename T>
+struct Resource : PointerInterface<T>
+{
+};
+
+// POD with no unknown sizes, so we can express these as flat arrays.
+template <typename T>
+struct UniformConstant : Interface<T>
+{
+};
+template <typename T>
+struct StageInput : Interface<T>
+{
+};
+template <typename T>
+struct StageOutput : Interface<T>
+{
+};
+template <typename T>
+struct PushConstant : Interface<T>
+{
+};
+}
+
+struct spirv_cross_shader
+{
+ struct PPSize
+ {
+ PPSize()
+ : ptr(0)
+ , size(0)
+ {
+ }
+ void **ptr;
+ size_t size;
+ };
+
+ struct PPSizeResource
+ {
+ PPSizeResource()
+ : ptr(0)
+ , size(0)
+ , pre_dereference(false)
+ {
+ }
+ void **ptr;
+ size_t size;
+ bool pre_dereference;
+ };
+
+ PPSizeResource resources[SPIRV_CROSS_NUM_DESCRIPTOR_SETS][SPIRV_CROSS_NUM_DESCRIPTOR_BINDINGS];
+ PPSize stage_inputs[SPIRV_CROSS_NUM_STAGE_INPUTS];
+ PPSize stage_outputs[SPIRV_CROSS_NUM_STAGE_OUTPUTS];
+ PPSize uniform_constants[SPIRV_CROSS_NUM_UNIFORM_CONSTANTS];
+ PPSize push_constant;
+ PPSize builtins[SPIRV_CROSS_NUM_BUILTINS];
+
+ template <typename U>
+ void register_builtin(spirv_cross_builtin builtin, const U &value)
+ {
+ assert(!builtins[builtin].ptr);
+
+ builtins[builtin].ptr = (void **)&value.ptr;
+ builtins[builtin].size = sizeof(*value.ptr) * U::ArraySize;
+ }
+
+ void set_builtin(spirv_cross_builtin builtin, void *data, size_t size)
+ {
+ assert(builtins[builtin].ptr);
+ assert(size >= builtins[builtin].size);
+
+ *builtins[builtin].ptr = data;
+ }
+
+ template <typename U>
+ void register_resource(const internal::Resource<U> &value, unsigned set, unsigned binding)
+ {
+ assert(set < SPIRV_CROSS_NUM_DESCRIPTOR_SETS);
+ assert(binding < SPIRV_CROSS_NUM_DESCRIPTOR_BINDINGS);
+ assert(!resources[set][binding].ptr);
+
+ resources[set][binding].ptr = (void **)&value.ptr;
+ resources[set][binding].size = internal::Resource<U>::Size;
+ resources[set][binding].pre_dereference = internal::Resource<U>::PreDereference;
+ }
+
+ template <typename U>
+ void register_stage_input(const internal::StageInput<U> &value, unsigned location)
+ {
+ assert(location < SPIRV_CROSS_NUM_STAGE_INPUTS);
+ assert(!stage_inputs[location].ptr);
+
+ stage_inputs[location].ptr = (void **)&value.ptr;
+ stage_inputs[location].size = internal::StageInput<U>::Size;
+ }
+
+ template <typename U>
+ void register_stage_output(const internal::StageOutput<U> &value, unsigned location)
+ {
+ assert(location < SPIRV_CROSS_NUM_STAGE_OUTPUTS);
+ assert(!stage_outputs[location].ptr);
+
+ stage_outputs[location].ptr = (void **)&value.ptr;
+ stage_outputs[location].size = internal::StageOutput<U>::Size;
+ }
+
+ template <typename U>
+ void register_uniform_constant(const internal::UniformConstant<U> &value, unsigned location)
+ {
+ assert(location < SPIRV_CROSS_NUM_UNIFORM_CONSTANTS);
+ assert(!uniform_constants[location].ptr);
+
+ uniform_constants[location].ptr = (void **)&value.ptr;
+ uniform_constants[location].size = internal::UniformConstant<U>::Size;
+ }
+
+ template <typename U>
+ void register_push_constant(const internal::PushConstant<U> &value)
+ {
+ assert(!push_constant.ptr);
+
+ push_constant.ptr = (void **)&value.ptr;
+ push_constant.size = internal::PushConstant<U>::Size;
+ }
+
+ void set_stage_input(unsigned location, void *data, size_t size)
+ {
+ assert(location < SPIRV_CROSS_NUM_STAGE_INPUTS);
+ assert(stage_inputs[location].ptr);
+ assert(size >= stage_inputs[location].size);
+
+ *stage_inputs[location].ptr = data;
+ }
+
+ void set_stage_output(unsigned location, void *data, size_t size)
+ {
+ assert(location < SPIRV_CROSS_NUM_STAGE_OUTPUTS);
+ assert(stage_outputs[location].ptr);
+ assert(size >= stage_outputs[location].size);
+
+ *stage_outputs[location].ptr = data;
+ }
+
+ void set_uniform_constant(unsigned location, void *data, size_t size)
+ {
+ assert(location < SPIRV_CROSS_NUM_UNIFORM_CONSTANTS);
+ assert(uniform_constants[location].ptr);
+ assert(size >= uniform_constants[location].size);
+
+ *uniform_constants[location].ptr = data;
+ }
+
+ void set_push_constant(void *data, size_t size)
+ {
+ assert(push_constant.ptr);
+ assert(size >= push_constant.size);
+
+ *push_constant.ptr = data;
+ }
+
+ void set_resource(unsigned set, unsigned binding, void **data, size_t size)
+ {
+ assert(set < SPIRV_CROSS_NUM_DESCRIPTOR_SETS);
+ assert(binding < SPIRV_CROSS_NUM_DESCRIPTOR_BINDINGS);
+ assert(resources[set][binding].ptr);
+ assert(size >= resources[set][binding].size);
+
+ // We're using the regular PointerInterface, dereference ahead of time.
+ if (resources[set][binding].pre_dereference)
+ *resources[set][binding].ptr = *data;
+ else
+ *resources[set][binding].ptr = data;
+ }
+};
+
+namespace spirv_cross
+{
+template <typename T>
+struct BaseShader : spirv_cross_shader
+{
+ void invoke()
+ {
+ static_cast<T *>(this)->main();
+ }
+};
+
+struct FragmentResources
+{
+ internal::StageOutput<glm::vec4> gl_FragCoord;
+ void init(spirv_cross_shader &s)
+ {
+ s.register_builtin(SPIRV_CROSS_BUILTIN_FRAG_COORD, gl_FragCoord);
+ }
+#define gl_FragCoord __res->gl_FragCoord.get()
+};
+
+template <typename T, typename Res>
+struct FragmentShader : BaseShader<FragmentShader<T, Res>>
+{
+ inline void main()
+ {
+ impl.main();
+ }
+
+ FragmentShader()
+ {
+ resources.init(*this);
+ impl.__res = &resources;
+ }
+
+ T impl;
+ Res resources;
+};
+
+struct VertexResources
+{
+ internal::StageOutput<glm::vec4> gl_Position;
+ void init(spirv_cross_shader &s)
+ {
+ s.register_builtin(SPIRV_CROSS_BUILTIN_POSITION, gl_Position);
+ }
+#define gl_Position __res->gl_Position.get()
+};
+
+template <typename T, typename Res>
+struct VertexShader : BaseShader<VertexShader<T, Res>>
+{
+ inline void main()
+ {
+ impl.main();
+ }
+
+ VertexShader()
+ {
+ resources.init(*this);
+ impl.__res = &resources;
+ }
+
+ T impl;
+ Res resources;
+};
+
+struct TessEvaluationResources
+{
+ inline void init(spirv_cross_shader &)
+ {
+ }
+};
+
+template <typename T, typename Res>
+struct TessEvaluationShader : BaseShader<TessEvaluationShader<T, Res>>
+{
+ inline void main()
+ {
+ impl.main();
+ }
+
+ TessEvaluationShader()
+ {
+ resources.init(*this);
+ impl.__res = &resources;
+ }
+
+ T impl;
+ Res resources;
+};
+
+struct TessControlResources
+{
+ inline void init(spirv_cross_shader &)
+ {
+ }
+};
+
+template <typename T, typename Res>
+struct TessControlShader : BaseShader<TessControlShader<T, Res>>
+{
+ inline void main()
+ {
+ impl.main();
+ }
+
+ TessControlShader()
+ {
+ resources.init(*this);
+ impl.__res = &resources;
+ }
+
+ T impl;
+ Res resources;
+};
+
+struct GeometryResources
+{
+ inline void init(spirv_cross_shader &)
+ {
+ }
+};
+
+template <typename T, typename Res>
+struct GeometryShader : BaseShader<GeometryShader<T, Res>>
+{
+ inline void main()
+ {
+ impl.main();
+ }
+
+ GeometryShader()
+ {
+ resources.init(*this);
+ impl.__res = &resources;
+ }
+
+ T impl;
+ Res resources;
+};
+
+struct ComputeResources
+{
+ internal::StageInput<glm::uvec3> gl_WorkGroupID__;
+ internal::StageInput<glm::uvec3> gl_NumWorkGroups__;
+ void init(spirv_cross_shader &s)
+ {
+ s.register_builtin(SPIRV_CROSS_BUILTIN_WORK_GROUP_ID, gl_WorkGroupID__);
+ s.register_builtin(SPIRV_CROSS_BUILTIN_NUM_WORK_GROUPS, gl_NumWorkGroups__);
+ }
+#define gl_WorkGroupID __res->gl_WorkGroupID__.get()
+#define gl_NumWorkGroups __res->gl_NumWorkGroups__.get()
+
+ Barrier barrier__;
+#define barrier() __res->barrier__.wait()
+};
+
+struct ComputePrivateResources
+{
+ uint32_t gl_LocalInvocationIndex__;
+#define gl_LocalInvocationIndex __priv_res.gl_LocalInvocationIndex__
+ glm::uvec3 gl_LocalInvocationID__;
+#define gl_LocalInvocationID __priv_res.gl_LocalInvocationID__
+ glm::uvec3 gl_GlobalInvocationID__;
+#define gl_GlobalInvocationID __priv_res.gl_GlobalInvocationID__
+};
+
+template <typename T, typename Res, unsigned WorkGroupX, unsigned WorkGroupY, unsigned WorkGroupZ>
+struct ComputeShader : BaseShader<ComputeShader<T, Res, WorkGroupX, WorkGroupY, WorkGroupZ>>
+{
+ inline void main()
+ {
+ resources.barrier__.reset_counter();
+
+ for (unsigned z = 0; z < WorkGroupZ; z++)
+ for (unsigned y = 0; y < WorkGroupY; y++)
+ for (unsigned x = 0; x < WorkGroupX; x++)
+ impl[z][y][x].__priv_res.gl_GlobalInvocationID__ =
+ glm::uvec3(WorkGroupX, WorkGroupY, WorkGroupZ) * resources.gl_WorkGroupID__.get() +
+ glm::uvec3(x, y, z);
+
+ group.run();
+ group.wait();
+ }
+
+ ComputeShader()
+ : group(&impl[0][0][0])
+ {
+ resources.init(*this);
+ resources.barrier__.set_release_divisor(WorkGroupX * WorkGroupY * WorkGroupZ);
+
+ unsigned i = 0;
+ for (unsigned z = 0; z < WorkGroupZ; z++)
+ {
+ for (unsigned y = 0; y < WorkGroupY; y++)
+ {
+ for (unsigned x = 0; x < WorkGroupX; x++)
+ {
+ impl[z][y][x].__priv_res.gl_LocalInvocationID__ = glm::uvec3(x, y, z);
+ impl[z][y][x].__priv_res.gl_LocalInvocationIndex__ = i++;
+ impl[z][y][x].__res = &resources;
+ }
+ }
+ }
+ }
+
+ T impl[WorkGroupZ][WorkGroupY][WorkGroupX];
+ ThreadGroup<T, WorkGroupX * WorkGroupY * WorkGroupZ> group;
+ Res resources;
+};
+
+inline void memoryBarrierShared()
+{
+ Barrier::memoryBarrier();
+}
+inline void memoryBarrier()
+{
+ Barrier::memoryBarrier();
+}
+// TODO: Rest of the barriers.
+
+// Atomics
+template <typename T>
+inline T atomicAdd(T &v, T a)
+{
+ static_assert(sizeof(std::atomic<T>) == sizeof(T), "Cannot cast properly to std::atomic<T>.");
+
+ // We need explicit memory barriers in GLSL to enfore any ordering.
+ // FIXME: Can we really cast this? There is no other way I think ...
+ return std::atomic_fetch_add_explicit(reinterpret_cast<std::atomic<T> *>(&v), a, std::memory_order_relaxed);
+}
+}
+
+void spirv_cross_set_stage_input(spirv_cross_shader_t *shader, unsigned location, void *data, size_t size)
+{
+ shader->set_stage_input(location, data, size);
+}
+
+void spirv_cross_set_stage_output(spirv_cross_shader_t *shader, unsigned location, void *data, size_t size)
+{
+ shader->set_stage_output(location, data, size);
+}
+
+void spirv_cross_set_uniform_constant(spirv_cross_shader_t *shader, unsigned location, void *data, size_t size)
+{
+ shader->set_uniform_constant(location, data, size);
+}
+
+void spirv_cross_set_resource(spirv_cross_shader_t *shader, unsigned set, unsigned binding, void **data, size_t size)
+{
+ shader->set_resource(set, binding, data, size);
+}
+
+void spirv_cross_set_push_constant(spirv_cross_shader_t *shader, void *data, size_t size)
+{
+ shader->set_push_constant(data, size);
+}
+
+void spirv_cross_set_builtin(spirv_cross_shader_t *shader, spirv_cross_builtin builtin, void *data, size_t size)
+{
+ shader->set_builtin(builtin, data, size);
+}
+
+#endif
diff --git a/thirdparty/spirv-cross/include/spirv_cross/sampler.hpp b/thirdparty/spirv-cross/include/spirv_cross/sampler.hpp
new file mode 100644
index 0000000000..0208480951
--- /dev/null
+++ b/thirdparty/spirv-cross/include/spirv_cross/sampler.hpp
@@ -0,0 +1,106 @@
+/*
+ * Copyright 2015-2017 ARM Limited
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef SPIRV_CROSS_SAMPLER_HPP
+#define SPIRV_CROSS_SAMPLER_HPP
+
+#include <vector>
+
+namespace spirv_cross
+{
+struct spirv_cross_sampler_2d
+{
+ inline virtual ~spirv_cross_sampler_2d()
+ {
+ }
+};
+
+template <typename T>
+struct sampler2DBase : spirv_cross_sampler_2d
+{
+ sampler2DBase(const spirv_cross_sampler_info *info)
+ {
+ mips.insert(mips.end(), info->mipmaps, info->mipmaps + info->num_mipmaps);
+ format = info->format;
+ wrap_s = info->wrap_s;
+ wrap_t = info->wrap_t;
+ min_filter = info->min_filter;
+ mag_filter = info->mag_filter;
+ mip_filter = info->mip_filter;
+ }
+
+ inline virtual T sample(glm::vec2 uv, float bias)
+ {
+ return sampleLod(uv, bias);
+ }
+
+ inline virtual T sampleLod(glm::vec2 uv, float lod)
+ {
+ if (mag_filter == SPIRV_CROSS_FILTER_NEAREST)
+ {
+ uv.x = wrap(uv.x, wrap_s, mips[0].width);
+ uv.y = wrap(uv.y, wrap_t, mips[0].height);
+ glm::vec2 uv_full = uv * glm::vec2(mips[0].width, mips[0].height);
+
+ int x = int(uv_full.x);
+ int y = int(uv_full.y);
+ return sample(x, y, 0);
+ }
+ else
+ {
+ return T(0, 0, 0, 1);
+ }
+ }
+
+ inline float wrap(float v, spirv_cross_wrap wrap, unsigned size)
+ {
+ switch (wrap)
+ {
+ case SPIRV_CROSS_WRAP_REPEAT:
+ return v - glm::floor(v);
+ case SPIRV_CROSS_WRAP_CLAMP_TO_EDGE:
+ {
+ float half = 0.5f / size;
+ return glm::clamp(v, half, 1.0f - half);
+ }
+
+ default:
+ return 0.0f;
+ }
+ }
+
+ std::vector<spirv_cross_miplevel> mips;
+ spirv_cross_format format;
+ spirv_cross_wrap wrap_s;
+ spirv_cross_wrap wrap_t;
+ spirv_cross_filter min_filter;
+ spirv_cross_filter mag_filter;
+ spirv_cross_mipfilter mip_filter;
+};
+
+typedef sampler2DBase<glm::vec4> sampler2D;
+typedef sampler2DBase<glm::ivec4> isampler2D;
+typedef sampler2DBase<glm::uvec4> usampler2D;
+
+template <typename T>
+inline T texture(const sampler2DBase<T> &samp, const glm::vec2 &uv, float bias = 0.0f)
+{
+ return samp.sample(uv, bias);
+}
+}
+
+#endif
diff --git a/thirdparty/spirv-cross/include/spirv_cross/thread_group.hpp b/thirdparty/spirv-cross/include/spirv_cross/thread_group.hpp
new file mode 100644
index 0000000000..b215581562
--- /dev/null
+++ b/thirdparty/spirv-cross/include/spirv_cross/thread_group.hpp
@@ -0,0 +1,114 @@
+/*
+ * Copyright 2015-2017 ARM Limited
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef SPIRV_CROSS_THREAD_GROUP_HPP
+#define SPIRV_CROSS_THREAD_GROUP_HPP
+
+#include <condition_variable>
+#include <mutex>
+#include <thread>
+
+namespace spirv_cross
+{
+template <typename T, unsigned Size>
+class ThreadGroup
+{
+public:
+ ThreadGroup(T *impl)
+ {
+ for (unsigned i = 0; i < Size; i++)
+ workers[i].start(&impl[i]);
+ }
+
+ void run()
+ {
+ for (auto &worker : workers)
+ worker.run();
+ }
+
+ void wait()
+ {
+ for (auto &worker : workers)
+ worker.wait();
+ }
+
+private:
+ struct Thread
+ {
+ enum State
+ {
+ Idle,
+ Running,
+ Dying
+ };
+ State state = Idle;
+
+ void start(T *impl)
+ {
+ worker = std::thread([impl, this] {
+ for (;;)
+ {
+ {
+ std::unique_lock<std::mutex> l{ lock };
+ cond.wait(l, [this] { return state != Idle; });
+ if (state == Dying)
+ break;
+ }
+
+ impl->main();
+
+ std::lock_guard<std::mutex> l{ lock };
+ state = Idle;
+ cond.notify_one();
+ }
+ });
+ }
+
+ void wait()
+ {
+ std::unique_lock<std::mutex> l{ lock };
+ cond.wait(l, [this] { return state == Idle; });
+ }
+
+ void run()
+ {
+ std::lock_guard<std::mutex> l{ lock };
+ state = Running;
+ cond.notify_one();
+ }
+
+ ~Thread()
+ {
+ if (worker.joinable())
+ {
+ {
+ std::lock_guard<std::mutex> l{ lock };
+ state = Dying;
+ cond.notify_one();
+ }
+ worker.join();
+ }
+ }
+ std::thread worker;
+ std::condition_variable cond;
+ std::mutex lock;
+ };
+ Thread workers[Size];
+};
+}
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv.hpp b/thirdparty/spirv-cross/spirv.hpp
new file mode 100644
index 0000000000..f2ee9096bd
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv.hpp
@@ -0,0 +1,2592 @@
+// Copyright (c) 2014-2020 The Khronos Group Inc.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and/or associated documentation files (the "Materials"),
+// to deal in the Materials without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Materials, and to permit persons to whom the
+// Materials are furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Materials.
+//
+// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS KHRONOS
+// STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS SPECIFICATIONS AND
+// HEADER INFORMATION ARE LOCATED AT https://www.khronos.org/registry/
+//
+// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM,OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS
+// IN THE MATERIALS.
+
+// This header is automatically generated by the same tool that creates
+// the Binary Section of the SPIR-V specification.
+
+// Enumeration tokens for SPIR-V, in various styles:
+// C, C++, C++11, JSON, Lua, Python, C#, D, Beef
+//
+// - C will have tokens with a "Spv" prefix, e.g.: SpvSourceLanguageGLSL
+// - C++ will have tokens in the "spv" name space, e.g.: spv::SourceLanguageGLSL
+// - C++11 will use enum classes in the spv namespace, e.g.: spv::SourceLanguage::GLSL
+// - Lua will use tables, e.g.: spv.SourceLanguage.GLSL
+// - Python will use dictionaries, e.g.: spv['SourceLanguage']['GLSL']
+// - C# will use enum classes in the Specification class located in the "Spv" namespace,
+// e.g.: Spv.Specification.SourceLanguage.GLSL
+// - D will have tokens under the "spv" module, e.g: spv.SourceLanguage.GLSL
+// - Beef will use enum classes in the Specification class located in the "Spv" namespace,
+// e.g.: Spv.Specification.SourceLanguage.GLSL
+//
+// Some tokens act like mask values, which can be OR'd together,
+// while others are mutually exclusive. The mask-like ones have
+// "Mask" in their name, and a parallel enum that has the shift
+// amount (1 << x) for each corresponding enumerant.
+
+#ifndef spirv_HPP
+#define spirv_HPP
+
+namespace spv {
+
+typedef unsigned int Id;
+
+#define SPV_VERSION 0x10600
+#define SPV_REVISION 1
+
+static const unsigned int MagicNumber = 0x07230203;
+static const unsigned int Version = 0x00010600;
+static const unsigned int Revision = 1;
+static const unsigned int OpCodeMask = 0xffff;
+static const unsigned int WordCountShift = 16;
+
+enum SourceLanguage {
+ SourceLanguageUnknown = 0,
+ SourceLanguageESSL = 1,
+ SourceLanguageGLSL = 2,
+ SourceLanguageOpenCL_C = 3,
+ SourceLanguageOpenCL_CPP = 4,
+ SourceLanguageHLSL = 5,
+ SourceLanguageCPP_for_OpenCL = 6,
+ SourceLanguageSYCL = 7,
+ SourceLanguageMax = 0x7fffffff,
+};
+
+enum ExecutionModel {
+ ExecutionModelVertex = 0,
+ ExecutionModelTessellationControl = 1,
+ ExecutionModelTessellationEvaluation = 2,
+ ExecutionModelGeometry = 3,
+ ExecutionModelFragment = 4,
+ ExecutionModelGLCompute = 5,
+ ExecutionModelKernel = 6,
+ ExecutionModelTaskNV = 5267,
+ ExecutionModelMeshNV = 5268,
+ ExecutionModelRayGenerationKHR = 5313,
+ ExecutionModelRayGenerationNV = 5313,
+ ExecutionModelIntersectionKHR = 5314,
+ ExecutionModelIntersectionNV = 5314,
+ ExecutionModelAnyHitKHR = 5315,
+ ExecutionModelAnyHitNV = 5315,
+ ExecutionModelClosestHitKHR = 5316,
+ ExecutionModelClosestHitNV = 5316,
+ ExecutionModelMissKHR = 5317,
+ ExecutionModelMissNV = 5317,
+ ExecutionModelCallableKHR = 5318,
+ ExecutionModelCallableNV = 5318,
+ ExecutionModelTaskEXT = 5364,
+ ExecutionModelMeshEXT = 5365,
+ ExecutionModelMax = 0x7fffffff,
+};
+
+enum AddressingModel {
+ AddressingModelLogical = 0,
+ AddressingModelPhysical32 = 1,
+ AddressingModelPhysical64 = 2,
+ AddressingModelPhysicalStorageBuffer64 = 5348,
+ AddressingModelPhysicalStorageBuffer64EXT = 5348,
+ AddressingModelMax = 0x7fffffff,
+};
+
+enum MemoryModel {
+ MemoryModelSimple = 0,
+ MemoryModelGLSL450 = 1,
+ MemoryModelOpenCL = 2,
+ MemoryModelVulkan = 3,
+ MemoryModelVulkanKHR = 3,
+ MemoryModelMax = 0x7fffffff,
+};
+
+enum ExecutionMode {
+ ExecutionModeInvocations = 0,
+ ExecutionModeSpacingEqual = 1,
+ ExecutionModeSpacingFractionalEven = 2,
+ ExecutionModeSpacingFractionalOdd = 3,
+ ExecutionModeVertexOrderCw = 4,
+ ExecutionModeVertexOrderCcw = 5,
+ ExecutionModePixelCenterInteger = 6,
+ ExecutionModeOriginUpperLeft = 7,
+ ExecutionModeOriginLowerLeft = 8,
+ ExecutionModeEarlyFragmentTests = 9,
+ ExecutionModePointMode = 10,
+ ExecutionModeXfb = 11,
+ ExecutionModeDepthReplacing = 12,
+ ExecutionModeDepthGreater = 14,
+ ExecutionModeDepthLess = 15,
+ ExecutionModeDepthUnchanged = 16,
+ ExecutionModeLocalSize = 17,
+ ExecutionModeLocalSizeHint = 18,
+ ExecutionModeInputPoints = 19,
+ ExecutionModeInputLines = 20,
+ ExecutionModeInputLinesAdjacency = 21,
+ ExecutionModeTriangles = 22,
+ ExecutionModeInputTrianglesAdjacency = 23,
+ ExecutionModeQuads = 24,
+ ExecutionModeIsolines = 25,
+ ExecutionModeOutputVertices = 26,
+ ExecutionModeOutputPoints = 27,
+ ExecutionModeOutputLineStrip = 28,
+ ExecutionModeOutputTriangleStrip = 29,
+ ExecutionModeVecTypeHint = 30,
+ ExecutionModeContractionOff = 31,
+ ExecutionModeInitializer = 33,
+ ExecutionModeFinalizer = 34,
+ ExecutionModeSubgroupSize = 35,
+ ExecutionModeSubgroupsPerWorkgroup = 36,
+ ExecutionModeSubgroupsPerWorkgroupId = 37,
+ ExecutionModeLocalSizeId = 38,
+ ExecutionModeLocalSizeHintId = 39,
+ ExecutionModeSubgroupUniformControlFlowKHR = 4421,
+ ExecutionModePostDepthCoverage = 4446,
+ ExecutionModeDenormPreserve = 4459,
+ ExecutionModeDenormFlushToZero = 4460,
+ ExecutionModeSignedZeroInfNanPreserve = 4461,
+ ExecutionModeRoundingModeRTE = 4462,
+ ExecutionModeRoundingModeRTZ = 4463,
+ ExecutionModeEarlyAndLateFragmentTestsAMD = 5017,
+ ExecutionModeStencilRefReplacingEXT = 5027,
+ ExecutionModeStencilRefUnchangedFrontAMD = 5079,
+ ExecutionModeStencilRefGreaterFrontAMD = 5080,
+ ExecutionModeStencilRefLessFrontAMD = 5081,
+ ExecutionModeStencilRefUnchangedBackAMD = 5082,
+ ExecutionModeStencilRefGreaterBackAMD = 5083,
+ ExecutionModeStencilRefLessBackAMD = 5084,
+ ExecutionModeOutputLinesEXT = 5269,
+ ExecutionModeOutputLinesNV = 5269,
+ ExecutionModeOutputPrimitivesEXT = 5270,
+ ExecutionModeOutputPrimitivesNV = 5270,
+ ExecutionModeDerivativeGroupQuadsNV = 5289,
+ ExecutionModeDerivativeGroupLinearNV = 5290,
+ ExecutionModeOutputTrianglesEXT = 5298,
+ ExecutionModeOutputTrianglesNV = 5298,
+ ExecutionModePixelInterlockOrderedEXT = 5366,
+ ExecutionModePixelInterlockUnorderedEXT = 5367,
+ ExecutionModeSampleInterlockOrderedEXT = 5368,
+ ExecutionModeSampleInterlockUnorderedEXT = 5369,
+ ExecutionModeShadingRateInterlockOrderedEXT = 5370,
+ ExecutionModeShadingRateInterlockUnorderedEXT = 5371,
+ ExecutionModeSharedLocalMemorySizeINTEL = 5618,
+ ExecutionModeRoundingModeRTPINTEL = 5620,
+ ExecutionModeRoundingModeRTNINTEL = 5621,
+ ExecutionModeFloatingPointModeALTINTEL = 5622,
+ ExecutionModeFloatingPointModeIEEEINTEL = 5623,
+ ExecutionModeMaxWorkgroupSizeINTEL = 5893,
+ ExecutionModeMaxWorkDimINTEL = 5894,
+ ExecutionModeNoGlobalOffsetINTEL = 5895,
+ ExecutionModeNumSIMDWorkitemsINTEL = 5896,
+ ExecutionModeSchedulerTargetFmaxMhzINTEL = 5903,
+ ExecutionModeNamedBarrierCountINTEL = 6417,
+ ExecutionModeMax = 0x7fffffff,
+};
+
+enum StorageClass {
+ StorageClassUniformConstant = 0,
+ StorageClassInput = 1,
+ StorageClassUniform = 2,
+ StorageClassOutput = 3,
+ StorageClassWorkgroup = 4,
+ StorageClassCrossWorkgroup = 5,
+ StorageClassPrivate = 6,
+ StorageClassFunction = 7,
+ StorageClassGeneric = 8,
+ StorageClassPushConstant = 9,
+ StorageClassAtomicCounter = 10,
+ StorageClassImage = 11,
+ StorageClassStorageBuffer = 12,
+ StorageClassCallableDataKHR = 5328,
+ StorageClassCallableDataNV = 5328,
+ StorageClassIncomingCallableDataKHR = 5329,
+ StorageClassIncomingCallableDataNV = 5329,
+ StorageClassRayPayloadKHR = 5338,
+ StorageClassRayPayloadNV = 5338,
+ StorageClassHitAttributeKHR = 5339,
+ StorageClassHitAttributeNV = 5339,
+ StorageClassIncomingRayPayloadKHR = 5342,
+ StorageClassIncomingRayPayloadNV = 5342,
+ StorageClassShaderRecordBufferKHR = 5343,
+ StorageClassShaderRecordBufferNV = 5343,
+ StorageClassPhysicalStorageBuffer = 5349,
+ StorageClassPhysicalStorageBufferEXT = 5349,
+ StorageClassTaskPayloadWorkgroupEXT = 5402,
+ StorageClassCodeSectionINTEL = 5605,
+ StorageClassDeviceOnlyINTEL = 5936,
+ StorageClassHostOnlyINTEL = 5937,
+ StorageClassMax = 0x7fffffff,
+};
+
+enum Dim {
+ Dim1D = 0,
+ Dim2D = 1,
+ Dim3D = 2,
+ DimCube = 3,
+ DimRect = 4,
+ DimBuffer = 5,
+ DimSubpassData = 6,
+ DimMax = 0x7fffffff,
+};
+
+enum SamplerAddressingMode {
+ SamplerAddressingModeNone = 0,
+ SamplerAddressingModeClampToEdge = 1,
+ SamplerAddressingModeClamp = 2,
+ SamplerAddressingModeRepeat = 3,
+ SamplerAddressingModeRepeatMirrored = 4,
+ SamplerAddressingModeMax = 0x7fffffff,
+};
+
+enum SamplerFilterMode {
+ SamplerFilterModeNearest = 0,
+ SamplerFilterModeLinear = 1,
+ SamplerFilterModeMax = 0x7fffffff,
+};
+
+enum ImageFormat {
+ ImageFormatUnknown = 0,
+ ImageFormatRgba32f = 1,
+ ImageFormatRgba16f = 2,
+ ImageFormatR32f = 3,
+ ImageFormatRgba8 = 4,
+ ImageFormatRgba8Snorm = 5,
+ ImageFormatRg32f = 6,
+ ImageFormatRg16f = 7,
+ ImageFormatR11fG11fB10f = 8,
+ ImageFormatR16f = 9,
+ ImageFormatRgba16 = 10,
+ ImageFormatRgb10A2 = 11,
+ ImageFormatRg16 = 12,
+ ImageFormatRg8 = 13,
+ ImageFormatR16 = 14,
+ ImageFormatR8 = 15,
+ ImageFormatRgba16Snorm = 16,
+ ImageFormatRg16Snorm = 17,
+ ImageFormatRg8Snorm = 18,
+ ImageFormatR16Snorm = 19,
+ ImageFormatR8Snorm = 20,
+ ImageFormatRgba32i = 21,
+ ImageFormatRgba16i = 22,
+ ImageFormatRgba8i = 23,
+ ImageFormatR32i = 24,
+ ImageFormatRg32i = 25,
+ ImageFormatRg16i = 26,
+ ImageFormatRg8i = 27,
+ ImageFormatR16i = 28,
+ ImageFormatR8i = 29,
+ ImageFormatRgba32ui = 30,
+ ImageFormatRgba16ui = 31,
+ ImageFormatRgba8ui = 32,
+ ImageFormatR32ui = 33,
+ ImageFormatRgb10a2ui = 34,
+ ImageFormatRg32ui = 35,
+ ImageFormatRg16ui = 36,
+ ImageFormatRg8ui = 37,
+ ImageFormatR16ui = 38,
+ ImageFormatR8ui = 39,
+ ImageFormatR64ui = 40,
+ ImageFormatR64i = 41,
+ ImageFormatMax = 0x7fffffff,
+};
+
+enum ImageChannelOrder {
+ ImageChannelOrderR = 0,
+ ImageChannelOrderA = 1,
+ ImageChannelOrderRG = 2,
+ ImageChannelOrderRA = 3,
+ ImageChannelOrderRGB = 4,
+ ImageChannelOrderRGBA = 5,
+ ImageChannelOrderBGRA = 6,
+ ImageChannelOrderARGB = 7,
+ ImageChannelOrderIntensity = 8,
+ ImageChannelOrderLuminance = 9,
+ ImageChannelOrderRx = 10,
+ ImageChannelOrderRGx = 11,
+ ImageChannelOrderRGBx = 12,
+ ImageChannelOrderDepth = 13,
+ ImageChannelOrderDepthStencil = 14,
+ ImageChannelOrdersRGB = 15,
+ ImageChannelOrdersRGBx = 16,
+ ImageChannelOrdersRGBA = 17,
+ ImageChannelOrdersBGRA = 18,
+ ImageChannelOrderABGR = 19,
+ ImageChannelOrderMax = 0x7fffffff,
+};
+
+enum ImageChannelDataType {
+ ImageChannelDataTypeSnormInt8 = 0,
+ ImageChannelDataTypeSnormInt16 = 1,
+ ImageChannelDataTypeUnormInt8 = 2,
+ ImageChannelDataTypeUnormInt16 = 3,
+ ImageChannelDataTypeUnormShort565 = 4,
+ ImageChannelDataTypeUnormShort555 = 5,
+ ImageChannelDataTypeUnormInt101010 = 6,
+ ImageChannelDataTypeSignedInt8 = 7,
+ ImageChannelDataTypeSignedInt16 = 8,
+ ImageChannelDataTypeSignedInt32 = 9,
+ ImageChannelDataTypeUnsignedInt8 = 10,
+ ImageChannelDataTypeUnsignedInt16 = 11,
+ ImageChannelDataTypeUnsignedInt32 = 12,
+ ImageChannelDataTypeHalfFloat = 13,
+ ImageChannelDataTypeFloat = 14,
+ ImageChannelDataTypeUnormInt24 = 15,
+ ImageChannelDataTypeUnormInt101010_2 = 16,
+ ImageChannelDataTypeMax = 0x7fffffff,
+};
+
+enum ImageOperandsShift {
+ ImageOperandsBiasShift = 0,
+ ImageOperandsLodShift = 1,
+ ImageOperandsGradShift = 2,
+ ImageOperandsConstOffsetShift = 3,
+ ImageOperandsOffsetShift = 4,
+ ImageOperandsConstOffsetsShift = 5,
+ ImageOperandsSampleShift = 6,
+ ImageOperandsMinLodShift = 7,
+ ImageOperandsMakeTexelAvailableShift = 8,
+ ImageOperandsMakeTexelAvailableKHRShift = 8,
+ ImageOperandsMakeTexelVisibleShift = 9,
+ ImageOperandsMakeTexelVisibleKHRShift = 9,
+ ImageOperandsNonPrivateTexelShift = 10,
+ ImageOperandsNonPrivateTexelKHRShift = 10,
+ ImageOperandsVolatileTexelShift = 11,
+ ImageOperandsVolatileTexelKHRShift = 11,
+ ImageOperandsSignExtendShift = 12,
+ ImageOperandsZeroExtendShift = 13,
+ ImageOperandsNontemporalShift = 14,
+ ImageOperandsOffsetsShift = 16,
+ ImageOperandsMax = 0x7fffffff,
+};
+
+enum ImageOperandsMask {
+ ImageOperandsMaskNone = 0,
+ ImageOperandsBiasMask = 0x00000001,
+ ImageOperandsLodMask = 0x00000002,
+ ImageOperandsGradMask = 0x00000004,
+ ImageOperandsConstOffsetMask = 0x00000008,
+ ImageOperandsOffsetMask = 0x00000010,
+ ImageOperandsConstOffsetsMask = 0x00000020,
+ ImageOperandsSampleMask = 0x00000040,
+ ImageOperandsMinLodMask = 0x00000080,
+ ImageOperandsMakeTexelAvailableMask = 0x00000100,
+ ImageOperandsMakeTexelAvailableKHRMask = 0x00000100,
+ ImageOperandsMakeTexelVisibleMask = 0x00000200,
+ ImageOperandsMakeTexelVisibleKHRMask = 0x00000200,
+ ImageOperandsNonPrivateTexelMask = 0x00000400,
+ ImageOperandsNonPrivateTexelKHRMask = 0x00000400,
+ ImageOperandsVolatileTexelMask = 0x00000800,
+ ImageOperandsVolatileTexelKHRMask = 0x00000800,
+ ImageOperandsSignExtendMask = 0x00001000,
+ ImageOperandsZeroExtendMask = 0x00002000,
+ ImageOperandsNontemporalMask = 0x00004000,
+ ImageOperandsOffsetsMask = 0x00010000,
+};
+
+enum FPFastMathModeShift {
+ FPFastMathModeNotNaNShift = 0,
+ FPFastMathModeNotInfShift = 1,
+ FPFastMathModeNSZShift = 2,
+ FPFastMathModeAllowRecipShift = 3,
+ FPFastMathModeFastShift = 4,
+ FPFastMathModeAllowContractFastINTELShift = 16,
+ FPFastMathModeAllowReassocINTELShift = 17,
+ FPFastMathModeMax = 0x7fffffff,
+};
+
+enum FPFastMathModeMask {
+ FPFastMathModeMaskNone = 0,
+ FPFastMathModeNotNaNMask = 0x00000001,
+ FPFastMathModeNotInfMask = 0x00000002,
+ FPFastMathModeNSZMask = 0x00000004,
+ FPFastMathModeAllowRecipMask = 0x00000008,
+ FPFastMathModeFastMask = 0x00000010,
+ FPFastMathModeAllowContractFastINTELMask = 0x00010000,
+ FPFastMathModeAllowReassocINTELMask = 0x00020000,
+};
+
+enum FPRoundingMode {
+ FPRoundingModeRTE = 0,
+ FPRoundingModeRTZ = 1,
+ FPRoundingModeRTP = 2,
+ FPRoundingModeRTN = 3,
+ FPRoundingModeMax = 0x7fffffff,
+};
+
+enum LinkageType {
+ LinkageTypeExport = 0,
+ LinkageTypeImport = 1,
+ LinkageTypeLinkOnceODR = 2,
+ LinkageTypeMax = 0x7fffffff,
+};
+
+enum AccessQualifier {
+ AccessQualifierReadOnly = 0,
+ AccessQualifierWriteOnly = 1,
+ AccessQualifierReadWrite = 2,
+ AccessQualifierMax = 0x7fffffff,
+};
+
+enum FunctionParameterAttribute {
+ FunctionParameterAttributeZext = 0,
+ FunctionParameterAttributeSext = 1,
+ FunctionParameterAttributeByVal = 2,
+ FunctionParameterAttributeSret = 3,
+ FunctionParameterAttributeNoAlias = 4,
+ FunctionParameterAttributeNoCapture = 5,
+ FunctionParameterAttributeNoWrite = 6,
+ FunctionParameterAttributeNoReadWrite = 7,
+ FunctionParameterAttributeMax = 0x7fffffff,
+};
+
+enum Decoration {
+ DecorationRelaxedPrecision = 0,
+ DecorationSpecId = 1,
+ DecorationBlock = 2,
+ DecorationBufferBlock = 3,
+ DecorationRowMajor = 4,
+ DecorationColMajor = 5,
+ DecorationArrayStride = 6,
+ DecorationMatrixStride = 7,
+ DecorationGLSLShared = 8,
+ DecorationGLSLPacked = 9,
+ DecorationCPacked = 10,
+ DecorationBuiltIn = 11,
+ DecorationNoPerspective = 13,
+ DecorationFlat = 14,
+ DecorationPatch = 15,
+ DecorationCentroid = 16,
+ DecorationSample = 17,
+ DecorationInvariant = 18,
+ DecorationRestrict = 19,
+ DecorationAliased = 20,
+ DecorationVolatile = 21,
+ DecorationConstant = 22,
+ DecorationCoherent = 23,
+ DecorationNonWritable = 24,
+ DecorationNonReadable = 25,
+ DecorationUniform = 26,
+ DecorationUniformId = 27,
+ DecorationSaturatedConversion = 28,
+ DecorationStream = 29,
+ DecorationLocation = 30,
+ DecorationComponent = 31,
+ DecorationIndex = 32,
+ DecorationBinding = 33,
+ DecorationDescriptorSet = 34,
+ DecorationOffset = 35,
+ DecorationXfbBuffer = 36,
+ DecorationXfbStride = 37,
+ DecorationFuncParamAttr = 38,
+ DecorationFPRoundingMode = 39,
+ DecorationFPFastMathMode = 40,
+ DecorationLinkageAttributes = 41,
+ DecorationNoContraction = 42,
+ DecorationInputAttachmentIndex = 43,
+ DecorationAlignment = 44,
+ DecorationMaxByteOffset = 45,
+ DecorationAlignmentId = 46,
+ DecorationMaxByteOffsetId = 47,
+ DecorationNoSignedWrap = 4469,
+ DecorationNoUnsignedWrap = 4470,
+ DecorationWeightTextureQCOM = 4487,
+ DecorationBlockMatchTextureQCOM = 4488,
+ DecorationExplicitInterpAMD = 4999,
+ DecorationOverrideCoverageNV = 5248,
+ DecorationPassthroughNV = 5250,
+ DecorationViewportRelativeNV = 5252,
+ DecorationSecondaryViewportRelativeNV = 5256,
+ DecorationPerPrimitiveEXT = 5271,
+ DecorationPerPrimitiveNV = 5271,
+ DecorationPerViewNV = 5272,
+ DecorationPerTaskNV = 5273,
+ DecorationPerVertexKHR = 5285,
+ DecorationPerVertexNV = 5285,
+ DecorationNonUniform = 5300,
+ DecorationNonUniformEXT = 5300,
+ DecorationRestrictPointer = 5355,
+ DecorationRestrictPointerEXT = 5355,
+ DecorationAliasedPointer = 5356,
+ DecorationAliasedPointerEXT = 5356,
+ DecorationBindlessSamplerNV = 5398,
+ DecorationBindlessImageNV = 5399,
+ DecorationBoundSamplerNV = 5400,
+ DecorationBoundImageNV = 5401,
+ DecorationSIMTCallINTEL = 5599,
+ DecorationReferencedIndirectlyINTEL = 5602,
+ DecorationClobberINTEL = 5607,
+ DecorationSideEffectsINTEL = 5608,
+ DecorationVectorComputeVariableINTEL = 5624,
+ DecorationFuncParamIOKindINTEL = 5625,
+ DecorationVectorComputeFunctionINTEL = 5626,
+ DecorationStackCallINTEL = 5627,
+ DecorationGlobalVariableOffsetINTEL = 5628,
+ DecorationCounterBuffer = 5634,
+ DecorationHlslCounterBufferGOOGLE = 5634,
+ DecorationHlslSemanticGOOGLE = 5635,
+ DecorationUserSemantic = 5635,
+ DecorationUserTypeGOOGLE = 5636,
+ DecorationFunctionRoundingModeINTEL = 5822,
+ DecorationFunctionDenormModeINTEL = 5823,
+ DecorationRegisterINTEL = 5825,
+ DecorationMemoryINTEL = 5826,
+ DecorationNumbanksINTEL = 5827,
+ DecorationBankwidthINTEL = 5828,
+ DecorationMaxPrivateCopiesINTEL = 5829,
+ DecorationSinglepumpINTEL = 5830,
+ DecorationDoublepumpINTEL = 5831,
+ DecorationMaxReplicatesINTEL = 5832,
+ DecorationSimpleDualPortINTEL = 5833,
+ DecorationMergeINTEL = 5834,
+ DecorationBankBitsINTEL = 5835,
+ DecorationForcePow2DepthINTEL = 5836,
+ DecorationBurstCoalesceINTEL = 5899,
+ DecorationCacheSizeINTEL = 5900,
+ DecorationDontStaticallyCoalesceINTEL = 5901,
+ DecorationPrefetchINTEL = 5902,
+ DecorationStallEnableINTEL = 5905,
+ DecorationFuseLoopsInFunctionINTEL = 5907,
+ DecorationAliasScopeINTEL = 5914,
+ DecorationNoAliasINTEL = 5915,
+ DecorationBufferLocationINTEL = 5921,
+ DecorationIOPipeStorageINTEL = 5944,
+ DecorationFunctionFloatingPointModeINTEL = 6080,
+ DecorationSingleElementVectorINTEL = 6085,
+ DecorationVectorComputeCallableFunctionINTEL = 6087,
+ DecorationMediaBlockIOINTEL = 6140,
+ DecorationMax = 0x7fffffff,
+};
+
+enum BuiltIn {
+ BuiltInPosition = 0,
+ BuiltInPointSize = 1,
+ BuiltInClipDistance = 3,
+ BuiltInCullDistance = 4,
+ BuiltInVertexId = 5,
+ BuiltInInstanceId = 6,
+ BuiltInPrimitiveId = 7,
+ BuiltInInvocationId = 8,
+ BuiltInLayer = 9,
+ BuiltInViewportIndex = 10,
+ BuiltInTessLevelOuter = 11,
+ BuiltInTessLevelInner = 12,
+ BuiltInTessCoord = 13,
+ BuiltInPatchVertices = 14,
+ BuiltInFragCoord = 15,
+ BuiltInPointCoord = 16,
+ BuiltInFrontFacing = 17,
+ BuiltInSampleId = 18,
+ BuiltInSamplePosition = 19,
+ BuiltInSampleMask = 20,
+ BuiltInFragDepth = 22,
+ BuiltInHelperInvocation = 23,
+ BuiltInNumWorkgroups = 24,
+ BuiltInWorkgroupSize = 25,
+ BuiltInWorkgroupId = 26,
+ BuiltInLocalInvocationId = 27,
+ BuiltInGlobalInvocationId = 28,
+ BuiltInLocalInvocationIndex = 29,
+ BuiltInWorkDim = 30,
+ BuiltInGlobalSize = 31,
+ BuiltInEnqueuedWorkgroupSize = 32,
+ BuiltInGlobalOffset = 33,
+ BuiltInGlobalLinearId = 34,
+ BuiltInSubgroupSize = 36,
+ BuiltInSubgroupMaxSize = 37,
+ BuiltInNumSubgroups = 38,
+ BuiltInNumEnqueuedSubgroups = 39,
+ BuiltInSubgroupId = 40,
+ BuiltInSubgroupLocalInvocationId = 41,
+ BuiltInVertexIndex = 42,
+ BuiltInInstanceIndex = 43,
+ BuiltInSubgroupEqMask = 4416,
+ BuiltInSubgroupEqMaskKHR = 4416,
+ BuiltInSubgroupGeMask = 4417,
+ BuiltInSubgroupGeMaskKHR = 4417,
+ BuiltInSubgroupGtMask = 4418,
+ BuiltInSubgroupGtMaskKHR = 4418,
+ BuiltInSubgroupLeMask = 4419,
+ BuiltInSubgroupLeMaskKHR = 4419,
+ BuiltInSubgroupLtMask = 4420,
+ BuiltInSubgroupLtMaskKHR = 4420,
+ BuiltInBaseVertex = 4424,
+ BuiltInBaseInstance = 4425,
+ BuiltInDrawIndex = 4426,
+ BuiltInPrimitiveShadingRateKHR = 4432,
+ BuiltInDeviceIndex = 4438,
+ BuiltInViewIndex = 4440,
+ BuiltInShadingRateKHR = 4444,
+ BuiltInBaryCoordNoPerspAMD = 4992,
+ BuiltInBaryCoordNoPerspCentroidAMD = 4993,
+ BuiltInBaryCoordNoPerspSampleAMD = 4994,
+ BuiltInBaryCoordSmoothAMD = 4995,
+ BuiltInBaryCoordSmoothCentroidAMD = 4996,
+ BuiltInBaryCoordSmoothSampleAMD = 4997,
+ BuiltInBaryCoordPullModelAMD = 4998,
+ BuiltInFragStencilRefEXT = 5014,
+ BuiltInViewportMaskNV = 5253,
+ BuiltInSecondaryPositionNV = 5257,
+ BuiltInSecondaryViewportMaskNV = 5258,
+ BuiltInPositionPerViewNV = 5261,
+ BuiltInViewportMaskPerViewNV = 5262,
+ BuiltInFullyCoveredEXT = 5264,
+ BuiltInTaskCountNV = 5274,
+ BuiltInPrimitiveCountNV = 5275,
+ BuiltInPrimitiveIndicesNV = 5276,
+ BuiltInClipDistancePerViewNV = 5277,
+ BuiltInCullDistancePerViewNV = 5278,
+ BuiltInLayerPerViewNV = 5279,
+ BuiltInMeshViewCountNV = 5280,
+ BuiltInMeshViewIndicesNV = 5281,
+ BuiltInBaryCoordKHR = 5286,
+ BuiltInBaryCoordNV = 5286,
+ BuiltInBaryCoordNoPerspKHR = 5287,
+ BuiltInBaryCoordNoPerspNV = 5287,
+ BuiltInFragSizeEXT = 5292,
+ BuiltInFragmentSizeNV = 5292,
+ BuiltInFragInvocationCountEXT = 5293,
+ BuiltInInvocationsPerPixelNV = 5293,
+ BuiltInPrimitivePointIndicesEXT = 5294,
+ BuiltInPrimitiveLineIndicesEXT = 5295,
+ BuiltInPrimitiveTriangleIndicesEXT = 5296,
+ BuiltInCullPrimitiveEXT = 5299,
+ BuiltInLaunchIdKHR = 5319,
+ BuiltInLaunchIdNV = 5319,
+ BuiltInLaunchSizeKHR = 5320,
+ BuiltInLaunchSizeNV = 5320,
+ BuiltInWorldRayOriginKHR = 5321,
+ BuiltInWorldRayOriginNV = 5321,
+ BuiltInWorldRayDirectionKHR = 5322,
+ BuiltInWorldRayDirectionNV = 5322,
+ BuiltInObjectRayOriginKHR = 5323,
+ BuiltInObjectRayOriginNV = 5323,
+ BuiltInObjectRayDirectionKHR = 5324,
+ BuiltInObjectRayDirectionNV = 5324,
+ BuiltInRayTminKHR = 5325,
+ BuiltInRayTminNV = 5325,
+ BuiltInRayTmaxKHR = 5326,
+ BuiltInRayTmaxNV = 5326,
+ BuiltInInstanceCustomIndexKHR = 5327,
+ BuiltInInstanceCustomIndexNV = 5327,
+ BuiltInObjectToWorldKHR = 5330,
+ BuiltInObjectToWorldNV = 5330,
+ BuiltInWorldToObjectKHR = 5331,
+ BuiltInWorldToObjectNV = 5331,
+ BuiltInHitTNV = 5332,
+ BuiltInHitKindKHR = 5333,
+ BuiltInHitKindNV = 5333,
+ BuiltInCurrentRayTimeNV = 5334,
+ BuiltInIncomingRayFlagsKHR = 5351,
+ BuiltInIncomingRayFlagsNV = 5351,
+ BuiltInRayGeometryIndexKHR = 5352,
+ BuiltInWarpsPerSMNV = 5374,
+ BuiltInSMCountNV = 5375,
+ BuiltInWarpIDNV = 5376,
+ BuiltInSMIDNV = 5377,
+ BuiltInCullMaskKHR = 6021,
+ BuiltInMax = 0x7fffffff,
+};
+
+enum SelectionControlShift {
+ SelectionControlFlattenShift = 0,
+ SelectionControlDontFlattenShift = 1,
+ SelectionControlMax = 0x7fffffff,
+};
+
+enum SelectionControlMask {
+ SelectionControlMaskNone = 0,
+ SelectionControlFlattenMask = 0x00000001,
+ SelectionControlDontFlattenMask = 0x00000002,
+};
+
+enum LoopControlShift {
+ LoopControlUnrollShift = 0,
+ LoopControlDontUnrollShift = 1,
+ LoopControlDependencyInfiniteShift = 2,
+ LoopControlDependencyLengthShift = 3,
+ LoopControlMinIterationsShift = 4,
+ LoopControlMaxIterationsShift = 5,
+ LoopControlIterationMultipleShift = 6,
+ LoopControlPeelCountShift = 7,
+ LoopControlPartialCountShift = 8,
+ LoopControlInitiationIntervalINTELShift = 16,
+ LoopControlMaxConcurrencyINTELShift = 17,
+ LoopControlDependencyArrayINTELShift = 18,
+ LoopControlPipelineEnableINTELShift = 19,
+ LoopControlLoopCoalesceINTELShift = 20,
+ LoopControlMaxInterleavingINTELShift = 21,
+ LoopControlSpeculatedIterationsINTELShift = 22,
+ LoopControlNoFusionINTELShift = 23,
+ LoopControlMax = 0x7fffffff,
+};
+
+enum LoopControlMask {
+ LoopControlMaskNone = 0,
+ LoopControlUnrollMask = 0x00000001,
+ LoopControlDontUnrollMask = 0x00000002,
+ LoopControlDependencyInfiniteMask = 0x00000004,
+ LoopControlDependencyLengthMask = 0x00000008,
+ LoopControlMinIterationsMask = 0x00000010,
+ LoopControlMaxIterationsMask = 0x00000020,
+ LoopControlIterationMultipleMask = 0x00000040,
+ LoopControlPeelCountMask = 0x00000080,
+ LoopControlPartialCountMask = 0x00000100,
+ LoopControlInitiationIntervalINTELMask = 0x00010000,
+ LoopControlMaxConcurrencyINTELMask = 0x00020000,
+ LoopControlDependencyArrayINTELMask = 0x00040000,
+ LoopControlPipelineEnableINTELMask = 0x00080000,
+ LoopControlLoopCoalesceINTELMask = 0x00100000,
+ LoopControlMaxInterleavingINTELMask = 0x00200000,
+ LoopControlSpeculatedIterationsINTELMask = 0x00400000,
+ LoopControlNoFusionINTELMask = 0x00800000,
+};
+
+enum FunctionControlShift {
+ FunctionControlInlineShift = 0,
+ FunctionControlDontInlineShift = 1,
+ FunctionControlPureShift = 2,
+ FunctionControlConstShift = 3,
+ FunctionControlOptNoneINTELShift = 16,
+ FunctionControlMax = 0x7fffffff,
+};
+
+enum FunctionControlMask {
+ FunctionControlMaskNone = 0,
+ FunctionControlInlineMask = 0x00000001,
+ FunctionControlDontInlineMask = 0x00000002,
+ FunctionControlPureMask = 0x00000004,
+ FunctionControlConstMask = 0x00000008,
+ FunctionControlOptNoneINTELMask = 0x00010000,
+};
+
+enum MemorySemanticsShift {
+ MemorySemanticsAcquireShift = 1,
+ MemorySemanticsReleaseShift = 2,
+ MemorySemanticsAcquireReleaseShift = 3,
+ MemorySemanticsSequentiallyConsistentShift = 4,
+ MemorySemanticsUniformMemoryShift = 6,
+ MemorySemanticsSubgroupMemoryShift = 7,
+ MemorySemanticsWorkgroupMemoryShift = 8,
+ MemorySemanticsCrossWorkgroupMemoryShift = 9,
+ MemorySemanticsAtomicCounterMemoryShift = 10,
+ MemorySemanticsImageMemoryShift = 11,
+ MemorySemanticsOutputMemoryShift = 12,
+ MemorySemanticsOutputMemoryKHRShift = 12,
+ MemorySemanticsMakeAvailableShift = 13,
+ MemorySemanticsMakeAvailableKHRShift = 13,
+ MemorySemanticsMakeVisibleShift = 14,
+ MemorySemanticsMakeVisibleKHRShift = 14,
+ MemorySemanticsVolatileShift = 15,
+ MemorySemanticsMax = 0x7fffffff,
+};
+
+enum MemorySemanticsMask {
+ MemorySemanticsMaskNone = 0,
+ MemorySemanticsAcquireMask = 0x00000002,
+ MemorySemanticsReleaseMask = 0x00000004,
+ MemorySemanticsAcquireReleaseMask = 0x00000008,
+ MemorySemanticsSequentiallyConsistentMask = 0x00000010,
+ MemorySemanticsUniformMemoryMask = 0x00000040,
+ MemorySemanticsSubgroupMemoryMask = 0x00000080,
+ MemorySemanticsWorkgroupMemoryMask = 0x00000100,
+ MemorySemanticsCrossWorkgroupMemoryMask = 0x00000200,
+ MemorySemanticsAtomicCounterMemoryMask = 0x00000400,
+ MemorySemanticsImageMemoryMask = 0x00000800,
+ MemorySemanticsOutputMemoryMask = 0x00001000,
+ MemorySemanticsOutputMemoryKHRMask = 0x00001000,
+ MemorySemanticsMakeAvailableMask = 0x00002000,
+ MemorySemanticsMakeAvailableKHRMask = 0x00002000,
+ MemorySemanticsMakeVisibleMask = 0x00004000,
+ MemorySemanticsMakeVisibleKHRMask = 0x00004000,
+ MemorySemanticsVolatileMask = 0x00008000,
+};
+
+enum MemoryAccessShift {
+ MemoryAccessVolatileShift = 0,
+ MemoryAccessAlignedShift = 1,
+ MemoryAccessNontemporalShift = 2,
+ MemoryAccessMakePointerAvailableShift = 3,
+ MemoryAccessMakePointerAvailableKHRShift = 3,
+ MemoryAccessMakePointerVisibleShift = 4,
+ MemoryAccessMakePointerVisibleKHRShift = 4,
+ MemoryAccessNonPrivatePointerShift = 5,
+ MemoryAccessNonPrivatePointerKHRShift = 5,
+ MemoryAccessAliasScopeINTELMaskShift = 16,
+ MemoryAccessNoAliasINTELMaskShift = 17,
+ MemoryAccessMax = 0x7fffffff,
+};
+
+enum MemoryAccessMask {
+ MemoryAccessMaskNone = 0,
+ MemoryAccessVolatileMask = 0x00000001,
+ MemoryAccessAlignedMask = 0x00000002,
+ MemoryAccessNontemporalMask = 0x00000004,
+ MemoryAccessMakePointerAvailableMask = 0x00000008,
+ MemoryAccessMakePointerAvailableKHRMask = 0x00000008,
+ MemoryAccessMakePointerVisibleMask = 0x00000010,
+ MemoryAccessMakePointerVisibleKHRMask = 0x00000010,
+ MemoryAccessNonPrivatePointerMask = 0x00000020,
+ MemoryAccessNonPrivatePointerKHRMask = 0x00000020,
+ MemoryAccessAliasScopeINTELMaskMask = 0x00010000,
+ MemoryAccessNoAliasINTELMaskMask = 0x00020000,
+};
+
+enum Scope {
+ ScopeCrossDevice = 0,
+ ScopeDevice = 1,
+ ScopeWorkgroup = 2,
+ ScopeSubgroup = 3,
+ ScopeInvocation = 4,
+ ScopeQueueFamily = 5,
+ ScopeQueueFamilyKHR = 5,
+ ScopeShaderCallKHR = 6,
+ ScopeMax = 0x7fffffff,
+};
+
+enum GroupOperation {
+ GroupOperationReduce = 0,
+ GroupOperationInclusiveScan = 1,
+ GroupOperationExclusiveScan = 2,
+ GroupOperationClusteredReduce = 3,
+ GroupOperationPartitionedReduceNV = 6,
+ GroupOperationPartitionedInclusiveScanNV = 7,
+ GroupOperationPartitionedExclusiveScanNV = 8,
+ GroupOperationMax = 0x7fffffff,
+};
+
+enum KernelEnqueueFlags {
+ KernelEnqueueFlagsNoWait = 0,
+ KernelEnqueueFlagsWaitKernel = 1,
+ KernelEnqueueFlagsWaitWorkGroup = 2,
+ KernelEnqueueFlagsMax = 0x7fffffff,
+};
+
+enum KernelProfilingInfoShift {
+ KernelProfilingInfoCmdExecTimeShift = 0,
+ KernelProfilingInfoMax = 0x7fffffff,
+};
+
+enum KernelProfilingInfoMask {
+ KernelProfilingInfoMaskNone = 0,
+ KernelProfilingInfoCmdExecTimeMask = 0x00000001,
+};
+
+enum Capability {
+ CapabilityMatrix = 0,
+ CapabilityShader = 1,
+ CapabilityGeometry = 2,
+ CapabilityTessellation = 3,
+ CapabilityAddresses = 4,
+ CapabilityLinkage = 5,
+ CapabilityKernel = 6,
+ CapabilityVector16 = 7,
+ CapabilityFloat16Buffer = 8,
+ CapabilityFloat16 = 9,
+ CapabilityFloat64 = 10,
+ CapabilityInt64 = 11,
+ CapabilityInt64Atomics = 12,
+ CapabilityImageBasic = 13,
+ CapabilityImageReadWrite = 14,
+ CapabilityImageMipmap = 15,
+ CapabilityPipes = 17,
+ CapabilityGroups = 18,
+ CapabilityDeviceEnqueue = 19,
+ CapabilityLiteralSampler = 20,
+ CapabilityAtomicStorage = 21,
+ CapabilityInt16 = 22,
+ CapabilityTessellationPointSize = 23,
+ CapabilityGeometryPointSize = 24,
+ CapabilityImageGatherExtended = 25,
+ CapabilityStorageImageMultisample = 27,
+ CapabilityUniformBufferArrayDynamicIndexing = 28,
+ CapabilitySampledImageArrayDynamicIndexing = 29,
+ CapabilityStorageBufferArrayDynamicIndexing = 30,
+ CapabilityStorageImageArrayDynamicIndexing = 31,
+ CapabilityClipDistance = 32,
+ CapabilityCullDistance = 33,
+ CapabilityImageCubeArray = 34,
+ CapabilitySampleRateShading = 35,
+ CapabilityImageRect = 36,
+ CapabilitySampledRect = 37,
+ CapabilityGenericPointer = 38,
+ CapabilityInt8 = 39,
+ CapabilityInputAttachment = 40,
+ CapabilitySparseResidency = 41,
+ CapabilityMinLod = 42,
+ CapabilitySampled1D = 43,
+ CapabilityImage1D = 44,
+ CapabilitySampledCubeArray = 45,
+ CapabilitySampledBuffer = 46,
+ CapabilityImageBuffer = 47,
+ CapabilityImageMSArray = 48,
+ CapabilityStorageImageExtendedFormats = 49,
+ CapabilityImageQuery = 50,
+ CapabilityDerivativeControl = 51,
+ CapabilityInterpolationFunction = 52,
+ CapabilityTransformFeedback = 53,
+ CapabilityGeometryStreams = 54,
+ CapabilityStorageImageReadWithoutFormat = 55,
+ CapabilityStorageImageWriteWithoutFormat = 56,
+ CapabilityMultiViewport = 57,
+ CapabilitySubgroupDispatch = 58,
+ CapabilityNamedBarrier = 59,
+ CapabilityPipeStorage = 60,
+ CapabilityGroupNonUniform = 61,
+ CapabilityGroupNonUniformVote = 62,
+ CapabilityGroupNonUniformArithmetic = 63,
+ CapabilityGroupNonUniformBallot = 64,
+ CapabilityGroupNonUniformShuffle = 65,
+ CapabilityGroupNonUniformShuffleRelative = 66,
+ CapabilityGroupNonUniformClustered = 67,
+ CapabilityGroupNonUniformQuad = 68,
+ CapabilityShaderLayer = 69,
+ CapabilityShaderViewportIndex = 70,
+ CapabilityUniformDecoration = 71,
+ CapabilityFragmentShadingRateKHR = 4422,
+ CapabilitySubgroupBallotKHR = 4423,
+ CapabilityDrawParameters = 4427,
+ CapabilityWorkgroupMemoryExplicitLayoutKHR = 4428,
+ CapabilityWorkgroupMemoryExplicitLayout8BitAccessKHR = 4429,
+ CapabilityWorkgroupMemoryExplicitLayout16BitAccessKHR = 4430,
+ CapabilitySubgroupVoteKHR = 4431,
+ CapabilityStorageBuffer16BitAccess = 4433,
+ CapabilityStorageUniformBufferBlock16 = 4433,
+ CapabilityStorageUniform16 = 4434,
+ CapabilityUniformAndStorageBuffer16BitAccess = 4434,
+ CapabilityStoragePushConstant16 = 4435,
+ CapabilityStorageInputOutput16 = 4436,
+ CapabilityDeviceGroup = 4437,
+ CapabilityMultiView = 4439,
+ CapabilityVariablePointersStorageBuffer = 4441,
+ CapabilityVariablePointers = 4442,
+ CapabilityAtomicStorageOps = 4445,
+ CapabilitySampleMaskPostDepthCoverage = 4447,
+ CapabilityStorageBuffer8BitAccess = 4448,
+ CapabilityUniformAndStorageBuffer8BitAccess = 4449,
+ CapabilityStoragePushConstant8 = 4450,
+ CapabilityDenormPreserve = 4464,
+ CapabilityDenormFlushToZero = 4465,
+ CapabilitySignedZeroInfNanPreserve = 4466,
+ CapabilityRoundingModeRTE = 4467,
+ CapabilityRoundingModeRTZ = 4468,
+ CapabilityRayQueryProvisionalKHR = 4471,
+ CapabilityRayQueryKHR = 4472,
+ CapabilityRayTraversalPrimitiveCullingKHR = 4478,
+ CapabilityRayTracingKHR = 4479,
+ CapabilityTextureSampleWeightedQCOM = 4484,
+ CapabilityTextureBoxFilterQCOM = 4485,
+ CapabilityTextureBlockMatchQCOM = 4486,
+ CapabilityFloat16ImageAMD = 5008,
+ CapabilityImageGatherBiasLodAMD = 5009,
+ CapabilityFragmentMaskAMD = 5010,
+ CapabilityStencilExportEXT = 5013,
+ CapabilityImageReadWriteLodAMD = 5015,
+ CapabilityInt64ImageEXT = 5016,
+ CapabilityShaderClockKHR = 5055,
+ CapabilitySampleMaskOverrideCoverageNV = 5249,
+ CapabilityGeometryShaderPassthroughNV = 5251,
+ CapabilityShaderViewportIndexLayerEXT = 5254,
+ CapabilityShaderViewportIndexLayerNV = 5254,
+ CapabilityShaderViewportMaskNV = 5255,
+ CapabilityShaderStereoViewNV = 5259,
+ CapabilityPerViewAttributesNV = 5260,
+ CapabilityFragmentFullyCoveredEXT = 5265,
+ CapabilityMeshShadingNV = 5266,
+ CapabilityImageFootprintNV = 5282,
+ CapabilityMeshShadingEXT = 5283,
+ CapabilityFragmentBarycentricKHR = 5284,
+ CapabilityFragmentBarycentricNV = 5284,
+ CapabilityComputeDerivativeGroupQuadsNV = 5288,
+ CapabilityFragmentDensityEXT = 5291,
+ CapabilityShadingRateNV = 5291,
+ CapabilityGroupNonUniformPartitionedNV = 5297,
+ CapabilityShaderNonUniform = 5301,
+ CapabilityShaderNonUniformEXT = 5301,
+ CapabilityRuntimeDescriptorArray = 5302,
+ CapabilityRuntimeDescriptorArrayEXT = 5302,
+ CapabilityInputAttachmentArrayDynamicIndexing = 5303,
+ CapabilityInputAttachmentArrayDynamicIndexingEXT = 5303,
+ CapabilityUniformTexelBufferArrayDynamicIndexing = 5304,
+ CapabilityUniformTexelBufferArrayDynamicIndexingEXT = 5304,
+ CapabilityStorageTexelBufferArrayDynamicIndexing = 5305,
+ CapabilityStorageTexelBufferArrayDynamicIndexingEXT = 5305,
+ CapabilityUniformBufferArrayNonUniformIndexing = 5306,
+ CapabilityUniformBufferArrayNonUniformIndexingEXT = 5306,
+ CapabilitySampledImageArrayNonUniformIndexing = 5307,
+ CapabilitySampledImageArrayNonUniformIndexingEXT = 5307,
+ CapabilityStorageBufferArrayNonUniformIndexing = 5308,
+ CapabilityStorageBufferArrayNonUniformIndexingEXT = 5308,
+ CapabilityStorageImageArrayNonUniformIndexing = 5309,
+ CapabilityStorageImageArrayNonUniformIndexingEXT = 5309,
+ CapabilityInputAttachmentArrayNonUniformIndexing = 5310,
+ CapabilityInputAttachmentArrayNonUniformIndexingEXT = 5310,
+ CapabilityUniformTexelBufferArrayNonUniformIndexing = 5311,
+ CapabilityUniformTexelBufferArrayNonUniformIndexingEXT = 5311,
+ CapabilityStorageTexelBufferArrayNonUniformIndexing = 5312,
+ CapabilityStorageTexelBufferArrayNonUniformIndexingEXT = 5312,
+ CapabilityRayTracingNV = 5340,
+ CapabilityRayTracingMotionBlurNV = 5341,
+ CapabilityVulkanMemoryModel = 5345,
+ CapabilityVulkanMemoryModelKHR = 5345,
+ CapabilityVulkanMemoryModelDeviceScope = 5346,
+ CapabilityVulkanMemoryModelDeviceScopeKHR = 5346,
+ CapabilityPhysicalStorageBufferAddresses = 5347,
+ CapabilityPhysicalStorageBufferAddressesEXT = 5347,
+ CapabilityComputeDerivativeGroupLinearNV = 5350,
+ CapabilityRayTracingProvisionalKHR = 5353,
+ CapabilityCooperativeMatrixNV = 5357,
+ CapabilityFragmentShaderSampleInterlockEXT = 5363,
+ CapabilityFragmentShaderShadingRateInterlockEXT = 5372,
+ CapabilityShaderSMBuiltinsNV = 5373,
+ CapabilityFragmentShaderPixelInterlockEXT = 5378,
+ CapabilityDemoteToHelperInvocation = 5379,
+ CapabilityDemoteToHelperInvocationEXT = 5379,
+ CapabilityBindlessTextureNV = 5390,
+ CapabilitySubgroupShuffleINTEL = 5568,
+ CapabilitySubgroupBufferBlockIOINTEL = 5569,
+ CapabilitySubgroupImageBlockIOINTEL = 5570,
+ CapabilitySubgroupImageMediaBlockIOINTEL = 5579,
+ CapabilityRoundToInfinityINTEL = 5582,
+ CapabilityFloatingPointModeINTEL = 5583,
+ CapabilityIntegerFunctions2INTEL = 5584,
+ CapabilityFunctionPointersINTEL = 5603,
+ CapabilityIndirectReferencesINTEL = 5604,
+ CapabilityAsmINTEL = 5606,
+ CapabilityAtomicFloat32MinMaxEXT = 5612,
+ CapabilityAtomicFloat64MinMaxEXT = 5613,
+ CapabilityAtomicFloat16MinMaxEXT = 5616,
+ CapabilityVectorComputeINTEL = 5617,
+ CapabilityVectorAnyINTEL = 5619,
+ CapabilityExpectAssumeKHR = 5629,
+ CapabilitySubgroupAvcMotionEstimationINTEL = 5696,
+ CapabilitySubgroupAvcMotionEstimationIntraINTEL = 5697,
+ CapabilitySubgroupAvcMotionEstimationChromaINTEL = 5698,
+ CapabilityVariableLengthArrayINTEL = 5817,
+ CapabilityFunctionFloatControlINTEL = 5821,
+ CapabilityFPGAMemoryAttributesINTEL = 5824,
+ CapabilityFPFastMathModeINTEL = 5837,
+ CapabilityArbitraryPrecisionIntegersINTEL = 5844,
+ CapabilityArbitraryPrecisionFloatingPointINTEL = 5845,
+ CapabilityUnstructuredLoopControlsINTEL = 5886,
+ CapabilityFPGALoopControlsINTEL = 5888,
+ CapabilityKernelAttributesINTEL = 5892,
+ CapabilityFPGAKernelAttributesINTEL = 5897,
+ CapabilityFPGAMemoryAccessesINTEL = 5898,
+ CapabilityFPGAClusterAttributesINTEL = 5904,
+ CapabilityLoopFuseINTEL = 5906,
+ CapabilityMemoryAccessAliasingINTEL = 5910,
+ CapabilityFPGABufferLocationINTEL = 5920,
+ CapabilityArbitraryPrecisionFixedPointINTEL = 5922,
+ CapabilityUSMStorageClassesINTEL = 5935,
+ CapabilityIOPipesINTEL = 5943,
+ CapabilityBlockingPipesINTEL = 5945,
+ CapabilityFPGARegINTEL = 5948,
+ CapabilityDotProductInputAll = 6016,
+ CapabilityDotProductInputAllKHR = 6016,
+ CapabilityDotProductInput4x8Bit = 6017,
+ CapabilityDotProductInput4x8BitKHR = 6017,
+ CapabilityDotProductInput4x8BitPacked = 6018,
+ CapabilityDotProductInput4x8BitPackedKHR = 6018,
+ CapabilityDotProduct = 6019,
+ CapabilityDotProductKHR = 6019,
+ CapabilityRayCullMaskKHR = 6020,
+ CapabilityBitInstructions = 6025,
+ CapabilityGroupNonUniformRotateKHR = 6026,
+ CapabilityAtomicFloat32AddEXT = 6033,
+ CapabilityAtomicFloat64AddEXT = 6034,
+ CapabilityLongConstantCompositeINTEL = 6089,
+ CapabilityOptNoneINTEL = 6094,
+ CapabilityAtomicFloat16AddEXT = 6095,
+ CapabilityDebugInfoModuleINTEL = 6114,
+ CapabilitySplitBarrierINTEL = 6141,
+ CapabilityGroupUniformArithmeticKHR = 6400,
+ CapabilityMax = 0x7fffffff,
+};
+
+enum RayFlagsShift {
+ RayFlagsOpaqueKHRShift = 0,
+ RayFlagsNoOpaqueKHRShift = 1,
+ RayFlagsTerminateOnFirstHitKHRShift = 2,
+ RayFlagsSkipClosestHitShaderKHRShift = 3,
+ RayFlagsCullBackFacingTrianglesKHRShift = 4,
+ RayFlagsCullFrontFacingTrianglesKHRShift = 5,
+ RayFlagsCullOpaqueKHRShift = 6,
+ RayFlagsCullNoOpaqueKHRShift = 7,
+ RayFlagsSkipTrianglesKHRShift = 8,
+ RayFlagsSkipAABBsKHRShift = 9,
+ RayFlagsMax = 0x7fffffff,
+};
+
+enum RayFlagsMask {
+ RayFlagsMaskNone = 0,
+ RayFlagsOpaqueKHRMask = 0x00000001,
+ RayFlagsNoOpaqueKHRMask = 0x00000002,
+ RayFlagsTerminateOnFirstHitKHRMask = 0x00000004,
+ RayFlagsSkipClosestHitShaderKHRMask = 0x00000008,
+ RayFlagsCullBackFacingTrianglesKHRMask = 0x00000010,
+ RayFlagsCullFrontFacingTrianglesKHRMask = 0x00000020,
+ RayFlagsCullOpaqueKHRMask = 0x00000040,
+ RayFlagsCullNoOpaqueKHRMask = 0x00000080,
+ RayFlagsSkipTrianglesKHRMask = 0x00000100,
+ RayFlagsSkipAABBsKHRMask = 0x00000200,
+};
+
+enum RayQueryIntersection {
+ RayQueryIntersectionRayQueryCandidateIntersectionKHR = 0,
+ RayQueryIntersectionRayQueryCommittedIntersectionKHR = 1,
+ RayQueryIntersectionMax = 0x7fffffff,
+};
+
+enum RayQueryCommittedIntersectionType {
+ RayQueryCommittedIntersectionTypeRayQueryCommittedIntersectionNoneKHR = 0,
+ RayQueryCommittedIntersectionTypeRayQueryCommittedIntersectionTriangleKHR = 1,
+ RayQueryCommittedIntersectionTypeRayQueryCommittedIntersectionGeneratedKHR = 2,
+ RayQueryCommittedIntersectionTypeMax = 0x7fffffff,
+};
+
+enum RayQueryCandidateIntersectionType {
+ RayQueryCandidateIntersectionTypeRayQueryCandidateIntersectionTriangleKHR = 0,
+ RayQueryCandidateIntersectionTypeRayQueryCandidateIntersectionAABBKHR = 1,
+ RayQueryCandidateIntersectionTypeMax = 0x7fffffff,
+};
+
+enum FragmentShadingRateShift {
+ FragmentShadingRateVertical2PixelsShift = 0,
+ FragmentShadingRateVertical4PixelsShift = 1,
+ FragmentShadingRateHorizontal2PixelsShift = 2,
+ FragmentShadingRateHorizontal4PixelsShift = 3,
+ FragmentShadingRateMax = 0x7fffffff,
+};
+
+enum FragmentShadingRateMask {
+ FragmentShadingRateMaskNone = 0,
+ FragmentShadingRateVertical2PixelsMask = 0x00000001,
+ FragmentShadingRateVertical4PixelsMask = 0x00000002,
+ FragmentShadingRateHorizontal2PixelsMask = 0x00000004,
+ FragmentShadingRateHorizontal4PixelsMask = 0x00000008,
+};
+
+enum FPDenormMode {
+ FPDenormModePreserve = 0,
+ FPDenormModeFlushToZero = 1,
+ FPDenormModeMax = 0x7fffffff,
+};
+
+enum FPOperationMode {
+ FPOperationModeIEEE = 0,
+ FPOperationModeALT = 1,
+ FPOperationModeMax = 0x7fffffff,
+};
+
+enum QuantizationModes {
+ QuantizationModesTRN = 0,
+ QuantizationModesTRN_ZERO = 1,
+ QuantizationModesRND = 2,
+ QuantizationModesRND_ZERO = 3,
+ QuantizationModesRND_INF = 4,
+ QuantizationModesRND_MIN_INF = 5,
+ QuantizationModesRND_CONV = 6,
+ QuantizationModesRND_CONV_ODD = 7,
+ QuantizationModesMax = 0x7fffffff,
+};
+
+enum OverflowModes {
+ OverflowModesWRAP = 0,
+ OverflowModesSAT = 1,
+ OverflowModesSAT_ZERO = 2,
+ OverflowModesSAT_SYM = 3,
+ OverflowModesMax = 0x7fffffff,
+};
+
+enum PackedVectorFormat {
+ PackedVectorFormatPackedVectorFormat4x8Bit = 0,
+ PackedVectorFormatPackedVectorFormat4x8BitKHR = 0,
+ PackedVectorFormatMax = 0x7fffffff,
+};
+
+enum Op {
+ OpNop = 0,
+ OpUndef = 1,
+ OpSourceContinued = 2,
+ OpSource = 3,
+ OpSourceExtension = 4,
+ OpName = 5,
+ OpMemberName = 6,
+ OpString = 7,
+ OpLine = 8,
+ OpExtension = 10,
+ OpExtInstImport = 11,
+ OpExtInst = 12,
+ OpMemoryModel = 14,
+ OpEntryPoint = 15,
+ OpExecutionMode = 16,
+ OpCapability = 17,
+ OpTypeVoid = 19,
+ OpTypeBool = 20,
+ OpTypeInt = 21,
+ OpTypeFloat = 22,
+ OpTypeVector = 23,
+ OpTypeMatrix = 24,
+ OpTypeImage = 25,
+ OpTypeSampler = 26,
+ OpTypeSampledImage = 27,
+ OpTypeArray = 28,
+ OpTypeRuntimeArray = 29,
+ OpTypeStruct = 30,
+ OpTypeOpaque = 31,
+ OpTypePointer = 32,
+ OpTypeFunction = 33,
+ OpTypeEvent = 34,
+ OpTypeDeviceEvent = 35,
+ OpTypeReserveId = 36,
+ OpTypeQueue = 37,
+ OpTypePipe = 38,
+ OpTypeForwardPointer = 39,
+ OpConstantTrue = 41,
+ OpConstantFalse = 42,
+ OpConstant = 43,
+ OpConstantComposite = 44,
+ OpConstantSampler = 45,
+ OpConstantNull = 46,
+ OpSpecConstantTrue = 48,
+ OpSpecConstantFalse = 49,
+ OpSpecConstant = 50,
+ OpSpecConstantComposite = 51,
+ OpSpecConstantOp = 52,
+ OpFunction = 54,
+ OpFunctionParameter = 55,
+ OpFunctionEnd = 56,
+ OpFunctionCall = 57,
+ OpVariable = 59,
+ OpImageTexelPointer = 60,
+ OpLoad = 61,
+ OpStore = 62,
+ OpCopyMemory = 63,
+ OpCopyMemorySized = 64,
+ OpAccessChain = 65,
+ OpInBoundsAccessChain = 66,
+ OpPtrAccessChain = 67,
+ OpArrayLength = 68,
+ OpGenericPtrMemSemantics = 69,
+ OpInBoundsPtrAccessChain = 70,
+ OpDecorate = 71,
+ OpMemberDecorate = 72,
+ OpDecorationGroup = 73,
+ OpGroupDecorate = 74,
+ OpGroupMemberDecorate = 75,
+ OpVectorExtractDynamic = 77,
+ OpVectorInsertDynamic = 78,
+ OpVectorShuffle = 79,
+ OpCompositeConstruct = 80,
+ OpCompositeExtract = 81,
+ OpCompositeInsert = 82,
+ OpCopyObject = 83,
+ OpTranspose = 84,
+ OpSampledImage = 86,
+ OpImageSampleImplicitLod = 87,
+ OpImageSampleExplicitLod = 88,
+ OpImageSampleDrefImplicitLod = 89,
+ OpImageSampleDrefExplicitLod = 90,
+ OpImageSampleProjImplicitLod = 91,
+ OpImageSampleProjExplicitLod = 92,
+ OpImageSampleProjDrefImplicitLod = 93,
+ OpImageSampleProjDrefExplicitLod = 94,
+ OpImageFetch = 95,
+ OpImageGather = 96,
+ OpImageDrefGather = 97,
+ OpImageRead = 98,
+ OpImageWrite = 99,
+ OpImage = 100,
+ OpImageQueryFormat = 101,
+ OpImageQueryOrder = 102,
+ OpImageQuerySizeLod = 103,
+ OpImageQuerySize = 104,
+ OpImageQueryLod = 105,
+ OpImageQueryLevels = 106,
+ OpImageQuerySamples = 107,
+ OpConvertFToU = 109,
+ OpConvertFToS = 110,
+ OpConvertSToF = 111,
+ OpConvertUToF = 112,
+ OpUConvert = 113,
+ OpSConvert = 114,
+ OpFConvert = 115,
+ OpQuantizeToF16 = 116,
+ OpConvertPtrToU = 117,
+ OpSatConvertSToU = 118,
+ OpSatConvertUToS = 119,
+ OpConvertUToPtr = 120,
+ OpPtrCastToGeneric = 121,
+ OpGenericCastToPtr = 122,
+ OpGenericCastToPtrExplicit = 123,
+ OpBitcast = 124,
+ OpSNegate = 126,
+ OpFNegate = 127,
+ OpIAdd = 128,
+ OpFAdd = 129,
+ OpISub = 130,
+ OpFSub = 131,
+ OpIMul = 132,
+ OpFMul = 133,
+ OpUDiv = 134,
+ OpSDiv = 135,
+ OpFDiv = 136,
+ OpUMod = 137,
+ OpSRem = 138,
+ OpSMod = 139,
+ OpFRem = 140,
+ OpFMod = 141,
+ OpVectorTimesScalar = 142,
+ OpMatrixTimesScalar = 143,
+ OpVectorTimesMatrix = 144,
+ OpMatrixTimesVector = 145,
+ OpMatrixTimesMatrix = 146,
+ OpOuterProduct = 147,
+ OpDot = 148,
+ OpIAddCarry = 149,
+ OpISubBorrow = 150,
+ OpUMulExtended = 151,
+ OpSMulExtended = 152,
+ OpAny = 154,
+ OpAll = 155,
+ OpIsNan = 156,
+ OpIsInf = 157,
+ OpIsFinite = 158,
+ OpIsNormal = 159,
+ OpSignBitSet = 160,
+ OpLessOrGreater = 161,
+ OpOrdered = 162,
+ OpUnordered = 163,
+ OpLogicalEqual = 164,
+ OpLogicalNotEqual = 165,
+ OpLogicalOr = 166,
+ OpLogicalAnd = 167,
+ OpLogicalNot = 168,
+ OpSelect = 169,
+ OpIEqual = 170,
+ OpINotEqual = 171,
+ OpUGreaterThan = 172,
+ OpSGreaterThan = 173,
+ OpUGreaterThanEqual = 174,
+ OpSGreaterThanEqual = 175,
+ OpULessThan = 176,
+ OpSLessThan = 177,
+ OpULessThanEqual = 178,
+ OpSLessThanEqual = 179,
+ OpFOrdEqual = 180,
+ OpFUnordEqual = 181,
+ OpFOrdNotEqual = 182,
+ OpFUnordNotEqual = 183,
+ OpFOrdLessThan = 184,
+ OpFUnordLessThan = 185,
+ OpFOrdGreaterThan = 186,
+ OpFUnordGreaterThan = 187,
+ OpFOrdLessThanEqual = 188,
+ OpFUnordLessThanEqual = 189,
+ OpFOrdGreaterThanEqual = 190,
+ OpFUnordGreaterThanEqual = 191,
+ OpShiftRightLogical = 194,
+ OpShiftRightArithmetic = 195,
+ OpShiftLeftLogical = 196,
+ OpBitwiseOr = 197,
+ OpBitwiseXor = 198,
+ OpBitwiseAnd = 199,
+ OpNot = 200,
+ OpBitFieldInsert = 201,
+ OpBitFieldSExtract = 202,
+ OpBitFieldUExtract = 203,
+ OpBitReverse = 204,
+ OpBitCount = 205,
+ OpDPdx = 207,
+ OpDPdy = 208,
+ OpFwidth = 209,
+ OpDPdxFine = 210,
+ OpDPdyFine = 211,
+ OpFwidthFine = 212,
+ OpDPdxCoarse = 213,
+ OpDPdyCoarse = 214,
+ OpFwidthCoarse = 215,
+ OpEmitVertex = 218,
+ OpEndPrimitive = 219,
+ OpEmitStreamVertex = 220,
+ OpEndStreamPrimitive = 221,
+ OpControlBarrier = 224,
+ OpMemoryBarrier = 225,
+ OpAtomicLoad = 227,
+ OpAtomicStore = 228,
+ OpAtomicExchange = 229,
+ OpAtomicCompareExchange = 230,
+ OpAtomicCompareExchangeWeak = 231,
+ OpAtomicIIncrement = 232,
+ OpAtomicIDecrement = 233,
+ OpAtomicIAdd = 234,
+ OpAtomicISub = 235,
+ OpAtomicSMin = 236,
+ OpAtomicUMin = 237,
+ OpAtomicSMax = 238,
+ OpAtomicUMax = 239,
+ OpAtomicAnd = 240,
+ OpAtomicOr = 241,
+ OpAtomicXor = 242,
+ OpPhi = 245,
+ OpLoopMerge = 246,
+ OpSelectionMerge = 247,
+ OpLabel = 248,
+ OpBranch = 249,
+ OpBranchConditional = 250,
+ OpSwitch = 251,
+ OpKill = 252,
+ OpReturn = 253,
+ OpReturnValue = 254,
+ OpUnreachable = 255,
+ OpLifetimeStart = 256,
+ OpLifetimeStop = 257,
+ OpGroupAsyncCopy = 259,
+ OpGroupWaitEvents = 260,
+ OpGroupAll = 261,
+ OpGroupAny = 262,
+ OpGroupBroadcast = 263,
+ OpGroupIAdd = 264,
+ OpGroupFAdd = 265,
+ OpGroupFMin = 266,
+ OpGroupUMin = 267,
+ OpGroupSMin = 268,
+ OpGroupFMax = 269,
+ OpGroupUMax = 270,
+ OpGroupSMax = 271,
+ OpReadPipe = 274,
+ OpWritePipe = 275,
+ OpReservedReadPipe = 276,
+ OpReservedWritePipe = 277,
+ OpReserveReadPipePackets = 278,
+ OpReserveWritePipePackets = 279,
+ OpCommitReadPipe = 280,
+ OpCommitWritePipe = 281,
+ OpIsValidReserveId = 282,
+ OpGetNumPipePackets = 283,
+ OpGetMaxPipePackets = 284,
+ OpGroupReserveReadPipePackets = 285,
+ OpGroupReserveWritePipePackets = 286,
+ OpGroupCommitReadPipe = 287,
+ OpGroupCommitWritePipe = 288,
+ OpEnqueueMarker = 291,
+ OpEnqueueKernel = 292,
+ OpGetKernelNDrangeSubGroupCount = 293,
+ OpGetKernelNDrangeMaxSubGroupSize = 294,
+ OpGetKernelWorkGroupSize = 295,
+ OpGetKernelPreferredWorkGroupSizeMultiple = 296,
+ OpRetainEvent = 297,
+ OpReleaseEvent = 298,
+ OpCreateUserEvent = 299,
+ OpIsValidEvent = 300,
+ OpSetUserEventStatus = 301,
+ OpCaptureEventProfilingInfo = 302,
+ OpGetDefaultQueue = 303,
+ OpBuildNDRange = 304,
+ OpImageSparseSampleImplicitLod = 305,
+ OpImageSparseSampleExplicitLod = 306,
+ OpImageSparseSampleDrefImplicitLod = 307,
+ OpImageSparseSampleDrefExplicitLod = 308,
+ OpImageSparseSampleProjImplicitLod = 309,
+ OpImageSparseSampleProjExplicitLod = 310,
+ OpImageSparseSampleProjDrefImplicitLod = 311,
+ OpImageSparseSampleProjDrefExplicitLod = 312,
+ OpImageSparseFetch = 313,
+ OpImageSparseGather = 314,
+ OpImageSparseDrefGather = 315,
+ OpImageSparseTexelsResident = 316,
+ OpNoLine = 317,
+ OpAtomicFlagTestAndSet = 318,
+ OpAtomicFlagClear = 319,
+ OpImageSparseRead = 320,
+ OpSizeOf = 321,
+ OpTypePipeStorage = 322,
+ OpConstantPipeStorage = 323,
+ OpCreatePipeFromPipeStorage = 324,
+ OpGetKernelLocalSizeForSubgroupCount = 325,
+ OpGetKernelMaxNumSubgroups = 326,
+ OpTypeNamedBarrier = 327,
+ OpNamedBarrierInitialize = 328,
+ OpMemoryNamedBarrier = 329,
+ OpModuleProcessed = 330,
+ OpExecutionModeId = 331,
+ OpDecorateId = 332,
+ OpGroupNonUniformElect = 333,
+ OpGroupNonUniformAll = 334,
+ OpGroupNonUniformAny = 335,
+ OpGroupNonUniformAllEqual = 336,
+ OpGroupNonUniformBroadcast = 337,
+ OpGroupNonUniformBroadcastFirst = 338,
+ OpGroupNonUniformBallot = 339,
+ OpGroupNonUniformInverseBallot = 340,
+ OpGroupNonUniformBallotBitExtract = 341,
+ OpGroupNonUniformBallotBitCount = 342,
+ OpGroupNonUniformBallotFindLSB = 343,
+ OpGroupNonUniformBallotFindMSB = 344,
+ OpGroupNonUniformShuffle = 345,
+ OpGroupNonUniformShuffleXor = 346,
+ OpGroupNonUniformShuffleUp = 347,
+ OpGroupNonUniformShuffleDown = 348,
+ OpGroupNonUniformIAdd = 349,
+ OpGroupNonUniformFAdd = 350,
+ OpGroupNonUniformIMul = 351,
+ OpGroupNonUniformFMul = 352,
+ OpGroupNonUniformSMin = 353,
+ OpGroupNonUniformUMin = 354,
+ OpGroupNonUniformFMin = 355,
+ OpGroupNonUniformSMax = 356,
+ OpGroupNonUniformUMax = 357,
+ OpGroupNonUniformFMax = 358,
+ OpGroupNonUniformBitwiseAnd = 359,
+ OpGroupNonUniformBitwiseOr = 360,
+ OpGroupNonUniformBitwiseXor = 361,
+ OpGroupNonUniformLogicalAnd = 362,
+ OpGroupNonUniformLogicalOr = 363,
+ OpGroupNonUniformLogicalXor = 364,
+ OpGroupNonUniformQuadBroadcast = 365,
+ OpGroupNonUniformQuadSwap = 366,
+ OpCopyLogical = 400,
+ OpPtrEqual = 401,
+ OpPtrNotEqual = 402,
+ OpPtrDiff = 403,
+ OpTerminateInvocation = 4416,
+ OpSubgroupBallotKHR = 4421,
+ OpSubgroupFirstInvocationKHR = 4422,
+ OpSubgroupAllKHR = 4428,
+ OpSubgroupAnyKHR = 4429,
+ OpSubgroupAllEqualKHR = 4430,
+ OpGroupNonUniformRotateKHR = 4431,
+ OpSubgroupReadInvocationKHR = 4432,
+ OpTraceRayKHR = 4445,
+ OpExecuteCallableKHR = 4446,
+ OpConvertUToAccelerationStructureKHR = 4447,
+ OpIgnoreIntersectionKHR = 4448,
+ OpTerminateRayKHR = 4449,
+ OpSDot = 4450,
+ OpSDotKHR = 4450,
+ OpUDot = 4451,
+ OpUDotKHR = 4451,
+ OpSUDot = 4452,
+ OpSUDotKHR = 4452,
+ OpSDotAccSat = 4453,
+ OpSDotAccSatKHR = 4453,
+ OpUDotAccSat = 4454,
+ OpUDotAccSatKHR = 4454,
+ OpSUDotAccSat = 4455,
+ OpSUDotAccSatKHR = 4455,
+ OpTypeRayQueryKHR = 4472,
+ OpRayQueryInitializeKHR = 4473,
+ OpRayQueryTerminateKHR = 4474,
+ OpRayQueryGenerateIntersectionKHR = 4475,
+ OpRayQueryConfirmIntersectionKHR = 4476,
+ OpRayQueryProceedKHR = 4477,
+ OpRayQueryGetIntersectionTypeKHR = 4479,
+ OpImageSampleWeightedQCOM = 4480,
+ OpImageBoxFilterQCOM = 4481,
+ OpImageBlockMatchSSDQCOM = 4482,
+ OpImageBlockMatchSADQCOM = 4483,
+ OpGroupIAddNonUniformAMD = 5000,
+ OpGroupFAddNonUniformAMD = 5001,
+ OpGroupFMinNonUniformAMD = 5002,
+ OpGroupUMinNonUniformAMD = 5003,
+ OpGroupSMinNonUniformAMD = 5004,
+ OpGroupFMaxNonUniformAMD = 5005,
+ OpGroupUMaxNonUniformAMD = 5006,
+ OpGroupSMaxNonUniformAMD = 5007,
+ OpFragmentMaskFetchAMD = 5011,
+ OpFragmentFetchAMD = 5012,
+ OpReadClockKHR = 5056,
+ OpImageSampleFootprintNV = 5283,
+ OpEmitMeshTasksEXT = 5294,
+ OpSetMeshOutputsEXT = 5295,
+ OpGroupNonUniformPartitionNV = 5296,
+ OpWritePackedPrimitiveIndices4x8NV = 5299,
+ OpReportIntersectionKHR = 5334,
+ OpReportIntersectionNV = 5334,
+ OpIgnoreIntersectionNV = 5335,
+ OpTerminateRayNV = 5336,
+ OpTraceNV = 5337,
+ OpTraceMotionNV = 5338,
+ OpTraceRayMotionNV = 5339,
+ OpTypeAccelerationStructureKHR = 5341,
+ OpTypeAccelerationStructureNV = 5341,
+ OpExecuteCallableNV = 5344,
+ OpTypeCooperativeMatrixNV = 5358,
+ OpCooperativeMatrixLoadNV = 5359,
+ OpCooperativeMatrixStoreNV = 5360,
+ OpCooperativeMatrixMulAddNV = 5361,
+ OpCooperativeMatrixLengthNV = 5362,
+ OpBeginInvocationInterlockEXT = 5364,
+ OpEndInvocationInterlockEXT = 5365,
+ OpDemoteToHelperInvocation = 5380,
+ OpDemoteToHelperInvocationEXT = 5380,
+ OpIsHelperInvocationEXT = 5381,
+ OpConvertUToImageNV = 5391,
+ OpConvertUToSamplerNV = 5392,
+ OpConvertImageToUNV = 5393,
+ OpConvertSamplerToUNV = 5394,
+ OpConvertUToSampledImageNV = 5395,
+ OpConvertSampledImageToUNV = 5396,
+ OpSamplerImageAddressingModeNV = 5397,
+ OpSubgroupShuffleINTEL = 5571,
+ OpSubgroupShuffleDownINTEL = 5572,
+ OpSubgroupShuffleUpINTEL = 5573,
+ OpSubgroupShuffleXorINTEL = 5574,
+ OpSubgroupBlockReadINTEL = 5575,
+ OpSubgroupBlockWriteINTEL = 5576,
+ OpSubgroupImageBlockReadINTEL = 5577,
+ OpSubgroupImageBlockWriteINTEL = 5578,
+ OpSubgroupImageMediaBlockReadINTEL = 5580,
+ OpSubgroupImageMediaBlockWriteINTEL = 5581,
+ OpUCountLeadingZerosINTEL = 5585,
+ OpUCountTrailingZerosINTEL = 5586,
+ OpAbsISubINTEL = 5587,
+ OpAbsUSubINTEL = 5588,
+ OpIAddSatINTEL = 5589,
+ OpUAddSatINTEL = 5590,
+ OpIAverageINTEL = 5591,
+ OpUAverageINTEL = 5592,
+ OpIAverageRoundedINTEL = 5593,
+ OpUAverageRoundedINTEL = 5594,
+ OpISubSatINTEL = 5595,
+ OpUSubSatINTEL = 5596,
+ OpIMul32x16INTEL = 5597,
+ OpUMul32x16INTEL = 5598,
+ OpConstantFunctionPointerINTEL = 5600,
+ OpFunctionPointerCallINTEL = 5601,
+ OpAsmTargetINTEL = 5609,
+ OpAsmINTEL = 5610,
+ OpAsmCallINTEL = 5611,
+ OpAtomicFMinEXT = 5614,
+ OpAtomicFMaxEXT = 5615,
+ OpAssumeTrueKHR = 5630,
+ OpExpectKHR = 5631,
+ OpDecorateString = 5632,
+ OpDecorateStringGOOGLE = 5632,
+ OpMemberDecorateString = 5633,
+ OpMemberDecorateStringGOOGLE = 5633,
+ OpVmeImageINTEL = 5699,
+ OpTypeVmeImageINTEL = 5700,
+ OpTypeAvcImePayloadINTEL = 5701,
+ OpTypeAvcRefPayloadINTEL = 5702,
+ OpTypeAvcSicPayloadINTEL = 5703,
+ OpTypeAvcMcePayloadINTEL = 5704,
+ OpTypeAvcMceResultINTEL = 5705,
+ OpTypeAvcImeResultINTEL = 5706,
+ OpTypeAvcImeResultSingleReferenceStreamoutINTEL = 5707,
+ OpTypeAvcImeResultDualReferenceStreamoutINTEL = 5708,
+ OpTypeAvcImeSingleReferenceStreaminINTEL = 5709,
+ OpTypeAvcImeDualReferenceStreaminINTEL = 5710,
+ OpTypeAvcRefResultINTEL = 5711,
+ OpTypeAvcSicResultINTEL = 5712,
+ OpSubgroupAvcMceGetDefaultInterBaseMultiReferencePenaltyINTEL = 5713,
+ OpSubgroupAvcMceSetInterBaseMultiReferencePenaltyINTEL = 5714,
+ OpSubgroupAvcMceGetDefaultInterShapePenaltyINTEL = 5715,
+ OpSubgroupAvcMceSetInterShapePenaltyINTEL = 5716,
+ OpSubgroupAvcMceGetDefaultInterDirectionPenaltyINTEL = 5717,
+ OpSubgroupAvcMceSetInterDirectionPenaltyINTEL = 5718,
+ OpSubgroupAvcMceGetDefaultIntraLumaShapePenaltyINTEL = 5719,
+ OpSubgroupAvcMceGetDefaultInterMotionVectorCostTableINTEL = 5720,
+ OpSubgroupAvcMceGetDefaultHighPenaltyCostTableINTEL = 5721,
+ OpSubgroupAvcMceGetDefaultMediumPenaltyCostTableINTEL = 5722,
+ OpSubgroupAvcMceGetDefaultLowPenaltyCostTableINTEL = 5723,
+ OpSubgroupAvcMceSetMotionVectorCostFunctionINTEL = 5724,
+ OpSubgroupAvcMceGetDefaultIntraLumaModePenaltyINTEL = 5725,
+ OpSubgroupAvcMceGetDefaultNonDcLumaIntraPenaltyINTEL = 5726,
+ OpSubgroupAvcMceGetDefaultIntraChromaModeBasePenaltyINTEL = 5727,
+ OpSubgroupAvcMceSetAcOnlyHaarINTEL = 5728,
+ OpSubgroupAvcMceSetSourceInterlacedFieldPolarityINTEL = 5729,
+ OpSubgroupAvcMceSetSingleReferenceInterlacedFieldPolarityINTEL = 5730,
+ OpSubgroupAvcMceSetDualReferenceInterlacedFieldPolaritiesINTEL = 5731,
+ OpSubgroupAvcMceConvertToImePayloadINTEL = 5732,
+ OpSubgroupAvcMceConvertToImeResultINTEL = 5733,
+ OpSubgroupAvcMceConvertToRefPayloadINTEL = 5734,
+ OpSubgroupAvcMceConvertToRefResultINTEL = 5735,
+ OpSubgroupAvcMceConvertToSicPayloadINTEL = 5736,
+ OpSubgroupAvcMceConvertToSicResultINTEL = 5737,
+ OpSubgroupAvcMceGetMotionVectorsINTEL = 5738,
+ OpSubgroupAvcMceGetInterDistortionsINTEL = 5739,
+ OpSubgroupAvcMceGetBestInterDistortionsINTEL = 5740,
+ OpSubgroupAvcMceGetInterMajorShapeINTEL = 5741,
+ OpSubgroupAvcMceGetInterMinorShapeINTEL = 5742,
+ OpSubgroupAvcMceGetInterDirectionsINTEL = 5743,
+ OpSubgroupAvcMceGetInterMotionVectorCountINTEL = 5744,
+ OpSubgroupAvcMceGetInterReferenceIdsINTEL = 5745,
+ OpSubgroupAvcMceGetInterReferenceInterlacedFieldPolaritiesINTEL = 5746,
+ OpSubgroupAvcImeInitializeINTEL = 5747,
+ OpSubgroupAvcImeSetSingleReferenceINTEL = 5748,
+ OpSubgroupAvcImeSetDualReferenceINTEL = 5749,
+ OpSubgroupAvcImeRefWindowSizeINTEL = 5750,
+ OpSubgroupAvcImeAdjustRefOffsetINTEL = 5751,
+ OpSubgroupAvcImeConvertToMcePayloadINTEL = 5752,
+ OpSubgroupAvcImeSetMaxMotionVectorCountINTEL = 5753,
+ OpSubgroupAvcImeSetUnidirectionalMixDisableINTEL = 5754,
+ OpSubgroupAvcImeSetEarlySearchTerminationThresholdINTEL = 5755,
+ OpSubgroupAvcImeSetWeightedSadINTEL = 5756,
+ OpSubgroupAvcImeEvaluateWithSingleReferenceINTEL = 5757,
+ OpSubgroupAvcImeEvaluateWithDualReferenceINTEL = 5758,
+ OpSubgroupAvcImeEvaluateWithSingleReferenceStreaminINTEL = 5759,
+ OpSubgroupAvcImeEvaluateWithDualReferenceStreaminINTEL = 5760,
+ OpSubgroupAvcImeEvaluateWithSingleReferenceStreamoutINTEL = 5761,
+ OpSubgroupAvcImeEvaluateWithDualReferenceStreamoutINTEL = 5762,
+ OpSubgroupAvcImeEvaluateWithSingleReferenceStreaminoutINTEL = 5763,
+ OpSubgroupAvcImeEvaluateWithDualReferenceStreaminoutINTEL = 5764,
+ OpSubgroupAvcImeConvertToMceResultINTEL = 5765,
+ OpSubgroupAvcImeGetSingleReferenceStreaminINTEL = 5766,
+ OpSubgroupAvcImeGetDualReferenceStreaminINTEL = 5767,
+ OpSubgroupAvcImeStripSingleReferenceStreamoutINTEL = 5768,
+ OpSubgroupAvcImeStripDualReferenceStreamoutINTEL = 5769,
+ OpSubgroupAvcImeGetStreamoutSingleReferenceMajorShapeMotionVectorsINTEL = 5770,
+ OpSubgroupAvcImeGetStreamoutSingleReferenceMajorShapeDistortionsINTEL = 5771,
+ OpSubgroupAvcImeGetStreamoutSingleReferenceMajorShapeReferenceIdsINTEL = 5772,
+ OpSubgroupAvcImeGetStreamoutDualReferenceMajorShapeMotionVectorsINTEL = 5773,
+ OpSubgroupAvcImeGetStreamoutDualReferenceMajorShapeDistortionsINTEL = 5774,
+ OpSubgroupAvcImeGetStreamoutDualReferenceMajorShapeReferenceIdsINTEL = 5775,
+ OpSubgroupAvcImeGetBorderReachedINTEL = 5776,
+ OpSubgroupAvcImeGetTruncatedSearchIndicationINTEL = 5777,
+ OpSubgroupAvcImeGetUnidirectionalEarlySearchTerminationINTEL = 5778,
+ OpSubgroupAvcImeGetWeightingPatternMinimumMotionVectorINTEL = 5779,
+ OpSubgroupAvcImeGetWeightingPatternMinimumDistortionINTEL = 5780,
+ OpSubgroupAvcFmeInitializeINTEL = 5781,
+ OpSubgroupAvcBmeInitializeINTEL = 5782,
+ OpSubgroupAvcRefConvertToMcePayloadINTEL = 5783,
+ OpSubgroupAvcRefSetBidirectionalMixDisableINTEL = 5784,
+ OpSubgroupAvcRefSetBilinearFilterEnableINTEL = 5785,
+ OpSubgroupAvcRefEvaluateWithSingleReferenceINTEL = 5786,
+ OpSubgroupAvcRefEvaluateWithDualReferenceINTEL = 5787,
+ OpSubgroupAvcRefEvaluateWithMultiReferenceINTEL = 5788,
+ OpSubgroupAvcRefEvaluateWithMultiReferenceInterlacedINTEL = 5789,
+ OpSubgroupAvcRefConvertToMceResultINTEL = 5790,
+ OpSubgroupAvcSicInitializeINTEL = 5791,
+ OpSubgroupAvcSicConfigureSkcINTEL = 5792,
+ OpSubgroupAvcSicConfigureIpeLumaINTEL = 5793,
+ OpSubgroupAvcSicConfigureIpeLumaChromaINTEL = 5794,
+ OpSubgroupAvcSicGetMotionVectorMaskINTEL = 5795,
+ OpSubgroupAvcSicConvertToMcePayloadINTEL = 5796,
+ OpSubgroupAvcSicSetIntraLumaShapePenaltyINTEL = 5797,
+ OpSubgroupAvcSicSetIntraLumaModeCostFunctionINTEL = 5798,
+ OpSubgroupAvcSicSetIntraChromaModeCostFunctionINTEL = 5799,
+ OpSubgroupAvcSicSetBilinearFilterEnableINTEL = 5800,
+ OpSubgroupAvcSicSetSkcForwardTransformEnableINTEL = 5801,
+ OpSubgroupAvcSicSetBlockBasedRawSkipSadINTEL = 5802,
+ OpSubgroupAvcSicEvaluateIpeINTEL = 5803,
+ OpSubgroupAvcSicEvaluateWithSingleReferenceINTEL = 5804,
+ OpSubgroupAvcSicEvaluateWithDualReferenceINTEL = 5805,
+ OpSubgroupAvcSicEvaluateWithMultiReferenceINTEL = 5806,
+ OpSubgroupAvcSicEvaluateWithMultiReferenceInterlacedINTEL = 5807,
+ OpSubgroupAvcSicConvertToMceResultINTEL = 5808,
+ OpSubgroupAvcSicGetIpeLumaShapeINTEL = 5809,
+ OpSubgroupAvcSicGetBestIpeLumaDistortionINTEL = 5810,
+ OpSubgroupAvcSicGetBestIpeChromaDistortionINTEL = 5811,
+ OpSubgroupAvcSicGetPackedIpeLumaModesINTEL = 5812,
+ OpSubgroupAvcSicGetIpeChromaModeINTEL = 5813,
+ OpSubgroupAvcSicGetPackedSkcLumaCountThresholdINTEL = 5814,
+ OpSubgroupAvcSicGetPackedSkcLumaSumThresholdINTEL = 5815,
+ OpSubgroupAvcSicGetInterRawSadsINTEL = 5816,
+ OpVariableLengthArrayINTEL = 5818,
+ OpSaveMemoryINTEL = 5819,
+ OpRestoreMemoryINTEL = 5820,
+ OpArbitraryFloatSinCosPiINTEL = 5840,
+ OpArbitraryFloatCastINTEL = 5841,
+ OpArbitraryFloatCastFromIntINTEL = 5842,
+ OpArbitraryFloatCastToIntINTEL = 5843,
+ OpArbitraryFloatAddINTEL = 5846,
+ OpArbitraryFloatSubINTEL = 5847,
+ OpArbitraryFloatMulINTEL = 5848,
+ OpArbitraryFloatDivINTEL = 5849,
+ OpArbitraryFloatGTINTEL = 5850,
+ OpArbitraryFloatGEINTEL = 5851,
+ OpArbitraryFloatLTINTEL = 5852,
+ OpArbitraryFloatLEINTEL = 5853,
+ OpArbitraryFloatEQINTEL = 5854,
+ OpArbitraryFloatRecipINTEL = 5855,
+ OpArbitraryFloatRSqrtINTEL = 5856,
+ OpArbitraryFloatCbrtINTEL = 5857,
+ OpArbitraryFloatHypotINTEL = 5858,
+ OpArbitraryFloatSqrtINTEL = 5859,
+ OpArbitraryFloatLogINTEL = 5860,
+ OpArbitraryFloatLog2INTEL = 5861,
+ OpArbitraryFloatLog10INTEL = 5862,
+ OpArbitraryFloatLog1pINTEL = 5863,
+ OpArbitraryFloatExpINTEL = 5864,
+ OpArbitraryFloatExp2INTEL = 5865,
+ OpArbitraryFloatExp10INTEL = 5866,
+ OpArbitraryFloatExpm1INTEL = 5867,
+ OpArbitraryFloatSinINTEL = 5868,
+ OpArbitraryFloatCosINTEL = 5869,
+ OpArbitraryFloatSinCosINTEL = 5870,
+ OpArbitraryFloatSinPiINTEL = 5871,
+ OpArbitraryFloatCosPiINTEL = 5872,
+ OpArbitraryFloatASinINTEL = 5873,
+ OpArbitraryFloatASinPiINTEL = 5874,
+ OpArbitraryFloatACosINTEL = 5875,
+ OpArbitraryFloatACosPiINTEL = 5876,
+ OpArbitraryFloatATanINTEL = 5877,
+ OpArbitraryFloatATanPiINTEL = 5878,
+ OpArbitraryFloatATan2INTEL = 5879,
+ OpArbitraryFloatPowINTEL = 5880,
+ OpArbitraryFloatPowRINTEL = 5881,
+ OpArbitraryFloatPowNINTEL = 5882,
+ OpLoopControlINTEL = 5887,
+ OpAliasDomainDeclINTEL = 5911,
+ OpAliasScopeDeclINTEL = 5912,
+ OpAliasScopeListDeclINTEL = 5913,
+ OpFixedSqrtINTEL = 5923,
+ OpFixedRecipINTEL = 5924,
+ OpFixedRsqrtINTEL = 5925,
+ OpFixedSinINTEL = 5926,
+ OpFixedCosINTEL = 5927,
+ OpFixedSinCosINTEL = 5928,
+ OpFixedSinPiINTEL = 5929,
+ OpFixedCosPiINTEL = 5930,
+ OpFixedSinCosPiINTEL = 5931,
+ OpFixedLogINTEL = 5932,
+ OpFixedExpINTEL = 5933,
+ OpPtrCastToCrossWorkgroupINTEL = 5934,
+ OpCrossWorkgroupCastToPtrINTEL = 5938,
+ OpReadPipeBlockingINTEL = 5946,
+ OpWritePipeBlockingINTEL = 5947,
+ OpFPGARegINTEL = 5949,
+ OpRayQueryGetRayTMinKHR = 6016,
+ OpRayQueryGetRayFlagsKHR = 6017,
+ OpRayQueryGetIntersectionTKHR = 6018,
+ OpRayQueryGetIntersectionInstanceCustomIndexKHR = 6019,
+ OpRayQueryGetIntersectionInstanceIdKHR = 6020,
+ OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR = 6021,
+ OpRayQueryGetIntersectionGeometryIndexKHR = 6022,
+ OpRayQueryGetIntersectionPrimitiveIndexKHR = 6023,
+ OpRayQueryGetIntersectionBarycentricsKHR = 6024,
+ OpRayQueryGetIntersectionFrontFaceKHR = 6025,
+ OpRayQueryGetIntersectionCandidateAABBOpaqueKHR = 6026,
+ OpRayQueryGetIntersectionObjectRayDirectionKHR = 6027,
+ OpRayQueryGetIntersectionObjectRayOriginKHR = 6028,
+ OpRayQueryGetWorldRayDirectionKHR = 6029,
+ OpRayQueryGetWorldRayOriginKHR = 6030,
+ OpRayQueryGetIntersectionObjectToWorldKHR = 6031,
+ OpRayQueryGetIntersectionWorldToObjectKHR = 6032,
+ OpAtomicFAddEXT = 6035,
+ OpTypeBufferSurfaceINTEL = 6086,
+ OpTypeStructContinuedINTEL = 6090,
+ OpConstantCompositeContinuedINTEL = 6091,
+ OpSpecConstantCompositeContinuedINTEL = 6092,
+ OpControlBarrierArriveINTEL = 6142,
+ OpControlBarrierWaitINTEL = 6143,
+ OpGroupIMulKHR = 6401,
+ OpGroupFMulKHR = 6402,
+ OpGroupBitwiseAndKHR = 6403,
+ OpGroupBitwiseOrKHR = 6404,
+ OpGroupBitwiseXorKHR = 6405,
+ OpGroupLogicalAndKHR = 6406,
+ OpGroupLogicalOrKHR = 6407,
+ OpGroupLogicalXorKHR = 6408,
+ OpMax = 0x7fffffff,
+};
+
+#ifdef SPV_ENABLE_UTILITY_CODE
+#ifndef __cplusplus
+#include <stdbool.h>
+#endif
+inline void HasResultAndType(Op opcode, bool *hasResult, bool *hasResultType) {
+ *hasResult = *hasResultType = false;
+ switch (opcode) {
+ default: /* unknown opcode */ break;
+ case OpNop: *hasResult = false; *hasResultType = false; break;
+ case OpUndef: *hasResult = true; *hasResultType = true; break;
+ case OpSourceContinued: *hasResult = false; *hasResultType = false; break;
+ case OpSource: *hasResult = false; *hasResultType = false; break;
+ case OpSourceExtension: *hasResult = false; *hasResultType = false; break;
+ case OpName: *hasResult = false; *hasResultType = false; break;
+ case OpMemberName: *hasResult = false; *hasResultType = false; break;
+ case OpString: *hasResult = true; *hasResultType = false; break;
+ case OpLine: *hasResult = false; *hasResultType = false; break;
+ case OpExtension: *hasResult = false; *hasResultType = false; break;
+ case OpExtInstImport: *hasResult = true; *hasResultType = false; break;
+ case OpExtInst: *hasResult = true; *hasResultType = true; break;
+ case OpMemoryModel: *hasResult = false; *hasResultType = false; break;
+ case OpEntryPoint: *hasResult = false; *hasResultType = false; break;
+ case OpExecutionMode: *hasResult = false; *hasResultType = false; break;
+ case OpCapability: *hasResult = false; *hasResultType = false; break;
+ case OpTypeVoid: *hasResult = true; *hasResultType = false; break;
+ case OpTypeBool: *hasResult = true; *hasResultType = false; break;
+ case OpTypeInt: *hasResult = true; *hasResultType = false; break;
+ case OpTypeFloat: *hasResult = true; *hasResultType = false; break;
+ case OpTypeVector: *hasResult = true; *hasResultType = false; break;
+ case OpTypeMatrix: *hasResult = true; *hasResultType = false; break;
+ case OpTypeImage: *hasResult = true; *hasResultType = false; break;
+ case OpTypeSampler: *hasResult = true; *hasResultType = false; break;
+ case OpTypeSampledImage: *hasResult = true; *hasResultType = false; break;
+ case OpTypeArray: *hasResult = true; *hasResultType = false; break;
+ case OpTypeRuntimeArray: *hasResult = true; *hasResultType = false; break;
+ case OpTypeStruct: *hasResult = true; *hasResultType = false; break;
+ case OpTypeOpaque: *hasResult = true; *hasResultType = false; break;
+ case OpTypePointer: *hasResult = true; *hasResultType = false; break;
+ case OpTypeFunction: *hasResult = true; *hasResultType = false; break;
+ case OpTypeEvent: *hasResult = true; *hasResultType = false; break;
+ case OpTypeDeviceEvent: *hasResult = true; *hasResultType = false; break;
+ case OpTypeReserveId: *hasResult = true; *hasResultType = false; break;
+ case OpTypeQueue: *hasResult = true; *hasResultType = false; break;
+ case OpTypePipe: *hasResult = true; *hasResultType = false; break;
+ case OpTypeForwardPointer: *hasResult = false; *hasResultType = false; break;
+ case OpConstantTrue: *hasResult = true; *hasResultType = true; break;
+ case OpConstantFalse: *hasResult = true; *hasResultType = true; break;
+ case OpConstant: *hasResult = true; *hasResultType = true; break;
+ case OpConstantComposite: *hasResult = true; *hasResultType = true; break;
+ case OpConstantSampler: *hasResult = true; *hasResultType = true; break;
+ case OpConstantNull: *hasResult = true; *hasResultType = true; break;
+ case OpSpecConstantTrue: *hasResult = true; *hasResultType = true; break;
+ case OpSpecConstantFalse: *hasResult = true; *hasResultType = true; break;
+ case OpSpecConstant: *hasResult = true; *hasResultType = true; break;
+ case OpSpecConstantComposite: *hasResult = true; *hasResultType = true; break;
+ case OpSpecConstantOp: *hasResult = true; *hasResultType = true; break;
+ case OpFunction: *hasResult = true; *hasResultType = true; break;
+ case OpFunctionParameter: *hasResult = true; *hasResultType = true; break;
+ case OpFunctionEnd: *hasResult = false; *hasResultType = false; break;
+ case OpFunctionCall: *hasResult = true; *hasResultType = true; break;
+ case OpVariable: *hasResult = true; *hasResultType = true; break;
+ case OpImageTexelPointer: *hasResult = true; *hasResultType = true; break;
+ case OpLoad: *hasResult = true; *hasResultType = true; break;
+ case OpStore: *hasResult = false; *hasResultType = false; break;
+ case OpCopyMemory: *hasResult = false; *hasResultType = false; break;
+ case OpCopyMemorySized: *hasResult = false; *hasResultType = false; break;
+ case OpAccessChain: *hasResult = true; *hasResultType = true; break;
+ case OpInBoundsAccessChain: *hasResult = true; *hasResultType = true; break;
+ case OpPtrAccessChain: *hasResult = true; *hasResultType = true; break;
+ case OpArrayLength: *hasResult = true; *hasResultType = true; break;
+ case OpGenericPtrMemSemantics: *hasResult = true; *hasResultType = true; break;
+ case OpInBoundsPtrAccessChain: *hasResult = true; *hasResultType = true; break;
+ case OpDecorate: *hasResult = false; *hasResultType = false; break;
+ case OpMemberDecorate: *hasResult = false; *hasResultType = false; break;
+ case OpDecorationGroup: *hasResult = true; *hasResultType = false; break;
+ case OpGroupDecorate: *hasResult = false; *hasResultType = false; break;
+ case OpGroupMemberDecorate: *hasResult = false; *hasResultType = false; break;
+ case OpVectorExtractDynamic: *hasResult = true; *hasResultType = true; break;
+ case OpVectorInsertDynamic: *hasResult = true; *hasResultType = true; break;
+ case OpVectorShuffle: *hasResult = true; *hasResultType = true; break;
+ case OpCompositeConstruct: *hasResult = true; *hasResultType = true; break;
+ case OpCompositeExtract: *hasResult = true; *hasResultType = true; break;
+ case OpCompositeInsert: *hasResult = true; *hasResultType = true; break;
+ case OpCopyObject: *hasResult = true; *hasResultType = true; break;
+ case OpTranspose: *hasResult = true; *hasResultType = true; break;
+ case OpSampledImage: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleDrefImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleDrefExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleProjImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleProjExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleProjDrefImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleProjDrefExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageFetch: *hasResult = true; *hasResultType = true; break;
+ case OpImageGather: *hasResult = true; *hasResultType = true; break;
+ case OpImageDrefGather: *hasResult = true; *hasResultType = true; break;
+ case OpImageRead: *hasResult = true; *hasResultType = true; break;
+ case OpImageWrite: *hasResult = false; *hasResultType = false; break;
+ case OpImage: *hasResult = true; *hasResultType = true; break;
+ case OpImageQueryFormat: *hasResult = true; *hasResultType = true; break;
+ case OpImageQueryOrder: *hasResult = true; *hasResultType = true; break;
+ case OpImageQuerySizeLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageQuerySize: *hasResult = true; *hasResultType = true; break;
+ case OpImageQueryLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageQueryLevels: *hasResult = true; *hasResultType = true; break;
+ case OpImageQuerySamples: *hasResult = true; *hasResultType = true; break;
+ case OpConvertFToU: *hasResult = true; *hasResultType = true; break;
+ case OpConvertFToS: *hasResult = true; *hasResultType = true; break;
+ case OpConvertSToF: *hasResult = true; *hasResultType = true; break;
+ case OpConvertUToF: *hasResult = true; *hasResultType = true; break;
+ case OpUConvert: *hasResult = true; *hasResultType = true; break;
+ case OpSConvert: *hasResult = true; *hasResultType = true; break;
+ case OpFConvert: *hasResult = true; *hasResultType = true; break;
+ case OpQuantizeToF16: *hasResult = true; *hasResultType = true; break;
+ case OpConvertPtrToU: *hasResult = true; *hasResultType = true; break;
+ case OpSatConvertSToU: *hasResult = true; *hasResultType = true; break;
+ case OpSatConvertUToS: *hasResult = true; *hasResultType = true; break;
+ case OpConvertUToPtr: *hasResult = true; *hasResultType = true; break;
+ case OpPtrCastToGeneric: *hasResult = true; *hasResultType = true; break;
+ case OpGenericCastToPtr: *hasResult = true; *hasResultType = true; break;
+ case OpGenericCastToPtrExplicit: *hasResult = true; *hasResultType = true; break;
+ case OpBitcast: *hasResult = true; *hasResultType = true; break;
+ case OpSNegate: *hasResult = true; *hasResultType = true; break;
+ case OpFNegate: *hasResult = true; *hasResultType = true; break;
+ case OpIAdd: *hasResult = true; *hasResultType = true; break;
+ case OpFAdd: *hasResult = true; *hasResultType = true; break;
+ case OpISub: *hasResult = true; *hasResultType = true; break;
+ case OpFSub: *hasResult = true; *hasResultType = true; break;
+ case OpIMul: *hasResult = true; *hasResultType = true; break;
+ case OpFMul: *hasResult = true; *hasResultType = true; break;
+ case OpUDiv: *hasResult = true; *hasResultType = true; break;
+ case OpSDiv: *hasResult = true; *hasResultType = true; break;
+ case OpFDiv: *hasResult = true; *hasResultType = true; break;
+ case OpUMod: *hasResult = true; *hasResultType = true; break;
+ case OpSRem: *hasResult = true; *hasResultType = true; break;
+ case OpSMod: *hasResult = true; *hasResultType = true; break;
+ case OpFRem: *hasResult = true; *hasResultType = true; break;
+ case OpFMod: *hasResult = true; *hasResultType = true; break;
+ case OpVectorTimesScalar: *hasResult = true; *hasResultType = true; break;
+ case OpMatrixTimesScalar: *hasResult = true; *hasResultType = true; break;
+ case OpVectorTimesMatrix: *hasResult = true; *hasResultType = true; break;
+ case OpMatrixTimesVector: *hasResult = true; *hasResultType = true; break;
+ case OpMatrixTimesMatrix: *hasResult = true; *hasResultType = true; break;
+ case OpOuterProduct: *hasResult = true; *hasResultType = true; break;
+ case OpDot: *hasResult = true; *hasResultType = true; break;
+ case OpIAddCarry: *hasResult = true; *hasResultType = true; break;
+ case OpISubBorrow: *hasResult = true; *hasResultType = true; break;
+ case OpUMulExtended: *hasResult = true; *hasResultType = true; break;
+ case OpSMulExtended: *hasResult = true; *hasResultType = true; break;
+ case OpAny: *hasResult = true; *hasResultType = true; break;
+ case OpAll: *hasResult = true; *hasResultType = true; break;
+ case OpIsNan: *hasResult = true; *hasResultType = true; break;
+ case OpIsInf: *hasResult = true; *hasResultType = true; break;
+ case OpIsFinite: *hasResult = true; *hasResultType = true; break;
+ case OpIsNormal: *hasResult = true; *hasResultType = true; break;
+ case OpSignBitSet: *hasResult = true; *hasResultType = true; break;
+ case OpLessOrGreater: *hasResult = true; *hasResultType = true; break;
+ case OpOrdered: *hasResult = true; *hasResultType = true; break;
+ case OpUnordered: *hasResult = true; *hasResultType = true; break;
+ case OpLogicalEqual: *hasResult = true; *hasResultType = true; break;
+ case OpLogicalNotEqual: *hasResult = true; *hasResultType = true; break;
+ case OpLogicalOr: *hasResult = true; *hasResultType = true; break;
+ case OpLogicalAnd: *hasResult = true; *hasResultType = true; break;
+ case OpLogicalNot: *hasResult = true; *hasResultType = true; break;
+ case OpSelect: *hasResult = true; *hasResultType = true; break;
+ case OpIEqual: *hasResult = true; *hasResultType = true; break;
+ case OpINotEqual: *hasResult = true; *hasResultType = true; break;
+ case OpUGreaterThan: *hasResult = true; *hasResultType = true; break;
+ case OpSGreaterThan: *hasResult = true; *hasResultType = true; break;
+ case OpUGreaterThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpSGreaterThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpULessThan: *hasResult = true; *hasResultType = true; break;
+ case OpSLessThan: *hasResult = true; *hasResultType = true; break;
+ case OpULessThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpSLessThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFOrdEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFUnordEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFOrdNotEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFUnordNotEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFOrdLessThan: *hasResult = true; *hasResultType = true; break;
+ case OpFUnordLessThan: *hasResult = true; *hasResultType = true; break;
+ case OpFOrdGreaterThan: *hasResult = true; *hasResultType = true; break;
+ case OpFUnordGreaterThan: *hasResult = true; *hasResultType = true; break;
+ case OpFOrdLessThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFUnordLessThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFOrdGreaterThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpFUnordGreaterThanEqual: *hasResult = true; *hasResultType = true; break;
+ case OpShiftRightLogical: *hasResult = true; *hasResultType = true; break;
+ case OpShiftRightArithmetic: *hasResult = true; *hasResultType = true; break;
+ case OpShiftLeftLogical: *hasResult = true; *hasResultType = true; break;
+ case OpBitwiseOr: *hasResult = true; *hasResultType = true; break;
+ case OpBitwiseXor: *hasResult = true; *hasResultType = true; break;
+ case OpBitwiseAnd: *hasResult = true; *hasResultType = true; break;
+ case OpNot: *hasResult = true; *hasResultType = true; break;
+ case OpBitFieldInsert: *hasResult = true; *hasResultType = true; break;
+ case OpBitFieldSExtract: *hasResult = true; *hasResultType = true; break;
+ case OpBitFieldUExtract: *hasResult = true; *hasResultType = true; break;
+ case OpBitReverse: *hasResult = true; *hasResultType = true; break;
+ case OpBitCount: *hasResult = true; *hasResultType = true; break;
+ case OpDPdx: *hasResult = true; *hasResultType = true; break;
+ case OpDPdy: *hasResult = true; *hasResultType = true; break;
+ case OpFwidth: *hasResult = true; *hasResultType = true; break;
+ case OpDPdxFine: *hasResult = true; *hasResultType = true; break;
+ case OpDPdyFine: *hasResult = true; *hasResultType = true; break;
+ case OpFwidthFine: *hasResult = true; *hasResultType = true; break;
+ case OpDPdxCoarse: *hasResult = true; *hasResultType = true; break;
+ case OpDPdyCoarse: *hasResult = true; *hasResultType = true; break;
+ case OpFwidthCoarse: *hasResult = true; *hasResultType = true; break;
+ case OpEmitVertex: *hasResult = false; *hasResultType = false; break;
+ case OpEndPrimitive: *hasResult = false; *hasResultType = false; break;
+ case OpEmitStreamVertex: *hasResult = false; *hasResultType = false; break;
+ case OpEndStreamPrimitive: *hasResult = false; *hasResultType = false; break;
+ case OpControlBarrier: *hasResult = false; *hasResultType = false; break;
+ case OpMemoryBarrier: *hasResult = false; *hasResultType = false; break;
+ case OpAtomicLoad: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicStore: *hasResult = false; *hasResultType = false; break;
+ case OpAtomicExchange: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicCompareExchange: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicCompareExchangeWeak: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicIIncrement: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicIDecrement: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicIAdd: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicISub: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicSMin: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicUMin: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicSMax: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicUMax: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicAnd: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicOr: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicXor: *hasResult = true; *hasResultType = true; break;
+ case OpPhi: *hasResult = true; *hasResultType = true; break;
+ case OpLoopMerge: *hasResult = false; *hasResultType = false; break;
+ case OpSelectionMerge: *hasResult = false; *hasResultType = false; break;
+ case OpLabel: *hasResult = true; *hasResultType = false; break;
+ case OpBranch: *hasResult = false; *hasResultType = false; break;
+ case OpBranchConditional: *hasResult = false; *hasResultType = false; break;
+ case OpSwitch: *hasResult = false; *hasResultType = false; break;
+ case OpKill: *hasResult = false; *hasResultType = false; break;
+ case OpReturn: *hasResult = false; *hasResultType = false; break;
+ case OpReturnValue: *hasResult = false; *hasResultType = false; break;
+ case OpUnreachable: *hasResult = false; *hasResultType = false; break;
+ case OpLifetimeStart: *hasResult = false; *hasResultType = false; break;
+ case OpLifetimeStop: *hasResult = false; *hasResultType = false; break;
+ case OpGroupAsyncCopy: *hasResult = true; *hasResultType = true; break;
+ case OpGroupWaitEvents: *hasResult = false; *hasResultType = false; break;
+ case OpGroupAll: *hasResult = true; *hasResultType = true; break;
+ case OpGroupAny: *hasResult = true; *hasResultType = true; break;
+ case OpGroupBroadcast: *hasResult = true; *hasResultType = true; break;
+ case OpGroupIAdd: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFAdd: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFMin: *hasResult = true; *hasResultType = true; break;
+ case OpGroupUMin: *hasResult = true; *hasResultType = true; break;
+ case OpGroupSMin: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFMax: *hasResult = true; *hasResultType = true; break;
+ case OpGroupUMax: *hasResult = true; *hasResultType = true; break;
+ case OpGroupSMax: *hasResult = true; *hasResultType = true; break;
+ case OpReadPipe: *hasResult = true; *hasResultType = true; break;
+ case OpWritePipe: *hasResult = true; *hasResultType = true; break;
+ case OpReservedReadPipe: *hasResult = true; *hasResultType = true; break;
+ case OpReservedWritePipe: *hasResult = true; *hasResultType = true; break;
+ case OpReserveReadPipePackets: *hasResult = true; *hasResultType = true; break;
+ case OpReserveWritePipePackets: *hasResult = true; *hasResultType = true; break;
+ case OpCommitReadPipe: *hasResult = false; *hasResultType = false; break;
+ case OpCommitWritePipe: *hasResult = false; *hasResultType = false; break;
+ case OpIsValidReserveId: *hasResult = true; *hasResultType = true; break;
+ case OpGetNumPipePackets: *hasResult = true; *hasResultType = true; break;
+ case OpGetMaxPipePackets: *hasResult = true; *hasResultType = true; break;
+ case OpGroupReserveReadPipePackets: *hasResult = true; *hasResultType = true; break;
+ case OpGroupReserveWritePipePackets: *hasResult = true; *hasResultType = true; break;
+ case OpGroupCommitReadPipe: *hasResult = false; *hasResultType = false; break;
+ case OpGroupCommitWritePipe: *hasResult = false; *hasResultType = false; break;
+ case OpEnqueueMarker: *hasResult = true; *hasResultType = true; break;
+ case OpEnqueueKernel: *hasResult = true; *hasResultType = true; break;
+ case OpGetKernelNDrangeSubGroupCount: *hasResult = true; *hasResultType = true; break;
+ case OpGetKernelNDrangeMaxSubGroupSize: *hasResult = true; *hasResultType = true; break;
+ case OpGetKernelWorkGroupSize: *hasResult = true; *hasResultType = true; break;
+ case OpGetKernelPreferredWorkGroupSizeMultiple: *hasResult = true; *hasResultType = true; break;
+ case OpRetainEvent: *hasResult = false; *hasResultType = false; break;
+ case OpReleaseEvent: *hasResult = false; *hasResultType = false; break;
+ case OpCreateUserEvent: *hasResult = true; *hasResultType = true; break;
+ case OpIsValidEvent: *hasResult = true; *hasResultType = true; break;
+ case OpSetUserEventStatus: *hasResult = false; *hasResultType = false; break;
+ case OpCaptureEventProfilingInfo: *hasResult = false; *hasResultType = false; break;
+ case OpGetDefaultQueue: *hasResult = true; *hasResultType = true; break;
+ case OpBuildNDRange: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleDrefImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleDrefExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleProjImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleProjExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleProjDrefImplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseSampleProjDrefExplicitLod: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseFetch: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseGather: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseDrefGather: *hasResult = true; *hasResultType = true; break;
+ case OpImageSparseTexelsResident: *hasResult = true; *hasResultType = true; break;
+ case OpNoLine: *hasResult = false; *hasResultType = false; break;
+ case OpAtomicFlagTestAndSet: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicFlagClear: *hasResult = false; *hasResultType = false; break;
+ case OpImageSparseRead: *hasResult = true; *hasResultType = true; break;
+ case OpSizeOf: *hasResult = true; *hasResultType = true; break;
+ case OpTypePipeStorage: *hasResult = true; *hasResultType = false; break;
+ case OpConstantPipeStorage: *hasResult = true; *hasResultType = true; break;
+ case OpCreatePipeFromPipeStorage: *hasResult = true; *hasResultType = true; break;
+ case OpGetKernelLocalSizeForSubgroupCount: *hasResult = true; *hasResultType = true; break;
+ case OpGetKernelMaxNumSubgroups: *hasResult = true; *hasResultType = true; break;
+ case OpTypeNamedBarrier: *hasResult = true; *hasResultType = false; break;
+ case OpNamedBarrierInitialize: *hasResult = true; *hasResultType = true; break;
+ case OpMemoryNamedBarrier: *hasResult = false; *hasResultType = false; break;
+ case OpModuleProcessed: *hasResult = false; *hasResultType = false; break;
+ case OpExecutionModeId: *hasResult = false; *hasResultType = false; break;
+ case OpDecorateId: *hasResult = false; *hasResultType = false; break;
+ case OpGroupNonUniformElect: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformAll: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformAny: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformAllEqual: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBroadcast: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBroadcastFirst: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBallot: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformInverseBallot: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBallotBitExtract: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBallotBitCount: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBallotFindLSB: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBallotFindMSB: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformShuffle: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformShuffleXor: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformShuffleUp: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformShuffleDown: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformIAdd: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformFAdd: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformIMul: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformFMul: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformSMin: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformUMin: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformFMin: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformSMax: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformUMax: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformFMax: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBitwiseAnd: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBitwiseOr: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformBitwiseXor: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformLogicalAnd: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformLogicalOr: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformLogicalXor: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformQuadBroadcast: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformQuadSwap: *hasResult = true; *hasResultType = true; break;
+ case OpCopyLogical: *hasResult = true; *hasResultType = true; break;
+ case OpPtrEqual: *hasResult = true; *hasResultType = true; break;
+ case OpPtrNotEqual: *hasResult = true; *hasResultType = true; break;
+ case OpPtrDiff: *hasResult = true; *hasResultType = true; break;
+ case OpTerminateInvocation: *hasResult = false; *hasResultType = false; break;
+ case OpSubgroupBallotKHR: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupFirstInvocationKHR: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAllKHR: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAnyKHR: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAllEqualKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupNonUniformRotateKHR: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupReadInvocationKHR: *hasResult = true; *hasResultType = true; break;
+ case OpTraceRayKHR: *hasResult = false; *hasResultType = false; break;
+ case OpExecuteCallableKHR: *hasResult = false; *hasResultType = false; break;
+ case OpConvertUToAccelerationStructureKHR: *hasResult = true; *hasResultType = true; break;
+ case OpIgnoreIntersectionKHR: *hasResult = false; *hasResultType = false; break;
+ case OpTerminateRayKHR: *hasResult = false; *hasResultType = false; break;
+ case OpSDot: *hasResult = true; *hasResultType = true; break;
+ case OpUDot: *hasResult = true; *hasResultType = true; break;
+ case OpSUDot: *hasResult = true; *hasResultType = true; break;
+ case OpSDotAccSat: *hasResult = true; *hasResultType = true; break;
+ case OpUDotAccSat: *hasResult = true; *hasResultType = true; break;
+ case OpSUDotAccSat: *hasResult = true; *hasResultType = true; break;
+ case OpTypeRayQueryKHR: *hasResult = true; *hasResultType = false; break;
+ case OpRayQueryInitializeKHR: *hasResult = false; *hasResultType = false; break;
+ case OpRayQueryTerminateKHR: *hasResult = false; *hasResultType = false; break;
+ case OpRayQueryGenerateIntersectionKHR: *hasResult = false; *hasResultType = false; break;
+ case OpRayQueryConfirmIntersectionKHR: *hasResult = false; *hasResultType = false; break;
+ case OpRayQueryProceedKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionTypeKHR: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleWeightedQCOM: *hasResult = true; *hasResultType = true; break;
+ case OpImageBoxFilterQCOM: *hasResult = true; *hasResultType = true; break;
+ case OpImageBlockMatchSSDQCOM: *hasResult = true; *hasResultType = true; break;
+ case OpImageBlockMatchSADQCOM: *hasResult = true; *hasResultType = true; break;
+ case OpGroupIAddNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFAddNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFMinNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupUMinNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupSMinNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFMaxNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupUMaxNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpGroupSMaxNonUniformAMD: *hasResult = true; *hasResultType = true; break;
+ case OpFragmentMaskFetchAMD: *hasResult = true; *hasResultType = true; break;
+ case OpFragmentFetchAMD: *hasResult = true; *hasResultType = true; break;
+ case OpReadClockKHR: *hasResult = true; *hasResultType = true; break;
+ case OpImageSampleFootprintNV: *hasResult = true; *hasResultType = true; break;
+ case OpEmitMeshTasksEXT: *hasResult = false; *hasResultType = false; break;
+ case OpSetMeshOutputsEXT: *hasResult = false; *hasResultType = false; break;
+ case OpGroupNonUniformPartitionNV: *hasResult = true; *hasResultType = true; break;
+ case OpWritePackedPrimitiveIndices4x8NV: *hasResult = false; *hasResultType = false; break;
+ case OpReportIntersectionNV: *hasResult = true; *hasResultType = true; break;
+ case OpIgnoreIntersectionNV: *hasResult = false; *hasResultType = false; break;
+ case OpTerminateRayNV: *hasResult = false; *hasResultType = false; break;
+ case OpTraceNV: *hasResult = false; *hasResultType = false; break;
+ case OpTraceMotionNV: *hasResult = false; *hasResultType = false; break;
+ case OpTraceRayMotionNV: *hasResult = false; *hasResultType = false; break;
+ case OpTypeAccelerationStructureNV: *hasResult = true; *hasResultType = false; break;
+ case OpExecuteCallableNV: *hasResult = false; *hasResultType = false; break;
+ case OpTypeCooperativeMatrixNV: *hasResult = true; *hasResultType = false; break;
+ case OpCooperativeMatrixLoadNV: *hasResult = true; *hasResultType = true; break;
+ case OpCooperativeMatrixStoreNV: *hasResult = false; *hasResultType = false; break;
+ case OpCooperativeMatrixMulAddNV: *hasResult = true; *hasResultType = true; break;
+ case OpCooperativeMatrixLengthNV: *hasResult = true; *hasResultType = true; break;
+ case OpBeginInvocationInterlockEXT: *hasResult = false; *hasResultType = false; break;
+ case OpEndInvocationInterlockEXT: *hasResult = false; *hasResultType = false; break;
+ case OpDemoteToHelperInvocation: *hasResult = false; *hasResultType = false; break;
+ case OpIsHelperInvocationEXT: *hasResult = true; *hasResultType = true; break;
+ case OpConvertUToImageNV: *hasResult = true; *hasResultType = true; break;
+ case OpConvertUToSamplerNV: *hasResult = true; *hasResultType = true; break;
+ case OpConvertImageToUNV: *hasResult = true; *hasResultType = true; break;
+ case OpConvertSamplerToUNV: *hasResult = true; *hasResultType = true; break;
+ case OpConvertUToSampledImageNV: *hasResult = true; *hasResultType = true; break;
+ case OpConvertSampledImageToUNV: *hasResult = true; *hasResultType = true; break;
+ case OpSamplerImageAddressingModeNV: *hasResult = false; *hasResultType = false; break;
+ case OpSubgroupShuffleINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupShuffleDownINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupShuffleUpINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupShuffleXorINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupBlockReadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupBlockWriteINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpSubgroupImageBlockReadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupImageBlockWriteINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpSubgroupImageMediaBlockReadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupImageMediaBlockWriteINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpUCountLeadingZerosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpUCountTrailingZerosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpAbsISubINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpAbsUSubINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpIAddSatINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpUAddSatINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpIAverageINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpUAverageINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpIAverageRoundedINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpUAverageRoundedINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpISubSatINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpUSubSatINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpIMul32x16INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpUMul32x16INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpConstantFunctionPointerINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFunctionPointerCallINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpAsmTargetINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpAsmINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpAsmCallINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicFMinEXT: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicFMaxEXT: *hasResult = true; *hasResultType = true; break;
+ case OpAssumeTrueKHR: *hasResult = false; *hasResultType = false; break;
+ case OpExpectKHR: *hasResult = true; *hasResultType = true; break;
+ case OpDecorateString: *hasResult = false; *hasResultType = false; break;
+ case OpMemberDecorateString: *hasResult = false; *hasResultType = false; break;
+ case OpVmeImageINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpTypeVmeImageINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcImePayloadINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcRefPayloadINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcSicPayloadINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcMcePayloadINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcMceResultINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcImeResultINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcImeResultSingleReferenceStreamoutINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcImeResultDualReferenceStreamoutINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcImeSingleReferenceStreaminINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcImeDualReferenceStreaminINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcRefResultINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeAvcSicResultINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpSubgroupAvcMceGetDefaultInterBaseMultiReferencePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetInterBaseMultiReferencePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultInterShapePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetInterShapePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultInterDirectionPenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetInterDirectionPenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultIntraLumaShapePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultInterMotionVectorCostTableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultHighPenaltyCostTableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultMediumPenaltyCostTableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultLowPenaltyCostTableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetMotionVectorCostFunctionINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultIntraLumaModePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultNonDcLumaIntraPenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetDefaultIntraChromaModeBasePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetAcOnlyHaarINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetSourceInterlacedFieldPolarityINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetSingleReferenceInterlacedFieldPolarityINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceSetDualReferenceInterlacedFieldPolaritiesINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceConvertToImePayloadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceConvertToImeResultINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceConvertToRefPayloadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceConvertToRefResultINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceConvertToSicPayloadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceConvertToSicResultINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetMotionVectorsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterDistortionsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetBestInterDistortionsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterMajorShapeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterMinorShapeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterDirectionsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterMotionVectorCountINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterReferenceIdsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcMceGetInterReferenceInterlacedFieldPolaritiesINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeInitializeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeSetSingleReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeSetDualReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeRefWindowSizeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeAdjustRefOffsetINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeConvertToMcePayloadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeSetMaxMotionVectorCountINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeSetUnidirectionalMixDisableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeSetEarlySearchTerminationThresholdINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeSetWeightedSadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithSingleReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithDualReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithSingleReferenceStreaminINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithDualReferenceStreaminINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithSingleReferenceStreamoutINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithDualReferenceStreamoutINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithSingleReferenceStreaminoutINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeEvaluateWithDualReferenceStreaminoutINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeConvertToMceResultINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetSingleReferenceStreaminINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetDualReferenceStreaminINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeStripSingleReferenceStreamoutINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeStripDualReferenceStreamoutINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetStreamoutSingleReferenceMajorShapeMotionVectorsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetStreamoutSingleReferenceMajorShapeDistortionsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetStreamoutSingleReferenceMajorShapeReferenceIdsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetStreamoutDualReferenceMajorShapeMotionVectorsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetStreamoutDualReferenceMajorShapeDistortionsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetStreamoutDualReferenceMajorShapeReferenceIdsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetBorderReachedINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetTruncatedSearchIndicationINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetUnidirectionalEarlySearchTerminationINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetWeightingPatternMinimumMotionVectorINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcImeGetWeightingPatternMinimumDistortionINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcFmeInitializeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcBmeInitializeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefConvertToMcePayloadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefSetBidirectionalMixDisableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefSetBilinearFilterEnableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefEvaluateWithSingleReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefEvaluateWithDualReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefEvaluateWithMultiReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefEvaluateWithMultiReferenceInterlacedINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcRefConvertToMceResultINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicInitializeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicConfigureSkcINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicConfigureIpeLumaINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicConfigureIpeLumaChromaINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetMotionVectorMaskINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicConvertToMcePayloadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicSetIntraLumaShapePenaltyINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicSetIntraLumaModeCostFunctionINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicSetIntraChromaModeCostFunctionINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicSetBilinearFilterEnableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicSetSkcForwardTransformEnableINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicSetBlockBasedRawSkipSadINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicEvaluateIpeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicEvaluateWithSingleReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicEvaluateWithDualReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicEvaluateWithMultiReferenceINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicEvaluateWithMultiReferenceInterlacedINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicConvertToMceResultINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetIpeLumaShapeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetBestIpeLumaDistortionINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetBestIpeChromaDistortionINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetPackedIpeLumaModesINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetIpeChromaModeINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetPackedSkcLumaCountThresholdINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetPackedSkcLumaSumThresholdINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSubgroupAvcSicGetInterRawSadsINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpVariableLengthArrayINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpSaveMemoryINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpRestoreMemoryINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpArbitraryFloatSinCosPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatCastINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatCastFromIntINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatCastToIntINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatAddINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatSubINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatMulINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatDivINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatGTINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatGEINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatLTINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatLEINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatEQINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatRecipINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatRSqrtINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatCbrtINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatHypotINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatSqrtINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatLogINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatLog2INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatLog10INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatLog1pINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatExpINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatExp2INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatExp10INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatExpm1INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatSinINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatCosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatSinCosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatSinPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatCosPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatASinINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatASinPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatACosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatACosPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatATanINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatATanPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatATan2INTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatPowINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatPowRINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpArbitraryFloatPowNINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpLoopControlINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpAliasDomainDeclINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpAliasScopeDeclINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpAliasScopeListDeclINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpFixedSqrtINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedRecipINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedRsqrtINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedSinINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedCosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedSinCosINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedSinPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedCosPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedSinCosPiINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedLogINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFixedExpINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpPtrCastToCrossWorkgroupINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpCrossWorkgroupCastToPtrINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpReadPipeBlockingINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpWritePipeBlockingINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpFPGARegINTEL: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetRayTMinKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetRayFlagsKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionTKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionInstanceCustomIndexKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionInstanceIdKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionGeometryIndexKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionPrimitiveIndexKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionBarycentricsKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionFrontFaceKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionObjectRayDirectionKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionObjectRayOriginKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetWorldRayDirectionKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetWorldRayOriginKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionObjectToWorldKHR: *hasResult = true; *hasResultType = true; break;
+ case OpRayQueryGetIntersectionWorldToObjectKHR: *hasResult = true; *hasResultType = true; break;
+ case OpAtomicFAddEXT: *hasResult = true; *hasResultType = true; break;
+ case OpTypeBufferSurfaceINTEL: *hasResult = true; *hasResultType = false; break;
+ case OpTypeStructContinuedINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpConstantCompositeContinuedINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpSpecConstantCompositeContinuedINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpControlBarrierArriveINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpControlBarrierWaitINTEL: *hasResult = false; *hasResultType = false; break;
+ case OpGroupIMulKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupFMulKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupBitwiseAndKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupBitwiseOrKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupBitwiseXorKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupLogicalAndKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupLogicalOrKHR: *hasResult = true; *hasResultType = true; break;
+ case OpGroupLogicalXorKHR: *hasResult = true; *hasResultType = true; break;
+ }
+}
+#endif /* SPV_ENABLE_UTILITY_CODE */
+
+// Overload operator| for mask bit combining
+
+inline ImageOperandsMask operator|(ImageOperandsMask a, ImageOperandsMask b) { return ImageOperandsMask(unsigned(a) | unsigned(b)); }
+inline FPFastMathModeMask operator|(FPFastMathModeMask a, FPFastMathModeMask b) { return FPFastMathModeMask(unsigned(a) | unsigned(b)); }
+inline SelectionControlMask operator|(SelectionControlMask a, SelectionControlMask b) { return SelectionControlMask(unsigned(a) | unsigned(b)); }
+inline LoopControlMask operator|(LoopControlMask a, LoopControlMask b) { return LoopControlMask(unsigned(a) | unsigned(b)); }
+inline FunctionControlMask operator|(FunctionControlMask a, FunctionControlMask b) { return FunctionControlMask(unsigned(a) | unsigned(b)); }
+inline MemorySemanticsMask operator|(MemorySemanticsMask a, MemorySemanticsMask b) { return MemorySemanticsMask(unsigned(a) | unsigned(b)); }
+inline MemoryAccessMask operator|(MemoryAccessMask a, MemoryAccessMask b) { return MemoryAccessMask(unsigned(a) | unsigned(b)); }
+inline KernelProfilingInfoMask operator|(KernelProfilingInfoMask a, KernelProfilingInfoMask b) { return KernelProfilingInfoMask(unsigned(a) | unsigned(b)); }
+inline RayFlagsMask operator|(RayFlagsMask a, RayFlagsMask b) { return RayFlagsMask(unsigned(a) | unsigned(b)); }
+inline FragmentShadingRateMask operator|(FragmentShadingRateMask a, FragmentShadingRateMask b) { return FragmentShadingRateMask(unsigned(a) | unsigned(b)); }
+
+} // end namespace spv
+
+#endif // #ifndef spirv_HPP
+
diff --git a/thirdparty/spirv-cross/spirv_cfg.cpp b/thirdparty/spirv-cross/spirv_cfg.cpp
new file mode 100644
index 0000000000..9329947981
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cfg.cpp
@@ -0,0 +1,430 @@
+/*
+ * Copyright 2016-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_cfg.hpp"
+#include "spirv_cross.hpp"
+#include <algorithm>
+#include <assert.h>
+
+using namespace std;
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+CFG::CFG(Compiler &compiler_, const SPIRFunction &func_)
+ : compiler(compiler_)
+ , func(func_)
+{
+ build_post_order_visit_order();
+ build_immediate_dominators();
+}
+
+uint32_t CFG::find_common_dominator(uint32_t a, uint32_t b) const
+{
+ while (a != b)
+ {
+ if (get_visit_order(a) < get_visit_order(b))
+ a = get_immediate_dominator(a);
+ else
+ b = get_immediate_dominator(b);
+ }
+ return a;
+}
+
+void CFG::build_immediate_dominators()
+{
+ // Traverse the post-order in reverse and build up the immediate dominator tree.
+ immediate_dominators.clear();
+ immediate_dominators[func.entry_block] = func.entry_block;
+
+ for (auto i = post_order.size(); i; i--)
+ {
+ uint32_t block = post_order[i - 1];
+ auto &pred = preceding_edges[block];
+ if (pred.empty()) // This is for the entry block, but we've already set up the dominators.
+ continue;
+
+ for (auto &edge : pred)
+ {
+ if (immediate_dominators[block])
+ {
+ assert(immediate_dominators[edge]);
+ immediate_dominators[block] = find_common_dominator(immediate_dominators[block], edge);
+ }
+ else
+ immediate_dominators[block] = edge;
+ }
+ }
+}
+
+bool CFG::is_back_edge(uint32_t to) const
+{
+ // We have a back edge if the visit order is set with the temporary magic value 0.
+ // Crossing edges will have already been recorded with a visit order.
+ auto itr = visit_order.find(to);
+ return itr != end(visit_order) && itr->second.get() == 0;
+}
+
+bool CFG::has_visited_forward_edge(uint32_t to) const
+{
+ // If > 0, we have visited the edge already, and this is not a back edge branch.
+ auto itr = visit_order.find(to);
+ return itr != end(visit_order) && itr->second.get() > 0;
+}
+
+bool CFG::post_order_visit(uint32_t block_id)
+{
+ // If we have already branched to this block (back edge), stop recursion.
+ // If our branches are back-edges, we do not record them.
+ // We have to record crossing edges however.
+ if (has_visited_forward_edge(block_id))
+ return true;
+ else if (is_back_edge(block_id))
+ return false;
+
+ // Block back-edges from recursively revisiting ourselves.
+ visit_order[block_id].get() = 0;
+
+ auto &block = compiler.get<SPIRBlock>(block_id);
+
+ // If this is a loop header, add an implied branch to the merge target.
+ // This is needed to avoid annoying cases with do { ... } while(false) loops often generated by inliners.
+ // To the CFG, this is linear control flow, but we risk picking the do/while scope as our dominating block.
+ // This makes sure that if we are accessing a variable outside the do/while, we choose the loop header as dominator.
+ // We could use has_visited_forward_edge, but this break code-gen where the merge block is unreachable in the CFG.
+
+ // Make a point out of visiting merge target first. This is to make sure that post visit order outside the loop
+ // is lower than inside the loop, which is going to be key for some traversal algorithms like post-dominance analysis.
+ // For selection constructs true/false blocks will end up visiting the merge block directly and it works out fine,
+ // but for loops, only the header might end up actually branching to merge block.
+ if (block.merge == SPIRBlock::MergeLoop && post_order_visit(block.merge_block))
+ add_branch(block_id, block.merge_block);
+
+ // First visit our branch targets.
+ switch (block.terminator)
+ {
+ case SPIRBlock::Direct:
+ if (post_order_visit(block.next_block))
+ add_branch(block_id, block.next_block);
+ break;
+
+ case SPIRBlock::Select:
+ if (post_order_visit(block.true_block))
+ add_branch(block_id, block.true_block);
+ if (post_order_visit(block.false_block))
+ add_branch(block_id, block.false_block);
+ break;
+
+ case SPIRBlock::MultiSelect:
+ {
+ const auto &cases = compiler.get_case_list(block);
+ for (const auto &target : cases)
+ {
+ if (post_order_visit(target.block))
+ add_branch(block_id, target.block);
+ }
+ if (block.default_block && post_order_visit(block.default_block))
+ add_branch(block_id, block.default_block);
+ break;
+ }
+ default:
+ break;
+ }
+
+ // If this is a selection merge, add an implied branch to the merge target.
+ // This is needed to avoid cases where an inner branch dominates the outer branch.
+ // This can happen if one of the branches exit early, e.g.:
+ // if (cond) { ...; break; } else { var = 100 } use_var(var);
+ // We can use the variable without a Phi since there is only one possible parent here.
+ // However, in this case, we need to hoist out the inner variable to outside the branch.
+ // Use same strategy as loops.
+ if (block.merge == SPIRBlock::MergeSelection && post_order_visit(block.next_block))
+ {
+ // If there is only one preceding edge to the merge block and it's not ourselves, we need a fixup.
+ // Add a fake branch so any dominator in either the if (), or else () block, or a lone case statement
+ // will be hoisted out to outside the selection merge.
+ // If size > 1, the variable will be automatically hoisted, so we should not mess with it.
+ // The exception here is switch blocks, where we can have multiple edges to merge block,
+ // all coming from same scope, so be more conservative in this case.
+ // Adding fake branches unconditionally breaks parameter preservation analysis,
+ // which looks at how variables are accessed through the CFG.
+ auto pred_itr = preceding_edges.find(block.next_block);
+ if (pred_itr != end(preceding_edges))
+ {
+ auto &pred = pred_itr->second;
+ auto succ_itr = succeeding_edges.find(block_id);
+ size_t num_succeeding_edges = 0;
+ if (succ_itr != end(succeeding_edges))
+ num_succeeding_edges = succ_itr->second.size();
+
+ if (block.terminator == SPIRBlock::MultiSelect && num_succeeding_edges == 1)
+ {
+ // Multiple branches can come from the same scope due to "break;", so we need to assume that all branches
+ // come from same case scope in worst case, even if there are multiple preceding edges.
+ // If we have more than one succeeding edge from the block header, it should be impossible
+ // to have a dominator be inside the block.
+ // Only case this can go wrong is if we have 2 or more edges from block header and
+ // 2 or more edges to merge block, and still have dominator be inside a case label.
+ if (!pred.empty())
+ add_branch(block_id, block.next_block);
+ }
+ else
+ {
+ if (pred.size() == 1 && *pred.begin() != block_id)
+ add_branch(block_id, block.next_block);
+ }
+ }
+ else
+ {
+ // If the merge block does not have any preceding edges, i.e. unreachable, hallucinate it.
+ // We're going to do code-gen for it, and domination analysis requires that we have at least one preceding edge.
+ add_branch(block_id, block.next_block);
+ }
+ }
+
+ // Then visit ourselves. Start counting at one, to let 0 be a magic value for testing back vs. crossing edges.
+ visit_order[block_id].get() = ++visit_count;
+ post_order.push_back(block_id);
+ return true;
+}
+
+void CFG::build_post_order_visit_order()
+{
+ uint32_t block = func.entry_block;
+ visit_count = 0;
+ visit_order.clear();
+ post_order.clear();
+ post_order_visit(block);
+}
+
+void CFG::add_branch(uint32_t from, uint32_t to)
+{
+ const auto add_unique = [](SmallVector<uint32_t> &l, uint32_t value) {
+ auto itr = find(begin(l), end(l), value);
+ if (itr == end(l))
+ l.push_back(value);
+ };
+ add_unique(preceding_edges[to], from);
+ add_unique(succeeding_edges[from], to);
+}
+
+uint32_t CFG::find_loop_dominator(uint32_t block_id) const
+{
+ while (block_id != SPIRBlock::NoDominator)
+ {
+ auto itr = preceding_edges.find(block_id);
+ if (itr == end(preceding_edges))
+ return SPIRBlock::NoDominator;
+ if (itr->second.empty())
+ return SPIRBlock::NoDominator;
+
+ uint32_t pred_block_id = SPIRBlock::NoDominator;
+ bool ignore_loop_header = false;
+
+ // If we are a merge block, go directly to the header block.
+ // Only consider a loop dominator if we are branching from inside a block to a loop header.
+ // NOTE: In the CFG we forced an edge from header to merge block always to support variable scopes properly.
+ for (auto &pred : itr->second)
+ {
+ auto &pred_block = compiler.get<SPIRBlock>(pred);
+ if (pred_block.merge == SPIRBlock::MergeLoop && pred_block.merge_block == ID(block_id))
+ {
+ pred_block_id = pred;
+ ignore_loop_header = true;
+ break;
+ }
+ else if (pred_block.merge == SPIRBlock::MergeSelection && pred_block.next_block == ID(block_id))
+ {
+ pred_block_id = pred;
+ break;
+ }
+ }
+
+ // No merge block means we can just pick any edge. Loop headers dominate the inner loop, so any path we
+ // take will lead there.
+ if (pred_block_id == SPIRBlock::NoDominator)
+ pred_block_id = itr->second.front();
+
+ block_id = pred_block_id;
+
+ if (!ignore_loop_header && block_id)
+ {
+ auto &block = compiler.get<SPIRBlock>(block_id);
+ if (block.merge == SPIRBlock::MergeLoop)
+ return block_id;
+ }
+ }
+
+ return block_id;
+}
+
+bool CFG::node_terminates_control_flow_in_sub_graph(BlockID from, BlockID to) const
+{
+ // Walk backwards, starting from "to" block.
+ // Only follow pred edges if they have a 1:1 relationship, or a merge relationship.
+ // If we cannot find a path to "from", we must assume that to is inside control flow in some way.
+
+ auto &from_block = compiler.get<SPIRBlock>(from);
+ BlockID ignore_block_id = 0;
+ if (from_block.merge == SPIRBlock::MergeLoop)
+ ignore_block_id = from_block.merge_block;
+
+ while (to != from)
+ {
+ auto pred_itr = preceding_edges.find(to);
+ if (pred_itr == end(preceding_edges))
+ return false;
+
+ DominatorBuilder builder(*this);
+ for (auto &edge : pred_itr->second)
+ builder.add_block(edge);
+
+ uint32_t dominator = builder.get_dominator();
+ if (dominator == 0)
+ return false;
+
+ auto &dom = compiler.get<SPIRBlock>(dominator);
+
+ bool true_path_ignore = false;
+ bool false_path_ignore = false;
+
+ bool merges_to_nothing = dom.merge == SPIRBlock::MergeNone ||
+ (dom.merge == SPIRBlock::MergeSelection && dom.next_block &&
+ compiler.get<SPIRBlock>(dom.next_block).terminator == SPIRBlock::Unreachable) ||
+ (dom.merge == SPIRBlock::MergeLoop && dom.merge_block &&
+ compiler.get<SPIRBlock>(dom.merge_block).terminator == SPIRBlock::Unreachable);
+
+ if (dom.self == from || merges_to_nothing)
+ {
+ // We can only ignore inner branchy paths if there is no merge,
+ // i.e. no code is generated afterwards. E.g. this allows us to elide continue:
+ // for (;;) { if (cond) { continue; } else { break; } }.
+ // Codegen here in SPIR-V will be something like either no merge if one path directly breaks, or
+ // we merge to Unreachable.
+ if (ignore_block_id && dom.terminator == SPIRBlock::Select)
+ {
+ auto &true_block = compiler.get<SPIRBlock>(dom.true_block);
+ auto &false_block = compiler.get<SPIRBlock>(dom.false_block);
+ auto &ignore_block = compiler.get<SPIRBlock>(ignore_block_id);
+ true_path_ignore = compiler.execution_is_branchless(true_block, ignore_block);
+ false_path_ignore = compiler.execution_is_branchless(false_block, ignore_block);
+ }
+ }
+
+ // Cases where we allow traversal. This serves as a proxy for post-dominance in a loop body.
+ // TODO: Might want to do full post-dominance analysis, but it's a lot of churn for something like this ...
+ // - We're the merge block of a selection construct. Jump to header.
+ // - We're the merge block of a loop. Jump to header.
+ // - Direct branch. Trivial.
+ // - Allow cases inside a branch if the header cannot merge execution before loop exit.
+ if ((dom.merge == SPIRBlock::MergeSelection && dom.next_block == to) ||
+ (dom.merge == SPIRBlock::MergeLoop && dom.merge_block == to) ||
+ (dom.terminator == SPIRBlock::Direct && dom.next_block == to) ||
+ (dom.terminator == SPIRBlock::Select && dom.true_block == to && false_path_ignore) ||
+ (dom.terminator == SPIRBlock::Select && dom.false_block == to && true_path_ignore))
+ {
+ // Allow walking selection constructs if the other branch reaches out of a loop construct.
+ // It cannot be in-scope anymore.
+ to = dominator;
+ }
+ else
+ return false;
+ }
+
+ return true;
+}
+
+DominatorBuilder::DominatorBuilder(const CFG &cfg_)
+ : cfg(cfg_)
+{
+}
+
+void DominatorBuilder::add_block(uint32_t block)
+{
+ if (!cfg.get_immediate_dominator(block))
+ {
+ // Unreachable block via the CFG, we will never emit this code anyways.
+ return;
+ }
+
+ if (!dominator)
+ {
+ dominator = block;
+ return;
+ }
+
+ if (block != dominator)
+ dominator = cfg.find_common_dominator(block, dominator);
+}
+
+void DominatorBuilder::lift_continue_block_dominator()
+{
+ // It is possible for a continue block to be the dominator of a variable is only accessed inside the while block of a do-while loop.
+ // We cannot safely declare variables inside a continue block, so move any variable declared
+ // in a continue block to the entry block to simplify.
+ // It makes very little sense for a continue block to ever be a dominator, so fall back to the simplest
+ // solution.
+
+ if (!dominator)
+ return;
+
+ auto &block = cfg.get_compiler().get<SPIRBlock>(dominator);
+ auto post_order = cfg.get_visit_order(dominator);
+
+ // If we are branching to a block with a higher post-order traversal index (continue blocks), we have a problem
+ // since we cannot create sensible GLSL code for this, fallback to entry block.
+ bool back_edge_dominator = false;
+ switch (block.terminator)
+ {
+ case SPIRBlock::Direct:
+ if (cfg.get_visit_order(block.next_block) > post_order)
+ back_edge_dominator = true;
+ break;
+
+ case SPIRBlock::Select:
+ if (cfg.get_visit_order(block.true_block) > post_order)
+ back_edge_dominator = true;
+ if (cfg.get_visit_order(block.false_block) > post_order)
+ back_edge_dominator = true;
+ break;
+
+ case SPIRBlock::MultiSelect:
+ {
+ auto &cases = cfg.get_compiler().get_case_list(block);
+ for (auto &target : cases)
+ {
+ if (cfg.get_visit_order(target.block) > post_order)
+ back_edge_dominator = true;
+ }
+ if (block.default_block && cfg.get_visit_order(block.default_block) > post_order)
+ back_edge_dominator = true;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ if (back_edge_dominator)
+ dominator = cfg.get_function().entry_block;
+}
+} // namespace SPIRV_CROSS_NAMESPACE
diff --git a/thirdparty/spirv-cross/spirv_cfg.hpp b/thirdparty/spirv-cross/spirv_cfg.hpp
new file mode 100644
index 0000000000..1d85fe0a97
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cfg.hpp
@@ -0,0 +1,168 @@
+/*
+ * Copyright 2016-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_CFG_HPP
+#define SPIRV_CROSS_CFG_HPP
+
+#include "spirv_common.hpp"
+#include <assert.h>
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+class Compiler;
+class CFG
+{
+public:
+ CFG(Compiler &compiler, const SPIRFunction &function);
+
+ Compiler &get_compiler()
+ {
+ return compiler;
+ }
+
+ const Compiler &get_compiler() const
+ {
+ return compiler;
+ }
+
+ const SPIRFunction &get_function() const
+ {
+ return func;
+ }
+
+ uint32_t get_immediate_dominator(uint32_t block) const
+ {
+ auto itr = immediate_dominators.find(block);
+ if (itr != std::end(immediate_dominators))
+ return itr->second;
+ else
+ return 0;
+ }
+
+ bool is_reachable(uint32_t block) const
+ {
+ return visit_order.count(block) != 0;
+ }
+
+ uint32_t get_visit_order(uint32_t block) const
+ {
+ auto itr = visit_order.find(block);
+ assert(itr != std::end(visit_order));
+ int v = itr->second.get();
+ assert(v > 0);
+ return uint32_t(v);
+ }
+
+ uint32_t find_common_dominator(uint32_t a, uint32_t b) const;
+
+ const SmallVector<uint32_t> &get_preceding_edges(uint32_t block) const
+ {
+ auto itr = preceding_edges.find(block);
+ if (itr != std::end(preceding_edges))
+ return itr->second;
+ else
+ return empty_vector;
+ }
+
+ const SmallVector<uint32_t> &get_succeeding_edges(uint32_t block) const
+ {
+ auto itr = succeeding_edges.find(block);
+ if (itr != std::end(succeeding_edges))
+ return itr->second;
+ else
+ return empty_vector;
+ }
+
+ template <typename Op>
+ void walk_from(std::unordered_set<uint32_t> &seen_blocks, uint32_t block, const Op &op) const
+ {
+ if (seen_blocks.count(block))
+ return;
+ seen_blocks.insert(block);
+
+ if (op(block))
+ {
+ for (auto b : get_succeeding_edges(block))
+ walk_from(seen_blocks, b, op);
+ }
+ }
+
+ uint32_t find_loop_dominator(uint32_t block) const;
+
+ bool node_terminates_control_flow_in_sub_graph(BlockID from, BlockID to) const;
+
+private:
+ struct VisitOrder
+ {
+ int &get()
+ {
+ return v;
+ }
+
+ const int &get() const
+ {
+ return v;
+ }
+
+ int v = -1;
+ };
+
+ Compiler &compiler;
+ const SPIRFunction &func;
+ std::unordered_map<uint32_t, SmallVector<uint32_t>> preceding_edges;
+ std::unordered_map<uint32_t, SmallVector<uint32_t>> succeeding_edges;
+ std::unordered_map<uint32_t, uint32_t> immediate_dominators;
+ std::unordered_map<uint32_t, VisitOrder> visit_order;
+ SmallVector<uint32_t> post_order;
+ SmallVector<uint32_t> empty_vector;
+
+ void add_branch(uint32_t from, uint32_t to);
+ void build_post_order_visit_order();
+ void build_immediate_dominators();
+ bool post_order_visit(uint32_t block);
+ uint32_t visit_count = 0;
+
+ bool is_back_edge(uint32_t to) const;
+ bool has_visited_forward_edge(uint32_t to) const;
+};
+
+class DominatorBuilder
+{
+public:
+ DominatorBuilder(const CFG &cfg);
+
+ void add_block(uint32_t block);
+ uint32_t get_dominator() const
+ {
+ return dominator;
+ }
+
+ void lift_continue_block_dominator();
+
+private:
+ const CFG &cfg;
+ uint32_t dominator = 0;
+};
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_common.hpp b/thirdparty/spirv-cross/spirv_common.hpp
new file mode 100644
index 0000000000..93b2669770
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_common.hpp
@@ -0,0 +1,1943 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_COMMON_HPP
+#define SPIRV_CROSS_COMMON_HPP
+
+#ifndef SPV_ENABLE_UTILITY_CODE
+#define SPV_ENABLE_UTILITY_CODE
+#endif
+#include "spirv.hpp"
+
+#include "spirv_cross_containers.hpp"
+#include "spirv_cross_error_handling.hpp"
+#include <functional>
+
+// A bit crude, but allows projects which embed SPIRV-Cross statically to
+// effectively hide all the symbols from other projects.
+// There is a case where we have:
+// - Project A links against SPIRV-Cross statically.
+// - Project A links against Project B statically.
+// - Project B links against SPIRV-Cross statically (might be a different version).
+// This leads to a conflict with extremely bizarre results.
+// By overriding the namespace in one of the project builds, we can work around this.
+// If SPIRV-Cross is embedded in dynamic libraries,
+// prefer using -fvisibility=hidden on GCC/Clang instead.
+#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
+#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
+#else
+#define SPIRV_CROSS_NAMESPACE spirv_cross
+#endif
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+namespace inner
+{
+template <typename T>
+void join_helper(StringStream<> &stream, T &&t)
+{
+ stream << std::forward<T>(t);
+}
+
+template <typename T, typename... Ts>
+void join_helper(StringStream<> &stream, T &&t, Ts &&... ts)
+{
+ stream << std::forward<T>(t);
+ join_helper(stream, std::forward<Ts>(ts)...);
+}
+} // namespace inner
+
+class Bitset
+{
+public:
+ Bitset() = default;
+ explicit inline Bitset(uint64_t lower_)
+ : lower(lower_)
+ {
+ }
+
+ inline bool get(uint32_t bit) const
+ {
+ if (bit < 64)
+ return (lower & (1ull << bit)) != 0;
+ else
+ return higher.count(bit) != 0;
+ }
+
+ inline void set(uint32_t bit)
+ {
+ if (bit < 64)
+ lower |= 1ull << bit;
+ else
+ higher.insert(bit);
+ }
+
+ inline void clear(uint32_t bit)
+ {
+ if (bit < 64)
+ lower &= ~(1ull << bit);
+ else
+ higher.erase(bit);
+ }
+
+ inline uint64_t get_lower() const
+ {
+ return lower;
+ }
+
+ inline void reset()
+ {
+ lower = 0;
+ higher.clear();
+ }
+
+ inline void merge_and(const Bitset &other)
+ {
+ lower &= other.lower;
+ std::unordered_set<uint32_t> tmp_set;
+ for (auto &v : higher)
+ if (other.higher.count(v) != 0)
+ tmp_set.insert(v);
+ higher = std::move(tmp_set);
+ }
+
+ inline void merge_or(const Bitset &other)
+ {
+ lower |= other.lower;
+ for (auto &v : other.higher)
+ higher.insert(v);
+ }
+
+ inline bool operator==(const Bitset &other) const
+ {
+ if (lower != other.lower)
+ return false;
+
+ if (higher.size() != other.higher.size())
+ return false;
+
+ for (auto &v : higher)
+ if (other.higher.count(v) == 0)
+ return false;
+
+ return true;
+ }
+
+ inline bool operator!=(const Bitset &other) const
+ {
+ return !(*this == other);
+ }
+
+ template <typename Op>
+ void for_each_bit(const Op &op) const
+ {
+ // TODO: Add ctz-based iteration.
+ for (uint32_t i = 0; i < 64; i++)
+ {
+ if (lower & (1ull << i))
+ op(i);
+ }
+
+ if (higher.empty())
+ return;
+
+ // Need to enforce an order here for reproducible results,
+ // but hitting this path should happen extremely rarely, so having this slow path is fine.
+ SmallVector<uint32_t> bits;
+ bits.reserve(higher.size());
+ for (auto &v : higher)
+ bits.push_back(v);
+ std::sort(std::begin(bits), std::end(bits));
+
+ for (auto &v : bits)
+ op(v);
+ }
+
+ inline bool empty() const
+ {
+ return lower == 0 && higher.empty();
+ }
+
+private:
+ // The most common bits to set are all lower than 64,
+ // so optimize for this case. Bits spilling outside 64 go into a slower data structure.
+ // In almost all cases, higher data structure will not be used.
+ uint64_t lower = 0;
+ std::unordered_set<uint32_t> higher;
+};
+
+// Helper template to avoid lots of nasty string temporary munging.
+template <typename... Ts>
+std::string join(Ts &&... ts)
+{
+ StringStream<> stream;
+ inner::join_helper(stream, std::forward<Ts>(ts)...);
+ return stream.str();
+}
+
+inline std::string merge(const SmallVector<std::string> &list, const char *between = ", ")
+{
+ StringStream<> stream;
+ for (auto &elem : list)
+ {
+ stream << elem;
+ if (&elem != &list.back())
+ stream << between;
+ }
+ return stream.str();
+}
+
+// Make sure we don't accidentally call this with float or doubles with SFINAE.
+// Have to use the radix-aware overload.
+template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
+inline std::string convert_to_string(const T &t)
+{
+ return std::to_string(t);
+}
+
+static inline std::string convert_to_string(int32_t value)
+{
+ // INT_MIN is ... special on some backends. If we use a decimal literal, and negate it, we
+ // could accidentally promote the literal to long first, then negate.
+ // To workaround it, emit int(0x80000000) instead.
+ if (value == (std::numeric_limits<int32_t>::min)())
+ return "int(0x80000000)";
+ else
+ return std::to_string(value);
+}
+
+static inline std::string convert_to_string(int64_t value, const std::string &int64_type, bool long_long_literal_suffix)
+{
+ // INT64_MIN is ... special on some backends.
+ // If we use a decimal literal, and negate it, we might overflow the representable numbers.
+ // To workaround it, emit int(0x80000000) instead.
+ if (value == (std::numeric_limits<int64_t>::min)())
+ return join(int64_type, "(0x8000000000000000u", (long_long_literal_suffix ? "ll" : "l"), ")");
+ else
+ return std::to_string(value) + (long_long_literal_suffix ? "ll" : "l");
+}
+
+// Allow implementations to set a convenient standard precision
+#ifndef SPIRV_CROSS_FLT_FMT
+#define SPIRV_CROSS_FLT_FMT "%.32g"
+#endif
+
+// Disable sprintf and strcat warnings.
+// We cannot rely on snprintf and family existing because, ..., MSVC.
+#if defined(__clang__) || defined(__GNUC__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
+#elif defined(_MSC_VER)
+#pragma warning(push)
+#pragma warning(disable : 4996)
+#endif
+
+static inline void fixup_radix_point(char *str, char radix_point)
+{
+ // Setting locales is a very risky business in multi-threaded program,
+ // so just fixup locales instead. We only need to care about the radix point.
+ if (radix_point != '.')
+ {
+ while (*str != '\0')
+ {
+ if (*str == radix_point)
+ *str = '.';
+ str++;
+ }
+ }
+}
+
+inline std::string convert_to_string(float t, char locale_radix_point)
+{
+ // std::to_string for floating point values is broken.
+ // Fallback to something more sane.
+ char buf[64];
+ sprintf(buf, SPIRV_CROSS_FLT_FMT, t);
+ fixup_radix_point(buf, locale_radix_point);
+
+ // Ensure that the literal is float.
+ if (!strchr(buf, '.') && !strchr(buf, 'e'))
+ strcat(buf, ".0");
+ return buf;
+}
+
+inline std::string convert_to_string(double t, char locale_radix_point)
+{
+ // std::to_string for floating point values is broken.
+ // Fallback to something more sane.
+ char buf[64];
+ sprintf(buf, SPIRV_CROSS_FLT_FMT, t);
+ fixup_radix_point(buf, locale_radix_point);
+
+ // Ensure that the literal is float.
+ if (!strchr(buf, '.') && !strchr(buf, 'e'))
+ strcat(buf, ".0");
+ return buf;
+}
+
+#if defined(__clang__) || defined(__GNUC__)
+#pragma GCC diagnostic pop
+#elif defined(_MSC_VER)
+#pragma warning(pop)
+#endif
+
+class FloatFormatter
+{
+public:
+ virtual ~FloatFormatter() = default;
+ virtual std::string format_float(float value) = 0;
+ virtual std::string format_double(double value) = 0;
+};
+
+template <typename T>
+struct ValueSaver
+{
+ explicit ValueSaver(T &current_)
+ : current(current_)
+ , saved(current_)
+ {
+ }
+
+ void release()
+ {
+ current = saved;
+ }
+
+ ~ValueSaver()
+ {
+ release();
+ }
+
+ T &current;
+ T saved;
+};
+
+struct Instruction
+{
+ uint16_t op = 0;
+ uint16_t count = 0;
+ // If offset is 0 (not a valid offset into the instruction stream),
+ // we have an instruction stream which is embedded in the object.
+ uint32_t offset = 0;
+ uint32_t length = 0;
+
+ inline bool is_embedded() const
+ {
+ return offset == 0;
+ }
+};
+
+struct EmbeddedInstruction : Instruction
+{
+ SmallVector<uint32_t> ops;
+};
+
+enum Types
+{
+ TypeNone,
+ TypeType,
+ TypeVariable,
+ TypeConstant,
+ TypeFunction,
+ TypeFunctionPrototype,
+ TypeBlock,
+ TypeExtension,
+ TypeExpression,
+ TypeConstantOp,
+ TypeCombinedImageSampler,
+ TypeAccessChain,
+ TypeUndef,
+ TypeString,
+ TypeCount
+};
+
+template <Types type>
+class TypedID;
+
+template <>
+class TypedID<TypeNone>
+{
+public:
+ TypedID() = default;
+ TypedID(uint32_t id_)
+ : id(id_)
+ {
+ }
+
+ template <Types U>
+ TypedID(const TypedID<U> &other)
+ {
+ *this = other;
+ }
+
+ template <Types U>
+ TypedID &operator=(const TypedID<U> &other)
+ {
+ id = uint32_t(other);
+ return *this;
+ }
+
+ // Implicit conversion to u32 is desired here.
+ // As long as we block implicit conversion between TypedID<A> and TypedID<B> we're good.
+ operator uint32_t() const
+ {
+ return id;
+ }
+
+ template <Types U>
+ operator TypedID<U>() const
+ {
+ return TypedID<U>(*this);
+ }
+
+private:
+ uint32_t id = 0;
+};
+
+template <Types type>
+class TypedID
+{
+public:
+ TypedID() = default;
+ TypedID(uint32_t id_)
+ : id(id_)
+ {
+ }
+
+ explicit TypedID(const TypedID<TypeNone> &other)
+ : id(uint32_t(other))
+ {
+ }
+
+ operator uint32_t() const
+ {
+ return id;
+ }
+
+private:
+ uint32_t id = 0;
+};
+
+using VariableID = TypedID<TypeVariable>;
+using TypeID = TypedID<TypeType>;
+using ConstantID = TypedID<TypeConstant>;
+using FunctionID = TypedID<TypeFunction>;
+using BlockID = TypedID<TypeBlock>;
+using ID = TypedID<TypeNone>;
+
+// Helper for Variant interface.
+struct IVariant
+{
+ virtual ~IVariant() = default;
+ virtual IVariant *clone(ObjectPoolBase *pool) = 0;
+ ID self = 0;
+
+protected:
+ IVariant() = default;
+ IVariant(const IVariant&) = default;
+ IVariant &operator=(const IVariant&) = default;
+};
+
+#define SPIRV_CROSS_DECLARE_CLONE(T) \
+ IVariant *clone(ObjectPoolBase *pool) override \
+ { \
+ return static_cast<ObjectPool<T> *>(pool)->allocate(*this); \
+ }
+
+struct SPIRUndef : IVariant
+{
+ enum
+ {
+ type = TypeUndef
+ };
+
+ explicit SPIRUndef(TypeID basetype_)
+ : basetype(basetype_)
+ {
+ }
+ TypeID basetype;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRUndef)
+};
+
+struct SPIRString : IVariant
+{
+ enum
+ {
+ type = TypeString
+ };
+
+ explicit SPIRString(std::string str_)
+ : str(std::move(str_))
+ {
+ }
+
+ std::string str;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRString)
+};
+
+// This type is only used by backends which need to access the combined image and sampler IDs separately after
+// the OpSampledImage opcode.
+struct SPIRCombinedImageSampler : IVariant
+{
+ enum
+ {
+ type = TypeCombinedImageSampler
+ };
+ SPIRCombinedImageSampler(TypeID type_, VariableID image_, VariableID sampler_)
+ : combined_type(type_)
+ , image(image_)
+ , sampler(sampler_)
+ {
+ }
+ TypeID combined_type;
+ VariableID image;
+ VariableID sampler;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRCombinedImageSampler)
+};
+
+struct SPIRConstantOp : IVariant
+{
+ enum
+ {
+ type = TypeConstantOp
+ };
+
+ SPIRConstantOp(TypeID result_type, spv::Op op, const uint32_t *args, uint32_t length)
+ : opcode(op)
+ , basetype(result_type)
+ {
+ arguments.reserve(length);
+ for (uint32_t i = 0; i < length; i++)
+ arguments.push_back(args[i]);
+ }
+
+ spv::Op opcode;
+ SmallVector<uint32_t> arguments;
+ TypeID basetype;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRConstantOp)
+};
+
+struct SPIRType : IVariant
+{
+ enum
+ {
+ type = TypeType
+ };
+
+ spv::Op op = spv::Op::OpNop;
+ explicit SPIRType(spv::Op op_) : op(op_) {}
+
+ enum BaseType
+ {
+ Unknown,
+ Void,
+ Boolean,
+ SByte,
+ UByte,
+ Short,
+ UShort,
+ Int,
+ UInt,
+ Int64,
+ UInt64,
+ AtomicCounter,
+ Half,
+ Float,
+ Double,
+ Struct,
+ Image,
+ SampledImage,
+ Sampler,
+ AccelerationStructure,
+ RayQuery,
+
+ // Keep internal types at the end.
+ ControlPointArray,
+ Interpolant,
+ Char
+ };
+
+ // Scalar/vector/matrix support.
+ BaseType basetype = Unknown;
+ uint32_t width = 0;
+ uint32_t vecsize = 1;
+ uint32_t columns = 1;
+
+ // Arrays, support array of arrays by having a vector of array sizes.
+ SmallVector<uint32_t> array;
+
+ // Array elements can be either specialization constants or specialization ops.
+ // This array determines how to interpret the array size.
+ // If an element is true, the element is a literal,
+ // otherwise, it's an expression, which must be resolved on demand.
+ // The actual size is not really known until runtime.
+ SmallVector<bool> array_size_literal;
+
+ // Pointers
+ // Keep track of how many pointer layers we have.
+ uint32_t pointer_depth = 0;
+ bool pointer = false;
+ bool forward_pointer = false;
+
+ spv::StorageClass storage = spv::StorageClassGeneric;
+
+ SmallVector<TypeID> member_types;
+
+ // If member order has been rewritten to handle certain scenarios with Offset,
+ // allow codegen to rewrite the index.
+ SmallVector<uint32_t> member_type_index_redirection;
+
+ struct ImageType
+ {
+ TypeID type;
+ spv::Dim dim;
+ bool depth;
+ bool arrayed;
+ bool ms;
+ uint32_t sampled;
+ spv::ImageFormat format;
+ spv::AccessQualifier access;
+ } image = {};
+
+ // Structs can be declared multiple times if they are used as part of interface blocks.
+ // We want to detect this so that we only emit the struct definition once.
+ // Since we cannot rely on OpName to be equal, we need to figure out aliases.
+ TypeID type_alias = 0;
+
+ // Denotes the type which this type is based on.
+ // Allows the backend to traverse how a complex type is built up during access chains.
+ TypeID parent_type = 0;
+
+ // Used in backends to avoid emitting members with conflicting names.
+ std::unordered_set<std::string> member_name_cache;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRType)
+};
+
+struct SPIRExtension : IVariant
+{
+ enum
+ {
+ type = TypeExtension
+ };
+
+ enum Extension
+ {
+ Unsupported,
+ GLSL,
+ SPV_debug_info,
+ SPV_AMD_shader_ballot,
+ SPV_AMD_shader_explicit_vertex_parameter,
+ SPV_AMD_shader_trinary_minmax,
+ SPV_AMD_gcn_shader,
+ NonSemanticDebugPrintf,
+ NonSemanticShaderDebugInfo,
+ NonSemanticGeneric
+ };
+
+ explicit SPIRExtension(Extension ext_)
+ : ext(ext_)
+ {
+ }
+
+ Extension ext;
+ SPIRV_CROSS_DECLARE_CLONE(SPIRExtension)
+};
+
+// SPIREntryPoint is not a variant since its IDs are used to decorate OpFunction,
+// so in order to avoid conflicts, we can't stick them in the ids array.
+struct SPIREntryPoint
+{
+ SPIREntryPoint(FunctionID self_, spv::ExecutionModel execution_model, const std::string &entry_name)
+ : self(self_)
+ , name(entry_name)
+ , orig_name(entry_name)
+ , model(execution_model)
+ {
+ }
+ SPIREntryPoint() = default;
+
+ FunctionID self = 0;
+ std::string name;
+ std::string orig_name;
+ SmallVector<VariableID> interface_variables;
+
+ Bitset flags;
+ struct WorkgroupSize
+ {
+ uint32_t x = 0, y = 0, z = 0;
+ uint32_t id_x = 0, id_y = 0, id_z = 0;
+ uint32_t constant = 0; // Workgroup size can be expressed as a constant/spec-constant instead.
+ } workgroup_size;
+ uint32_t invocations = 0;
+ uint32_t output_vertices = 0;
+ uint32_t output_primitives = 0;
+ spv::ExecutionModel model = spv::ExecutionModelMax;
+ bool geometry_passthrough = false;
+};
+
+struct SPIRExpression : IVariant
+{
+ enum
+ {
+ type = TypeExpression
+ };
+
+ // Only created by the backend target to avoid creating tons of temporaries.
+ SPIRExpression(std::string expr, TypeID expression_type_, bool immutable_)
+ : expression(std::move(expr))
+ , expression_type(expression_type_)
+ , immutable(immutable_)
+ {
+ }
+
+ // If non-zero, prepend expression with to_expression(base_expression).
+ // Used in amortizing multiple calls to to_expression()
+ // where in certain cases that would quickly force a temporary when not needed.
+ ID base_expression = 0;
+
+ std::string expression;
+ TypeID expression_type = 0;
+
+ // If this expression is a forwarded load,
+ // allow us to reference the original variable.
+ ID loaded_from = 0;
+
+ // If this expression will never change, we can avoid lots of temporaries
+ // in high level source.
+ // An expression being immutable can be speculative,
+ // it is assumed that this is true almost always.
+ bool immutable = false;
+
+ // Before use, this expression must be transposed.
+ // This is needed for targets which don't support row_major layouts.
+ bool need_transpose = false;
+
+ // Whether or not this is an access chain expression.
+ bool access_chain = false;
+
+ // Whether or not gl_MeshVerticesEXT[].gl_Position (as a whole or .y) is referenced
+ bool access_meshlet_position_y = false;
+
+ // A list of expressions which this expression depends on.
+ SmallVector<ID> expression_dependencies;
+
+ // By reading this expression, we implicitly read these expressions as well.
+ // Used by access chain Store and Load since we read multiple expressions in this case.
+ SmallVector<ID> implied_read_expressions;
+
+ // The expression was emitted at a certain scope. Lets us track when an expression read means multiple reads.
+ uint32_t emitted_loop_level = 0;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRExpression)
+};
+
+struct SPIRFunctionPrototype : IVariant
+{
+ enum
+ {
+ type = TypeFunctionPrototype
+ };
+
+ explicit SPIRFunctionPrototype(TypeID return_type_)
+ : return_type(return_type_)
+ {
+ }
+
+ TypeID return_type;
+ SmallVector<uint32_t> parameter_types;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRFunctionPrototype)
+};
+
+struct SPIRBlock : IVariant
+{
+ enum
+ {
+ type = TypeBlock
+ };
+
+ enum Terminator
+ {
+ Unknown,
+ Direct, // Emit next block directly without a particular condition.
+
+ Select, // Block ends with an if/else block.
+ MultiSelect, // Block ends with switch statement.
+
+ Return, // Block ends with return.
+ Unreachable, // Noop
+ Kill, // Discard
+ IgnoreIntersection, // Ray Tracing
+ TerminateRay, // Ray Tracing
+ EmitMeshTasks // Mesh shaders
+ };
+
+ enum Merge
+ {
+ MergeNone,
+ MergeLoop,
+ MergeSelection
+ };
+
+ enum Hints
+ {
+ HintNone,
+ HintUnroll,
+ HintDontUnroll,
+ HintFlatten,
+ HintDontFlatten
+ };
+
+ enum Method
+ {
+ MergeToSelectForLoop,
+ MergeToDirectForLoop,
+ MergeToSelectContinueForLoop
+ };
+
+ enum ContinueBlockType
+ {
+ ContinueNone,
+
+ // Continue block is branchless and has at least one instruction.
+ ForLoop,
+
+ // Noop continue block.
+ WhileLoop,
+
+ // Continue block is conditional.
+ DoWhileLoop,
+
+ // Highly unlikely that anything will use this,
+ // since it is really awkward/impossible to express in GLSL.
+ ComplexLoop
+ };
+
+ enum : uint32_t
+ {
+ NoDominator = 0xffffffffu
+ };
+
+ Terminator terminator = Unknown;
+ Merge merge = MergeNone;
+ Hints hint = HintNone;
+ BlockID next_block = 0;
+ BlockID merge_block = 0;
+ BlockID continue_block = 0;
+
+ ID return_value = 0; // If 0, return nothing (void).
+ ID condition = 0;
+ BlockID true_block = 0;
+ BlockID false_block = 0;
+ BlockID default_block = 0;
+
+ // If terminator is EmitMeshTasksEXT.
+ struct
+ {
+ ID groups[3];
+ ID payload;
+ } mesh = {};
+
+ SmallVector<Instruction> ops;
+
+ struct Phi
+ {
+ ID local_variable; // flush local variable ...
+ BlockID parent; // If we're in from_block and want to branch into this block ...
+ VariableID function_variable; // to this function-global "phi" variable first.
+ };
+
+ // Before entering this block flush out local variables to magical "phi" variables.
+ SmallVector<Phi> phi_variables;
+
+ // Declare these temporaries before beginning the block.
+ // Used for handling complex continue blocks which have side effects.
+ SmallVector<std::pair<TypeID, ID>> declare_temporary;
+
+ // Declare these temporaries, but only conditionally if this block turns out to be
+ // a complex loop header.
+ SmallVector<std::pair<TypeID, ID>> potential_declare_temporary;
+
+ struct Case
+ {
+ uint64_t value;
+ BlockID block;
+ };
+ SmallVector<Case> cases_32bit;
+ SmallVector<Case> cases_64bit;
+
+ // If we have tried to optimize code for this block but failed,
+ // keep track of this.
+ bool disable_block_optimization = false;
+
+ // If the continue block is complex, fallback to "dumb" for loops.
+ bool complex_continue = false;
+
+ // Do we need a ladder variable to defer breaking out of a loop construct after a switch block?
+ bool need_ladder_break = false;
+
+ // If marked, we have explicitly handled Phi from this block, so skip any flushes related to that on a branch.
+ // Used to handle an edge case with switch and case-label fallthrough where fall-through writes to Phi.
+ BlockID ignore_phi_from_block = 0;
+
+ // The dominating block which this block might be within.
+ // Used in continue; blocks to determine if we really need to write continue.
+ BlockID loop_dominator = 0;
+
+ // All access to these variables are dominated by this block,
+ // so before branching anywhere we need to make sure that we declare these variables.
+ SmallVector<VariableID> dominated_variables;
+
+ // These are variables which should be declared in a for loop header, if we
+ // fail to use a classic for-loop,
+ // we remove these variables, and fall back to regular variables outside the loop.
+ SmallVector<VariableID> loop_variables;
+
+ // Some expressions are control-flow dependent, i.e. any instruction which relies on derivatives or
+ // sub-group-like operations.
+ // Make sure that we only use these expressions in the original block.
+ SmallVector<ID> invalidate_expressions;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRBlock)
+};
+
+struct SPIRFunction : IVariant
+{
+ enum
+ {
+ type = TypeFunction
+ };
+
+ SPIRFunction(TypeID return_type_, TypeID function_type_)
+ : return_type(return_type_)
+ , function_type(function_type_)
+ {
+ }
+
+ struct Parameter
+ {
+ TypeID type;
+ ID id;
+ uint32_t read_count;
+ uint32_t write_count;
+
+ // Set to true if this parameter aliases a global variable,
+ // used mostly in Metal where global variables
+ // have to be passed down to functions as regular arguments.
+ // However, for this kind of variable, we should not care about
+ // read and write counts as access to the function arguments
+ // is not local to the function in question.
+ bool alias_global_variable;
+ };
+
+ // When calling a function, and we're remapping separate image samplers,
+ // resolve these arguments into combined image samplers and pass them
+ // as additional arguments in this order.
+ // It gets more complicated as functions can pull in their own globals
+ // and combine them with parameters,
+ // so we need to distinguish if something is local parameter index
+ // or a global ID.
+ struct CombinedImageSamplerParameter
+ {
+ VariableID id;
+ VariableID image_id;
+ VariableID sampler_id;
+ bool global_image;
+ bool global_sampler;
+ bool depth;
+ };
+
+ TypeID return_type;
+ TypeID function_type;
+ SmallVector<Parameter> arguments;
+
+ // Can be used by backends to add magic arguments.
+ // Currently used by combined image/sampler implementation.
+
+ SmallVector<Parameter> shadow_arguments;
+ SmallVector<VariableID> local_variables;
+ BlockID entry_block = 0;
+ SmallVector<BlockID> blocks;
+ SmallVector<CombinedImageSamplerParameter> combined_parameters;
+
+ struct EntryLine
+ {
+ uint32_t file_id = 0;
+ uint32_t line_literal = 0;
+ };
+ EntryLine entry_line;
+
+ void add_local_variable(VariableID id)
+ {
+ local_variables.push_back(id);
+ }
+
+ void add_parameter(TypeID parameter_type, ID id, bool alias_global_variable = false)
+ {
+ // Arguments are read-only until proven otherwise.
+ arguments.push_back({ parameter_type, id, 0u, 0u, alias_global_variable });
+ }
+
+ // Hooks to be run when the function returns.
+ // Mostly used for lowering internal data structures onto flattened structures.
+ // Need to defer this, because they might rely on things which change during compilation.
+ // Intentionally not a small vector, this one is rare, and std::function can be large.
+ Vector<std::function<void()>> fixup_hooks_out;
+
+ // Hooks to be run when the function begins.
+ // Mostly used for populating internal data structures from flattened structures.
+ // Need to defer this, because they might rely on things which change during compilation.
+ // Intentionally not a small vector, this one is rare, and std::function can be large.
+ Vector<std::function<void()>> fixup_hooks_in;
+
+ // On function entry, make sure to copy a constant array into thread addr space to work around
+ // the case where we are passing a constant array by value to a function on backends which do not
+ // consider arrays value types.
+ SmallVector<ID> constant_arrays_needed_on_stack;
+
+ bool active = false;
+ bool flush_undeclared = true;
+ bool do_combined_parameters = true;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRFunction)
+};
+
+struct SPIRAccessChain : IVariant
+{
+ enum
+ {
+ type = TypeAccessChain
+ };
+
+ SPIRAccessChain(TypeID basetype_, spv::StorageClass storage_, std::string base_, std::string dynamic_index_,
+ int32_t static_index_)
+ : basetype(basetype_)
+ , storage(storage_)
+ , base(std::move(base_))
+ , dynamic_index(std::move(dynamic_index_))
+ , static_index(static_index_)
+ {
+ }
+
+ // The access chain represents an offset into a buffer.
+ // Some backends need more complicated handling of access chains to be able to use buffers, like HLSL
+ // which has no usable buffer type ala GLSL SSBOs.
+ // StructuredBuffer is too limited, so our only option is to deal with ByteAddressBuffer which works with raw addresses.
+
+ TypeID basetype;
+ spv::StorageClass storage;
+ std::string base;
+ std::string dynamic_index;
+ int32_t static_index;
+
+ VariableID loaded_from = 0;
+ uint32_t matrix_stride = 0;
+ uint32_t array_stride = 0;
+ bool row_major_matrix = false;
+ bool immutable = false;
+
+ // By reading this expression, we implicitly read these expressions as well.
+ // Used by access chain Store and Load since we read multiple expressions in this case.
+ SmallVector<ID> implied_read_expressions;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRAccessChain)
+};
+
+struct SPIRVariable : IVariant
+{
+ enum
+ {
+ type = TypeVariable
+ };
+
+ SPIRVariable() = default;
+ SPIRVariable(TypeID basetype_, spv::StorageClass storage_, ID initializer_ = 0, VariableID basevariable_ = 0)
+ : basetype(basetype_)
+ , storage(storage_)
+ , initializer(initializer_)
+ , basevariable(basevariable_)
+ {
+ }
+
+ TypeID basetype = 0;
+ spv::StorageClass storage = spv::StorageClassGeneric;
+ uint32_t decoration = 0;
+ ID initializer = 0;
+ VariableID basevariable = 0;
+
+ SmallVector<uint32_t> dereference_chain;
+ bool compat_builtin = false;
+
+ // If a variable is shadowed, we only statically assign to it
+ // and never actually emit a statement for it.
+ // When we read the variable as an expression, just forward
+ // shadowed_id as the expression.
+ bool statically_assigned = false;
+ ID static_expression = 0;
+
+ // Temporaries which can remain forwarded as long as this variable is not modified.
+ SmallVector<ID> dependees;
+
+ bool deferred_declaration = false;
+ bool phi_variable = false;
+
+ // Used to deal with Phi variable flushes. See flush_phi().
+ bool allocate_temporary_copy = false;
+
+ bool remapped_variable = false;
+ uint32_t remapped_components = 0;
+
+ // The block which dominates all access to this variable.
+ BlockID dominator = 0;
+ // If true, this variable is a loop variable, when accessing the variable
+ // outside a loop,
+ // we should statically forward it.
+ bool loop_variable = false;
+ // Set to true while we're inside the for loop.
+ bool loop_variable_enable = false;
+
+ // Used to find global LUTs
+ bool is_written_to = false;
+
+ SPIRFunction::Parameter *parameter = nullptr;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRVariable)
+};
+
+struct SPIRConstant : IVariant
+{
+ enum
+ {
+ type = TypeConstant
+ };
+
+ union Constant
+ {
+ uint32_t u32;
+ int32_t i32;
+ float f32;
+
+ uint64_t u64;
+ int64_t i64;
+ double f64;
+ };
+
+ struct ConstantVector
+ {
+ Constant r[4];
+ // If != 0, this element is a specialization constant, and we should keep track of it as such.
+ ID id[4];
+ uint32_t vecsize = 1;
+
+ ConstantVector()
+ {
+ memset(r, 0, sizeof(r));
+ }
+ };
+
+ struct ConstantMatrix
+ {
+ ConstantVector c[4];
+ // If != 0, this column is a specialization constant, and we should keep track of it as such.
+ ID id[4];
+ uint32_t columns = 1;
+ };
+
+ static inline float f16_to_f32(uint16_t u16_value)
+ {
+ // Based on the GLM implementation.
+ int s = (u16_value >> 15) & 0x1;
+ int e = (u16_value >> 10) & 0x1f;
+ int m = (u16_value >> 0) & 0x3ff;
+
+ union
+ {
+ float f32;
+ uint32_t u32;
+ } u;
+
+ if (e == 0)
+ {
+ if (m == 0)
+ {
+ u.u32 = uint32_t(s) << 31;
+ return u.f32;
+ }
+ else
+ {
+ while ((m & 0x400) == 0)
+ {
+ m <<= 1;
+ e--;
+ }
+
+ e++;
+ m &= ~0x400;
+ }
+ }
+ else if (e == 31)
+ {
+ if (m == 0)
+ {
+ u.u32 = (uint32_t(s) << 31) | 0x7f800000u;
+ return u.f32;
+ }
+ else
+ {
+ u.u32 = (uint32_t(s) << 31) | 0x7f800000u | (m << 13);
+ return u.f32;
+ }
+ }
+
+ e += 127 - 15;
+ m <<= 13;
+ u.u32 = (uint32_t(s) << 31) | (e << 23) | m;
+ return u.f32;
+ }
+
+ inline uint32_t specialization_constant_id(uint32_t col, uint32_t row) const
+ {
+ return m.c[col].id[row];
+ }
+
+ inline uint32_t specialization_constant_id(uint32_t col) const
+ {
+ return m.id[col];
+ }
+
+ inline uint32_t scalar(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return m.c[col].r[row].u32;
+ }
+
+ inline int16_t scalar_i16(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return int16_t(m.c[col].r[row].u32 & 0xffffu);
+ }
+
+ inline uint16_t scalar_u16(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return uint16_t(m.c[col].r[row].u32 & 0xffffu);
+ }
+
+ inline int8_t scalar_i8(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return int8_t(m.c[col].r[row].u32 & 0xffu);
+ }
+
+ inline uint8_t scalar_u8(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return uint8_t(m.c[col].r[row].u32 & 0xffu);
+ }
+
+ inline float scalar_f16(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return f16_to_f32(scalar_u16(col, row));
+ }
+
+ inline float scalar_f32(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return m.c[col].r[row].f32;
+ }
+
+ inline int32_t scalar_i32(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return m.c[col].r[row].i32;
+ }
+
+ inline double scalar_f64(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return m.c[col].r[row].f64;
+ }
+
+ inline int64_t scalar_i64(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return m.c[col].r[row].i64;
+ }
+
+ inline uint64_t scalar_u64(uint32_t col = 0, uint32_t row = 0) const
+ {
+ return m.c[col].r[row].u64;
+ }
+
+ inline const ConstantVector &vector() const
+ {
+ return m.c[0];
+ }
+
+ inline uint32_t vector_size() const
+ {
+ return m.c[0].vecsize;
+ }
+
+ inline uint32_t columns() const
+ {
+ return m.columns;
+ }
+
+ inline void make_null(const SPIRType &constant_type_)
+ {
+ m = {};
+ m.columns = constant_type_.columns;
+ for (auto &c : m.c)
+ c.vecsize = constant_type_.vecsize;
+ }
+
+ inline bool constant_is_null() const
+ {
+ if (specialization)
+ return false;
+ if (!subconstants.empty())
+ return false;
+
+ for (uint32_t col = 0; col < columns(); col++)
+ for (uint32_t row = 0; row < vector_size(); row++)
+ if (scalar_u64(col, row) != 0)
+ return false;
+
+ return true;
+ }
+
+ explicit SPIRConstant(uint32_t constant_type_)
+ : constant_type(constant_type_)
+ {
+ }
+
+ SPIRConstant() = default;
+
+ SPIRConstant(TypeID constant_type_, const uint32_t *elements, uint32_t num_elements, bool specialized)
+ : constant_type(constant_type_)
+ , specialization(specialized)
+ {
+ subconstants.reserve(num_elements);
+ for (uint32_t i = 0; i < num_elements; i++)
+ subconstants.push_back(elements[i]);
+ specialization = specialized;
+ }
+
+ // Construct scalar (32-bit).
+ SPIRConstant(TypeID constant_type_, uint32_t v0, bool specialized)
+ : constant_type(constant_type_)
+ , specialization(specialized)
+ {
+ m.c[0].r[0].u32 = v0;
+ m.c[0].vecsize = 1;
+ m.columns = 1;
+ }
+
+ // Construct scalar (64-bit).
+ SPIRConstant(TypeID constant_type_, uint64_t v0, bool specialized)
+ : constant_type(constant_type_)
+ , specialization(specialized)
+ {
+ m.c[0].r[0].u64 = v0;
+ m.c[0].vecsize = 1;
+ m.columns = 1;
+ }
+
+ // Construct vectors and matrices.
+ SPIRConstant(TypeID constant_type_, const SPIRConstant *const *vector_elements, uint32_t num_elements,
+ bool specialized)
+ : constant_type(constant_type_)
+ , specialization(specialized)
+ {
+ bool matrix = vector_elements[0]->m.c[0].vecsize > 1;
+
+ if (matrix)
+ {
+ m.columns = num_elements;
+
+ for (uint32_t i = 0; i < num_elements; i++)
+ {
+ m.c[i] = vector_elements[i]->m.c[0];
+ if (vector_elements[i]->specialization)
+ m.id[i] = vector_elements[i]->self;
+ }
+ }
+ else
+ {
+ m.c[0].vecsize = num_elements;
+ m.columns = 1;
+
+ for (uint32_t i = 0; i < num_elements; i++)
+ {
+ m.c[0].r[i] = vector_elements[i]->m.c[0].r[0];
+ if (vector_elements[i]->specialization)
+ m.c[0].id[i] = vector_elements[i]->self;
+ }
+ }
+ }
+
+ TypeID constant_type = 0;
+ ConstantMatrix m;
+
+ // If this constant is a specialization constant (i.e. created with OpSpecConstant*).
+ bool specialization = false;
+ // If this constant is used as an array length which creates specialization restrictions on some backends.
+ bool is_used_as_array_length = false;
+
+ // If true, this is a LUT, and should always be declared in the outer scope.
+ bool is_used_as_lut = false;
+
+ // For composites which are constant arrays, etc.
+ SmallVector<ConstantID> subconstants;
+
+ // Non-Vulkan GLSL, HLSL and sometimes MSL emits defines for each specialization constant,
+ // and uses them to initialize the constant. This allows the user
+ // to still be able to specialize the value by supplying corresponding
+ // preprocessor directives before compiling the shader.
+ std::string specialization_constant_macro_name;
+
+ SPIRV_CROSS_DECLARE_CLONE(SPIRConstant)
+};
+
+// Variants have a very specific allocation scheme.
+struct ObjectPoolGroup
+{
+ std::unique_ptr<ObjectPoolBase> pools[TypeCount];
+};
+
+class Variant
+{
+public:
+ explicit Variant(ObjectPoolGroup *group_)
+ : group(group_)
+ {
+ }
+
+ ~Variant()
+ {
+ if (holder)
+ group->pools[type]->deallocate_opaque(holder);
+ }
+
+ // Marking custom move constructor as noexcept is important.
+ Variant(Variant &&other) SPIRV_CROSS_NOEXCEPT
+ {
+ *this = std::move(other);
+ }
+
+ // We cannot copy from other variant without our own pool group.
+ // Have to explicitly copy.
+ Variant(const Variant &variant) = delete;
+
+ // Marking custom move constructor as noexcept is important.
+ Variant &operator=(Variant &&other) SPIRV_CROSS_NOEXCEPT
+ {
+ if (this != &other)
+ {
+ if (holder)
+ group->pools[type]->deallocate_opaque(holder);
+ holder = other.holder;
+ group = other.group;
+ type = other.type;
+ allow_type_rewrite = other.allow_type_rewrite;
+
+ other.holder = nullptr;
+ other.type = TypeNone;
+ }
+ return *this;
+ }
+
+ // This copy/clone should only be called in the Compiler constructor.
+ // If this is called inside ::compile(), we invalidate any references we took higher in the stack.
+ // This should never happen.
+ Variant &operator=(const Variant &other)
+ {
+//#define SPIRV_CROSS_COPY_CONSTRUCTOR_SANITIZE
+#ifdef SPIRV_CROSS_COPY_CONSTRUCTOR_SANITIZE
+ abort();
+#endif
+ if (this != &other)
+ {
+ if (holder)
+ group->pools[type]->deallocate_opaque(holder);
+
+ if (other.holder)
+ holder = other.holder->clone(group->pools[other.type].get());
+ else
+ holder = nullptr;
+
+ type = other.type;
+ allow_type_rewrite = other.allow_type_rewrite;
+ }
+ return *this;
+ }
+
+ void set(IVariant *val, Types new_type)
+ {
+ if (holder)
+ group->pools[type]->deallocate_opaque(holder);
+ holder = nullptr;
+
+ if (!allow_type_rewrite && type != TypeNone && type != new_type)
+ {
+ if (val)
+ group->pools[new_type]->deallocate_opaque(val);
+ SPIRV_CROSS_THROW("Overwriting a variant with new type.");
+ }
+
+ holder = val;
+ type = new_type;
+ allow_type_rewrite = false;
+ }
+
+ template <typename T, typename... Ts>
+ T *allocate_and_set(Types new_type, Ts &&... ts)
+ {
+ T *val = static_cast<ObjectPool<T> &>(*group->pools[new_type]).allocate(std::forward<Ts>(ts)...);
+ set(val, new_type);
+ return val;
+ }
+
+ template <typename T>
+ T &get()
+ {
+ if (!holder)
+ SPIRV_CROSS_THROW("nullptr");
+ if (static_cast<Types>(T::type) != type)
+ SPIRV_CROSS_THROW("Bad cast");
+ return *static_cast<T *>(holder);
+ }
+
+ template <typename T>
+ const T &get() const
+ {
+ if (!holder)
+ SPIRV_CROSS_THROW("nullptr");
+ if (static_cast<Types>(T::type) != type)
+ SPIRV_CROSS_THROW("Bad cast");
+ return *static_cast<const T *>(holder);
+ }
+
+ Types get_type() const
+ {
+ return type;
+ }
+
+ ID get_id() const
+ {
+ return holder ? holder->self : ID(0);
+ }
+
+ bool empty() const
+ {
+ return !holder;
+ }
+
+ void reset()
+ {
+ if (holder)
+ group->pools[type]->deallocate_opaque(holder);
+ holder = nullptr;
+ type = TypeNone;
+ }
+
+ void set_allow_type_rewrite()
+ {
+ allow_type_rewrite = true;
+ }
+
+private:
+ ObjectPoolGroup *group = nullptr;
+ IVariant *holder = nullptr;
+ Types type = TypeNone;
+ bool allow_type_rewrite = false;
+};
+
+template <typename T>
+T &variant_get(Variant &var)
+{
+ return var.get<T>();
+}
+
+template <typename T>
+const T &variant_get(const Variant &var)
+{
+ return var.get<T>();
+}
+
+template <typename T, typename... P>
+T &variant_set(Variant &var, P &&... args)
+{
+ auto *ptr = var.allocate_and_set<T>(static_cast<Types>(T::type), std::forward<P>(args)...);
+ return *ptr;
+}
+
+struct AccessChainMeta
+{
+ uint32_t storage_physical_type = 0;
+ bool need_transpose = false;
+ bool storage_is_packed = false;
+ bool storage_is_invariant = false;
+ bool flattened_struct = false;
+ bool relaxed_precision = false;
+ bool access_meshlet_position_y = false;
+};
+
+enum ExtendedDecorations
+{
+ // Marks if a buffer block is re-packed, i.e. member declaration might be subject to PhysicalTypeID remapping and padding.
+ SPIRVCrossDecorationBufferBlockRepacked = 0,
+
+ // A type in a buffer block might be declared with a different physical type than the logical type.
+ // If this is not set, PhysicalTypeID == the SPIR-V type as declared.
+ SPIRVCrossDecorationPhysicalTypeID,
+
+ // Marks if the physical type is to be declared with tight packing rules, i.e. packed_floatN on MSL and friends.
+ // If this is set, PhysicalTypeID might also be set. It can be set to same as logical type if all we're doing
+ // is converting float3 to packed_float3 for example.
+ // If this is marked on a struct, it means the struct itself must use only Packed types for all its members.
+ SPIRVCrossDecorationPhysicalTypePacked,
+
+ // The padding in bytes before declaring this struct member.
+ // If used on a struct type, marks the target size of a struct.
+ SPIRVCrossDecorationPaddingTarget,
+
+ SPIRVCrossDecorationInterfaceMemberIndex,
+ SPIRVCrossDecorationInterfaceOrigID,
+ SPIRVCrossDecorationResourceIndexPrimary,
+ // Used for decorations like resource indices for samplers when part of combined image samplers.
+ // A variable might need to hold two resource indices in this case.
+ SPIRVCrossDecorationResourceIndexSecondary,
+ // Used for resource indices for multiplanar images when part of combined image samplers.
+ SPIRVCrossDecorationResourceIndexTertiary,
+ SPIRVCrossDecorationResourceIndexQuaternary,
+
+ // Marks a buffer block for using explicit offsets (GLSL/HLSL).
+ SPIRVCrossDecorationExplicitOffset,
+
+ // Apply to a variable in the Input storage class; marks it as holding the base group passed to vkCmdDispatchBase(),
+ // or the base vertex and instance indices passed to vkCmdDrawIndexed().
+ // In MSL, this is used to adjust the WorkgroupId and GlobalInvocationId variables in compute shaders,
+ // and to hold the BaseVertex and BaseInstance variables in vertex shaders.
+ SPIRVCrossDecorationBuiltInDispatchBase,
+
+ // Apply to a variable that is a function parameter; marks it as being a "dynamic"
+ // combined image-sampler. In MSL, this is used when a function parameter might hold
+ // either a regular combined image-sampler or one that has an attached sampler
+ // Y'CbCr conversion.
+ SPIRVCrossDecorationDynamicImageSampler,
+
+ // Apply to a variable in the Input storage class; marks it as holding the size of the stage
+ // input grid.
+ // In MSL, this is used to hold the vertex and instance counts in a tessellation pipeline
+ // vertex shader.
+ SPIRVCrossDecorationBuiltInStageInputSize,
+
+ // Apply to any access chain of a tessellation I/O variable; stores the type of the sub-object
+ // that was chained to, as recorded in the input variable itself. This is used in case the pointer
+ // is itself used as the base of an access chain, to calculate the original type of the sub-object
+ // chained to, in case a swizzle needs to be applied. This should not happen normally with valid
+ // SPIR-V, but the MSL backend can change the type of input variables, necessitating the
+ // addition of swizzles to keep the generated code compiling.
+ SPIRVCrossDecorationTessIOOriginalInputTypeID,
+
+ // Apply to any access chain of an interface variable used with pull-model interpolation, where the variable is a
+ // vector but the resulting pointer is a scalar; stores the component index that is to be accessed by the chain.
+ // This is used when emitting calls to interpolation functions on the chain in MSL: in this case, the component
+ // must be applied to the result, since pull-model interpolants in MSL cannot be swizzled directly, but the
+ // results of interpolation can.
+ SPIRVCrossDecorationInterpolantComponentExpr,
+
+ // Apply to any struct type that is used in the Workgroup storage class.
+ // This causes matrices in MSL prior to Metal 3.0 to be emitted using a special
+ // class that is convertible to the standard matrix type, to work around the
+ // lack of constructors in the 'threadgroup' address space.
+ SPIRVCrossDecorationWorkgroupStruct,
+
+ SPIRVCrossDecorationOverlappingBinding,
+
+ SPIRVCrossDecorationCount
+};
+
+struct Meta
+{
+ struct Decoration
+ {
+ std::string alias;
+ std::string qualified_alias;
+ std::string hlsl_semantic;
+ std::string user_type;
+ Bitset decoration_flags;
+ spv::BuiltIn builtin_type = spv::BuiltInMax;
+ uint32_t location = 0;
+ uint32_t component = 0;
+ uint32_t set = 0;
+ uint32_t binding = 0;
+ uint32_t offset = 0;
+ uint32_t xfb_buffer = 0;
+ uint32_t xfb_stride = 0;
+ uint32_t stream = 0;
+ uint32_t array_stride = 0;
+ uint32_t matrix_stride = 0;
+ uint32_t input_attachment = 0;
+ uint32_t spec_id = 0;
+ uint32_t index = 0;
+ spv::FPRoundingMode fp_rounding_mode = spv::FPRoundingModeMax;
+ bool builtin = false;
+ bool qualified_alias_explicit_override = false;
+
+ struct Extended
+ {
+ Extended()
+ {
+ // MSVC 2013 workaround to init like this.
+ for (auto &v : values)
+ v = 0;
+ }
+
+ Bitset flags;
+ uint32_t values[SPIRVCrossDecorationCount];
+ } extended;
+ };
+
+ Decoration decoration;
+
+ // Intentionally not a SmallVector. Decoration is large and somewhat rare.
+ Vector<Decoration> members;
+
+ std::unordered_map<uint32_t, uint32_t> decoration_word_offset;
+
+ // For SPV_GOOGLE_hlsl_functionality1.
+ bool hlsl_is_magic_counter_buffer = false;
+ // ID for the sibling counter buffer.
+ uint32_t hlsl_magic_counter_buffer = 0;
+};
+
+// A user callback that remaps the type of any variable.
+// var_name is the declared name of the variable.
+// name_of_type is the textual name of the type which will be used in the code unless written to by the callback.
+using VariableTypeRemapCallback =
+ std::function<void(const SPIRType &type, const std::string &var_name, std::string &name_of_type)>;
+
+class Hasher
+{
+public:
+ inline void u32(uint32_t value)
+ {
+ h = (h * 0x100000001b3ull) ^ value;
+ }
+
+ inline uint64_t get() const
+ {
+ return h;
+ }
+
+private:
+ uint64_t h = 0xcbf29ce484222325ull;
+};
+
+static inline bool type_is_floating_point(const SPIRType &type)
+{
+ return type.basetype == SPIRType::Half || type.basetype == SPIRType::Float || type.basetype == SPIRType::Double;
+}
+
+static inline bool type_is_integral(const SPIRType &type)
+{
+ return type.basetype == SPIRType::SByte || type.basetype == SPIRType::UByte || type.basetype == SPIRType::Short ||
+ type.basetype == SPIRType::UShort || type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt ||
+ type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64;
+}
+
+static inline SPIRType::BaseType to_signed_basetype(uint32_t width)
+{
+ switch (width)
+ {
+ case 8:
+ return SPIRType::SByte;
+ case 16:
+ return SPIRType::Short;
+ case 32:
+ return SPIRType::Int;
+ case 64:
+ return SPIRType::Int64;
+ default:
+ SPIRV_CROSS_THROW("Invalid bit width.");
+ }
+}
+
+static inline SPIRType::BaseType to_unsigned_basetype(uint32_t width)
+{
+ switch (width)
+ {
+ case 8:
+ return SPIRType::UByte;
+ case 16:
+ return SPIRType::UShort;
+ case 32:
+ return SPIRType::UInt;
+ case 64:
+ return SPIRType::UInt64;
+ default:
+ SPIRV_CROSS_THROW("Invalid bit width.");
+ }
+}
+
+// Returns true if an arithmetic operation does not change behavior depending on signedness.
+static inline bool opcode_is_sign_invariant(spv::Op opcode)
+{
+ switch (opcode)
+ {
+ case spv::OpIEqual:
+ case spv::OpINotEqual:
+ case spv::OpISub:
+ case spv::OpIAdd:
+ case spv::OpIMul:
+ case spv::OpShiftLeftLogical:
+ case spv::OpBitwiseOr:
+ case spv::OpBitwiseXor:
+ case spv::OpBitwiseAnd:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static inline bool opcode_can_promote_integer_implicitly(spv::Op opcode)
+{
+ switch (opcode)
+ {
+ case spv::OpSNegate:
+ case spv::OpNot:
+ case spv::OpBitwiseAnd:
+ case spv::OpBitwiseOr:
+ case spv::OpBitwiseXor:
+ case spv::OpShiftLeftLogical:
+ case spv::OpShiftRightLogical:
+ case spv::OpShiftRightArithmetic:
+ case spv::OpIAdd:
+ case spv::OpISub:
+ case spv::OpIMul:
+ case spv::OpSDiv:
+ case spv::OpUDiv:
+ case spv::OpSRem:
+ case spv::OpUMod:
+ case spv::OpSMod:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+struct SetBindingPair
+{
+ uint32_t desc_set;
+ uint32_t binding;
+
+ inline bool operator==(const SetBindingPair &other) const
+ {
+ return desc_set == other.desc_set && binding == other.binding;
+ }
+
+ inline bool operator<(const SetBindingPair &other) const
+ {
+ return desc_set < other.desc_set || (desc_set == other.desc_set && binding < other.binding);
+ }
+};
+
+struct LocationComponentPair
+{
+ uint32_t location;
+ uint32_t component;
+
+ inline bool operator==(const LocationComponentPair &other) const
+ {
+ return location == other.location && component == other.component;
+ }
+
+ inline bool operator<(const LocationComponentPair &other) const
+ {
+ return location < other.location || (location == other.location && component < other.component);
+ }
+};
+
+struct StageSetBinding
+{
+ spv::ExecutionModel model;
+ uint32_t desc_set;
+ uint32_t binding;
+
+ inline bool operator==(const StageSetBinding &other) const
+ {
+ return model == other.model && desc_set == other.desc_set && binding == other.binding;
+ }
+};
+
+struct InternalHasher
+{
+ inline size_t operator()(const SetBindingPair &value) const
+ {
+ // Quality of hash doesn't really matter here.
+ auto hash_set = std::hash<uint32_t>()(value.desc_set);
+ auto hash_binding = std::hash<uint32_t>()(value.binding);
+ return (hash_set * 0x10001b31) ^ hash_binding;
+ }
+
+ inline size_t operator()(const LocationComponentPair &value) const
+ {
+ // Quality of hash doesn't really matter here.
+ auto hash_set = std::hash<uint32_t>()(value.location);
+ auto hash_binding = std::hash<uint32_t>()(value.component);
+ return (hash_set * 0x10001b31) ^ hash_binding;
+ }
+
+ inline size_t operator()(const StageSetBinding &value) const
+ {
+ // Quality of hash doesn't really matter here.
+ auto hash_model = std::hash<uint32_t>()(value.model);
+ auto hash_set = std::hash<uint32_t>()(value.desc_set);
+ auto tmp_hash = (hash_model * 0x10001b31) ^ hash_set;
+ return (tmp_hash * 0x10001b31) ^ value.binding;
+ }
+};
+
+// Special constant used in a {MSL,HLSL}ResourceBinding desc_set
+// element to indicate the bindings for the push constants.
+static const uint32_t ResourceBindingPushConstantDescriptorSet = ~(0u);
+
+// Special constant used in a {MSL,HLSL}ResourceBinding binding
+// element to indicate the bindings for the push constants.
+static const uint32_t ResourceBindingPushConstantBinding = 0;
+} // namespace SPIRV_CROSS_NAMESPACE
+
+namespace std
+{
+template <SPIRV_CROSS_NAMESPACE::Types type>
+struct hash<SPIRV_CROSS_NAMESPACE::TypedID<type>>
+{
+ size_t operator()(const SPIRV_CROSS_NAMESPACE::TypedID<type> &value) const
+ {
+ return std::hash<uint32_t>()(value);
+ }
+};
+} // namespace std
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_cross.cpp b/thirdparty/spirv-cross/spirv_cross.cpp
new file mode 100644
index 0000000000..8c3e7d3812
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross.cpp
@@ -0,0 +1,5668 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_cross.hpp"
+#include "GLSL.std.450.h"
+#include "spirv_cfg.hpp"
+#include "spirv_common.hpp"
+#include "spirv_parser.hpp"
+#include <algorithm>
+#include <cstring>
+#include <utility>
+
+using namespace std;
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+
+Compiler::Compiler(vector<uint32_t> ir_)
+{
+ Parser parser(std::move(ir_));
+ parser.parse();
+ set_ir(std::move(parser.get_parsed_ir()));
+}
+
+Compiler::Compiler(const uint32_t *ir_, size_t word_count)
+{
+ Parser parser(ir_, word_count);
+ parser.parse();
+ set_ir(std::move(parser.get_parsed_ir()));
+}
+
+Compiler::Compiler(const ParsedIR &ir_)
+{
+ set_ir(ir_);
+}
+
+Compiler::Compiler(ParsedIR &&ir_)
+{
+ set_ir(std::move(ir_));
+}
+
+void Compiler::set_ir(ParsedIR &&ir_)
+{
+ ir = std::move(ir_);
+ parse_fixup();
+}
+
+void Compiler::set_ir(const ParsedIR &ir_)
+{
+ ir = ir_;
+ parse_fixup();
+}
+
+string Compiler::compile()
+{
+ return "";
+}
+
+bool Compiler::variable_storage_is_aliased(const SPIRVariable &v)
+{
+ auto &type = get<SPIRType>(v.basetype);
+ bool ssbo = v.storage == StorageClassStorageBuffer ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+ bool image = type.basetype == SPIRType::Image;
+ bool counter = type.basetype == SPIRType::AtomicCounter;
+ bool buffer_reference = type.storage == StorageClassPhysicalStorageBufferEXT;
+
+ bool is_restrict;
+ if (ssbo)
+ is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict);
+ else
+ is_restrict = has_decoration(v.self, DecorationRestrict);
+
+ return !is_restrict && (ssbo || image || counter || buffer_reference);
+}
+
+bool Compiler::block_is_control_dependent(const SPIRBlock &block)
+{
+ for (auto &i : block.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ case OpFunctionCall:
+ {
+ uint32_t func = ops[2];
+ if (function_is_control_dependent(get<SPIRFunction>(func)))
+ return true;
+ break;
+ }
+
+ // Derivatives
+ case OpDPdx:
+ case OpDPdxCoarse:
+ case OpDPdxFine:
+ case OpDPdy:
+ case OpDPdyCoarse:
+ case OpDPdyFine:
+ case OpFwidth:
+ case OpFwidthCoarse:
+ case OpFwidthFine:
+
+ // Anything implicit LOD
+ case OpImageSampleImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageQueryLod:
+ case OpImageDrefGather:
+ case OpImageGather:
+ case OpImageSparseDrefGather:
+ case OpImageSparseGather:
+
+ // Anything subgroups
+ case OpGroupNonUniformElect:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformBallotBitCount:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpGroupNonUniformIAdd:
+ case OpGroupNonUniformFAdd:
+ case OpGroupNonUniformIMul:
+ case OpGroupNonUniformFMul:
+ case OpGroupNonUniformSMin:
+ case OpGroupNonUniformUMin:
+ case OpGroupNonUniformFMin:
+ case OpGroupNonUniformSMax:
+ case OpGroupNonUniformUMax:
+ case OpGroupNonUniformFMax:
+ case OpGroupNonUniformBitwiseAnd:
+ case OpGroupNonUniformBitwiseOr:
+ case OpGroupNonUniformBitwiseXor:
+ case OpGroupNonUniformLogicalAnd:
+ case OpGroupNonUniformLogicalOr:
+ case OpGroupNonUniformLogicalXor:
+ case OpGroupNonUniformQuadBroadcast:
+ case OpGroupNonUniformQuadSwap:
+
+ // Control barriers
+ case OpControlBarrier:
+ return true;
+
+ default:
+ break;
+ }
+ }
+
+ return false;
+}
+
+bool Compiler::block_is_pure(const SPIRBlock &block)
+{
+ // This is a global side effect of the function.
+ if (block.terminator == SPIRBlock::Kill ||
+ block.terminator == SPIRBlock::TerminateRay ||
+ block.terminator == SPIRBlock::IgnoreIntersection ||
+ block.terminator == SPIRBlock::EmitMeshTasks)
+ return false;
+
+ for (auto &i : block.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ case OpFunctionCall:
+ {
+ uint32_t func = ops[2];
+ if (!function_is_pure(get<SPIRFunction>(func)))
+ return false;
+ break;
+ }
+
+ case OpCopyMemory:
+ case OpStore:
+ {
+ auto &type = expression_type(ops[0]);
+ if (type.storage != StorageClassFunction)
+ return false;
+ break;
+ }
+
+ case OpImageWrite:
+ return false;
+
+ // Atomics are impure.
+ case OpAtomicLoad:
+ case OpAtomicStore:
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ return false;
+
+ // Geometry shader builtins modify global state.
+ case OpEndPrimitive:
+ case OpEmitStreamVertex:
+ case OpEndStreamPrimitive:
+ case OpEmitVertex:
+ return false;
+
+ // Mesh shader functions modify global state.
+ // (EmitMeshTasks is a terminator).
+ case OpSetMeshOutputsEXT:
+ return false;
+
+ // Barriers disallow any reordering, so we should treat blocks with barrier as writing.
+ case OpControlBarrier:
+ case OpMemoryBarrier:
+ return false;
+
+ // Ray tracing builtins are impure.
+ case OpReportIntersectionKHR:
+ case OpIgnoreIntersectionNV:
+ case OpTerminateRayNV:
+ case OpTraceNV:
+ case OpTraceRayKHR:
+ case OpExecuteCallableNV:
+ case OpExecuteCallableKHR:
+ case OpRayQueryInitializeKHR:
+ case OpRayQueryTerminateKHR:
+ case OpRayQueryGenerateIntersectionKHR:
+ case OpRayQueryConfirmIntersectionKHR:
+ case OpRayQueryProceedKHR:
+ // There are various getters in ray query, but they are considered pure.
+ return false;
+
+ // OpExtInst is potentially impure depending on extension, but GLSL builtins are at least pure.
+
+ case OpDemoteToHelperInvocationEXT:
+ // This is a global side effect of the function.
+ return false;
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = ops[2];
+ if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(ops[3]);
+ switch (op_450)
+ {
+ case GLSLstd450Modf:
+ case GLSLstd450Frexp:
+ {
+ auto &type = expression_type(ops[5]);
+ if (type.storage != StorageClassFunction)
+ return false;
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ return true;
+}
+
+string Compiler::to_name(uint32_t id, bool allow_alias) const
+{
+ if (allow_alias && ir.ids[id].get_type() == TypeType)
+ {
+ // If this type is a simple alias, emit the
+ // name of the original type instead.
+ // We don't want to override the meta alias
+ // as that can be overridden by the reflection APIs after parse.
+ auto &type = get<SPIRType>(id);
+ if (type.type_alias)
+ {
+ // If the alias master has been specially packed, we will have emitted a clean variant as well,
+ // so skip the name aliasing here.
+ if (!has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ return to_name(type.type_alias);
+ }
+ }
+
+ auto &alias = ir.get_name(id);
+ if (alias.empty())
+ return join("_", id);
+ else
+ return alias;
+}
+
+bool Compiler::function_is_pure(const SPIRFunction &func)
+{
+ for (auto block : func.blocks)
+ if (!block_is_pure(get<SPIRBlock>(block)))
+ return false;
+
+ return true;
+}
+
+bool Compiler::function_is_control_dependent(const SPIRFunction &func)
+{
+ for (auto block : func.blocks)
+ if (block_is_control_dependent(get<SPIRBlock>(block)))
+ return true;
+
+ return false;
+}
+
+void Compiler::register_global_read_dependencies(const SPIRBlock &block, uint32_t id)
+{
+ for (auto &i : block.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ case OpFunctionCall:
+ {
+ uint32_t func = ops[2];
+ register_global_read_dependencies(get<SPIRFunction>(func), id);
+ break;
+ }
+
+ case OpLoad:
+ case OpImageRead:
+ {
+ // If we're in a storage class which does not get invalidated, adding dependencies here is no big deal.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (var && var->storage != StorageClassFunction)
+ {
+ auto &type = get<SPIRType>(var->basetype);
+
+ // InputTargets are immutable.
+ if (type.basetype != SPIRType::Image && type.image.dim != DimSubpassData)
+ var->dependees.push_back(id);
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+}
+
+void Compiler::register_global_read_dependencies(const SPIRFunction &func, uint32_t id)
+{
+ for (auto block : func.blocks)
+ register_global_read_dependencies(get<SPIRBlock>(block), id);
+}
+
+SPIRVariable *Compiler::maybe_get_backing_variable(uint32_t chain)
+{
+ auto *var = maybe_get<SPIRVariable>(chain);
+ if (!var)
+ {
+ auto *cexpr = maybe_get<SPIRExpression>(chain);
+ if (cexpr)
+ var = maybe_get<SPIRVariable>(cexpr->loaded_from);
+
+ auto *access_chain = maybe_get<SPIRAccessChain>(chain);
+ if (access_chain)
+ var = maybe_get<SPIRVariable>(access_chain->loaded_from);
+ }
+
+ return var;
+}
+
+void Compiler::register_read(uint32_t expr, uint32_t chain, bool forwarded)
+{
+ auto &e = get<SPIRExpression>(expr);
+ auto *var = maybe_get_backing_variable(chain);
+
+ if (var)
+ {
+ e.loaded_from = var->self;
+
+ // If the backing variable is immutable, we do not need to depend on the variable.
+ if (forwarded && !is_immutable(var->self))
+ var->dependees.push_back(e.self);
+
+ // If we load from a parameter, make sure we create "inout" if we also write to the parameter.
+ // The default is "in" however, so we never invalidate our compilation by reading.
+ if (var && var->parameter)
+ var->parameter->read_count++;
+ }
+}
+
+void Compiler::register_write(uint32_t chain)
+{
+ auto *var = maybe_get<SPIRVariable>(chain);
+ if (!var)
+ {
+ // If we're storing through an access chain, invalidate the backing variable instead.
+ auto *expr = maybe_get<SPIRExpression>(chain);
+ if (expr && expr->loaded_from)
+ var = maybe_get<SPIRVariable>(expr->loaded_from);
+
+ auto *access_chain = maybe_get<SPIRAccessChain>(chain);
+ if (access_chain && access_chain->loaded_from)
+ var = maybe_get<SPIRVariable>(access_chain->loaded_from);
+ }
+
+ auto &chain_type = expression_type(chain);
+
+ if (var)
+ {
+ bool check_argument_storage_qualifier = true;
+ auto &type = expression_type(chain);
+
+ // If our variable is in a storage class which can alias with other buffers,
+ // invalidate all variables which depend on aliased variables. And if this is a
+ // variable pointer, then invalidate all variables regardless.
+ if (get_variable_data_type(*var).pointer)
+ {
+ flush_all_active_variables();
+
+ if (type.pointer_depth == 1)
+ {
+ // We have a backing variable which is a pointer-to-pointer type.
+ // We are storing some data through a pointer acquired through that variable,
+ // but we are not writing to the value of the variable itself,
+ // i.e., we are not modifying the pointer directly.
+ // If we are storing a non-pointer type (pointer_depth == 1),
+ // we know that we are storing some unrelated data.
+ // A case here would be
+ // void foo(Foo * const *arg) {
+ // Foo *bar = *arg;
+ // bar->unrelated = 42;
+ // }
+ // arg, the argument is constant.
+ check_argument_storage_qualifier = false;
+ }
+ }
+
+ if (type.storage == StorageClassPhysicalStorageBufferEXT || variable_storage_is_aliased(*var))
+ flush_all_aliased_variables();
+ else if (var)
+ flush_dependees(*var);
+
+ // We tried to write to a parameter which is not marked with out qualifier, force a recompile.
+ if (check_argument_storage_qualifier && var->parameter && var->parameter->write_count == 0)
+ {
+ var->parameter->write_count++;
+ force_recompile();
+ }
+ }
+ else if (chain_type.pointer)
+ {
+ // If we stored through a variable pointer, then we don't know which
+ // variable we stored to. So *all* expressions after this point need to
+ // be invalidated.
+ // FIXME: If we can prove that the variable pointer will point to
+ // only certain variables, we can invalidate only those.
+ flush_all_active_variables();
+ }
+
+ // If chain_type.pointer is false, we're not writing to memory backed variables, but temporaries instead.
+ // This can happen in copy_logical_type where we unroll complex reads and writes to temporaries.
+}
+
+void Compiler::flush_dependees(SPIRVariable &var)
+{
+ for (auto expr : var.dependees)
+ invalid_expressions.insert(expr);
+ var.dependees.clear();
+}
+
+void Compiler::flush_all_aliased_variables()
+{
+ for (auto aliased : aliased_variables)
+ flush_dependees(get<SPIRVariable>(aliased));
+}
+
+void Compiler::flush_all_atomic_capable_variables()
+{
+ for (auto global : global_variables)
+ flush_dependees(get<SPIRVariable>(global));
+ flush_all_aliased_variables();
+}
+
+void Compiler::flush_control_dependent_expressions(uint32_t block_id)
+{
+ auto &block = get<SPIRBlock>(block_id);
+ for (auto &expr : block.invalidate_expressions)
+ invalid_expressions.insert(expr);
+ block.invalidate_expressions.clear();
+}
+
+void Compiler::flush_all_active_variables()
+{
+ // Invalidate all temporaries we read from variables in this block since they were forwarded.
+ // Invalidate all temporaries we read from globals.
+ for (auto &v : current_function->local_variables)
+ flush_dependees(get<SPIRVariable>(v));
+ for (auto &arg : current_function->arguments)
+ flush_dependees(get<SPIRVariable>(arg.id));
+ for (auto global : global_variables)
+ flush_dependees(get<SPIRVariable>(global));
+
+ flush_all_aliased_variables();
+}
+
+uint32_t Compiler::expression_type_id(uint32_t id) const
+{
+ switch (ir.ids[id].get_type())
+ {
+ case TypeVariable:
+ return get<SPIRVariable>(id).basetype;
+
+ case TypeExpression:
+ return get<SPIRExpression>(id).expression_type;
+
+ case TypeConstant:
+ return get<SPIRConstant>(id).constant_type;
+
+ case TypeConstantOp:
+ return get<SPIRConstantOp>(id).basetype;
+
+ case TypeUndef:
+ return get<SPIRUndef>(id).basetype;
+
+ case TypeCombinedImageSampler:
+ return get<SPIRCombinedImageSampler>(id).combined_type;
+
+ case TypeAccessChain:
+ return get<SPIRAccessChain>(id).basetype;
+
+ default:
+ SPIRV_CROSS_THROW("Cannot resolve expression type.");
+ }
+}
+
+const SPIRType &Compiler::expression_type(uint32_t id) const
+{
+ return get<SPIRType>(expression_type_id(id));
+}
+
+bool Compiler::expression_is_lvalue(uint32_t id) const
+{
+ auto &type = expression_type(id);
+ switch (type.basetype)
+ {
+ case SPIRType::SampledImage:
+ case SPIRType::Image:
+ case SPIRType::Sampler:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+bool Compiler::is_immutable(uint32_t id) const
+{
+ if (ir.ids[id].get_type() == TypeVariable)
+ {
+ auto &var = get<SPIRVariable>(id);
+
+ // Anything we load from the UniformConstant address space is guaranteed to be immutable.
+ bool pointer_to_const = var.storage == StorageClassUniformConstant;
+ return pointer_to_const || var.phi_variable || !expression_is_lvalue(id);
+ }
+ else if (ir.ids[id].get_type() == TypeAccessChain)
+ return get<SPIRAccessChain>(id).immutable;
+ else if (ir.ids[id].get_type() == TypeExpression)
+ return get<SPIRExpression>(id).immutable;
+ else if (ir.ids[id].get_type() == TypeConstant || ir.ids[id].get_type() == TypeConstantOp ||
+ ir.ids[id].get_type() == TypeUndef)
+ return true;
+ else
+ return false;
+}
+
+static inline bool storage_class_is_interface(spv::StorageClass storage)
+{
+ switch (storage)
+ {
+ case StorageClassInput:
+ case StorageClassOutput:
+ case StorageClassUniform:
+ case StorageClassUniformConstant:
+ case StorageClassAtomicCounter:
+ case StorageClassPushConstant:
+ case StorageClassStorageBuffer:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool Compiler::is_hidden_variable(const SPIRVariable &var, bool include_builtins) const
+{
+ if ((is_builtin_variable(var) && !include_builtins) || var.remapped_variable)
+ return true;
+
+ // Combined image samplers are always considered active as they are "magic" variables.
+ if (find_if(begin(combined_image_samplers), end(combined_image_samplers), [&var](const CombinedImageSampler &samp) {
+ return samp.combined_id == var.self;
+ }) != end(combined_image_samplers))
+ {
+ return false;
+ }
+
+ // In SPIR-V 1.4 and up we must also use the active variable interface to disable global variables
+ // which are not part of the entry point.
+ if (ir.get_spirv_version() >= 0x10400 && var.storage != spv::StorageClassGeneric &&
+ var.storage != spv::StorageClassFunction && !interface_variable_exists_in_entry_point(var.self))
+ {
+ return true;
+ }
+
+ return check_active_interface_variables && storage_class_is_interface(var.storage) &&
+ active_interface_variables.find(var.self) == end(active_interface_variables);
+}
+
+bool Compiler::is_builtin_type(const SPIRType &type) const
+{
+ auto *type_meta = ir.find_meta(type.self);
+
+ // We can have builtin structs as well. If one member of a struct is builtin, the struct must also be builtin.
+ if (type_meta)
+ for (auto &m : type_meta->members)
+ if (m.builtin)
+ return true;
+
+ return false;
+}
+
+bool Compiler::is_builtin_variable(const SPIRVariable &var) const
+{
+ auto *m = ir.find_meta(var.self);
+
+ if (var.compat_builtin || (m && m->decoration.builtin))
+ return true;
+ else
+ return is_builtin_type(get<SPIRType>(var.basetype));
+}
+
+bool Compiler::is_member_builtin(const SPIRType &type, uint32_t index, BuiltIn *builtin) const
+{
+ auto *type_meta = ir.find_meta(type.self);
+
+ if (type_meta)
+ {
+ auto &memb = type_meta->members;
+ if (index < memb.size() && memb[index].builtin)
+ {
+ if (builtin)
+ *builtin = memb[index].builtin_type;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool Compiler::is_scalar(const SPIRType &type) const
+{
+ return type.basetype != SPIRType::Struct && type.vecsize == 1 && type.columns == 1;
+}
+
+bool Compiler::is_vector(const SPIRType &type) const
+{
+ return type.vecsize > 1 && type.columns == 1;
+}
+
+bool Compiler::is_matrix(const SPIRType &type) const
+{
+ return type.vecsize > 1 && type.columns > 1;
+}
+
+bool Compiler::is_array(const SPIRType &type) const
+{
+ return type.op == OpTypeArray || type.op == OpTypeRuntimeArray;
+}
+
+bool Compiler::is_pointer(const SPIRType &type) const
+{
+ return type.op == OpTypePointer && type.basetype != SPIRType::Unknown; // Ignore function pointers.
+}
+
+bool Compiler::is_physical_pointer(const SPIRType &type) const
+{
+ return type.op == OpTypePointer && type.storage == StorageClassPhysicalStorageBuffer;
+}
+
+bool Compiler::is_physical_pointer_to_buffer_block(const SPIRType &type) const
+{
+ return is_physical_pointer(type) && get_pointee_type(type).self == type.parent_type &&
+ (has_decoration(type.self, DecorationBlock) ||
+ has_decoration(type.self, DecorationBufferBlock));
+}
+
+bool Compiler::is_runtime_size_array(const SPIRType &type)
+{
+ return type.op == OpTypeRuntimeArray;
+}
+
+ShaderResources Compiler::get_shader_resources() const
+{
+ return get_shader_resources(nullptr);
+}
+
+ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> &active_variables) const
+{
+ return get_shader_resources(&active_variables);
+}
+
+bool Compiler::InterfaceVariableAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ uint32_t variable = 0;
+ switch (opcode)
+ {
+ // Need this first, otherwise, GCC complains about unhandled switch statements.
+ default:
+ break;
+
+ case OpFunctionCall:
+ {
+ // Invalid SPIR-V.
+ if (length < 3)
+ return false;
+
+ uint32_t count = length - 3;
+ args += 3;
+ for (uint32_t i = 0; i < count; i++)
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(args[i]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[i]);
+ }
+ break;
+ }
+
+ case OpSelect:
+ {
+ // Invalid SPIR-V.
+ if (length < 5)
+ return false;
+
+ uint32_t count = length - 3;
+ args += 3;
+ for (uint32_t i = 0; i < count; i++)
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(args[i]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[i]);
+ }
+ break;
+ }
+
+ case OpPhi:
+ {
+ // Invalid SPIR-V.
+ if (length < 2)
+ return false;
+
+ uint32_t count = length - 2;
+ args += 2;
+ for (uint32_t i = 0; i < count; i += 2)
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(args[i]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[i]);
+ }
+ break;
+ }
+
+ case OpAtomicStore:
+ case OpStore:
+ // Invalid SPIR-V.
+ if (length < 1)
+ return false;
+ variable = args[0];
+ break;
+
+ case OpCopyMemory:
+ {
+ if (length < 2)
+ return false;
+
+ auto *var = compiler.maybe_get<SPIRVariable>(args[0]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[0]);
+
+ var = compiler.maybe_get<SPIRVariable>(args[1]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[1]);
+ break;
+ }
+
+ case OpExtInst:
+ {
+ if (length < 3)
+ return false;
+ auto &extension_set = compiler.get<SPIRExtension>(args[2]);
+ switch (extension_set.ext)
+ {
+ case SPIRExtension::GLSL:
+ {
+ auto op = static_cast<GLSLstd450>(args[3]);
+
+ switch (op)
+ {
+ case GLSLstd450InterpolateAtCentroid:
+ case GLSLstd450InterpolateAtSample:
+ case GLSLstd450InterpolateAtOffset:
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(args[4]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[4]);
+ break;
+ }
+
+ case GLSLstd450Modf:
+ case GLSLstd450Fract:
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(args[5]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[5]);
+ break;
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+ case SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter:
+ {
+ enum AMDShaderExplicitVertexParameter
+ {
+ InterpolateAtVertexAMD = 1
+ };
+
+ auto op = static_cast<AMDShaderExplicitVertexParameter>(args[3]);
+
+ switch (op)
+ {
+ case InterpolateAtVertexAMD:
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(args[4]);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(args[4]);
+ break;
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ break;
+ }
+
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ case OpLoad:
+ case OpCopyObject:
+ case OpImageTexelPointer:
+ case OpAtomicLoad:
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ case OpArrayLength:
+ // Invalid SPIR-V.
+ if (length < 3)
+ return false;
+ variable = args[2];
+ break;
+ }
+
+ if (variable)
+ {
+ auto *var = compiler.maybe_get<SPIRVariable>(variable);
+ if (var && storage_class_is_interface(var->storage))
+ variables.insert(variable);
+ }
+ return true;
+}
+
+unordered_set<VariableID> Compiler::get_active_interface_variables() const
+{
+ // Traverse the call graph and find all interface variables which are in use.
+ unordered_set<VariableID> variables;
+ InterfaceVariableAccessHandler handler(*this, variables);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (var.storage != StorageClassOutput)
+ return;
+ if (!interface_variable_exists_in_entry_point(var.self))
+ return;
+
+ // An output variable which is just declared (but uninitialized) might be read by subsequent stages
+ // so we should force-enable these outputs,
+ // since compilation will fail if a subsequent stage attempts to read from the variable in question.
+ // Also, make sure we preserve output variables which are only initialized, but never accessed by any code.
+ if (var.initializer != ID(0) || get_execution_model() != ExecutionModelFragment)
+ variables.insert(var.self);
+ });
+
+ // If we needed to create one, we'll need it.
+ if (dummy_sampler_id)
+ variables.insert(dummy_sampler_id);
+
+ return variables;
+}
+
+void Compiler::set_enabled_interface_variables(std::unordered_set<VariableID> active_variables)
+{
+ active_interface_variables = std::move(active_variables);
+ check_active_interface_variables = true;
+}
+
+ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> *active_variables) const
+{
+ ShaderResources res;
+
+ bool ssbo_instance_name = reflection_ssbo_instance_name_is_significant();
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ // It is possible for uniform storage classes to be passed as function parameters, so detect
+ // that. To detect function parameters, check of StorageClass of variable is function scope.
+ if (var.storage == StorageClassFunction || !type.pointer)
+ return;
+
+ if (active_variables && active_variables->find(var.self) == end(*active_variables))
+ return;
+
+ // In SPIR-V 1.4 and up, every global must be present in the entry point interface list,
+ // not just IO variables.
+ bool active_in_entry_point = true;
+ if (ir.get_spirv_version() < 0x10400)
+ {
+ if (var.storage == StorageClassInput || var.storage == StorageClassOutput)
+ active_in_entry_point = interface_variable_exists_in_entry_point(var.self);
+ }
+ else
+ active_in_entry_point = interface_variable_exists_in_entry_point(var.self);
+
+ if (!active_in_entry_point)
+ return;
+
+ bool is_builtin = is_builtin_variable(var);
+
+ if (is_builtin)
+ {
+ if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
+ return;
+
+ auto &list = var.storage == StorageClassInput ? res.builtin_inputs : res.builtin_outputs;
+ BuiltInResource resource;
+
+ if (has_decoration(type.self, DecorationBlock))
+ {
+ resource.resource = { var.self, var.basetype, type.self,
+ get_remapped_declared_block_name(var.self, false) };
+
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ {
+ resource.value_type_id = type.member_types[i];
+ resource.builtin = BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn));
+ list.push_back(resource);
+ }
+ }
+ else
+ {
+ bool strip_array =
+ !has_decoration(var.self, DecorationPatch) && (
+ get_execution_model() == ExecutionModelTessellationControl ||
+ (get_execution_model() == ExecutionModelTessellationEvaluation &&
+ var.storage == StorageClassInput));
+
+ resource.resource = { var.self, var.basetype, type.self, get_name(var.self) };
+
+ if (strip_array && !type.array.empty())
+ resource.value_type_id = get_variable_data_type(var).parent_type;
+ else
+ resource.value_type_id = get_variable_data_type_id(var);
+
+ assert(resource.value_type_id);
+
+ resource.builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ list.push_back(std::move(resource));
+ }
+ return;
+ }
+
+ // Input
+ if (var.storage == StorageClassInput)
+ {
+ if (has_decoration(type.self, DecorationBlock))
+ {
+ res.stage_inputs.push_back(
+ { var.self, var.basetype, type.self,
+ get_remapped_declared_block_name(var.self, false) });
+ }
+ else
+ res.stage_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ // Subpass inputs
+ else if (var.storage == StorageClassUniformConstant && type.image.dim == DimSubpassData)
+ {
+ res.subpass_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ // Outputs
+ else if (var.storage == StorageClassOutput)
+ {
+ if (has_decoration(type.self, DecorationBlock))
+ {
+ res.stage_outputs.push_back(
+ { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) });
+ }
+ else
+ res.stage_outputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ // UBOs
+ else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBlock))
+ {
+ res.uniform_buffers.push_back(
+ { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) });
+ }
+ // Old way to declare SSBOs.
+ else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock))
+ {
+ res.storage_buffers.push_back(
+ { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) });
+ }
+ // Modern way to declare SSBOs.
+ else if (type.storage == StorageClassStorageBuffer)
+ {
+ res.storage_buffers.push_back(
+ { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) });
+ }
+ // Push constant blocks
+ else if (type.storage == StorageClassPushConstant)
+ {
+ // There can only be one push constant block, but keep the vector in case this restriction is lifted
+ // in the future.
+ res.push_constant_buffers.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ else if (type.storage == StorageClassShaderRecordBufferKHR)
+ {
+ res.shader_record_buffers.push_back({ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) });
+ }
+ // Atomic counters
+ else if (type.storage == StorageClassAtomicCounter)
+ {
+ res.atomic_counters.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ else if (type.storage == StorageClassUniformConstant)
+ {
+ if (type.basetype == SPIRType::Image)
+ {
+ // Images
+ if (type.image.sampled == 2)
+ {
+ res.storage_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ // Separate images
+ else if (type.image.sampled == 1)
+ {
+ res.separate_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ }
+ // Separate samplers
+ else if (type.basetype == SPIRType::Sampler)
+ {
+ res.separate_samplers.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ // Textures
+ else if (type.basetype == SPIRType::SampledImage)
+ {
+ res.sampled_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ // Acceleration structures
+ else if (type.basetype == SPIRType::AccelerationStructure)
+ {
+ res.acceleration_structures.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ else
+ {
+ res.gl_plain_uniforms.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
+ }
+ }
+ });
+
+ return res;
+}
+
+bool Compiler::type_is_top_level_block(const SPIRType &type) const
+{
+ if (type.basetype != SPIRType::Struct)
+ return false;
+ return has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+}
+
+bool Compiler::type_is_block_like(const SPIRType &type) const
+{
+ if (type_is_top_level_block(type))
+ return true;
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ // Block-like types may have Offset decorations.
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ if (has_member_decoration(type.self, i, DecorationOffset))
+ return true;
+ }
+
+ return false;
+}
+
+void Compiler::parse_fixup()
+{
+ // Figure out specialization constants for work group sizes.
+ for (auto id_ : ir.ids_for_constant_or_variable)
+ {
+ auto &id = ir.ids[id_];
+
+ if (id.get_type() == TypeConstant)
+ {
+ auto &c = id.get<SPIRConstant>();
+ if (has_decoration(c.self, DecorationBuiltIn) &&
+ BuiltIn(get_decoration(c.self, DecorationBuiltIn)) == BuiltInWorkgroupSize)
+ {
+ // In current SPIR-V, there can be just one constant like this.
+ // All entry points will receive the constant value.
+ // WorkgroupSize take precedence over LocalSizeId.
+ for (auto &entry : ir.entry_points)
+ {
+ entry.second.workgroup_size.constant = c.self;
+ entry.second.workgroup_size.x = c.scalar(0, 0);
+ entry.second.workgroup_size.y = c.scalar(0, 1);
+ entry.second.workgroup_size.z = c.scalar(0, 2);
+ }
+ }
+ }
+ else if (id.get_type() == TypeVariable)
+ {
+ auto &var = id.get<SPIRVariable>();
+ if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup ||
+ var.storage == StorageClassTaskPayloadWorkgroupEXT ||
+ var.storage == StorageClassOutput)
+ {
+ global_variables.push_back(var.self);
+ }
+ if (variable_storage_is_aliased(var))
+ aliased_variables.push_back(var.self);
+ }
+ }
+}
+
+void Compiler::update_name_cache(unordered_set<string> &cache_primary, const unordered_set<string> &cache_secondary,
+ string &name)
+{
+ if (name.empty())
+ return;
+
+ const auto find_name = [&](const string &n) -> bool {
+ if (cache_primary.find(n) != end(cache_primary))
+ return true;
+
+ if (&cache_primary != &cache_secondary)
+ if (cache_secondary.find(n) != end(cache_secondary))
+ return true;
+
+ return false;
+ };
+
+ const auto insert_name = [&](const string &n) { cache_primary.insert(n); };
+
+ if (!find_name(name))
+ {
+ insert_name(name);
+ return;
+ }
+
+ uint32_t counter = 0;
+ auto tmpname = name;
+
+ bool use_linked_underscore = true;
+
+ if (tmpname == "_")
+ {
+ // We cannot just append numbers, as we will end up creating internally reserved names.
+ // Make it like _0_<counter> instead.
+ tmpname += "0";
+ }
+ else if (tmpname.back() == '_')
+ {
+ // The last_character is an underscore, so we don't need to link in underscore.
+ // This would violate double underscore rules.
+ use_linked_underscore = false;
+ }
+
+ // If there is a collision (very rare),
+ // keep tacking on extra identifier until it's unique.
+ do
+ {
+ counter++;
+ name = tmpname + (use_linked_underscore ? "_" : "") + convert_to_string(counter);
+ } while (find_name(name));
+ insert_name(name);
+}
+
+void Compiler::update_name_cache(unordered_set<string> &cache, string &name)
+{
+ update_name_cache(cache, cache, name);
+}
+
+void Compiler::set_name(ID id, const std::string &name)
+{
+ ir.set_name(id, name);
+}
+
+const SPIRType &Compiler::get_type(TypeID id) const
+{
+ return get<SPIRType>(id);
+}
+
+const SPIRType &Compiler::get_type_from_variable(VariableID id) const
+{
+ return get<SPIRType>(get<SPIRVariable>(id).basetype);
+}
+
+uint32_t Compiler::get_pointee_type_id(uint32_t type_id) const
+{
+ auto *p_type = &get<SPIRType>(type_id);
+ if (p_type->pointer)
+ {
+ assert(p_type->parent_type);
+ type_id = p_type->parent_type;
+ }
+ return type_id;
+}
+
+const SPIRType &Compiler::get_pointee_type(const SPIRType &type) const
+{
+ auto *p_type = &type;
+ if (p_type->pointer)
+ {
+ assert(p_type->parent_type);
+ p_type = &get<SPIRType>(p_type->parent_type);
+ }
+ return *p_type;
+}
+
+const SPIRType &Compiler::get_pointee_type(uint32_t type_id) const
+{
+ return get_pointee_type(get<SPIRType>(type_id));
+}
+
+uint32_t Compiler::get_variable_data_type_id(const SPIRVariable &var) const
+{
+ if (var.phi_variable || var.storage == spv::StorageClass::StorageClassAtomicCounter)
+ return var.basetype;
+ return get_pointee_type_id(var.basetype);
+}
+
+SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var)
+{
+ return get<SPIRType>(get_variable_data_type_id(var));
+}
+
+const SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) const
+{
+ return get<SPIRType>(get_variable_data_type_id(var));
+}
+
+SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var)
+{
+ SPIRType *type = &get_variable_data_type(var);
+ if (is_array(*type))
+ type = &get<SPIRType>(type->parent_type);
+ return *type;
+}
+
+const SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) const
+{
+ const SPIRType *type = &get_variable_data_type(var);
+ if (is_array(*type))
+ type = &get<SPIRType>(type->parent_type);
+ return *type;
+}
+
+bool Compiler::is_sampled_image_type(const SPIRType &type)
+{
+ return (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage) && type.image.sampled == 1 &&
+ type.image.dim != DimBuffer;
+}
+
+void Compiler::set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
+ const std::string &argument)
+{
+ ir.set_member_decoration_string(id, index, decoration, argument);
+}
+
+void Compiler::set_member_decoration(TypeID id, uint32_t index, Decoration decoration, uint32_t argument)
+{
+ ir.set_member_decoration(id, index, decoration, argument);
+}
+
+void Compiler::set_member_name(TypeID id, uint32_t index, const std::string &name)
+{
+ ir.set_member_name(id, index, name);
+}
+
+const std::string &Compiler::get_member_name(TypeID id, uint32_t index) const
+{
+ return ir.get_member_name(id, index);
+}
+
+void Compiler::set_qualified_name(uint32_t id, const string &name)
+{
+ ir.meta[id].decoration.qualified_alias = name;
+}
+
+void Compiler::set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name)
+{
+ ir.meta[type_id].members.resize(max(ir.meta[type_id].members.size(), size_t(index) + 1));
+ ir.meta[type_id].members[index].qualified_alias = name;
+}
+
+const string &Compiler::get_member_qualified_name(TypeID type_id, uint32_t index) const
+{
+ auto *m = ir.find_meta(type_id);
+ if (m && index < m->members.size())
+ return m->members[index].qualified_alias;
+ else
+ return ir.get_empty_string();
+}
+
+uint32_t Compiler::get_member_decoration(TypeID id, uint32_t index, Decoration decoration) const
+{
+ return ir.get_member_decoration(id, index, decoration);
+}
+
+const Bitset &Compiler::get_member_decoration_bitset(TypeID id, uint32_t index) const
+{
+ return ir.get_member_decoration_bitset(id, index);
+}
+
+bool Compiler::has_member_decoration(TypeID id, uint32_t index, Decoration decoration) const
+{
+ return ir.has_member_decoration(id, index, decoration);
+}
+
+void Compiler::unset_member_decoration(TypeID id, uint32_t index, Decoration decoration)
+{
+ ir.unset_member_decoration(id, index, decoration);
+}
+
+void Compiler::set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument)
+{
+ ir.set_decoration_string(id, decoration, argument);
+}
+
+void Compiler::set_decoration(ID id, Decoration decoration, uint32_t argument)
+{
+ ir.set_decoration(id, decoration, argument);
+}
+
+void Compiler::set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value)
+{
+ auto &dec = ir.meta[id].decoration;
+ dec.extended.flags.set(decoration);
+ dec.extended.values[decoration] = value;
+}
+
+void Compiler::set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
+ uint32_t value)
+{
+ ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1));
+ auto &dec = ir.meta[type].members[index];
+ dec.extended.flags.set(decoration);
+ dec.extended.values[decoration] = value;
+}
+
+static uint32_t get_default_extended_decoration(ExtendedDecorations decoration)
+{
+ switch (decoration)
+ {
+ case SPIRVCrossDecorationResourceIndexPrimary:
+ case SPIRVCrossDecorationResourceIndexSecondary:
+ case SPIRVCrossDecorationResourceIndexTertiary:
+ case SPIRVCrossDecorationResourceIndexQuaternary:
+ case SPIRVCrossDecorationInterfaceMemberIndex:
+ return ~(0u);
+
+ default:
+ return 0;
+ }
+}
+
+uint32_t Compiler::get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const
+{
+ auto *m = ir.find_meta(id);
+ if (!m)
+ return 0;
+
+ auto &dec = m->decoration;
+
+ if (!dec.extended.flags.get(decoration))
+ return get_default_extended_decoration(decoration);
+
+ return dec.extended.values[decoration];
+}
+
+uint32_t Compiler::get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const
+{
+ auto *m = ir.find_meta(type);
+ if (!m)
+ return 0;
+
+ if (index >= m->members.size())
+ return 0;
+
+ auto &dec = m->members[index];
+ if (!dec.extended.flags.get(decoration))
+ return get_default_extended_decoration(decoration);
+ return dec.extended.values[decoration];
+}
+
+bool Compiler::has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const
+{
+ auto *m = ir.find_meta(id);
+ if (!m)
+ return false;
+
+ auto &dec = m->decoration;
+ return dec.extended.flags.get(decoration);
+}
+
+bool Compiler::has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const
+{
+ auto *m = ir.find_meta(type);
+ if (!m)
+ return false;
+
+ if (index >= m->members.size())
+ return false;
+
+ auto &dec = m->members[index];
+ return dec.extended.flags.get(decoration);
+}
+
+void Compiler::unset_extended_decoration(uint32_t id, ExtendedDecorations decoration)
+{
+ auto &dec = ir.meta[id].decoration;
+ dec.extended.flags.clear(decoration);
+ dec.extended.values[decoration] = 0;
+}
+
+void Compiler::unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration)
+{
+ ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1));
+ auto &dec = ir.meta[type].members[index];
+ dec.extended.flags.clear(decoration);
+ dec.extended.values[decoration] = 0;
+}
+
+StorageClass Compiler::get_storage_class(VariableID id) const
+{
+ return get<SPIRVariable>(id).storage;
+}
+
+const std::string &Compiler::get_name(ID id) const
+{
+ return ir.get_name(id);
+}
+
+const std::string Compiler::get_fallback_name(ID id) const
+{
+ return join("_", id);
+}
+
+const std::string Compiler::get_block_fallback_name(VariableID id) const
+{
+ auto &var = get<SPIRVariable>(id);
+ if (get_name(id).empty())
+ return join("_", get<SPIRType>(var.basetype).self, "_", id);
+ else
+ return get_name(id);
+}
+
+const Bitset &Compiler::get_decoration_bitset(ID id) const
+{
+ return ir.get_decoration_bitset(id);
+}
+
+bool Compiler::has_decoration(ID id, Decoration decoration) const
+{
+ return ir.has_decoration(id, decoration);
+}
+
+const string &Compiler::get_decoration_string(ID id, Decoration decoration) const
+{
+ return ir.get_decoration_string(id, decoration);
+}
+
+const string &Compiler::get_member_decoration_string(TypeID id, uint32_t index, Decoration decoration) const
+{
+ return ir.get_member_decoration_string(id, index, decoration);
+}
+
+uint32_t Compiler::get_decoration(ID id, Decoration decoration) const
+{
+ return ir.get_decoration(id, decoration);
+}
+
+void Compiler::unset_decoration(ID id, Decoration decoration)
+{
+ ir.unset_decoration(id, decoration);
+}
+
+bool Compiler::get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const
+{
+ auto *m = ir.find_meta(id);
+ if (!m)
+ return false;
+
+ auto &word_offsets = m->decoration_word_offset;
+ auto itr = word_offsets.find(decoration);
+ if (itr == end(word_offsets))
+ return false;
+
+ word_offset = itr->second;
+ return true;
+}
+
+bool Compiler::block_is_noop(const SPIRBlock &block) const
+{
+ if (block.terminator != SPIRBlock::Direct)
+ return false;
+
+ auto &child = get<SPIRBlock>(block.next_block);
+
+ // If this block participates in PHI, the block isn't really noop.
+ for (auto &phi : block.phi_variables)
+ if (phi.parent == block.self || phi.parent == child.self)
+ return false;
+
+ for (auto &phi : child.phi_variables)
+ if (phi.parent == block.self)
+ return false;
+
+ // Verify all instructions have no semantic impact.
+ for (auto &i : block.ops)
+ {
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ // Non-Semantic instructions.
+ case OpLine:
+ case OpNoLine:
+ break;
+
+ case OpExtInst:
+ {
+ auto *ops = stream(i);
+ auto ext = get<SPIRExtension>(ops[2]).ext;
+
+ bool ext_is_nonsemantic_only =
+ ext == SPIRExtension::NonSemanticShaderDebugInfo ||
+ ext == SPIRExtension::SPV_debug_info ||
+ ext == SPIRExtension::NonSemanticGeneric;
+
+ if (!ext_is_nonsemantic_only)
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool Compiler::block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const
+{
+ // Tried and failed.
+ if (block.disable_block_optimization || block.complex_continue)
+ return false;
+
+ if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop)
+ {
+ // Try to detect common for loop pattern
+ // which the code backend can use to create cleaner code.
+ // for(;;) { if (cond) { some_body; } else { break; } }
+ // is the pattern we're looking for.
+ const auto *false_block = maybe_get<SPIRBlock>(block.false_block);
+ const auto *true_block = maybe_get<SPIRBlock>(block.true_block);
+ const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block);
+
+ bool false_block_is_merge = block.false_block == block.merge_block ||
+ (false_block && merge_block && execution_is_noop(*false_block, *merge_block));
+
+ bool true_block_is_merge = block.true_block == block.merge_block ||
+ (true_block && merge_block && execution_is_noop(*true_block, *merge_block));
+
+ bool positive_candidate =
+ block.true_block != block.merge_block && block.true_block != block.self && false_block_is_merge;
+
+ bool negative_candidate =
+ block.false_block != block.merge_block && block.false_block != block.self && true_block_is_merge;
+
+ bool ret = block.terminator == SPIRBlock::Select && block.merge == SPIRBlock::MergeLoop &&
+ (positive_candidate || negative_candidate);
+
+ if (ret && positive_candidate && method == SPIRBlock::MergeToSelectContinueForLoop)
+ ret = block.true_block == block.continue_block;
+ else if (ret && negative_candidate && method == SPIRBlock::MergeToSelectContinueForLoop)
+ ret = block.false_block == block.continue_block;
+
+ // If we have OpPhi which depends on branches which came from our own block,
+ // we need to flush phi variables in else block instead of a trivial break,
+ // so we cannot assume this is a for loop candidate.
+ if (ret)
+ {
+ for (auto &phi : block.phi_variables)
+ if (phi.parent == block.self)
+ return false;
+
+ auto *merge = maybe_get<SPIRBlock>(block.merge_block);
+ if (merge)
+ for (auto &phi : merge->phi_variables)
+ if (phi.parent == block.self)
+ return false;
+ }
+ return ret;
+ }
+ else if (method == SPIRBlock::MergeToDirectForLoop)
+ {
+ // Empty loop header that just sets up merge target
+ // and branches to loop body.
+ bool ret = block.terminator == SPIRBlock::Direct && block.merge == SPIRBlock::MergeLoop && block_is_noop(block);
+
+ if (!ret)
+ return false;
+
+ auto &child = get<SPIRBlock>(block.next_block);
+
+ const auto *false_block = maybe_get<SPIRBlock>(child.false_block);
+ const auto *true_block = maybe_get<SPIRBlock>(child.true_block);
+ const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block);
+
+ bool false_block_is_merge = child.false_block == block.merge_block ||
+ (false_block && merge_block && execution_is_noop(*false_block, *merge_block));
+
+ bool true_block_is_merge = child.true_block == block.merge_block ||
+ (true_block && merge_block && execution_is_noop(*true_block, *merge_block));
+
+ bool positive_candidate =
+ child.true_block != block.merge_block && child.true_block != block.self && false_block_is_merge;
+
+ bool negative_candidate =
+ child.false_block != block.merge_block && child.false_block != block.self && true_block_is_merge;
+
+ ret = child.terminator == SPIRBlock::Select && child.merge == SPIRBlock::MergeNone &&
+ (positive_candidate || negative_candidate);
+
+ if (ret)
+ {
+ auto *merge = maybe_get<SPIRBlock>(block.merge_block);
+ if (merge)
+ for (auto &phi : merge->phi_variables)
+ if (phi.parent == block.self || phi.parent == child.false_block)
+ return false;
+ }
+
+ return ret;
+ }
+ else
+ return false;
+}
+
+bool Compiler::execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const
+{
+ if (!execution_is_branchless(from, to))
+ return false;
+
+ auto *start = &from;
+ for (;;)
+ {
+ if (start->self == to.self)
+ return true;
+
+ if (!block_is_noop(*start))
+ return false;
+
+ auto &next = get<SPIRBlock>(start->next_block);
+ start = &next;
+ }
+}
+
+bool Compiler::execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const
+{
+ auto *start = &from;
+ for (;;)
+ {
+ if (start->self == to.self)
+ return true;
+
+ if (start->terminator == SPIRBlock::Direct && start->merge == SPIRBlock::MergeNone)
+ start = &get<SPIRBlock>(start->next_block);
+ else
+ return false;
+ }
+}
+
+bool Compiler::execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const
+{
+ return from.terminator == SPIRBlock::Direct && from.merge == SPIRBlock::MergeNone && from.next_block == to.self;
+}
+
+SPIRBlock::ContinueBlockType Compiler::continue_block_type(const SPIRBlock &block) const
+{
+ // The block was deemed too complex during code emit, pick conservative fallback paths.
+ if (block.complex_continue)
+ return SPIRBlock::ComplexLoop;
+
+ // In older glslang output continue block can be equal to the loop header.
+ // In this case, execution is clearly branchless, so just assume a while loop header here.
+ if (block.merge == SPIRBlock::MergeLoop)
+ return SPIRBlock::WhileLoop;
+
+ if (block.loop_dominator == BlockID(SPIRBlock::NoDominator))
+ {
+ // Continue block is never reached from CFG.
+ return SPIRBlock::ComplexLoop;
+ }
+
+ auto &dominator = get<SPIRBlock>(block.loop_dominator);
+
+ if (execution_is_noop(block, dominator))
+ return SPIRBlock::WhileLoop;
+ else if (execution_is_branchless(block, dominator))
+ return SPIRBlock::ForLoop;
+ else
+ {
+ const auto *false_block = maybe_get<SPIRBlock>(block.false_block);
+ const auto *true_block = maybe_get<SPIRBlock>(block.true_block);
+ const auto *merge_block = maybe_get<SPIRBlock>(dominator.merge_block);
+
+ // If we need to flush Phi in this block, we cannot have a DoWhile loop.
+ bool flush_phi_to_false = false_block && flush_phi_required(block.self, block.false_block);
+ bool flush_phi_to_true = true_block && flush_phi_required(block.self, block.true_block);
+ if (flush_phi_to_false || flush_phi_to_true)
+ return SPIRBlock::ComplexLoop;
+
+ bool positive_do_while = block.true_block == dominator.self &&
+ (block.false_block == dominator.merge_block ||
+ (false_block && merge_block && execution_is_noop(*false_block, *merge_block)));
+
+ bool negative_do_while = block.false_block == dominator.self &&
+ (block.true_block == dominator.merge_block ||
+ (true_block && merge_block && execution_is_noop(*true_block, *merge_block)));
+
+ if (block.merge == SPIRBlock::MergeNone && block.terminator == SPIRBlock::Select &&
+ (positive_do_while || negative_do_while))
+ {
+ return SPIRBlock::DoWhileLoop;
+ }
+ else
+ return SPIRBlock::ComplexLoop;
+ }
+}
+
+const SmallVector<SPIRBlock::Case> &Compiler::get_case_list(const SPIRBlock &block) const
+{
+ uint32_t width = 0;
+
+ // First we check if we can get the type directly from the block.condition
+ // since it can be a SPIRConstant or a SPIRVariable.
+ if (const auto *constant = maybe_get<SPIRConstant>(block.condition))
+ {
+ const auto &type = get<SPIRType>(constant->constant_type);
+ width = type.width;
+ }
+ else if (const auto *var = maybe_get<SPIRVariable>(block.condition))
+ {
+ const auto &type = get<SPIRType>(var->basetype);
+ width = type.width;
+ }
+ else if (const auto *undef = maybe_get<SPIRUndef>(block.condition))
+ {
+ const auto &type = get<SPIRType>(undef->basetype);
+ width = type.width;
+ }
+ else
+ {
+ auto search = ir.load_type_width.find(block.condition);
+ if (search == ir.load_type_width.end())
+ {
+ SPIRV_CROSS_THROW("Use of undeclared variable on a switch statement.");
+ }
+
+ width = search->second;
+ }
+
+ if (width > 32)
+ return block.cases_64bit;
+
+ return block.cases_32bit;
+}
+
+bool Compiler::traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const
+{
+ handler.set_current_block(block);
+ handler.rearm_current_block(block);
+
+ // Ideally, perhaps traverse the CFG instead of all blocks in order to eliminate dead blocks,
+ // but this shouldn't be a problem in practice unless the SPIR-V is doing insane things like recursing
+ // inside dead blocks ...
+ for (auto &i : block.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (!handler.handle(op, ops, i.length))
+ return false;
+
+ if (op == OpFunctionCall)
+ {
+ auto &func = get<SPIRFunction>(ops[2]);
+ if (handler.follow_function_call(func))
+ {
+ if (!handler.begin_function_scope(ops, i.length))
+ return false;
+ if (!traverse_all_reachable_opcodes(get<SPIRFunction>(ops[2]), handler))
+ return false;
+ if (!handler.end_function_scope(ops, i.length))
+ return false;
+
+ handler.rearm_current_block(block);
+ }
+ }
+ }
+
+ if (!handler.handle_terminator(block))
+ return false;
+
+ return true;
+}
+
+bool Compiler::traverse_all_reachable_opcodes(const SPIRFunction &func, OpcodeHandler &handler) const
+{
+ for (auto block : func.blocks)
+ if (!traverse_all_reachable_opcodes(get<SPIRBlock>(block), handler))
+ return false;
+
+ return true;
+}
+
+uint32_t Compiler::type_struct_member_offset(const SPIRType &type, uint32_t index) const
+{
+ auto *type_meta = ir.find_meta(type.self);
+ if (type_meta)
+ {
+ // Decoration must be set in valid SPIR-V, otherwise throw.
+ auto &dec = type_meta->members[index];
+ if (dec.decoration_flags.get(DecorationOffset))
+ return dec.offset;
+ else
+ SPIRV_CROSS_THROW("Struct member does not have Offset set.");
+ }
+ else
+ SPIRV_CROSS_THROW("Struct member does not have Offset set.");
+}
+
+uint32_t Compiler::type_struct_member_array_stride(const SPIRType &type, uint32_t index) const
+{
+ auto *type_meta = ir.find_meta(type.member_types[index]);
+ if (type_meta)
+ {
+ // Decoration must be set in valid SPIR-V, otherwise throw.
+ // ArrayStride is part of the array type not OpMemberDecorate.
+ auto &dec = type_meta->decoration;
+ if (dec.decoration_flags.get(DecorationArrayStride))
+ return dec.array_stride;
+ else
+ SPIRV_CROSS_THROW("Struct member does not have ArrayStride set.");
+ }
+ else
+ SPIRV_CROSS_THROW("Struct member does not have ArrayStride set.");
+}
+
+uint32_t Compiler::type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const
+{
+ auto *type_meta = ir.find_meta(type.self);
+ if (type_meta)
+ {
+ // Decoration must be set in valid SPIR-V, otherwise throw.
+ // MatrixStride is part of OpMemberDecorate.
+ auto &dec = type_meta->members[index];
+ if (dec.decoration_flags.get(DecorationMatrixStride))
+ return dec.matrix_stride;
+ else
+ SPIRV_CROSS_THROW("Struct member does not have MatrixStride set.");
+ }
+ else
+ SPIRV_CROSS_THROW("Struct member does not have MatrixStride set.");
+}
+
+size_t Compiler::get_declared_struct_size(const SPIRType &type) const
+{
+ if (type.member_types.empty())
+ SPIRV_CROSS_THROW("Declared struct in block cannot be empty.");
+
+ // Offsets can be declared out of order, so we need to deduce the actual size
+ // based on last member instead.
+ uint32_t member_index = 0;
+ size_t highest_offset = 0;
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ {
+ size_t offset = type_struct_member_offset(type, i);
+ if (offset > highest_offset)
+ {
+ highest_offset = offset;
+ member_index = i;
+ }
+ }
+
+ size_t size = get_declared_struct_member_size(type, member_index);
+ return highest_offset + size;
+}
+
+size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, size_t array_size) const
+{
+ if (type.member_types.empty())
+ SPIRV_CROSS_THROW("Declared struct in block cannot be empty.");
+
+ size_t size = get_declared_struct_size(type);
+ auto &last_type = get<SPIRType>(type.member_types.back());
+ if (!last_type.array.empty() && last_type.array_size_literal[0] && last_type.array[0] == 0) // Runtime array
+ size += array_size * type_struct_member_array_stride(type, uint32_t(type.member_types.size() - 1));
+
+ return size;
+}
+
+uint32_t Compiler::evaluate_spec_constant_u32(const SPIRConstantOp &spec) const
+{
+ auto &result_type = get<SPIRType>(spec.basetype);
+ if (result_type.basetype != SPIRType::UInt && result_type.basetype != SPIRType::Int &&
+ result_type.basetype != SPIRType::Boolean)
+ {
+ SPIRV_CROSS_THROW(
+ "Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n");
+ }
+
+ if (!is_scalar(result_type))
+ SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
+
+ uint32_t value = 0;
+
+ const auto eval_u32 = [&](uint32_t id) -> uint32_t {
+ auto &type = expression_type(id);
+ if (type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int && type.basetype != SPIRType::Boolean)
+ {
+ SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating "
+ "specialization constants.\n");
+ }
+
+ if (!is_scalar(type))
+ SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
+ if (const auto *c = this->maybe_get<SPIRConstant>(id))
+ return c->scalar();
+ else
+ return evaluate_spec_constant_u32(this->get<SPIRConstantOp>(id));
+ };
+
+#define binary_spec_op(op, binary_op) \
+ case Op##op: \
+ value = eval_u32(spec.arguments[0]) binary_op eval_u32(spec.arguments[1]); \
+ break
+#define binary_spec_op_cast(op, binary_op, type) \
+ case Op##op: \
+ value = uint32_t(type(eval_u32(spec.arguments[0])) binary_op type(eval_u32(spec.arguments[1]))); \
+ break
+
+ // Support the basic opcodes which are typically used when computing array sizes.
+ switch (spec.opcode)
+ {
+ binary_spec_op(IAdd, +);
+ binary_spec_op(ISub, -);
+ binary_spec_op(IMul, *);
+ binary_spec_op(BitwiseAnd, &);
+ binary_spec_op(BitwiseOr, |);
+ binary_spec_op(BitwiseXor, ^);
+ binary_spec_op(LogicalAnd, &);
+ binary_spec_op(LogicalOr, |);
+ binary_spec_op(ShiftLeftLogical, <<);
+ binary_spec_op(ShiftRightLogical, >>);
+ binary_spec_op_cast(ShiftRightArithmetic, >>, int32_t);
+ binary_spec_op(LogicalEqual, ==);
+ binary_spec_op(LogicalNotEqual, !=);
+ binary_spec_op(IEqual, ==);
+ binary_spec_op(INotEqual, !=);
+ binary_spec_op(ULessThan, <);
+ binary_spec_op(ULessThanEqual, <=);
+ binary_spec_op(UGreaterThan, >);
+ binary_spec_op(UGreaterThanEqual, >=);
+ binary_spec_op_cast(SLessThan, <, int32_t);
+ binary_spec_op_cast(SLessThanEqual, <=, int32_t);
+ binary_spec_op_cast(SGreaterThan, >, int32_t);
+ binary_spec_op_cast(SGreaterThanEqual, >=, int32_t);
+#undef binary_spec_op
+#undef binary_spec_op_cast
+
+ case OpLogicalNot:
+ value = uint32_t(!eval_u32(spec.arguments[0]));
+ break;
+
+ case OpNot:
+ value = ~eval_u32(spec.arguments[0]);
+ break;
+
+ case OpSNegate:
+ value = uint32_t(-int32_t(eval_u32(spec.arguments[0])));
+ break;
+
+ case OpSelect:
+ value = eval_u32(spec.arguments[0]) ? eval_u32(spec.arguments[1]) : eval_u32(spec.arguments[2]);
+ break;
+
+ case OpUMod:
+ {
+ uint32_t a = eval_u32(spec.arguments[0]);
+ uint32_t b = eval_u32(spec.arguments[1]);
+ if (b == 0)
+ SPIRV_CROSS_THROW("Undefined behavior in UMod, b == 0.\n");
+ value = a % b;
+ break;
+ }
+
+ case OpSRem:
+ {
+ auto a = int32_t(eval_u32(spec.arguments[0]));
+ auto b = int32_t(eval_u32(spec.arguments[1]));
+ if (b == 0)
+ SPIRV_CROSS_THROW("Undefined behavior in SRem, b == 0.\n");
+ value = a % b;
+ break;
+ }
+
+ case OpSMod:
+ {
+ auto a = int32_t(eval_u32(spec.arguments[0]));
+ auto b = int32_t(eval_u32(spec.arguments[1]));
+ if (b == 0)
+ SPIRV_CROSS_THROW("Undefined behavior in SMod, b == 0.\n");
+ auto v = a % b;
+
+ // Makes sure we match the sign of b, not a.
+ if ((b < 0 && v > 0) || (b > 0 && v < 0))
+ v += b;
+ value = v;
+ break;
+ }
+
+ case OpUDiv:
+ {
+ uint32_t a = eval_u32(spec.arguments[0]);
+ uint32_t b = eval_u32(spec.arguments[1]);
+ if (b == 0)
+ SPIRV_CROSS_THROW("Undefined behavior in UDiv, b == 0.\n");
+ value = a / b;
+ break;
+ }
+
+ case OpSDiv:
+ {
+ auto a = int32_t(eval_u32(spec.arguments[0]));
+ auto b = int32_t(eval_u32(spec.arguments[1]));
+ if (b == 0)
+ SPIRV_CROSS_THROW("Undefined behavior in SDiv, b == 0.\n");
+ value = a / b;
+ break;
+ }
+
+ default:
+ SPIRV_CROSS_THROW("Unsupported spec constant opcode for evaluation.\n");
+ }
+
+ return value;
+}
+
+uint32_t Compiler::evaluate_constant_u32(uint32_t id) const
+{
+ if (const auto *c = maybe_get<SPIRConstant>(id))
+ return c->scalar();
+ else
+ return evaluate_spec_constant_u32(get<SPIRConstantOp>(id));
+}
+
+size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
+{
+ if (struct_type.member_types.empty())
+ SPIRV_CROSS_THROW("Declared struct in block cannot be empty.");
+
+ auto &flags = get_member_decoration_bitset(struct_type.self, index);
+ auto &type = get<SPIRType>(struct_type.member_types[index]);
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::Boolean: // Bools are purely logical, and cannot be used for externally visible types.
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying size for object with opaque size.");
+
+ default:
+ break;
+ }
+
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ {
+ // Check if this is a top-level pointer type, and not an array of pointers.
+ if (type.pointer_depth > get<SPIRType>(type.parent_type).pointer_depth)
+ return 8;
+ }
+
+ if (!type.array.empty())
+ {
+ // For arrays, we can use ArrayStride to get an easy check.
+ bool array_size_literal = type.array_size_literal.back();
+ uint32_t array_size = array_size_literal ? type.array.back() : evaluate_constant_u32(type.array.back());
+ return type_struct_member_array_stride(struct_type, index) * array_size;
+ }
+ else if (type.basetype == SPIRType::Struct)
+ {
+ return get_declared_struct_size(type);
+ }
+ else
+ {
+ unsigned vecsize = type.vecsize;
+ unsigned columns = type.columns;
+
+ // Vectors.
+ if (columns == 1)
+ {
+ size_t component_size = type.width / 8;
+ return vecsize * component_size;
+ }
+ else
+ {
+ uint32_t matrix_stride = type_struct_member_matrix_stride(struct_type, index);
+
+ // Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses.
+ if (flags.get(DecorationRowMajor))
+ return matrix_stride * vecsize;
+ else if (flags.get(DecorationColMajor))
+ return matrix_stride * columns;
+ else
+ SPIRV_CROSS_THROW("Either row-major or column-major must be declared for matrices.");
+ }
+ }
+}
+
+bool Compiler::BufferAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ if (opcode != OpAccessChain && opcode != OpInBoundsAccessChain && opcode != OpPtrAccessChain)
+ return true;
+
+ bool ptr_chain = (opcode == OpPtrAccessChain);
+
+ // Invalid SPIR-V.
+ if (length < (ptr_chain ? 5u : 4u))
+ return false;
+
+ if (args[2] != id)
+ return true;
+
+ // Don't bother traversing the entire access chain tree yet.
+ // If we access a struct member, assume we access the entire member.
+ uint32_t index = compiler.get<SPIRConstant>(args[ptr_chain ? 4 : 3]).scalar();
+
+ // Seen this index already.
+ if (seen.find(index) != end(seen))
+ return true;
+ seen.insert(index);
+
+ auto &type = compiler.expression_type(id);
+ uint32_t offset = compiler.type_struct_member_offset(type, index);
+
+ size_t range;
+ // If we have another member in the struct, deduce the range by looking at the next member.
+ // This is okay since structs in SPIR-V can have padding, but Offset decoration must be
+ // monotonically increasing.
+ // Of course, this doesn't take into account if the SPIR-V for some reason decided to add
+ // very large amounts of padding, but that's not really a big deal.
+ if (index + 1 < type.member_types.size())
+ {
+ range = compiler.type_struct_member_offset(type, index + 1) - offset;
+ }
+ else
+ {
+ // No padding, so just deduce it from the size of the member directly.
+ range = compiler.get_declared_struct_member_size(type, index);
+ }
+
+ ranges.push_back({ index, offset, range });
+ return true;
+}
+
+SmallVector<BufferRange> Compiler::get_active_buffer_ranges(VariableID id) const
+{
+ SmallVector<BufferRange> ranges;
+ BufferAccessHandler handler(*this, ranges, id);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+ return ranges;
+}
+
+bool Compiler::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const
+{
+ if (a.basetype != b.basetype)
+ return false;
+ if (a.width != b.width)
+ return false;
+ if (a.vecsize != b.vecsize)
+ return false;
+ if (a.columns != b.columns)
+ return false;
+ if (a.array.size() != b.array.size())
+ return false;
+
+ size_t array_count = a.array.size();
+ if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0)
+ return false;
+
+ if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage)
+ {
+ if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0)
+ return false;
+ }
+
+ if (a.member_types.size() != b.member_types.size())
+ return false;
+
+ size_t member_types = a.member_types.size();
+ for (size_t i = 0; i < member_types; i++)
+ {
+ if (!types_are_logically_equivalent(get<SPIRType>(a.member_types[i]), get<SPIRType>(b.member_types[i])))
+ return false;
+ }
+
+ return true;
+}
+
+const Bitset &Compiler::get_execution_mode_bitset() const
+{
+ return get_entry_point().flags;
+}
+
+void Compiler::set_execution_mode(ExecutionMode mode, uint32_t arg0, uint32_t arg1, uint32_t arg2)
+{
+ auto &execution = get_entry_point();
+
+ execution.flags.set(mode);
+ switch (mode)
+ {
+ case ExecutionModeLocalSize:
+ execution.workgroup_size.x = arg0;
+ execution.workgroup_size.y = arg1;
+ execution.workgroup_size.z = arg2;
+ break;
+
+ case ExecutionModeLocalSizeId:
+ execution.workgroup_size.id_x = arg0;
+ execution.workgroup_size.id_y = arg1;
+ execution.workgroup_size.id_z = arg2;
+ break;
+
+ case ExecutionModeInvocations:
+ execution.invocations = arg0;
+ break;
+
+ case ExecutionModeOutputVertices:
+ execution.output_vertices = arg0;
+ break;
+
+ case ExecutionModeOutputPrimitivesEXT:
+ execution.output_primitives = arg0;
+ break;
+
+ default:
+ break;
+ }
+}
+
+void Compiler::unset_execution_mode(ExecutionMode mode)
+{
+ auto &execution = get_entry_point();
+ execution.flags.clear(mode);
+}
+
+uint32_t Compiler::get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
+ SpecializationConstant &z) const
+{
+ auto &execution = get_entry_point();
+ x = { 0, 0 };
+ y = { 0, 0 };
+ z = { 0, 0 };
+
+ // WorkgroupSize builtin takes precedence over LocalSize / LocalSizeId.
+ if (execution.workgroup_size.constant != 0)
+ {
+ auto &c = get<SPIRConstant>(execution.workgroup_size.constant);
+
+ if (c.m.c[0].id[0] != ID(0))
+ {
+ x.id = c.m.c[0].id[0];
+ x.constant_id = get_decoration(c.m.c[0].id[0], DecorationSpecId);
+ }
+
+ if (c.m.c[0].id[1] != ID(0))
+ {
+ y.id = c.m.c[0].id[1];
+ y.constant_id = get_decoration(c.m.c[0].id[1], DecorationSpecId);
+ }
+
+ if (c.m.c[0].id[2] != ID(0))
+ {
+ z.id = c.m.c[0].id[2];
+ z.constant_id = get_decoration(c.m.c[0].id[2], DecorationSpecId);
+ }
+ }
+ else if (execution.flags.get(ExecutionModeLocalSizeId))
+ {
+ auto &cx = get<SPIRConstant>(execution.workgroup_size.id_x);
+ if (cx.specialization)
+ {
+ x.id = execution.workgroup_size.id_x;
+ x.constant_id = get_decoration(execution.workgroup_size.id_x, DecorationSpecId);
+ }
+
+ auto &cy = get<SPIRConstant>(execution.workgroup_size.id_y);
+ if (cy.specialization)
+ {
+ y.id = execution.workgroup_size.id_y;
+ y.constant_id = get_decoration(execution.workgroup_size.id_y, DecorationSpecId);
+ }
+
+ auto &cz = get<SPIRConstant>(execution.workgroup_size.id_z);
+ if (cz.specialization)
+ {
+ z.id = execution.workgroup_size.id_z;
+ z.constant_id = get_decoration(execution.workgroup_size.id_z, DecorationSpecId);
+ }
+ }
+
+ return execution.workgroup_size.constant;
+}
+
+uint32_t Compiler::get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index) const
+{
+ auto &execution = get_entry_point();
+ switch (mode)
+ {
+ case ExecutionModeLocalSizeId:
+ if (execution.flags.get(ExecutionModeLocalSizeId))
+ {
+ switch (index)
+ {
+ case 0:
+ return execution.workgroup_size.id_x;
+ case 1:
+ return execution.workgroup_size.id_y;
+ case 2:
+ return execution.workgroup_size.id_z;
+ default:
+ return 0;
+ }
+ }
+ else
+ return 0;
+
+ case ExecutionModeLocalSize:
+ switch (index)
+ {
+ case 0:
+ if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_x != 0)
+ return get<SPIRConstant>(execution.workgroup_size.id_x).scalar();
+ else
+ return execution.workgroup_size.x;
+ case 1:
+ if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_y != 0)
+ return get<SPIRConstant>(execution.workgroup_size.id_y).scalar();
+ else
+ return execution.workgroup_size.y;
+ case 2:
+ if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_z != 0)
+ return get<SPIRConstant>(execution.workgroup_size.id_z).scalar();
+ else
+ return execution.workgroup_size.z;
+ default:
+ return 0;
+ }
+
+ case ExecutionModeInvocations:
+ return execution.invocations;
+
+ case ExecutionModeOutputVertices:
+ return execution.output_vertices;
+
+ case ExecutionModeOutputPrimitivesEXT:
+ return execution.output_primitives;
+
+ default:
+ return 0;
+ }
+}
+
+ExecutionModel Compiler::get_execution_model() const
+{
+ auto &execution = get_entry_point();
+ return execution.model;
+}
+
+bool Compiler::is_tessellation_shader(ExecutionModel model)
+{
+ return model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation;
+}
+
+bool Compiler::is_vertex_like_shader() const
+{
+ auto model = get_execution_model();
+ return model == ExecutionModelVertex || model == ExecutionModelGeometry ||
+ model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation;
+}
+
+bool Compiler::is_tessellation_shader() const
+{
+ return is_tessellation_shader(get_execution_model());
+}
+
+bool Compiler::is_tessellating_triangles() const
+{
+ return get_execution_mode_bitset().get(ExecutionModeTriangles);
+}
+
+void Compiler::set_remapped_variable_state(VariableID id, bool remap_enable)
+{
+ get<SPIRVariable>(id).remapped_variable = remap_enable;
+}
+
+bool Compiler::get_remapped_variable_state(VariableID id) const
+{
+ return get<SPIRVariable>(id).remapped_variable;
+}
+
+void Compiler::set_subpass_input_remapped_components(VariableID id, uint32_t components)
+{
+ get<SPIRVariable>(id).remapped_components = components;
+}
+
+uint32_t Compiler::get_subpass_input_remapped_components(VariableID id) const
+{
+ return get<SPIRVariable>(id).remapped_components;
+}
+
+void Compiler::add_implied_read_expression(SPIRExpression &e, uint32_t source)
+{
+ auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), ID(source));
+ if (itr == end(e.implied_read_expressions))
+ e.implied_read_expressions.push_back(source);
+}
+
+void Compiler::add_implied_read_expression(SPIRAccessChain &e, uint32_t source)
+{
+ auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), ID(source));
+ if (itr == end(e.implied_read_expressions))
+ e.implied_read_expressions.push_back(source);
+}
+
+void Compiler::add_active_interface_variable(uint32_t var_id)
+{
+ active_interface_variables.insert(var_id);
+
+ // In SPIR-V 1.4 and up we must also track the interface variable in the entry point.
+ if (ir.get_spirv_version() >= 0x10400)
+ {
+ auto &vars = get_entry_point().interface_variables;
+ if (find(begin(vars), end(vars), VariableID(var_id)) == end(vars))
+ vars.push_back(var_id);
+ }
+}
+
+void Compiler::inherit_expression_dependencies(uint32_t dst, uint32_t source_expression)
+{
+ // Don't inherit any expression dependencies if the expression in dst
+ // is not a forwarded temporary.
+ if (forwarded_temporaries.find(dst) == end(forwarded_temporaries) ||
+ forced_temporaries.find(dst) != end(forced_temporaries))
+ {
+ return;
+ }
+
+ auto &e = get<SPIRExpression>(dst);
+ auto *phi = maybe_get<SPIRVariable>(source_expression);
+ if (phi && phi->phi_variable)
+ {
+ // We have used a phi variable, which can change at the end of the block,
+ // so make sure we take a dependency on this phi variable.
+ phi->dependees.push_back(dst);
+ }
+
+ auto *s = maybe_get<SPIRExpression>(source_expression);
+ if (!s)
+ return;
+
+ auto &e_deps = e.expression_dependencies;
+ auto &s_deps = s->expression_dependencies;
+
+ // If we depend on a expression, we also depend on all sub-dependencies from source.
+ e_deps.push_back(source_expression);
+ e_deps.insert(end(e_deps), begin(s_deps), end(s_deps));
+
+ // Eliminate duplicated dependencies.
+ sort(begin(e_deps), end(e_deps));
+ e_deps.erase(unique(begin(e_deps), end(e_deps)), end(e_deps));
+}
+
+SmallVector<EntryPoint> Compiler::get_entry_points_and_stages() const
+{
+ SmallVector<EntryPoint> entries;
+ for (auto &entry : ir.entry_points)
+ entries.push_back({ entry.second.orig_name, entry.second.model });
+ return entries;
+}
+
+void Compiler::rename_entry_point(const std::string &old_name, const std::string &new_name, spv::ExecutionModel model)
+{
+ auto &entry = get_entry_point(old_name, model);
+ entry.orig_name = new_name;
+ entry.name = new_name;
+}
+
+void Compiler::set_entry_point(const std::string &name, spv::ExecutionModel model)
+{
+ auto &entry = get_entry_point(name, model);
+ ir.default_entry_point = entry.self;
+}
+
+SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name)
+{
+ auto itr = find_if(
+ begin(ir.entry_points), end(ir.entry_points),
+ [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; });
+
+ if (itr == end(ir.entry_points))
+ SPIRV_CROSS_THROW("Entry point does not exist.");
+
+ return itr->second;
+}
+
+const SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) const
+{
+ auto itr = find_if(
+ begin(ir.entry_points), end(ir.entry_points),
+ [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; });
+
+ if (itr == end(ir.entry_points))
+ SPIRV_CROSS_THROW("Entry point does not exist.");
+
+ return itr->second;
+}
+
+SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model)
+{
+ auto itr = find_if(begin(ir.entry_points), end(ir.entry_points),
+ [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool {
+ return entry.second.orig_name == name && entry.second.model == model;
+ });
+
+ if (itr == end(ir.entry_points))
+ SPIRV_CROSS_THROW("Entry point does not exist.");
+
+ return itr->second;
+}
+
+const SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) const
+{
+ auto itr = find_if(begin(ir.entry_points), end(ir.entry_points),
+ [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool {
+ return entry.second.orig_name == name && entry.second.model == model;
+ });
+
+ if (itr == end(ir.entry_points))
+ SPIRV_CROSS_THROW("Entry point does not exist.");
+
+ return itr->second;
+}
+
+const string &Compiler::get_cleansed_entry_point_name(const std::string &name, ExecutionModel model) const
+{
+ return get_entry_point(name, model).name;
+}
+
+const SPIREntryPoint &Compiler::get_entry_point() const
+{
+ return ir.entry_points.find(ir.default_entry_point)->second;
+}
+
+SPIREntryPoint &Compiler::get_entry_point()
+{
+ return ir.entry_points.find(ir.default_entry_point)->second;
+}
+
+bool Compiler::interface_variable_exists_in_entry_point(uint32_t id) const
+{
+ auto &var = get<SPIRVariable>(id);
+
+ if (ir.get_spirv_version() < 0x10400)
+ {
+ if (var.storage != StorageClassInput && var.storage != StorageClassOutput &&
+ var.storage != StorageClassUniformConstant)
+ SPIRV_CROSS_THROW("Only Input, Output variables and Uniform constants are part of a shader linking interface.");
+
+ // This is to avoid potential problems with very old glslang versions which did
+ // not emit input/output interfaces properly.
+ // We can assume they only had a single entry point, and single entry point
+ // shaders could easily be assumed to use every interface variable anyways.
+ if (ir.entry_points.size() <= 1)
+ return true;
+ }
+
+ // In SPIR-V 1.4 and later, all global resource variables must be present.
+
+ auto &execution = get_entry_point();
+ return find(begin(execution.interface_variables), end(execution.interface_variables), VariableID(id)) !=
+ end(execution.interface_variables);
+}
+
+void Compiler::CombinedImageSamplerHandler::push_remap_parameters(const SPIRFunction &func, const uint32_t *args,
+ uint32_t length)
+{
+ // If possible, pipe through a remapping table so that parameters know
+ // which variables they actually bind to in this scope.
+ unordered_map<uint32_t, uint32_t> remapping;
+ for (uint32_t i = 0; i < length; i++)
+ remapping[func.arguments[i].id] = remap_parameter(args[i]);
+ parameter_remapping.push(std::move(remapping));
+}
+
+void Compiler::CombinedImageSamplerHandler::pop_remap_parameters()
+{
+ parameter_remapping.pop();
+}
+
+uint32_t Compiler::CombinedImageSamplerHandler::remap_parameter(uint32_t id)
+{
+ auto *var = compiler.maybe_get_backing_variable(id);
+ if (var)
+ id = var->self;
+
+ if (parameter_remapping.empty())
+ return id;
+
+ auto &remapping = parameter_remapping.top();
+ auto itr = remapping.find(id);
+ if (itr != end(remapping))
+ return itr->second;
+ else
+ return id;
+}
+
+bool Compiler::CombinedImageSamplerHandler::begin_function_scope(const uint32_t *args, uint32_t length)
+{
+ if (length < 3)
+ return false;
+
+ auto &callee = compiler.get<SPIRFunction>(args[2]);
+ args += 3;
+ length -= 3;
+ push_remap_parameters(callee, args, length);
+ functions.push(&callee);
+ return true;
+}
+
+bool Compiler::CombinedImageSamplerHandler::end_function_scope(const uint32_t *args, uint32_t length)
+{
+ if (length < 3)
+ return false;
+
+ auto &callee = compiler.get<SPIRFunction>(args[2]);
+ args += 3;
+
+ // There are two types of cases we have to handle,
+ // a callee might call sampler2D(texture2D, sampler) directly where
+ // one or more parameters originate from parameters.
+ // Alternatively, we need to provide combined image samplers to our callees,
+ // and in this case we need to add those as well.
+
+ pop_remap_parameters();
+
+ // Our callee has now been processed at least once.
+ // No point in doing it again.
+ callee.do_combined_parameters = false;
+
+ auto &params = functions.top()->combined_parameters;
+ functions.pop();
+ if (functions.empty())
+ return true;
+
+ auto &caller = *functions.top();
+ if (caller.do_combined_parameters)
+ {
+ for (auto &param : params)
+ {
+ VariableID image_id = param.global_image ? param.image_id : VariableID(args[param.image_id]);
+ VariableID sampler_id = param.global_sampler ? param.sampler_id : VariableID(args[param.sampler_id]);
+
+ auto *i = compiler.maybe_get_backing_variable(image_id);
+ auto *s = compiler.maybe_get_backing_variable(sampler_id);
+ if (i)
+ image_id = i->self;
+ if (s)
+ sampler_id = s->self;
+
+ register_combined_image_sampler(caller, 0, image_id, sampler_id, param.depth);
+ }
+ }
+
+ return true;
+}
+
+void Compiler::CombinedImageSamplerHandler::register_combined_image_sampler(SPIRFunction &caller,
+ VariableID combined_module_id,
+ VariableID image_id, VariableID sampler_id,
+ bool depth)
+{
+ // We now have a texture ID and a sampler ID which will either be found as a global
+ // or a parameter in our own function. If both are global, they will not need a parameter,
+ // otherwise, add it to our list.
+ SPIRFunction::CombinedImageSamplerParameter param = {
+ 0u, image_id, sampler_id, true, true, depth,
+ };
+
+ auto texture_itr = find_if(begin(caller.arguments), end(caller.arguments),
+ [image_id](const SPIRFunction::Parameter &p) { return p.id == image_id; });
+ auto sampler_itr = find_if(begin(caller.arguments), end(caller.arguments),
+ [sampler_id](const SPIRFunction::Parameter &p) { return p.id == sampler_id; });
+
+ if (texture_itr != end(caller.arguments))
+ {
+ param.global_image = false;
+ param.image_id = uint32_t(texture_itr - begin(caller.arguments));
+ }
+
+ if (sampler_itr != end(caller.arguments))
+ {
+ param.global_sampler = false;
+ param.sampler_id = uint32_t(sampler_itr - begin(caller.arguments));
+ }
+
+ if (param.global_image && param.global_sampler)
+ return;
+
+ auto itr = find_if(begin(caller.combined_parameters), end(caller.combined_parameters),
+ [&param](const SPIRFunction::CombinedImageSamplerParameter &p) {
+ return param.image_id == p.image_id && param.sampler_id == p.sampler_id &&
+ param.global_image == p.global_image && param.global_sampler == p.global_sampler;
+ });
+
+ if (itr == end(caller.combined_parameters))
+ {
+ uint32_t id = compiler.ir.increase_bound_by(3);
+ auto type_id = id + 0;
+ auto ptr_type_id = id + 1;
+ auto combined_id = id + 2;
+ auto &base = compiler.expression_type(image_id);
+ auto &type = compiler.set<SPIRType>(type_id, OpTypeSampledImage);
+ auto &ptr_type = compiler.set<SPIRType>(ptr_type_id, OpTypePointer);
+
+ type = base;
+ type.self = type_id;
+ type.basetype = SPIRType::SampledImage;
+ type.pointer = false;
+ type.storage = StorageClassGeneric;
+ type.image.depth = depth;
+
+ ptr_type = type;
+ ptr_type.pointer = true;
+ ptr_type.storage = StorageClassUniformConstant;
+ ptr_type.parent_type = type_id;
+
+ // Build new variable.
+ compiler.set<SPIRVariable>(combined_id, ptr_type_id, StorageClassFunction, 0);
+
+ // Inherit RelaxedPrecision.
+ // If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration.
+ bool relaxed_precision =
+ compiler.has_decoration(sampler_id, DecorationRelaxedPrecision) ||
+ compiler.has_decoration(image_id, DecorationRelaxedPrecision) ||
+ (combined_module_id && compiler.has_decoration(combined_module_id, DecorationRelaxedPrecision));
+
+ if (relaxed_precision)
+ compiler.set_decoration(combined_id, DecorationRelaxedPrecision);
+
+ param.id = combined_id;
+
+ compiler.set_name(combined_id,
+ join("SPIRV_Cross_Combined", compiler.to_name(image_id), compiler.to_name(sampler_id)));
+
+ caller.combined_parameters.push_back(param);
+ caller.shadow_arguments.push_back({ ptr_type_id, combined_id, 0u, 0u, true });
+ }
+}
+
+bool Compiler::DummySamplerForCombinedImageHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ if (need_dummy_sampler)
+ {
+ // No need to traverse further, we know the result.
+ return false;
+ }
+
+ switch (opcode)
+ {
+ case OpLoad:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+
+ auto &type = compiler.get<SPIRType>(result_type);
+ bool separate_image =
+ type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer;
+
+ // If not separate image, don't bother.
+ if (!separate_image)
+ return true;
+
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ break;
+ }
+
+ case OpImageFetch:
+ case OpImageQuerySizeLod:
+ case OpImageQuerySize:
+ case OpImageQueryLevels:
+ case OpImageQuerySamples:
+ {
+ // If we are fetching or querying LOD from a plain OpTypeImage, we must pre-combine with our dummy sampler.
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ if (var)
+ {
+ auto &type = compiler.get<SPIRType>(var->basetype);
+ if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer)
+ need_dummy_sampler = true;
+ }
+
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+ auto &type = compiler.get<SPIRType>(result_type);
+ bool separate_image =
+ type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer;
+ if (!separate_image)
+ return true;
+
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+
+ // Other backends might use SPIRAccessChain for this later.
+ compiler.ir.ids[id].set_allow_type_rewrite();
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+bool Compiler::CombinedImageSamplerHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ // We need to figure out where samplers and images are loaded from, so do only the bare bones compilation we need.
+ bool is_fetch = false;
+
+ switch (opcode)
+ {
+ case OpLoad:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+
+ auto &type = compiler.get<SPIRType>(result_type);
+ bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
+ bool separate_sampler = type.basetype == SPIRType::Sampler;
+
+ // If not separate image or sampler, don't bother.
+ if (!separate_image && !separate_sampler)
+ return true;
+
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ return true;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ if (length < 3)
+ return false;
+
+ // Technically, it is possible to have arrays of textures and arrays of samplers and combine them, but this becomes essentially
+ // impossible to implement, since we don't know which concrete sampler we are accessing.
+ // One potential way is to create a combinatorial explosion where N textures and M samplers are combined into N * M sampler2Ds,
+ // but this seems ridiculously complicated for a problem which is easy to work around.
+ // Checking access chains like this assumes we don't have samplers or textures inside uniform structs, but this makes no sense.
+
+ uint32_t result_type = args[0];
+
+ auto &type = compiler.get<SPIRType>(result_type);
+ bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
+ bool separate_sampler = type.basetype == SPIRType::Sampler;
+ if (separate_sampler)
+ SPIRV_CROSS_THROW(
+ "Attempting to use arrays or structs of separate samplers. This is not possible to statically "
+ "remap to plain GLSL.");
+
+ if (separate_image)
+ {
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ }
+ return true;
+ }
+
+ case OpImageFetch:
+ case OpImageQuerySizeLod:
+ case OpImageQuerySize:
+ case OpImageQueryLevels:
+ case OpImageQuerySamples:
+ {
+ // If we are fetching from a plain OpTypeImage or querying LOD, we must pre-combine with our dummy sampler.
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ if (!var)
+ return true;
+
+ auto &type = compiler.get<SPIRType>(var->basetype);
+ if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer)
+ {
+ if (compiler.dummy_sampler_id == 0)
+ SPIRV_CROSS_THROW("texelFetch without sampler was found, but no dummy sampler has been created with "
+ "build_dummy_sampler_for_combined_images().");
+
+ // Do it outside.
+ is_fetch = true;
+ break;
+ }
+
+ return true;
+ }
+
+ case OpSampledImage:
+ // Do it outside.
+ break;
+
+ default:
+ return true;
+ }
+
+ // Registers sampler2D calls used in case they are parameters so
+ // that their callees know which combined image samplers to propagate down the call stack.
+ if (!functions.empty())
+ {
+ auto &callee = *functions.top();
+ if (callee.do_combined_parameters)
+ {
+ uint32_t image_id = args[2];
+
+ auto *image = compiler.maybe_get_backing_variable(image_id);
+ if (image)
+ image_id = image->self;
+
+ uint32_t sampler_id = is_fetch ? compiler.dummy_sampler_id : args[3];
+ auto *sampler = compiler.maybe_get_backing_variable(sampler_id);
+ if (sampler)
+ sampler_id = sampler->self;
+
+ uint32_t combined_id = args[1];
+
+ auto &combined_type = compiler.get<SPIRType>(args[0]);
+ register_combined_image_sampler(callee, combined_id, image_id, sampler_id, combined_type.image.depth);
+ }
+ }
+
+ // For function calls, we need to remap IDs which are function parameters into global variables.
+ // This information is statically known from the current place in the call stack.
+ // Function parameters are not necessarily pointers, so if we don't have a backing variable, remapping will know
+ // which backing variable the image/sample came from.
+ VariableID image_id = remap_parameter(args[2]);
+ VariableID sampler_id = is_fetch ? compiler.dummy_sampler_id : remap_parameter(args[3]);
+
+ auto itr = find_if(begin(compiler.combined_image_samplers), end(compiler.combined_image_samplers),
+ [image_id, sampler_id](const CombinedImageSampler &combined) {
+ return combined.image_id == image_id && combined.sampler_id == sampler_id;
+ });
+
+ if (itr == end(compiler.combined_image_samplers))
+ {
+ uint32_t sampled_type;
+ uint32_t combined_module_id;
+ if (is_fetch)
+ {
+ // Have to invent the sampled image type.
+ sampled_type = compiler.ir.increase_bound_by(1);
+ auto &type = compiler.set<SPIRType>(sampled_type, OpTypeSampledImage);
+ type = compiler.expression_type(args[2]);
+ type.self = sampled_type;
+ type.basetype = SPIRType::SampledImage;
+ type.image.depth = false;
+ combined_module_id = 0;
+ }
+ else
+ {
+ sampled_type = args[0];
+ combined_module_id = args[1];
+ }
+
+ auto id = compiler.ir.increase_bound_by(2);
+ auto type_id = id + 0;
+ auto combined_id = id + 1;
+
+ // Make a new type, pointer to OpTypeSampledImage, so we can make a variable of this type.
+ // We will probably have this type lying around, but it doesn't hurt to make duplicates for internal purposes.
+ auto &type = compiler.set<SPIRType>(type_id, OpTypePointer);
+ auto &base = compiler.get<SPIRType>(sampled_type);
+ type = base;
+ type.pointer = true;
+ type.storage = StorageClassUniformConstant;
+ type.parent_type = type_id;
+
+ // Build new variable.
+ compiler.set<SPIRVariable>(combined_id, type_id, StorageClassUniformConstant, 0);
+
+ // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant).
+ // If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration.
+ bool relaxed_precision =
+ (sampler_id && compiler.has_decoration(sampler_id, DecorationRelaxedPrecision)) ||
+ (image_id && compiler.has_decoration(image_id, DecorationRelaxedPrecision)) ||
+ (combined_module_id && compiler.has_decoration(combined_module_id, DecorationRelaxedPrecision));
+
+ if (relaxed_precision)
+ compiler.set_decoration(combined_id, DecorationRelaxedPrecision);
+
+ // Propagate the array type for the original image as well.
+ auto *var = compiler.maybe_get_backing_variable(image_id);
+ if (var)
+ {
+ auto &parent_type = compiler.get<SPIRType>(var->basetype);
+ type.array = parent_type.array;
+ type.array_size_literal = parent_type.array_size_literal;
+ }
+
+ compiler.combined_image_samplers.push_back({ combined_id, image_id, sampler_id });
+ }
+
+ return true;
+}
+
+VariableID Compiler::build_dummy_sampler_for_combined_images()
+{
+ DummySamplerForCombinedImageHandler handler(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+ if (handler.need_dummy_sampler)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ auto type_id = offset + 0;
+ auto ptr_type_id = offset + 1;
+ auto var_id = offset + 2;
+
+ auto &sampler = set<SPIRType>(type_id, OpTypeSampler);
+ sampler.basetype = SPIRType::Sampler;
+
+ auto &ptr_sampler = set<SPIRType>(ptr_type_id, OpTypePointer);
+ ptr_sampler = sampler;
+ ptr_sampler.self = type_id;
+ ptr_sampler.storage = StorageClassUniformConstant;
+ ptr_sampler.pointer = true;
+ ptr_sampler.parent_type = type_id;
+
+ set<SPIRVariable>(var_id, ptr_type_id, StorageClassUniformConstant, 0);
+ set_name(var_id, "SPIRV_Cross_DummySampler");
+ dummy_sampler_id = var_id;
+ return var_id;
+ }
+ else
+ return 0;
+}
+
+void Compiler::build_combined_image_samplers()
+{
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t, SPIRFunction &func) {
+ func.combined_parameters.clear();
+ func.shadow_arguments.clear();
+ func.do_combined_parameters = true;
+ });
+
+ combined_image_samplers.clear();
+ CombinedImageSamplerHandler handler(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+}
+
+SmallVector<SpecializationConstant> Compiler::get_specialization_constants() const
+{
+ SmallVector<SpecializationConstant> spec_consts;
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, const SPIRConstant &c) {
+ if (c.specialization && has_decoration(c.self, DecorationSpecId))
+ spec_consts.push_back({ c.self, get_decoration(c.self, DecorationSpecId) });
+ });
+ return spec_consts;
+}
+
+SPIRConstant &Compiler::get_constant(ConstantID id)
+{
+ return get<SPIRConstant>(id);
+}
+
+const SPIRConstant &Compiler::get_constant(ConstantID id) const
+{
+ return get<SPIRConstant>(id);
+}
+
+static bool exists_unaccessed_path_to_return(const CFG &cfg, uint32_t block, const unordered_set<uint32_t> &blocks,
+ unordered_set<uint32_t> &visit_cache)
+{
+ // This block accesses the variable.
+ if (blocks.find(block) != end(blocks))
+ return false;
+
+ // We are at the end of the CFG.
+ if (cfg.get_succeeding_edges(block).empty())
+ return true;
+
+ // If any of our successors have a path to the end, there exists a path from block.
+ for (auto &succ : cfg.get_succeeding_edges(block))
+ {
+ if (visit_cache.count(succ) == 0)
+ {
+ if (exists_unaccessed_path_to_return(cfg, succ, blocks, visit_cache))
+ return true;
+ visit_cache.insert(succ);
+ }
+ }
+
+ return false;
+}
+
+void Compiler::analyze_parameter_preservation(
+ SPIRFunction &entry, const CFG &cfg, const unordered_map<uint32_t, unordered_set<uint32_t>> &variable_to_blocks,
+ const unordered_map<uint32_t, unordered_set<uint32_t>> &complete_write_blocks)
+{
+ for (auto &arg : entry.arguments)
+ {
+ // Non-pointers are always inputs.
+ auto &type = get<SPIRType>(arg.type);
+ if (!type.pointer)
+ continue;
+
+ // Opaque argument types are always in
+ bool potential_preserve;
+ switch (type.basetype)
+ {
+ case SPIRType::Sampler:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::AtomicCounter:
+ potential_preserve = false;
+ break;
+
+ default:
+ potential_preserve = true;
+ break;
+ }
+
+ if (!potential_preserve)
+ continue;
+
+ auto itr = variable_to_blocks.find(arg.id);
+ if (itr == end(variable_to_blocks))
+ {
+ // Variable is never accessed.
+ continue;
+ }
+
+ // We have accessed a variable, but there was no complete writes to that variable.
+ // We deduce that we must preserve the argument.
+ itr = complete_write_blocks.find(arg.id);
+ if (itr == end(complete_write_blocks))
+ {
+ arg.read_count++;
+ continue;
+ }
+
+ // If there is a path through the CFG where no block completely writes to the variable, the variable will be in an undefined state
+ // when the function returns. We therefore need to implicitly preserve the variable in case there are writers in the function.
+ // Major case here is if a function is
+ // void foo(int &var) { if (cond) var = 10; }
+ // Using read/write counts, we will think it's just an out variable, but it really needs to be inout,
+ // because if we don't write anything whatever we put into the function must return back to the caller.
+ unordered_set<uint32_t> visit_cache;
+ if (exists_unaccessed_path_to_return(cfg, entry.entry_block, itr->second, visit_cache))
+ arg.read_count++;
+ }
+}
+
+Compiler::AnalyzeVariableScopeAccessHandler::AnalyzeVariableScopeAccessHandler(Compiler &compiler_,
+ SPIRFunction &entry_)
+ : compiler(compiler_)
+ , entry(entry_)
+{
+}
+
+bool Compiler::AnalyzeVariableScopeAccessHandler::follow_function_call(const SPIRFunction &)
+{
+ // Only analyze within this function.
+ return false;
+}
+
+void Compiler::AnalyzeVariableScopeAccessHandler::set_current_block(const SPIRBlock &block)
+{
+ current_block = &block;
+
+ // If we're branching to a block which uses OpPhi, in GLSL
+ // this will be a variable write when we branch,
+ // so we need to track access to these variables as well to
+ // have a complete picture.
+ const auto test_phi = [this, &block](uint32_t to) {
+ auto &next = compiler.get<SPIRBlock>(to);
+ for (auto &phi : next.phi_variables)
+ {
+ if (phi.parent == block.self)
+ {
+ accessed_variables_to_block[phi.function_variable].insert(block.self);
+ // Phi variables are also accessed in our target branch block.
+ accessed_variables_to_block[phi.function_variable].insert(next.self);
+
+ notify_variable_access(phi.local_variable, block.self);
+ }
+ }
+ };
+
+ switch (block.terminator)
+ {
+ case SPIRBlock::Direct:
+ notify_variable_access(block.condition, block.self);
+ test_phi(block.next_block);
+ break;
+
+ case SPIRBlock::Select:
+ notify_variable_access(block.condition, block.self);
+ test_phi(block.true_block);
+ test_phi(block.false_block);
+ break;
+
+ case SPIRBlock::MultiSelect:
+ {
+ notify_variable_access(block.condition, block.self);
+ auto &cases = compiler.get_case_list(block);
+ for (auto &target : cases)
+ test_phi(target.block);
+ if (block.default_block)
+ test_phi(block.default_block);
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+void Compiler::AnalyzeVariableScopeAccessHandler::notify_variable_access(uint32_t id, uint32_t block)
+{
+ if (id == 0)
+ return;
+
+ // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
+ auto itr = rvalue_forward_children.find(id);
+ if (itr != end(rvalue_forward_children))
+ for (auto child_id : itr->second)
+ notify_variable_access(child_id, block);
+
+ if (id_is_phi_variable(id))
+ accessed_variables_to_block[id].insert(block);
+ else if (id_is_potential_temporary(id))
+ accessed_temporaries_to_block[id].insert(block);
+}
+
+bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_phi_variable(uint32_t id) const
+{
+ if (id >= compiler.get_current_id_bound())
+ return false;
+ auto *var = compiler.maybe_get<SPIRVariable>(id);
+ return var && var->phi_variable;
+}
+
+bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_potential_temporary(uint32_t id) const
+{
+ if (id >= compiler.get_current_id_bound())
+ return false;
+
+ // Temporaries are not created before we start emitting code.
+ return compiler.ir.ids[id].empty() || (compiler.ir.ids[id].get_type() == TypeExpression);
+}
+
+bool Compiler::AnalyzeVariableScopeAccessHandler::handle_terminator(const SPIRBlock &block)
+{
+ switch (block.terminator)
+ {
+ case SPIRBlock::Return:
+ if (block.return_value)
+ notify_variable_access(block.return_value, block.self);
+ break;
+
+ case SPIRBlock::Select:
+ case SPIRBlock::MultiSelect:
+ notify_variable_access(block.condition, block.self);
+ break;
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+bool Compiler::AnalyzeVariableScopeAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length)
+{
+ // Keep track of the types of temporaries, so we can hoist them out as necessary.
+ uint32_t result_type = 0, result_id = 0;
+ if (compiler.instruction_to_result_type(result_type, result_id, op, args, length))
+ {
+ // For some opcodes, we will need to override the result id.
+ // If we need to hoist the temporary, the temporary type is the input, not the result.
+ if (op == OpConvertUToAccelerationStructureKHR)
+ {
+ auto itr = result_id_to_type.find(args[2]);
+ if (itr != result_id_to_type.end())
+ result_type = itr->second;
+ }
+
+ result_id_to_type[result_id] = result_type;
+ }
+
+ switch (op)
+ {
+ case OpStore:
+ {
+ if (length < 2)
+ return false;
+
+ ID ptr = args[0];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+
+ // If we store through an access chain, we have a partial write.
+ if (var)
+ {
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ if (var->self == ptr)
+ complete_write_variables_to_block[var->self].insert(current_block->self);
+ else
+ partial_write_variables_to_block[var->self].insert(current_block->self);
+ }
+
+ // args[0] might be an access chain we have to track use of.
+ notify_variable_access(args[0], current_block->self);
+ // Might try to store a Phi variable here.
+ notify_variable_access(args[1], current_block->self);
+ break;
+ }
+
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ {
+ if (length < 3)
+ return false;
+
+ // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
+ uint32_t ptr = args[2];
+ auto *var = compiler.maybe_get<SPIRVariable>(ptr);
+ if (var)
+ {
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ rvalue_forward_children[args[1]].insert(var->self);
+ }
+
+ // args[2] might be another access chain we have to track use of.
+ for (uint32_t i = 2; i < length; i++)
+ {
+ notify_variable_access(args[i], current_block->self);
+ rvalue_forward_children[args[1]].insert(args[i]);
+ }
+
+ // Also keep track of the access chain pointer itself.
+ // In exceptionally rare cases, we can end up with a case where
+ // the access chain is generated in the loop body, but is consumed in continue block.
+ // This means we need complex loop workarounds, and we must detect this via CFG analysis.
+ notify_variable_access(args[1], current_block->self);
+
+ // The result of an access chain is a fixed expression and is not really considered a temporary.
+ auto &e = compiler.set<SPIRExpression>(args[1], "", args[0], true);
+ auto *backing_variable = compiler.maybe_get_backing_variable(ptr);
+ e.loaded_from = backing_variable ? VariableID(backing_variable->self) : VariableID(0);
+
+ // Other backends might use SPIRAccessChain for this later.
+ compiler.ir.ids[args[1]].set_allow_type_rewrite();
+ access_chain_expressions.insert(args[1]);
+ break;
+ }
+
+ case OpCopyMemory:
+ {
+ if (length < 2)
+ return false;
+
+ ID lhs = args[0];
+ ID rhs = args[1];
+ auto *var = compiler.maybe_get_backing_variable(lhs);
+
+ // If we store through an access chain, we have a partial write.
+ if (var)
+ {
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ if (var->self == lhs)
+ complete_write_variables_to_block[var->self].insert(current_block->self);
+ else
+ partial_write_variables_to_block[var->self].insert(current_block->self);
+ }
+
+ // args[0:1] might be access chains we have to track use of.
+ for (uint32_t i = 0; i < 2; i++)
+ notify_variable_access(args[i], current_block->self);
+
+ var = compiler.maybe_get_backing_variable(rhs);
+ if (var)
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ break;
+ }
+
+ case OpCopyObject:
+ {
+ // OpCopyObject copies the underlying non-pointer type,
+ // so any temp variable should be declared using the underlying type.
+ // If the type is a pointer, get its base type and overwrite the result type mapping.
+ auto &type = compiler.get<SPIRType>(result_type);
+ if (type.pointer)
+ result_id_to_type[result_id] = type.parent_type;
+
+ if (length < 3)
+ return false;
+
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ if (var)
+ accessed_variables_to_block[var->self].insert(current_block->self);
+
+ // Might be an access chain which we have to keep track of.
+ notify_variable_access(args[1], current_block->self);
+ if (access_chain_expressions.count(args[2]))
+ access_chain_expressions.insert(args[1]);
+
+ // Might try to copy a Phi variable here.
+ notify_variable_access(args[2], current_block->self);
+ break;
+ }
+
+ case OpLoad:
+ {
+ if (length < 3)
+ return false;
+ uint32_t ptr = args[2];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+ if (var)
+ accessed_variables_to_block[var->self].insert(current_block->self);
+
+ // Loaded value is a temporary.
+ notify_variable_access(args[1], current_block->self);
+
+ // Might be an access chain we have to track use of.
+ notify_variable_access(args[2], current_block->self);
+
+ // If we're loading an opaque type we cannot lower it to a temporary,
+ // we must defer access of args[2] until it's used.
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (compiler.type_is_opaque_value(type))
+ rvalue_forward_children[args[1]].insert(args[2]);
+ break;
+ }
+
+ case OpFunctionCall:
+ {
+ if (length < 3)
+ return false;
+
+ // Return value may be a temporary.
+ if (compiler.get_type(args[0]).basetype != SPIRType::Void)
+ notify_variable_access(args[1], current_block->self);
+
+ length -= 3;
+ args += 3;
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ auto *var = compiler.maybe_get_backing_variable(args[i]);
+ if (var)
+ {
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ // Assume we can get partial writes to this variable.
+ partial_write_variables_to_block[var->self].insert(current_block->self);
+ }
+
+ // Cannot easily prove if argument we pass to a function is completely written.
+ // Usually, functions write to a dummy variable,
+ // which is then copied to in full to the real argument.
+
+ // Might try to copy a Phi variable here.
+ notify_variable_access(args[i], current_block->self);
+ }
+ break;
+ }
+
+ case OpSelect:
+ {
+ // In case of variable pointers, we might access a variable here.
+ // We cannot prove anything about these accesses however.
+ for (uint32_t i = 1; i < length; i++)
+ {
+ if (i >= 3)
+ {
+ auto *var = compiler.maybe_get_backing_variable(args[i]);
+ if (var)
+ {
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ // Assume we can get partial writes to this variable.
+ partial_write_variables_to_block[var->self].insert(current_block->self);
+ }
+ }
+
+ // Might try to copy a Phi variable here.
+ notify_variable_access(args[i], current_block->self);
+ }
+ break;
+ }
+
+ case OpExtInst:
+ {
+ for (uint32_t i = 4; i < length; i++)
+ notify_variable_access(args[i], current_block->self);
+ notify_variable_access(args[1], current_block->self);
+
+ uint32_t extension_set = args[2];
+ if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(args[3]);
+ switch (op_450)
+ {
+ case GLSLstd450Modf:
+ case GLSLstd450Frexp:
+ {
+ uint32_t ptr = args[5];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+ if (var)
+ {
+ accessed_variables_to_block[var->self].insert(current_block->self);
+ if (var->self == ptr)
+ complete_write_variables_to_block[var->self].insert(current_block->self);
+ else
+ partial_write_variables_to_block[var->self].insert(current_block->self);
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpArrayLength:
+ // Only result is a temporary.
+ notify_variable_access(args[1], current_block->self);
+ break;
+
+ case OpLine:
+ case OpNoLine:
+ // Uses literals, but cannot be a phi variable or temporary, so ignore.
+ break;
+
+ // Atomics shouldn't be able to access function-local variables.
+ // Some GLSL builtins access a pointer.
+
+ case OpCompositeInsert:
+ case OpVectorShuffle:
+ // Specialize for opcode which contains literals.
+ for (uint32_t i = 1; i < 4; i++)
+ notify_variable_access(args[i], current_block->self);
+ break;
+
+ case OpCompositeExtract:
+ // Specialize for opcode which contains literals.
+ for (uint32_t i = 1; i < 3; i++)
+ notify_variable_access(args[i], current_block->self);
+ break;
+
+ case OpImageWrite:
+ for (uint32_t i = 0; i < length; i++)
+ {
+ // Argument 3 is a literal.
+ if (i != 3)
+ notify_variable_access(args[i], current_block->self);
+ }
+ break;
+
+ case OpImageSampleImplicitLod:
+ case OpImageSampleExplicitLod:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageFetch:
+ case OpImageSparseFetch:
+ case OpImageRead:
+ case OpImageSparseRead:
+ for (uint32_t i = 1; i < length; i++)
+ {
+ // Argument 4 is a literal.
+ if (i != 4)
+ notify_variable_access(args[i], current_block->self);
+ }
+ break;
+
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ case OpImageGather:
+ case OpImageSparseGather:
+ case OpImageDrefGather:
+ case OpImageSparseDrefGather:
+ for (uint32_t i = 1; i < length; i++)
+ {
+ // Argument 5 is a literal.
+ if (i != 5)
+ notify_variable_access(args[i], current_block->self);
+ }
+ break;
+
+ default:
+ {
+ // Rather dirty way of figuring out where Phi variables are used.
+ // As long as only IDs are used, we can scan through instructions and try to find any evidence that
+ // the ID of a variable has been used.
+ // There are potential false positives here where a literal is used in-place of an ID,
+ // but worst case, it does not affect the correctness of the compile.
+ // Exhaustive analysis would be better here, but it's not worth it for now.
+ for (uint32_t i = 0; i < length; i++)
+ notify_variable_access(args[i], current_block->self);
+ break;
+ }
+ }
+ return true;
+}
+
+Compiler::StaticExpressionAccessHandler::StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_)
+ : compiler(compiler_)
+ , variable_id(variable_id_)
+{
+}
+
+bool Compiler::StaticExpressionAccessHandler::follow_function_call(const SPIRFunction &)
+{
+ return false;
+}
+
+bool Compiler::StaticExpressionAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length)
+{
+ switch (op)
+ {
+ case OpStore:
+ if (length < 2)
+ return false;
+ if (args[0] == variable_id)
+ {
+ static_expression = args[1];
+ write_count++;
+ }
+ break;
+
+ case OpLoad:
+ if (length < 3)
+ return false;
+ if (args[2] == variable_id && static_expression == 0) // Tried to read from variable before it was initialized.
+ return false;
+ break;
+
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ if (length < 3)
+ return false;
+ if (args[2] == variable_id) // If we try to access chain our candidate variable before we store to it, bail.
+ return false;
+ break;
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+void Compiler::find_function_local_luts(SPIRFunction &entry, const AnalyzeVariableScopeAccessHandler &handler,
+ bool single_function)
+{
+ auto &cfg = *function_cfgs.find(entry.self)->second;
+
+ // For each variable which is statically accessed.
+ for (auto &accessed_var : handler.accessed_variables_to_block)
+ {
+ auto &blocks = accessed_var.second;
+ auto &var = get<SPIRVariable>(accessed_var.first);
+ auto &type = expression_type(accessed_var.first);
+
+ // First check if there are writes to the variable. Later, if there are none, we'll
+ // reconsider it as globally accessed LUT.
+ if (!var.is_written_to)
+ {
+ var.is_written_to = handler.complete_write_variables_to_block.count(var.self) != 0 ||
+ handler.partial_write_variables_to_block.count(var.self) != 0;
+ }
+
+ // Only consider function local variables here.
+ // If we only have a single function in our CFG, private storage is also fine,
+ // since it behaves like a function local variable.
+ bool allow_lut = var.storage == StorageClassFunction || (single_function && var.storage == StorageClassPrivate);
+ if (!allow_lut)
+ continue;
+
+ // We cannot be a phi variable.
+ if (var.phi_variable)
+ continue;
+
+ // Only consider arrays here.
+ if (type.array.empty())
+ continue;
+
+ // If the variable has an initializer, make sure it is a constant expression.
+ uint32_t static_constant_expression = 0;
+ if (var.initializer)
+ {
+ if (ir.ids[var.initializer].get_type() != TypeConstant)
+ continue;
+ static_constant_expression = var.initializer;
+
+ // There can be no stores to this variable, we have now proved we have a LUT.
+ if (var.is_written_to)
+ continue;
+ }
+ else
+ {
+ // We can have one, and only one write to the variable, and that write needs to be a constant.
+
+ // No partial writes allowed.
+ if (handler.partial_write_variables_to_block.count(var.self) != 0)
+ continue;
+
+ auto itr = handler.complete_write_variables_to_block.find(var.self);
+
+ // No writes?
+ if (itr == end(handler.complete_write_variables_to_block))
+ continue;
+
+ // We write to the variable in more than one block.
+ auto &write_blocks = itr->second;
+ if (write_blocks.size() != 1)
+ continue;
+
+ // The write needs to happen in the dominating block.
+ DominatorBuilder builder(cfg);
+ for (auto &block : blocks)
+ builder.add_block(block);
+ uint32_t dominator = builder.get_dominator();
+
+ // The complete write happened in a branch or similar, cannot deduce static expression.
+ if (write_blocks.count(dominator) == 0)
+ continue;
+
+ // Find the static expression for this variable.
+ StaticExpressionAccessHandler static_expression_handler(*this, var.self);
+ traverse_all_reachable_opcodes(get<SPIRBlock>(dominator), static_expression_handler);
+
+ // We want one, and exactly one write
+ if (static_expression_handler.write_count != 1 || static_expression_handler.static_expression == 0)
+ continue;
+
+ // Is it a constant expression?
+ if (ir.ids[static_expression_handler.static_expression].get_type() != TypeConstant)
+ continue;
+
+ // We found a LUT!
+ static_constant_expression = static_expression_handler.static_expression;
+ }
+
+ get<SPIRConstant>(static_constant_expression).is_used_as_lut = true;
+ var.static_expression = static_constant_expression;
+ var.statically_assigned = true;
+ var.remapped_variable = true;
+ }
+}
+
+void Compiler::analyze_variable_scope(SPIRFunction &entry, AnalyzeVariableScopeAccessHandler &handler)
+{
+ // First, we map out all variable access within a function.
+ // Essentially a map of block -> { variables accessed in the basic block }
+ traverse_all_reachable_opcodes(entry, handler);
+
+ auto &cfg = *function_cfgs.find(entry.self)->second;
+
+ // Analyze if there are parameters which need to be implicitly preserved with an "in" qualifier.
+ analyze_parameter_preservation(entry, cfg, handler.accessed_variables_to_block,
+ handler.complete_write_variables_to_block);
+
+ unordered_map<uint32_t, uint32_t> potential_loop_variables;
+
+ // Find the loop dominator block for each block.
+ for (auto &block_id : entry.blocks)
+ {
+ auto &block = get<SPIRBlock>(block_id);
+
+ auto itr = ir.continue_block_to_loop_header.find(block_id);
+ if (itr != end(ir.continue_block_to_loop_header) && itr->second != block_id)
+ {
+ // Continue block might be unreachable in the CFG, but we still like to know the loop dominator.
+ // Edge case is when continue block is also the loop header, don't set the dominator in this case.
+ block.loop_dominator = itr->second;
+ }
+ else
+ {
+ uint32_t loop_dominator = cfg.find_loop_dominator(block_id);
+ if (loop_dominator != block_id)
+ block.loop_dominator = loop_dominator;
+ else
+ block.loop_dominator = SPIRBlock::NoDominator;
+ }
+ }
+
+ // For each variable which is statically accessed.
+ for (auto &var : handler.accessed_variables_to_block)
+ {
+ // Only deal with variables which are considered local variables in this function.
+ if (find(begin(entry.local_variables), end(entry.local_variables), VariableID(var.first)) ==
+ end(entry.local_variables))
+ continue;
+
+ DominatorBuilder builder(cfg);
+ auto &blocks = var.second;
+ auto &type = expression_type(var.first);
+ BlockID potential_continue_block = 0;
+
+ // Figure out which block is dominating all accesses of those variables.
+ for (auto &block : blocks)
+ {
+ // If we're accessing a variable inside a continue block, this variable might be a loop variable.
+ // We can only use loop variables with scalars, as we cannot track static expressions for vectors.
+ if (is_continue(block))
+ {
+ // Potentially awkward case to check for.
+ // We might have a variable inside a loop, which is touched by the continue block,
+ // but is not actually a loop variable.
+ // The continue block is dominated by the inner part of the loop, which does not make sense in high-level
+ // language output because it will be declared before the body,
+ // so we will have to lift the dominator up to the relevant loop header instead.
+ builder.add_block(ir.continue_block_to_loop_header[block]);
+
+ // Arrays or structs cannot be loop variables.
+ if (type.vecsize == 1 && type.columns == 1 && type.basetype != SPIRType::Struct && type.array.empty())
+ {
+ // The variable is used in multiple continue blocks, this is not a loop
+ // candidate, signal that by setting block to -1u.
+ if (potential_continue_block == 0)
+ potential_continue_block = block;
+ else
+ potential_continue_block = ~(0u);
+ }
+ }
+
+ builder.add_block(block);
+ }
+
+ builder.lift_continue_block_dominator();
+
+ // Add it to a per-block list of variables.
+ BlockID dominating_block = builder.get_dominator();
+
+ if (dominating_block && potential_continue_block != 0 && potential_continue_block != ~0u)
+ {
+ auto &inner_block = get<SPIRBlock>(dominating_block);
+
+ BlockID merge_candidate = 0;
+
+ // Analyze the dominator. If it lives in a different loop scope than the candidate continue
+ // block, reject the loop variable candidate.
+ if (inner_block.merge == SPIRBlock::MergeLoop)
+ merge_candidate = inner_block.merge_block;
+ else if (inner_block.loop_dominator != SPIRBlock::NoDominator)
+ merge_candidate = get<SPIRBlock>(inner_block.loop_dominator).merge_block;
+
+ if (merge_candidate != 0 && cfg.is_reachable(merge_candidate))
+ {
+ // If the merge block has a higher post-visit order, we know that continue candidate
+ // cannot reach the merge block, and we have two separate scopes.
+ if (!cfg.is_reachable(potential_continue_block) ||
+ cfg.get_visit_order(merge_candidate) > cfg.get_visit_order(potential_continue_block))
+ {
+ potential_continue_block = 0;
+ }
+ }
+ }
+
+ if (potential_continue_block != 0 && potential_continue_block != ~0u)
+ potential_loop_variables[var.first] = potential_continue_block;
+
+ // For variables whose dominating block is inside a loop, there is a risk that these variables
+ // actually need to be preserved across loop iterations. We can express this by adding
+ // a "read" access to the loop header.
+ // In the dominating block, we must see an OpStore or equivalent as the first access of an OpVariable.
+ // Should that fail, we look for the outermost loop header and tack on an access there.
+ // Phi nodes cannot have this problem.
+ if (dominating_block)
+ {
+ auto &variable = get<SPIRVariable>(var.first);
+ if (!variable.phi_variable)
+ {
+ auto *block = &get<SPIRBlock>(dominating_block);
+ bool preserve = may_read_undefined_variable_in_block(*block, var.first);
+ if (preserve)
+ {
+ // Find the outermost loop scope.
+ while (block->loop_dominator != BlockID(SPIRBlock::NoDominator))
+ block = &get<SPIRBlock>(block->loop_dominator);
+
+ if (block->self != dominating_block)
+ {
+ builder.add_block(block->self);
+ dominating_block = builder.get_dominator();
+ }
+ }
+ }
+ }
+
+ // If all blocks here are dead code, this will be 0, so the variable in question
+ // will be completely eliminated.
+ if (dominating_block)
+ {
+ auto &block = get<SPIRBlock>(dominating_block);
+ block.dominated_variables.push_back(var.first);
+ get<SPIRVariable>(var.first).dominator = dominating_block;
+ }
+ }
+
+ for (auto &var : handler.accessed_temporaries_to_block)
+ {
+ auto itr = handler.result_id_to_type.find(var.first);
+
+ if (itr == end(handler.result_id_to_type))
+ {
+ // We found a false positive ID being used, ignore.
+ // This should probably be an assert.
+ continue;
+ }
+
+ // There is no point in doing domination analysis for opaque types.
+ auto &type = get<SPIRType>(itr->second);
+ if (type_is_opaque_value(type))
+ continue;
+
+ DominatorBuilder builder(cfg);
+ bool force_temporary = false;
+ bool used_in_header_hoisted_continue_block = false;
+
+ // Figure out which block is dominating all accesses of those temporaries.
+ auto &blocks = var.second;
+ for (auto &block : blocks)
+ {
+ builder.add_block(block);
+
+ if (blocks.size() != 1 && is_continue(block))
+ {
+ // The risk here is that inner loop can dominate the continue block.
+ // Any temporary we access in the continue block must be declared before the loop.
+ // This is moot for complex loops however.
+ auto &loop_header_block = get<SPIRBlock>(ir.continue_block_to_loop_header[block]);
+ assert(loop_header_block.merge == SPIRBlock::MergeLoop);
+ builder.add_block(loop_header_block.self);
+ used_in_header_hoisted_continue_block = true;
+ }
+ }
+
+ uint32_t dominating_block = builder.get_dominator();
+
+ if (blocks.size() != 1 && is_single_block_loop(dominating_block))
+ {
+ // Awkward case, because the loop header is also the continue block,
+ // so hoisting to loop header does not help.
+ force_temporary = true;
+ }
+
+ if (dominating_block)
+ {
+ // If we touch a variable in the dominating block, this is the expected setup.
+ // SPIR-V normally mandates this, but we have extra cases for temporary use inside loops.
+ bool first_use_is_dominator = blocks.count(dominating_block) != 0;
+
+ if (!first_use_is_dominator || force_temporary)
+ {
+ if (handler.access_chain_expressions.count(var.first))
+ {
+ // Exceptionally rare case.
+ // We cannot declare temporaries of access chains (except on MSL perhaps with pointers).
+ // Rather than do that, we force the indexing expressions to be declared in the right scope by
+ // tracking their usage to that end. There is no temporary to hoist.
+ // However, we still need to observe declaration order of the access chain.
+
+ if (used_in_header_hoisted_continue_block)
+ {
+ // For this scenario, we used an access chain inside a continue block where we also registered an access to header block.
+ // This is a problem as we need to declare an access chain properly first with full definition.
+ // We cannot use temporaries for these expressions,
+ // so we must make sure the access chain is declared ahead of time.
+ // Force a complex for loop to deal with this.
+ // TODO: Out-of-order declaring for loops where continue blocks are emitted last might be another option.
+ auto &loop_header_block = get<SPIRBlock>(dominating_block);
+ assert(loop_header_block.merge == SPIRBlock::MergeLoop);
+ loop_header_block.complex_continue = true;
+ }
+ }
+ else
+ {
+ // This should be very rare, but if we try to declare a temporary inside a loop,
+ // and that temporary is used outside the loop as well (spirv-opt inliner likes this)
+ // we should actually emit the temporary outside the loop.
+ hoisted_temporaries.insert(var.first);
+ forced_temporaries.insert(var.first);
+
+ auto &block_temporaries = get<SPIRBlock>(dominating_block).declare_temporary;
+ block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first);
+ }
+ }
+ else if (blocks.size() > 1)
+ {
+ // Keep track of the temporary as we might have to declare this temporary.
+ // This can happen if the loop header dominates a temporary, but we have a complex fallback loop.
+ // In this case, the header is actually inside the for (;;) {} block, and we have problems.
+ // What we need to do is hoist the temporaries outside the for (;;) {} block in case the header block
+ // declares the temporary.
+ auto &block_temporaries = get<SPIRBlock>(dominating_block).potential_declare_temporary;
+ block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first);
+ }
+ }
+ }
+
+ unordered_set<uint32_t> seen_blocks;
+
+ // Now, try to analyze whether or not these variables are actually loop variables.
+ for (auto &loop_variable : potential_loop_variables)
+ {
+ auto &var = get<SPIRVariable>(loop_variable.first);
+ auto dominator = var.dominator;
+ BlockID block = loop_variable.second;
+
+ // The variable was accessed in multiple continue blocks, ignore.
+ if (block == BlockID(~(0u)) || block == BlockID(0))
+ continue;
+
+ // Dead code.
+ if (dominator == ID(0))
+ continue;
+
+ BlockID header = 0;
+
+ // Find the loop header for this block if we are a continue block.
+ {
+ auto itr = ir.continue_block_to_loop_header.find(block);
+ if (itr != end(ir.continue_block_to_loop_header))
+ {
+ header = itr->second;
+ }
+ else if (get<SPIRBlock>(block).continue_block == block)
+ {
+ // Also check for self-referential continue block.
+ header = block;
+ }
+ }
+
+ assert(header);
+ auto &header_block = get<SPIRBlock>(header);
+ auto &blocks = handler.accessed_variables_to_block[loop_variable.first];
+
+ // If a loop variable is not used before the loop, it's probably not a loop variable.
+ bool has_accessed_variable = blocks.count(header) != 0;
+
+ // Now, there are two conditions we need to meet for the variable to be a loop variable.
+ // 1. The dominating block must have a branch-free path to the loop header,
+ // this way we statically know which expression should be part of the loop variable initializer.
+
+ // Walk from the dominator, if there is one straight edge connecting
+ // dominator and loop header, we statically know the loop initializer.
+ bool static_loop_init = true;
+ while (dominator != header)
+ {
+ if (blocks.count(dominator) != 0)
+ has_accessed_variable = true;
+
+ auto &succ = cfg.get_succeeding_edges(dominator);
+ if (succ.size() != 1)
+ {
+ static_loop_init = false;
+ break;
+ }
+
+ auto &pred = cfg.get_preceding_edges(succ.front());
+ if (pred.size() != 1 || pred.front() != dominator)
+ {
+ static_loop_init = false;
+ break;
+ }
+
+ dominator = succ.front();
+ }
+
+ if (!static_loop_init || !has_accessed_variable)
+ continue;
+
+ // The second condition we need to meet is that no access after the loop
+ // merge can occur. Walk the CFG to see if we find anything.
+
+ seen_blocks.clear();
+ cfg.walk_from(seen_blocks, header_block.merge_block, [&](uint32_t walk_block) -> bool {
+ // We found a block which accesses the variable outside the loop.
+ if (blocks.find(walk_block) != end(blocks))
+ static_loop_init = false;
+ return true;
+ });
+
+ if (!static_loop_init)
+ continue;
+
+ // We have a loop variable.
+ header_block.loop_variables.push_back(loop_variable.first);
+ // Need to sort here as variables come from an unordered container, and pushing stuff in wrong order
+ // will break reproducability in regression runs.
+ sort(begin(header_block.loop_variables), end(header_block.loop_variables));
+ get<SPIRVariable>(loop_variable.first).loop_variable = true;
+ }
+}
+
+bool Compiler::may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var)
+{
+ for (auto &op : block.ops)
+ {
+ auto *ops = stream(op);
+ switch (op.op)
+ {
+ case OpStore:
+ case OpCopyMemory:
+ if (ops[0] == var)
+ return false;
+ break;
+
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ // Access chains are generally used to partially read and write. It's too hard to analyze
+ // if all constituents are written fully before continuing, so just assume it's preserved.
+ // This is the same as the parameter preservation analysis.
+ if (ops[2] == var)
+ return true;
+ break;
+
+ case OpSelect:
+ // Variable pointers.
+ // We might read before writing.
+ if (ops[3] == var || ops[4] == var)
+ return true;
+ break;
+
+ case OpPhi:
+ {
+ // Variable pointers.
+ // We might read before writing.
+ if (op.length < 2)
+ break;
+
+ uint32_t count = op.length - 2;
+ for (uint32_t i = 0; i < count; i += 2)
+ if (ops[i + 2] == var)
+ return true;
+ break;
+ }
+
+ case OpCopyObject:
+ case OpLoad:
+ if (ops[2] == var)
+ return true;
+ break;
+
+ case OpFunctionCall:
+ {
+ if (op.length < 3)
+ break;
+
+ // May read before writing.
+ uint32_t count = op.length - 3;
+ for (uint32_t i = 0; i < count; i++)
+ if (ops[i + 3] == var)
+ return true;
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ // Not accessed somehow, at least not in a usual fashion.
+ // It's likely accessed in a branch, so assume we must preserve.
+ return true;
+}
+
+Bitset Compiler::get_buffer_block_flags(VariableID id) const
+{
+ return ir.get_buffer_block_flags(get<SPIRVariable>(id));
+}
+
+bool Compiler::get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type)
+{
+ if (type.basetype == SPIRType::Struct)
+ {
+ base_type = SPIRType::Unknown;
+ for (auto &member_type : type.member_types)
+ {
+ SPIRType::BaseType member_base;
+ if (!get_common_basic_type(get<SPIRType>(member_type), member_base))
+ return false;
+
+ if (base_type == SPIRType::Unknown)
+ base_type = member_base;
+ else if (base_type != member_base)
+ return false;
+ }
+ return true;
+ }
+ else
+ {
+ base_type = type.basetype;
+ return true;
+ }
+}
+
+void Compiler::ActiveBuiltinHandler::handle_builtin(const SPIRType &type, BuiltIn builtin,
+ const Bitset &decoration_flags)
+{
+ // If used, we will need to explicitly declare a new array size for these builtins.
+
+ if (builtin == BuiltInClipDistance)
+ {
+ if (!type.array_size_literal[0])
+ SPIRV_CROSS_THROW("Array size for ClipDistance must be a literal.");
+ uint32_t array_size = type.array[0];
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Array size for ClipDistance must not be unsized.");
+ compiler.clip_distance_count = array_size;
+ }
+ else if (builtin == BuiltInCullDistance)
+ {
+ if (!type.array_size_literal[0])
+ SPIRV_CROSS_THROW("Array size for CullDistance must be a literal.");
+ uint32_t array_size = type.array[0];
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Array size for CullDistance must not be unsized.");
+ compiler.cull_distance_count = array_size;
+ }
+ else if (builtin == BuiltInPosition)
+ {
+ if (decoration_flags.get(DecorationInvariant))
+ compiler.position_invariant = true;
+ }
+}
+
+void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id, bool allow_blocks)
+{
+ // Only handle plain variables here.
+ // Builtins which are part of a block are handled in AccessChain.
+ // If allow_blocks is used however, this is to handle initializers of blocks,
+ // which implies that all members are written to.
+
+ auto *var = compiler.maybe_get<SPIRVariable>(id);
+ auto *m = compiler.ir.find_meta(id);
+ if (var && m)
+ {
+ auto &type = compiler.get<SPIRType>(var->basetype);
+ auto &decorations = m->decoration;
+ auto &flags = type.storage == StorageClassInput ?
+ compiler.active_input_builtins : compiler.active_output_builtins;
+ if (decorations.builtin)
+ {
+ flags.set(decorations.builtin_type);
+ handle_builtin(type, decorations.builtin_type, decorations.decoration_flags);
+ }
+ else if (allow_blocks && compiler.has_decoration(type.self, DecorationBlock))
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (compiler.has_member_decoration(type.self, i, DecorationBuiltIn))
+ {
+ auto &member_type = compiler.get<SPIRType>(type.member_types[i]);
+ BuiltIn builtin = BuiltIn(compiler.get_member_decoration(type.self, i, DecorationBuiltIn));
+ flags.set(builtin);
+ handle_builtin(member_type, builtin, compiler.get_member_decoration_bitset(type.self, i));
+ }
+ }
+ }
+ }
+}
+
+void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id)
+{
+ add_if_builtin(id, false);
+}
+
+void Compiler::ActiveBuiltinHandler::add_if_builtin_or_block(uint32_t id)
+{
+ add_if_builtin(id, true);
+}
+
+bool Compiler::ActiveBuiltinHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
+{
+ switch (opcode)
+ {
+ case OpStore:
+ if (length < 1)
+ return false;
+
+ add_if_builtin(args[0]);
+ break;
+
+ case OpCopyMemory:
+ if (length < 2)
+ return false;
+
+ add_if_builtin(args[0]);
+ add_if_builtin(args[1]);
+ break;
+
+ case OpCopyObject:
+ case OpLoad:
+ if (length < 3)
+ return false;
+
+ add_if_builtin(args[2]);
+ break;
+
+ case OpSelect:
+ if (length < 5)
+ return false;
+
+ add_if_builtin(args[3]);
+ add_if_builtin(args[4]);
+ break;
+
+ case OpPhi:
+ {
+ if (length < 2)
+ return false;
+
+ uint32_t count = length - 2;
+ args += 2;
+ for (uint32_t i = 0; i < count; i += 2)
+ add_if_builtin(args[i]);
+ break;
+ }
+
+ case OpFunctionCall:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t count = length - 3;
+ args += 3;
+ for (uint32_t i = 0; i < count; i++)
+ add_if_builtin(args[i]);
+ break;
+ }
+
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ {
+ if (length < 4)
+ return false;
+
+ // Only consider global variables, cannot consider variables in functions yet, or other
+ // access chains as they have not been created yet.
+ auto *var = compiler.maybe_get<SPIRVariable>(args[2]);
+ if (!var)
+ break;
+
+ // Required if we access chain into builtins like gl_GlobalInvocationID.
+ add_if_builtin(args[2]);
+
+ // Start traversing type hierarchy at the proper non-pointer types.
+ auto *type = &compiler.get_variable_data_type(*var);
+
+ auto &flags =
+ var->storage == StorageClassInput ? compiler.active_input_builtins : compiler.active_output_builtins;
+
+ uint32_t count = length - 3;
+ args += 3;
+ for (uint32_t i = 0; i < count; i++)
+ {
+ // Pointers
+ // PtrAccessChain functions more like a pointer offset. Type remains the same.
+ if (opcode == OpPtrAccessChain && i == 0)
+ continue;
+
+ // Arrays
+ if (!type->array.empty())
+ {
+ type = &compiler.get<SPIRType>(type->parent_type);
+ }
+ // Structs
+ else if (type->basetype == SPIRType::Struct)
+ {
+ uint32_t index = compiler.get<SPIRConstant>(args[i]).scalar();
+
+ if (index < uint32_t(compiler.ir.meta[type->self].members.size()))
+ {
+ auto &decorations = compiler.ir.meta[type->self].members[index];
+ if (decorations.builtin)
+ {
+ flags.set(decorations.builtin_type);
+ handle_builtin(compiler.get<SPIRType>(type->member_types[index]), decorations.builtin_type,
+ decorations.decoration_flags);
+ }
+ }
+
+ type = &compiler.get<SPIRType>(type->member_types[index]);
+ }
+ else
+ {
+ // No point in traversing further. We won't find any extra builtins.
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+void Compiler::update_active_builtins()
+{
+ active_input_builtins.reset();
+ active_output_builtins.reset();
+ cull_distance_count = 0;
+ clip_distance_count = 0;
+ ActiveBuiltinHandler handler(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (var.storage != StorageClassOutput)
+ return;
+ if (!interface_variable_exists_in_entry_point(var.self))
+ return;
+
+ // Also, make sure we preserve output variables which are only initialized, but never accessed by any code.
+ if (var.initializer != ID(0))
+ handler.add_if_builtin_or_block(var.self);
+ });
+}
+
+// Returns whether this shader uses a builtin of the storage class
+bool Compiler::has_active_builtin(BuiltIn builtin, StorageClass storage) const
+{
+ const Bitset *flags;
+ switch (storage)
+ {
+ case StorageClassInput:
+ flags = &active_input_builtins;
+ break;
+ case StorageClassOutput:
+ flags = &active_output_builtins;
+ break;
+
+ default:
+ return false;
+ }
+ return flags->get(builtin);
+}
+
+void Compiler::analyze_image_and_sampler_usage()
+{
+ CombinedImageSamplerDrefHandler dref_handler(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), dref_handler);
+
+ CombinedImageSamplerUsageHandler handler(*this, dref_handler.dref_combined_samplers);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+
+ // Need to run this traversal twice. First time, we propagate any comparison sampler usage from leaf functions
+ // down to main().
+ // In the second pass, we can propagate up forced depth state coming from main() up into leaf functions.
+ handler.dependency_hierarchy.clear();
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+
+ comparison_ids = std::move(handler.comparison_ids);
+ need_subpass_input = handler.need_subpass_input;
+ need_subpass_input_ms = handler.need_subpass_input_ms;
+
+ // Forward information from separate images and samplers into combined image samplers.
+ for (auto &combined : combined_image_samplers)
+ if (comparison_ids.count(combined.sampler_id))
+ comparison_ids.insert(combined.combined_id);
+}
+
+bool Compiler::CombinedImageSamplerDrefHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t)
+{
+ // Mark all sampled images which are used with Dref.
+ switch (opcode)
+ {
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ case OpImageDrefGather:
+ case OpImageSparseDrefGather:
+ dref_combined_samplers.insert(args[2]);
+ return true;
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+const CFG &Compiler::get_cfg_for_current_function() const
+{
+ assert(current_function);
+ return get_cfg_for_function(current_function->self);
+}
+
+const CFG &Compiler::get_cfg_for_function(uint32_t id) const
+{
+ auto cfg_itr = function_cfgs.find(id);
+ assert(cfg_itr != end(function_cfgs));
+ assert(cfg_itr->second);
+ return *cfg_itr->second;
+}
+
+void Compiler::build_function_control_flow_graphs_and_analyze()
+{
+ CFGBuilder handler(*this);
+ handler.function_cfgs[ir.default_entry_point].reset(new CFG(*this, get<SPIRFunction>(ir.default_entry_point)));
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+ function_cfgs = std::move(handler.function_cfgs);
+ bool single_function = function_cfgs.size() <= 1;
+
+ for (auto &f : function_cfgs)
+ {
+ auto &func = get<SPIRFunction>(f.first);
+ AnalyzeVariableScopeAccessHandler scope_handler(*this, func);
+ analyze_variable_scope(func, scope_handler);
+ find_function_local_luts(func, scope_handler, single_function);
+
+ // Check if we can actually use the loop variables we found in analyze_variable_scope.
+ // To use multiple initializers, we need the same type and qualifiers.
+ for (auto block : func.blocks)
+ {
+ auto &b = get<SPIRBlock>(block);
+ if (b.loop_variables.size() < 2)
+ continue;
+
+ auto &flags = get_decoration_bitset(b.loop_variables.front());
+ uint32_t type = get<SPIRVariable>(b.loop_variables.front()).basetype;
+ bool invalid_initializers = false;
+ for (auto loop_variable : b.loop_variables)
+ {
+ if (flags != get_decoration_bitset(loop_variable) ||
+ type != get<SPIRVariable>(b.loop_variables.front()).basetype)
+ {
+ invalid_initializers = true;
+ break;
+ }
+ }
+
+ if (invalid_initializers)
+ {
+ for (auto loop_variable : b.loop_variables)
+ get<SPIRVariable>(loop_variable).loop_variable = false;
+ b.loop_variables.clear();
+ }
+ }
+ }
+
+ // Find LUTs which are not function local. Only consider this case if the CFG is multi-function,
+ // otherwise we treat Private as Function trivially.
+ // Needs to be analyzed from the outside since we have to block the LUT optimization if at least
+ // one function writes to it.
+ if (!single_function)
+ {
+ for (auto &id : global_variables)
+ {
+ auto &var = get<SPIRVariable>(id);
+ auto &type = get_variable_data_type(var);
+
+ if (is_array(type) && var.storage == StorageClassPrivate &&
+ var.initializer && !var.is_written_to &&
+ ir.ids[var.initializer].get_type() == TypeConstant)
+ {
+ get<SPIRConstant>(var.initializer).is_used_as_lut = true;
+ var.static_expression = var.initializer;
+ var.statically_assigned = true;
+ var.remapped_variable = true;
+ }
+ }
+ }
+}
+
+Compiler::CFGBuilder::CFGBuilder(Compiler &compiler_)
+ : compiler(compiler_)
+{
+}
+
+bool Compiler::CFGBuilder::handle(spv::Op, const uint32_t *, uint32_t)
+{
+ return true;
+}
+
+bool Compiler::CFGBuilder::follow_function_call(const SPIRFunction &func)
+{
+ if (function_cfgs.find(func.self) == end(function_cfgs))
+ {
+ function_cfgs[func.self].reset(new CFG(compiler, func));
+ return true;
+ }
+ else
+ return false;
+}
+
+void Compiler::CombinedImageSamplerUsageHandler::add_dependency(uint32_t dst, uint32_t src)
+{
+ dependency_hierarchy[dst].insert(src);
+ // Propagate up any comparison state if we're loading from one such variable.
+ if (comparison_ids.count(src))
+ comparison_ids.insert(dst);
+}
+
+bool Compiler::CombinedImageSamplerUsageHandler::begin_function_scope(const uint32_t *args, uint32_t length)
+{
+ if (length < 3)
+ return false;
+
+ auto &func = compiler.get<SPIRFunction>(args[2]);
+ const auto *arg = &args[3];
+ length -= 3;
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ auto &argument = func.arguments[i];
+ add_dependency(argument.id, arg[i]);
+ }
+
+ return true;
+}
+
+void Compiler::CombinedImageSamplerUsageHandler::add_hierarchy_to_comparison_ids(uint32_t id)
+{
+ // Traverse the variable dependency hierarchy and tag everything in its path with comparison ids.
+ comparison_ids.insert(id);
+
+ for (auto &dep_id : dependency_hierarchy[id])
+ add_hierarchy_to_comparison_ids(dep_id);
+}
+
+bool Compiler::CombinedImageSamplerUsageHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ switch (opcode)
+ {
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ case OpLoad:
+ {
+ if (length < 3)
+ return false;
+
+ add_dependency(args[1], args[2]);
+
+ // Ideally defer this to OpImageRead, but then we'd need to track loaded IDs.
+ // If we load an image, we're going to use it and there is little harm in declaring an unused gl_FragCoord.
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.image.dim == DimSubpassData)
+ {
+ need_subpass_input = true;
+ if (type.image.ms)
+ need_subpass_input_ms = true;
+ }
+
+ // If we load a SampledImage and it will be used with Dref, propagate the state up.
+ if (dref_combined_samplers.count(args[1]) != 0)
+ add_hierarchy_to_comparison_ids(args[1]);
+ break;
+ }
+
+ case OpSampledImage:
+ {
+ if (length < 4)
+ return false;
+
+ // If the underlying resource has been used for comparison then duplicate loads of that resource must be too.
+ // This image must be a depth image.
+ uint32_t result_id = args[1];
+ uint32_t image = args[2];
+ uint32_t sampler = args[3];
+
+ if (dref_combined_samplers.count(result_id) != 0)
+ {
+ add_hierarchy_to_comparison_ids(image);
+
+ // This sampler must be a SamplerComparisonState, and not a regular SamplerState.
+ add_hierarchy_to_comparison_ids(sampler);
+
+ // Mark the OpSampledImage itself as being comparison state.
+ comparison_ids.insert(result_id);
+ }
+ return true;
+ }
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+bool Compiler::buffer_is_hlsl_counter_buffer(VariableID id) const
+{
+ auto *m = ir.find_meta(id);
+ return m && m->hlsl_is_magic_counter_buffer;
+}
+
+bool Compiler::buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const
+{
+ auto *m = ir.find_meta(id);
+
+ // First, check for the proper decoration.
+ if (m && m->hlsl_magic_counter_buffer != 0)
+ {
+ counter_id = m->hlsl_magic_counter_buffer;
+ return true;
+ }
+ else
+ return false;
+}
+
+void Compiler::make_constant_null(uint32_t id, uint32_t type)
+{
+ auto &constant_type = get<SPIRType>(type);
+
+ if (constant_type.pointer)
+ {
+ auto &constant = set<SPIRConstant>(id, type);
+ constant.make_null(constant_type);
+ }
+ else if (!constant_type.array.empty())
+ {
+ assert(constant_type.parent_type);
+ uint32_t parent_id = ir.increase_bound_by(1);
+ make_constant_null(parent_id, constant_type.parent_type);
+
+ if (!constant_type.array_size_literal.back())
+ SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal.");
+
+ SmallVector<uint32_t> elements(constant_type.array.back());
+ for (uint32_t i = 0; i < constant_type.array.back(); i++)
+ elements[i] = parent_id;
+ set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false);
+ }
+ else if (!constant_type.member_types.empty())
+ {
+ uint32_t member_ids = ir.increase_bound_by(uint32_t(constant_type.member_types.size()));
+ SmallVector<uint32_t> elements(constant_type.member_types.size());
+ for (uint32_t i = 0; i < constant_type.member_types.size(); i++)
+ {
+ make_constant_null(member_ids + i, constant_type.member_types[i]);
+ elements[i] = member_ids + i;
+ }
+ set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false);
+ }
+ else
+ {
+ auto &constant = set<SPIRConstant>(id, type);
+ constant.make_null(constant_type);
+ }
+}
+
+const SmallVector<spv::Capability> &Compiler::get_declared_capabilities() const
+{
+ return ir.declared_capabilities;
+}
+
+const SmallVector<std::string> &Compiler::get_declared_extensions() const
+{
+ return ir.declared_extensions;
+}
+
+std::string Compiler::get_remapped_declared_block_name(VariableID id) const
+{
+ return get_remapped_declared_block_name(id, false);
+}
+
+std::string Compiler::get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const
+{
+ auto itr = declared_block_names.find(id);
+ if (itr != end(declared_block_names))
+ {
+ return itr->second;
+ }
+ else
+ {
+ auto &var = get<SPIRVariable>(id);
+
+ if (fallback_prefer_instance_name)
+ {
+ return to_name(var.self);
+ }
+ else
+ {
+ auto &type = get<SPIRType>(var.basetype);
+ auto *type_meta = ir.find_meta(type.self);
+ auto *block_name = type_meta ? &type_meta->decoration.alias : nullptr;
+ return (!block_name || block_name->empty()) ? get_block_fallback_name(id) : *block_name;
+ }
+ }
+}
+
+bool Compiler::reflection_ssbo_instance_name_is_significant() const
+{
+ if (ir.source.known)
+ {
+ // UAVs from HLSL source tend to be declared in a way where the type is reused
+ // but the instance name is significant, and that's the name we should report.
+ // For GLSL, SSBOs each have their own block type as that's how GLSL is written.
+ return ir.source.hlsl;
+ }
+
+ unordered_set<uint32_t> ssbo_type_ids;
+ bool aliased_ssbo_types = false;
+
+ // If we don't have any OpSource information, we need to perform some shaky heuristics.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ if (!type.pointer || var.storage == StorageClassFunction)
+ return;
+
+ bool ssbo = var.storage == StorageClassStorageBuffer ||
+ (var.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock));
+
+ if (ssbo)
+ {
+ if (ssbo_type_ids.count(type.self))
+ aliased_ssbo_types = true;
+ else
+ ssbo_type_ids.insert(type.self);
+ }
+ });
+
+ // If the block name is aliased, assume we have HLSL-style UAV declarations.
+ return aliased_ssbo_types;
+}
+
+bool Compiler::instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op,
+ const uint32_t *args, uint32_t length)
+{
+ if (length < 2)
+ return false;
+
+ bool has_result_id = false, has_result_type = false;
+ HasResultAndType(op, &has_result_id, &has_result_type);
+ if (has_result_id && has_result_type)
+ {
+ result_type = args[0];
+ result_id = args[1];
+ return true;
+ }
+ else
+ return false;
+}
+
+Bitset Compiler::combined_decoration_for_member(const SPIRType &type, uint32_t index) const
+{
+ Bitset flags;
+ auto *type_meta = ir.find_meta(type.self);
+
+ if (type_meta)
+ {
+ auto &members = type_meta->members;
+ if (index >= members.size())
+ return flags;
+ auto &dec = members[index];
+
+ flags.merge_or(dec.decoration_flags);
+
+ auto &member_type = get<SPIRType>(type.member_types[index]);
+
+ // If our member type is a struct, traverse all the child members as well recursively.
+ auto &member_childs = member_type.member_types;
+ for (uint32_t i = 0; i < member_childs.size(); i++)
+ {
+ auto &child_member_type = get<SPIRType>(member_childs[i]);
+ if (!child_member_type.pointer)
+ flags.merge_or(combined_decoration_for_member(member_type, i));
+ }
+ }
+
+ return flags;
+}
+
+bool Compiler::is_desktop_only_format(spv::ImageFormat format)
+{
+ switch (format)
+ {
+ // Desktop-only formats
+ case ImageFormatR11fG11fB10f:
+ case ImageFormatR16f:
+ case ImageFormatRgb10A2:
+ case ImageFormatR8:
+ case ImageFormatRg8:
+ case ImageFormatR16:
+ case ImageFormatRg16:
+ case ImageFormatRgba16:
+ case ImageFormatR16Snorm:
+ case ImageFormatRg16Snorm:
+ case ImageFormatRgba16Snorm:
+ case ImageFormatR8Snorm:
+ case ImageFormatRg8Snorm:
+ case ImageFormatR8ui:
+ case ImageFormatRg8ui:
+ case ImageFormatR16ui:
+ case ImageFormatRgb10a2ui:
+ case ImageFormatR8i:
+ case ImageFormatRg8i:
+ case ImageFormatR16i:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+// An image is determined to be a depth image if it is marked as a depth image and is not also
+// explicitly marked with a color format, or if there are any sample/gather compare operations on it.
+bool Compiler::is_depth_image(const SPIRType &type, uint32_t id) const
+{
+ return (type.image.depth && type.image.format == ImageFormatUnknown) || comparison_ids.count(id);
+}
+
+bool Compiler::type_is_opaque_value(const SPIRType &type) const
+{
+ return !type.pointer && (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Image ||
+ type.basetype == SPIRType::Sampler);
+}
+
+// Make these member functions so we can easily break on any force_recompile events.
+void Compiler::force_recompile()
+{
+ is_force_recompile = true;
+}
+
+void Compiler::force_recompile_guarantee_forward_progress()
+{
+ force_recompile();
+ is_force_recompile_forward_progress = true;
+}
+
+bool Compiler::is_forcing_recompilation() const
+{
+ return is_force_recompile;
+}
+
+void Compiler::clear_force_recompile()
+{
+ is_force_recompile = false;
+ is_force_recompile_forward_progress = false;
+}
+
+Compiler::PhysicalStorageBufferPointerHandler::PhysicalStorageBufferPointerHandler(Compiler &compiler_)
+ : compiler(compiler_)
+{
+}
+
+Compiler::PhysicalBlockMeta *Compiler::PhysicalStorageBufferPointerHandler::find_block_meta(uint32_t id) const
+{
+ auto chain_itr = access_chain_to_physical_block.find(id);
+ if (chain_itr != access_chain_to_physical_block.end())
+ return chain_itr->second;
+ else
+ return nullptr;
+}
+
+void Compiler::PhysicalStorageBufferPointerHandler::mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length)
+{
+ uint32_t mask = *args;
+ args++;
+ length--;
+ if (length && (mask & MemoryAccessVolatileMask) != 0)
+ {
+ args++;
+ length--;
+ }
+
+ if (length && (mask & MemoryAccessAlignedMask) != 0)
+ {
+ uint32_t alignment = *args;
+ auto *meta = find_block_meta(id);
+
+ // This makes the assumption that the application does not rely on insane edge cases like:
+ // Bind buffer with ADDR = 8, use block offset of 8 bytes, load/store with 16 byte alignment.
+ // If we emit the buffer with alignment = 16 here, the first element at offset = 0 should
+ // actually have alignment of 8 bytes, but this is too theoretical and awkward to support.
+ // We could potentially keep track of any offset in the access chain, but it's
+ // practically impossible for high level compilers to emit code like that,
+ // so deducing overall alignment requirement based on maximum observed Alignment value is probably fine.
+ if (meta && alignment > meta->alignment)
+ meta->alignment = alignment;
+ }
+}
+
+bool Compiler::PhysicalStorageBufferPointerHandler::type_is_bda_block_entry(uint32_t type_id) const
+{
+ auto &type = compiler.get<SPIRType>(type_id);
+ return compiler.is_physical_pointer(type);
+}
+
+uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_minimum_scalar_alignment(const SPIRType &type) const
+{
+ if (type.storage == spv::StorageClassPhysicalStorageBufferEXT)
+ return 8;
+ else if (type.basetype == SPIRType::Struct)
+ {
+ uint32_t alignment = 0;
+ for (auto &member_type : type.member_types)
+ {
+ uint32_t member_align = get_minimum_scalar_alignment(compiler.get<SPIRType>(member_type));
+ if (member_align > alignment)
+ alignment = member_align;
+ }
+ return alignment;
+ }
+ else
+ return type.width / 8;
+}
+
+void Compiler::PhysicalStorageBufferPointerHandler::setup_meta_chain(uint32_t type_id, uint32_t var_id)
+{
+ if (type_is_bda_block_entry(type_id))
+ {
+ auto &meta = physical_block_type_meta[type_id];
+ access_chain_to_physical_block[var_id] = &meta;
+
+ auto &type = compiler.get<SPIRType>(type_id);
+
+ if (!compiler.is_physical_pointer_to_buffer_block(type))
+ non_block_types.insert(type_id);
+
+ if (meta.alignment == 0)
+ meta.alignment = get_minimum_scalar_alignment(compiler.get_pointee_type(type));
+ }
+}
+
+bool Compiler::PhysicalStorageBufferPointerHandler::handle(Op op, const uint32_t *args, uint32_t length)
+{
+ // When a BDA pointer comes to life, we need to keep a mapping of SSA ID -> type ID for the pointer type.
+ // For every load and store, we'll need to be able to look up the type ID being accessed and mark any alignment
+ // requirements.
+ switch (op)
+ {
+ case OpConvertUToPtr:
+ case OpBitcast:
+ case OpCompositeExtract:
+ // Extract can begin a new chain if we had a struct or array of pointers as input.
+ // We don't begin chains before we have a pure scalar pointer.
+ setup_meta_chain(args[0], args[1]);
+ break;
+
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpPtrAccessChain:
+ case OpCopyObject:
+ {
+ auto itr = access_chain_to_physical_block.find(args[2]);
+ if (itr != access_chain_to_physical_block.end())
+ access_chain_to_physical_block[args[1]] = itr->second;
+ break;
+ }
+
+ case OpLoad:
+ {
+ setup_meta_chain(args[0], args[1]);
+ if (length >= 4)
+ mark_aligned_access(args[2], args + 3, length - 3);
+ break;
+ }
+
+ case OpStore:
+ {
+ if (length >= 3)
+ mark_aligned_access(args[0], args + 2, length - 2);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_base_non_block_type_id(uint32_t type_id) const
+{
+ auto *type = &compiler.get<SPIRType>(type_id);
+ while (compiler.is_physical_pointer(*type) && !type_is_bda_block_entry(type_id))
+ {
+ type_id = type->parent_type;
+ type = &compiler.get<SPIRType>(type_id);
+ }
+
+ assert(type_is_bda_block_entry(type_id));
+ return type_id;
+}
+
+void Compiler::PhysicalStorageBufferPointerHandler::analyze_non_block_types_from_block(const SPIRType &type)
+{
+ for (auto &member : type.member_types)
+ {
+ auto &subtype = compiler.get<SPIRType>(member);
+
+ if (compiler.is_physical_pointer(subtype) && !compiler.is_physical_pointer_to_buffer_block(subtype))
+ non_block_types.insert(get_base_non_block_type_id(member));
+ else if (subtype.basetype == SPIRType::Struct && !compiler.is_pointer(subtype))
+ analyze_non_block_types_from_block(subtype);
+ }
+}
+
+void Compiler::analyze_non_block_pointer_types()
+{
+ PhysicalStorageBufferPointerHandler handler(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+
+ // Analyze any block declaration we have to make. It might contain
+ // physical pointers to POD types which we never used, and thus never added to the list.
+ // We'll need to add those pointer types to the set of types we declare.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t id, SPIRType &type) {
+ // Only analyze the raw block struct, not any pointer-to-struct, since that's just redundant.
+ if (type.self == id &&
+ (has_decoration(type.self, DecorationBlock) ||
+ has_decoration(type.self, DecorationBufferBlock)))
+ {
+ handler.analyze_non_block_types_from_block(type);
+ }
+ });
+
+ physical_storage_non_block_pointer_types.reserve(handler.non_block_types.size());
+ for (auto type : handler.non_block_types)
+ physical_storage_non_block_pointer_types.push_back(type);
+ sort(begin(physical_storage_non_block_pointer_types), end(physical_storage_non_block_pointer_types));
+ physical_storage_type_to_alignment = std::move(handler.physical_block_type_meta);
+}
+
+bool Compiler::InterlockedResourceAccessPrepassHandler::handle(Op op, const uint32_t *, uint32_t)
+{
+ if (op == OpBeginInvocationInterlockEXT || op == OpEndInvocationInterlockEXT)
+ {
+ if (interlock_function_id != 0 && interlock_function_id != call_stack.back())
+ {
+ // Most complex case, we have no sensible way of dealing with this
+ // other than taking the 100% conservative approach, exit early.
+ split_function_case = true;
+ return false;
+ }
+ else
+ {
+ interlock_function_id = call_stack.back();
+ // If this call is performed inside control flow we have a problem.
+ auto &cfg = compiler.get_cfg_for_function(interlock_function_id);
+
+ uint32_t from_block_id = compiler.get<SPIRFunction>(interlock_function_id).entry_block;
+ bool outside_control_flow = cfg.node_terminates_control_flow_in_sub_graph(from_block_id, current_block_id);
+ if (!outside_control_flow)
+ control_flow_interlock = true;
+ }
+ }
+ return true;
+}
+
+void Compiler::InterlockedResourceAccessPrepassHandler::rearm_current_block(const SPIRBlock &block)
+{
+ current_block_id = block.self;
+}
+
+bool Compiler::InterlockedResourceAccessPrepassHandler::begin_function_scope(const uint32_t *args, uint32_t length)
+{
+ if (length < 3)
+ return false;
+ call_stack.push_back(args[2]);
+ return true;
+}
+
+bool Compiler::InterlockedResourceAccessPrepassHandler::end_function_scope(const uint32_t *, uint32_t)
+{
+ call_stack.pop_back();
+ return true;
+}
+
+bool Compiler::InterlockedResourceAccessHandler::begin_function_scope(const uint32_t *args, uint32_t length)
+{
+ if (length < 3)
+ return false;
+
+ if (args[2] == interlock_function_id)
+ call_stack_is_interlocked = true;
+
+ call_stack.push_back(args[2]);
+ return true;
+}
+
+bool Compiler::InterlockedResourceAccessHandler::end_function_scope(const uint32_t *, uint32_t)
+{
+ if (call_stack.back() == interlock_function_id)
+ call_stack_is_interlocked = false;
+
+ call_stack.pop_back();
+ return true;
+}
+
+void Compiler::InterlockedResourceAccessHandler::access_potential_resource(uint32_t id)
+{
+ if ((use_critical_section && in_crit_sec) || (control_flow_interlock && call_stack_is_interlocked) ||
+ split_function_case)
+ {
+ compiler.interlocked_resources.insert(id);
+ }
+}
+
+bool Compiler::InterlockedResourceAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ // Only care about critical section analysis if we have simple case.
+ if (use_critical_section)
+ {
+ if (opcode == OpBeginInvocationInterlockEXT)
+ {
+ in_crit_sec = true;
+ return true;
+ }
+
+ if (opcode == OpEndInvocationInterlockEXT)
+ {
+ // End critical section--nothing more to do.
+ return false;
+ }
+ }
+
+ // We need to figure out where images and buffers are loaded from, so do only the bare bones compilation we need.
+ switch (opcode)
+ {
+ case OpLoad:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t ptr = args[2];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+
+ // We're only concerned with buffer and image memory here.
+ if (!var)
+ break;
+
+ switch (var->storage)
+ {
+ default:
+ break;
+
+ case StorageClassUniformConstant:
+ {
+ uint32_t result_type = args[0];
+ uint32_t id = args[1];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ break;
+ }
+
+ case StorageClassUniform:
+ // Must have BufferBlock; we only care about SSBOs.
+ if (!compiler.has_decoration(compiler.get<SPIRType>(var->basetype).self, DecorationBufferBlock))
+ break;
+ // fallthrough
+ case StorageClassStorageBuffer:
+ access_potential_resource(var->self);
+ break;
+ }
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+
+ auto &type = compiler.get<SPIRType>(result_type);
+ if (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
+ type.storage == StorageClassStorageBuffer)
+ {
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ compiler.ir.ids[id].set_allow_type_rewrite();
+ }
+ break;
+ }
+
+ case OpImageTexelPointer:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+ auto &e = compiler.set<SPIRExpression>(id, "", result_type, true);
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+ if (var)
+ e.loaded_from = var->self;
+ break;
+ }
+
+ case OpStore:
+ case OpImageWrite:
+ case OpAtomicStore:
+ {
+ if (length < 1)
+ return false;
+
+ uint32_t ptr = args[0];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+ if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant ||
+ var->storage == StorageClassStorageBuffer))
+ {
+ access_potential_resource(var->self);
+ }
+
+ break;
+ }
+
+ case OpCopyMemory:
+ {
+ if (length < 2)
+ return false;
+
+ uint32_t dst = args[0];
+ uint32_t src = args[1];
+ auto *dst_var = compiler.maybe_get_backing_variable(dst);
+ auto *src_var = compiler.maybe_get_backing_variable(src);
+
+ if (dst_var && (dst_var->storage == StorageClassUniform || dst_var->storage == StorageClassStorageBuffer))
+ access_potential_resource(dst_var->self);
+
+ if (src_var)
+ {
+ if (src_var->storage != StorageClassUniform && src_var->storage != StorageClassStorageBuffer)
+ break;
+
+ if (src_var->storage == StorageClassUniform &&
+ !compiler.has_decoration(compiler.get<SPIRType>(src_var->basetype).self, DecorationBufferBlock))
+ {
+ break;
+ }
+
+ access_potential_resource(src_var->self);
+ }
+
+ break;
+ }
+
+ case OpImageRead:
+ case OpAtomicLoad:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t ptr = args[2];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+
+ // We're only concerned with buffer and image memory here.
+ if (!var)
+ break;
+
+ switch (var->storage)
+ {
+ default:
+ break;
+
+ case StorageClassUniform:
+ // Must have BufferBlock; we only care about SSBOs.
+ if (!compiler.has_decoration(compiler.get<SPIRType>(var->basetype).self, DecorationBufferBlock))
+ break;
+ // fallthrough
+ case StorageClassUniformConstant:
+ case StorageClassStorageBuffer:
+ access_potential_resource(var->self);
+ break;
+ }
+ break;
+ }
+
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t ptr = args[2];
+ auto *var = compiler.maybe_get_backing_variable(ptr);
+ if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant ||
+ var->storage == StorageClassStorageBuffer))
+ {
+ access_potential_resource(var->self);
+ }
+
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return true;
+}
+
+void Compiler::analyze_interlocked_resource_usage()
+{
+ if (get_execution_model() == ExecutionModelFragment &&
+ (get_entry_point().flags.get(ExecutionModePixelInterlockOrderedEXT) ||
+ get_entry_point().flags.get(ExecutionModePixelInterlockUnorderedEXT) ||
+ get_entry_point().flags.get(ExecutionModeSampleInterlockOrderedEXT) ||
+ get_entry_point().flags.get(ExecutionModeSampleInterlockUnorderedEXT)))
+ {
+ InterlockedResourceAccessPrepassHandler prepass_handler(*this, ir.default_entry_point);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), prepass_handler);
+
+ InterlockedResourceAccessHandler handler(*this, ir.default_entry_point);
+ handler.interlock_function_id = prepass_handler.interlock_function_id;
+ handler.split_function_case = prepass_handler.split_function_case;
+ handler.control_flow_interlock = prepass_handler.control_flow_interlock;
+ handler.use_critical_section = !handler.split_function_case && !handler.control_flow_interlock;
+
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
+
+ // For GLSL. If we hit any of these cases, we have to fall back to conservative approach.
+ interlocked_is_complex =
+ !handler.use_critical_section || handler.interlock_function_id != ir.default_entry_point;
+ }
+}
+
+// Helper function
+bool Compiler::check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids)
+{
+ if (type.basetype != SPIRType::Struct)
+ return false;
+
+ if (checked_ids.count(type.self))
+ return true;
+
+ // Recurse into struct members
+ bool is_recursive = false;
+ checked_ids.insert(type.self);
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t mbr_idx = 0; !is_recursive && mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ uint32_t mbr_type_id = type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ is_recursive |= check_internal_recursion(mbr_type, checked_ids);
+ }
+ checked_ids.erase(type.self);
+ return is_recursive;
+}
+
+// Return whether the struct type contains a structural recursion nested somewhere within its content.
+bool Compiler::type_contains_recursion(const SPIRType &type)
+{
+ std::unordered_set<uint32_t> checked_ids;
+ return check_internal_recursion(type, checked_ids);
+}
+
+bool Compiler::type_is_array_of_pointers(const SPIRType &type) const
+{
+ if (!is_array(type))
+ return false;
+
+ // BDA types must have parent type hierarchy.
+ if (!type.parent_type)
+ return false;
+
+ // Punch through all array layers.
+ auto *parent = &get<SPIRType>(type.parent_type);
+ while (is_array(*parent))
+ parent = &get<SPIRType>(parent->parent_type);
+
+ return is_pointer(*parent);
+}
+
+bool Compiler::flush_phi_required(BlockID from, BlockID to) const
+{
+ auto &child = get<SPIRBlock>(to);
+ for (auto &phi : child.phi_variables)
+ if (phi.parent == from)
+ return true;
+ return false;
+}
+
+void Compiler::add_loop_level()
+{
+ current_loop_level++;
+}
diff --git a/thirdparty/spirv-cross/spirv_cross.hpp b/thirdparty/spirv-cross/spirv_cross.hpp
new file mode 100644
index 0000000000..e9062b485c
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross.hpp
@@ -0,0 +1,1182 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_HPP
+#define SPIRV_CROSS_HPP
+
+#ifndef SPV_ENABLE_UTILITY_CODE
+#define SPV_ENABLE_UTILITY_CODE
+#endif
+#include "spirv.hpp"
+#include "spirv_cfg.hpp"
+#include "spirv_cross_parsed_ir.hpp"
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+struct Resource
+{
+ // Resources are identified with their SPIR-V ID.
+ // This is the ID of the OpVariable.
+ ID id;
+
+ // The type ID of the variable which includes arrays and all type modifications.
+ // This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general
+ // since these modifications typically happen on the base_type_id.
+ TypeID type_id;
+
+ // The base type of the declared resource.
+ // This type is the base type which ignores pointers and arrays of the type_id.
+ // This is mostly useful to parse decorations of the underlying type.
+ // base_type_id can also be obtained with get_type(get_type(type_id).self).
+ TypeID base_type_id;
+
+ // The declared name (OpName) of the resource.
+ // For Buffer blocks, the name actually reflects the externally
+ // visible Block name.
+ //
+ // This name can be retrieved again by using either
+ // get_name(id) or get_name(base_type_id) depending if it's a buffer block or not.
+ //
+ // This name can be an empty string in which case get_fallback_name(id) can be
+ // used which obtains a suitable fallback identifier for an ID.
+ std::string name;
+};
+
+struct BuiltInResource
+{
+ // This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance.
+ // This needs to be different from Resource since we can collect builtins from blocks.
+ // A builtin present here does not necessarily mean it's considered an active builtin,
+ // since variable ID "activeness" is only tracked on OpVariable level, not Block members.
+ // For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection.
+ spv::BuiltIn builtin;
+
+ // This is the actual value type of the builtin.
+ // Typically float4, float, array<float, N> for the gl_PerVertex builtins.
+ // If the builtin is a control point, the control point array type will be stripped away here as appropriate.
+ TypeID value_type_id;
+
+ // This refers to the base resource which contains the builtin.
+ // If resource is a Block, it can hold multiple builtins, or it might not be a block.
+ // For advanced reflection scenarios, all information in builtin/value_type_id can be deduced,
+ // it's just more convenient this way.
+ Resource resource;
+};
+
+struct ShaderResources
+{
+ SmallVector<Resource> uniform_buffers;
+ SmallVector<Resource> storage_buffers;
+ SmallVector<Resource> stage_inputs;
+ SmallVector<Resource> stage_outputs;
+ SmallVector<Resource> subpass_inputs;
+ SmallVector<Resource> storage_images;
+ SmallVector<Resource> sampled_images;
+ SmallVector<Resource> atomic_counters;
+ SmallVector<Resource> acceleration_structures;
+ SmallVector<Resource> gl_plain_uniforms;
+
+ // There can only be one push constant block,
+ // but keep the vector in case this restriction is lifted in the future.
+ SmallVector<Resource> push_constant_buffers;
+
+ SmallVector<Resource> shader_record_buffers;
+
+ // For Vulkan GLSL and HLSL source,
+ // these correspond to separate texture2D and samplers respectively.
+ SmallVector<Resource> separate_images;
+ SmallVector<Resource> separate_samplers;
+
+ SmallVector<BuiltInResource> builtin_inputs;
+ SmallVector<BuiltInResource> builtin_outputs;
+};
+
+struct CombinedImageSampler
+{
+ // The ID of the sampler2D variable.
+ VariableID combined_id;
+ // The ID of the texture2D variable.
+ VariableID image_id;
+ // The ID of the sampler variable.
+ VariableID sampler_id;
+};
+
+struct SpecializationConstant
+{
+ // The ID of the specialization constant.
+ ConstantID id;
+ // The constant ID of the constant, used in Vulkan during pipeline creation.
+ uint32_t constant_id;
+};
+
+struct BufferRange
+{
+ unsigned index;
+ size_t offset;
+ size_t range;
+};
+
+enum BufferPackingStandard
+{
+ BufferPackingStd140,
+ BufferPackingStd430,
+ BufferPackingStd140EnhancedLayout,
+ BufferPackingStd430EnhancedLayout,
+ BufferPackingHLSLCbuffer,
+ BufferPackingHLSLCbufferPackOffset,
+ BufferPackingScalar,
+ BufferPackingScalarEnhancedLayout
+};
+
+struct EntryPoint
+{
+ std::string name;
+ spv::ExecutionModel execution_model;
+};
+
+class Compiler
+{
+public:
+ friend class CFG;
+ friend class DominatorBuilder;
+
+ // The constructor takes a buffer of SPIR-V words and parses it.
+ // It will create its own parser, parse the SPIR-V and move the parsed IR
+ // as if you had called the constructors taking ParsedIR directly.
+ explicit Compiler(std::vector<uint32_t> ir);
+ Compiler(const uint32_t *ir, size_t word_count);
+
+ // This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy.
+ // With copy, we can reuse the same parsed IR for multiple Compiler instances.
+ explicit Compiler(const ParsedIR &ir);
+ explicit Compiler(ParsedIR &&ir);
+
+ virtual ~Compiler() = default;
+
+ // After parsing, API users can modify the SPIR-V via reflection and call this
+ // to disassemble the SPIR-V into the desired langauage.
+ // Sub-classes actually implement this.
+ virtual std::string compile();
+
+ // Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned.
+ const std::string &get_name(ID id) const;
+
+ // Applies a decoration to an ID. Effectively injects OpDecorate.
+ void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0);
+ void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument);
+
+ // Overrides the identifier OpName of an ID.
+ // Identifiers beginning with underscores or identifiers which contain double underscores
+ // are reserved by the implementation.
+ void set_name(ID id, const std::string &name);
+
+ // Gets a bitmask for the decorations which are applied to ID.
+ // I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar)
+ const Bitset &get_decoration_bitset(ID id) const;
+
+ // Returns whether the decoration has been applied to the ID.
+ bool has_decoration(ID id, spv::Decoration decoration) const;
+
+ // Gets the value for decorations which take arguments.
+ // If the decoration is a boolean (i.e. spv::DecorationNonWritable),
+ // 1 will be returned.
+ // If decoration doesn't exist or decoration is not recognized,
+ // 0 will be returned.
+ uint32_t get_decoration(ID id, spv::Decoration decoration) const;
+ const std::string &get_decoration_string(ID id, spv::Decoration decoration) const;
+
+ // Removes the decoration for an ID.
+ void unset_decoration(ID id, spv::Decoration decoration);
+
+ // Gets the SPIR-V type associated with ID.
+ // Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource.
+ const SPIRType &get_type(TypeID id) const;
+
+ // Gets the SPIR-V type of a variable.
+ const SPIRType &get_type_from_variable(VariableID id) const;
+
+ // Gets the underlying storage class for an OpVariable.
+ spv::StorageClass get_storage_class(VariableID id) const;
+
+ // If get_name() is an empty string, get the fallback name which will be used
+ // instead in the disassembled source.
+ virtual const std::string get_fallback_name(ID id) const;
+
+ // If get_name() of a Block struct is an empty string, get the fallback name.
+ // This needs to be per-variable as multiple variables can use the same block type.
+ virtual const std::string get_block_fallback_name(VariableID id) const;
+
+ // Given an OpTypeStruct in ID, obtain the identifier for member number "index".
+ // This may be an empty string.
+ const std::string &get_member_name(TypeID id, uint32_t index) const;
+
+ // Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index".
+ uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
+ const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const;
+
+ // Sets the member identifier for OpTypeStruct ID, member number "index".
+ void set_member_name(TypeID id, uint32_t index, const std::string &name);
+
+ // Returns the qualified member identifier for OpTypeStruct ID, member number "index",
+ // or an empty string if no qualified alias exists
+ const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const;
+
+ // Gets the decoration mask for a member of a struct, similar to get_decoration_mask.
+ const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const;
+
+ // Returns whether the decoration has been applied to a member of a struct.
+ bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
+
+ // Similar to set_decoration, but for struct members.
+ void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0);
+ void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
+ const std::string &argument);
+
+ // Unsets a member decoration, similar to unset_decoration.
+ void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration);
+
+ // Gets the fallback name for a member, similar to get_fallback_name.
+ virtual const std::string get_fallback_member_name(uint32_t index) const
+ {
+ return join("_", index);
+ }
+
+ // Returns a vector of which members of a struct are potentially in use by a
+ // SPIR-V shader. The granularity of this analysis is per-member of a struct.
+ // This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks.
+ // ID is the Resource::id obtained from get_shader_resources().
+ SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const;
+
+ // Returns the effective size of a buffer block.
+ size_t get_declared_struct_size(const SPIRType &struct_type) const;
+
+ // Returns the effective size of a buffer block, with a given array size
+ // for a runtime array.
+ // SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size.
+ // This is not very helpful for applications which might need to know the array stride of its last member.
+ // This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function
+ // to query the size of the buffer, assuming that the last member has a certain size.
+ // If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as
+ // get_declared_struct_size().
+ // To get the array stride of the last member, something like:
+ // get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work.
+ size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const;
+
+ // Returns the effective size of a buffer block struct member.
+ size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const;
+
+ // Returns a set of all global variables which are statically accessed
+ // by the control flow graph from the current entry point.
+ // Only variables which change the interface for a shader are returned, that is,
+ // variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter
+ // storage classes are returned.
+ //
+ // To use the returned set as the filter for which variables are used during compilation,
+ // this set can be moved to set_enabled_interface_variables().
+ std::unordered_set<VariableID> get_active_interface_variables() const;
+
+ // Sets the interface variables which are used during compilation.
+ // By default, all variables are used.
+ // Once set, compile() will only consider the set in active_variables.
+ void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables);
+
+ // Query shader resources, use ids with reflection interface to modify or query binding points, etc.
+ ShaderResources get_shader_resources() const;
+
+ // Query shader resources, but only return the variables which are part of active_variables.
+ // E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically
+ // accessed.
+ ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const;
+
+ // Remapped variables are considered built-in variables and a backend will
+ // not emit a declaration for this variable.
+ // This is mostly useful for making use of builtins which are dependent on extensions.
+ void set_remapped_variable_state(VariableID id, bool remap_enable);
+ bool get_remapped_variable_state(VariableID id) const;
+
+ // For subpassInput variables which are remapped to plain variables,
+ // the number of components in the remapped
+ // variable must be specified as the backing type of subpass inputs are opaque.
+ void set_subpass_input_remapped_components(VariableID id, uint32_t components);
+ uint32_t get_subpass_input_remapped_components(VariableID id) const;
+
+ // All operations work on the current entry point.
+ // Entry points can be swapped out with set_entry_point().
+ // Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
+ // Resource reflection also depends on the entry point.
+ // By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
+
+ // Some shader languages restrict the names that can be given to entry points, and the
+ // corresponding backend will automatically rename an entry point name, during the call
+ // to compile() if it is illegal. For example, the common entry point name main() is
+ // illegal in MSL, and is renamed to an alternate name by the MSL backend.
+ // Given the original entry point name contained in the SPIR-V, this function returns
+ // the name, as updated by the backend during the call to compile(). If the name is not
+ // illegal, and has not been renamed, or if this function is called before compile(),
+ // this function will simply return the same name.
+
+ // New variants of entry point query and reflection.
+ // Names for entry points in the SPIR-V module may alias if they belong to different execution models.
+ // To disambiguate, we must pass along with the entry point names the execution model.
+ SmallVector<EntryPoint> get_entry_points_and_stages() const;
+ void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model);
+
+ // Renames an entry point from old_name to new_name.
+ // If old_name is currently selected as the current entry point, it will continue to be the current entry point,
+ // albeit with a new name.
+ // get_entry_points() is essentially invalidated at this point.
+ void rename_entry_point(const std::string &old_name, const std::string &new_name,
+ spv::ExecutionModel execution_model);
+ const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const;
+ SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model);
+ const std::string &get_cleansed_entry_point_name(const std::string &name,
+ spv::ExecutionModel execution_model) const;
+
+ // Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader.
+ void update_active_builtins();
+ bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const;
+
+ // Query and modify OpExecutionMode.
+ const Bitset &get_execution_mode_bitset() const;
+
+ void unset_execution_mode(spv::ExecutionMode mode);
+ void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0);
+
+ // Gets argument for an execution mode (LocalSize, Invocations, OutputVertices).
+ // For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2).
+ // For execution modes which do not have arguments, 0 is returned.
+ // LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0.
+ // LocalSize always returns a literal. If execution mode is LocalSizeId,
+ // the literal (spec constant or not) is still returned.
+ uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const;
+ spv::ExecutionModel get_execution_model() const;
+
+ bool is_tessellation_shader() const;
+ bool is_tessellating_triangles() const;
+
+ // In SPIR-V, the compute work group size can be represented by a constant vector, in which case
+ // the LocalSize execution mode is ignored.
+ //
+ // This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector.
+ // To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified
+ // directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified.
+ //
+ // To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly.
+ // Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation.
+ // NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize,
+ // while in this interface, LocalSize is only ignored for specialization constants.
+ //
+ // The specialization constant will be written to x, y and z arguments.
+ // If the component is not a specialization constant, a zeroed out struct will be written.
+ // The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful
+ // for most use cases.
+ // If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0,
+ // but x, y and z are written as normal if the components are specialization constants.
+ uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
+ SpecializationConstant &z) const;
+
+ // Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where
+ // said instruction is used without a combined image sampler.
+ // GLSL targets do not support the use of texelFetch without a sampler.
+ // To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of
+ // texelFetch as necessary.
+ //
+ // This must be called before build_combined_image_samplers().
+ // build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero.
+ // The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object
+ // is required.
+ //
+ // If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile().
+ // Calling this function also invalidates get_active_interface_variables(), so this should be called
+ // before that function.
+ VariableID build_dummy_sampler_for_combined_images();
+
+ // Analyzes all separate image and samplers used from the currently selected entry point,
+ // and re-routes them all to a combined image sampler instead.
+ // This is required to "support" separate image samplers in targets which do not natively support
+ // this feature, like GLSL/ESSL.
+ //
+ // This must be called before compile() if such remapping is desired.
+ // This call will add new sampled images to the SPIR-V,
+ // so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers.
+ //
+ // If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output,
+ // but will still appear in reflection.
+ //
+ // The resulting samplers will be void of any decorations like name, descriptor sets and binding points,
+ // so this can be added before compile() if desired.
+ //
+ // Combined image samplers originating from this set are always considered active variables.
+ // Arrays of separate samplers are not supported, but arrays of separate images are supported.
+ // Array of images + sampler -> Array of combined image samplers.
+ void build_combined_image_samplers();
+
+ // Gets a remapping for the combined image samplers.
+ const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const
+ {
+ return combined_image_samplers;
+ }
+
+ // Set a new variable type remap callback.
+ // The type remapping is designed to allow global interface variable to assume more special types.
+ // A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported
+ // directly by SPIR-V.
+ //
+ // In compile() while emitting code,
+ // for every variable that is declared, including function parameters, the callback will be called
+ // and the API user has a chance to change the textual representation of the type used to declare the variable.
+ // The API user can detect special patterns in names to guide the remapping.
+ void set_variable_type_remap_callback(VariableTypeRemapCallback cb)
+ {
+ variable_remap_callback = std::move(cb);
+ }
+
+ // API for querying which specialization constants exist.
+ // To modify a specialization constant before compile(), use get_constant(constant.id),
+ // then update constants directly in the SPIRConstant data structure.
+ // For composite types, the subconstants can be iterated over and modified.
+ // constant_type is the SPIRType for the specialization constant,
+ // which can be queried to determine which fields in the unions should be poked at.
+ SmallVector<SpecializationConstant> get_specialization_constants() const;
+ SPIRConstant &get_constant(ConstantID id);
+ const SPIRConstant &get_constant(ConstantID id) const;
+
+ uint32_t get_current_id_bound() const
+ {
+ return uint32_t(ir.ids.size());
+ }
+
+ // API for querying buffer objects.
+ // The type passed in here should be the base type of a resource, i.e.
+ // get_type(resource.base_type_id)
+ // as decorations are set in the basic Block type.
+ // The type passed in here must have these decorations set, or an exception is raised.
+ // Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set.
+ uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const;
+ uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const;
+ uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const;
+
+ // Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary.
+ // The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary.
+ // Note that adding or removing decorations using the reflection API will not change the behavior of this function.
+ // If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true,
+ // otherwise, returns false.
+ // If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false.
+ bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const;
+
+ // HLSL counter buffer reflection interface.
+ // Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where
+ // one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter.
+ // To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier
+ // which lets us link the two buffers together.
+
+ // Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object.
+
+ // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
+ // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
+ // only return true if OpSource was reported HLSL.
+ // To rely on this functionality, ensure that the SPIR-V module is not stripped.
+
+ bool buffer_is_hlsl_counter_buffer(VariableID id) const;
+
+ // Queries if a buffer object has a neighbor "counter" buffer.
+ // If so, the ID of that counter buffer will be returned in counter_id.
+ // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
+ // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
+ // only return true if OpSource was reported HLSL.
+ // To rely on this functionality, ensure that the SPIR-V module is not stripped.
+ bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const;
+
+ // Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
+ const SmallVector<spv::Capability> &get_declared_capabilities() const;
+
+ // Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
+ const SmallVector<std::string> &get_declared_extensions() const;
+
+ // When declaring buffer blocks in GLSL, the name declared in the GLSL source
+ // might not be the same as the name declared in the SPIR-V module due to naming conflicts.
+ // In this case, SPIRV-Cross needs to find a fallback-name, and it might only
+ // be possible to know this name after compiling to GLSL.
+ // This is particularly important for HLSL input and UAVs which tends to reuse the same block type
+ // for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself
+ // because it might be unique. Instead, you can use this interface to check after compilation which
+ // name was actually used if your input SPIR-V tends to have this problem.
+ // For other names like remapped names for variables, etc, it's generally enough to query the name of the variables
+ // after compiling, block names are an exception to this rule.
+ // ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type.
+ //
+ // This also applies to HLSL cbuffers.
+ std::string get_remapped_declared_block_name(VariableID id) const;
+
+ // For buffer block variables, get the decorations for that variable.
+ // Sometimes, decorations for buffer blocks are found in member decorations instead
+ // of direct decorations on the variable itself.
+ // The most common use here is to check if a buffer is readonly or writeonly.
+ Bitset get_buffer_block_flags(VariableID id) const;
+
+ // Returns whether the position output is invariant
+ bool is_position_invariant() const
+ {
+ return position_invariant;
+ }
+
+protected:
+ const uint32_t *stream(const Instruction &instr) const
+ {
+ // If we're not going to use any arguments, just return nullptr.
+ // We want to avoid case where we return an out of range pointer
+ // that trips debug assertions on some platforms.
+ if (!instr.length)
+ return nullptr;
+
+ if (instr.is_embedded())
+ {
+ auto &embedded = static_cast<const EmbeddedInstruction &>(instr);
+ assert(embedded.ops.size() == instr.length);
+ return embedded.ops.data();
+ }
+ else
+ {
+ if (instr.offset + instr.length > ir.spirv.size())
+ SPIRV_CROSS_THROW("Compiler::stream() out of range.");
+ return &ir.spirv[instr.offset];
+ }
+ }
+
+ uint32_t *stream_mutable(const Instruction &instr) const
+ {
+ return const_cast<uint32_t *>(stream(instr));
+ }
+
+ ParsedIR ir;
+ // Marks variables which have global scope and variables which can alias with other variables
+ // (SSBO, image load store, etc)
+ SmallVector<uint32_t> global_variables;
+ SmallVector<uint32_t> aliased_variables;
+
+ SPIRFunction *current_function = nullptr;
+ SPIRBlock *current_block = nullptr;
+ uint32_t current_loop_level = 0;
+ std::unordered_set<VariableID> active_interface_variables;
+ bool check_active_interface_variables = false;
+
+ void add_loop_level();
+
+ void set_initializers(SPIRExpression &e)
+ {
+ e.emitted_loop_level = current_loop_level;
+ }
+
+ template <typename T>
+ void set_initializers(const T &)
+ {
+ }
+
+ // If our IDs are out of range here as part of opcodes, throw instead of
+ // undefined behavior.
+ template <typename T, typename... P>
+ T &set(uint32_t id, P &&... args)
+ {
+ ir.add_typed_id(static_cast<Types>(T::type), id);
+ auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...);
+ var.self = id;
+ set_initializers(var);
+ return var;
+ }
+
+ template <typename T>
+ T &get(uint32_t id)
+ {
+ return variant_get<T>(ir.ids[id]);
+ }
+
+ template <typename T>
+ T *maybe_get(uint32_t id)
+ {
+ if (id >= ir.ids.size())
+ return nullptr;
+ else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
+ return &get<T>(id);
+ else
+ return nullptr;
+ }
+
+ template <typename T>
+ const T &get(uint32_t id) const
+ {
+ return variant_get<T>(ir.ids[id]);
+ }
+
+ template <typename T>
+ const T *maybe_get(uint32_t id) const
+ {
+ if (id >= ir.ids.size())
+ return nullptr;
+ else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
+ return &get<T>(id);
+ else
+ return nullptr;
+ }
+
+ // Gets the id of SPIR-V type underlying the given type_id, which might be a pointer.
+ uint32_t get_pointee_type_id(uint32_t type_id) const;
+
+ // Gets the SPIR-V type underlying the given type, which might be a pointer.
+ const SPIRType &get_pointee_type(const SPIRType &type) const;
+
+ // Gets the SPIR-V type underlying the given type_id, which might be a pointer.
+ const SPIRType &get_pointee_type(uint32_t type_id) const;
+
+ // Gets the ID of the SPIR-V type underlying a variable.
+ uint32_t get_variable_data_type_id(const SPIRVariable &var) const;
+
+ // Gets the SPIR-V type underlying a variable.
+ SPIRType &get_variable_data_type(const SPIRVariable &var);
+
+ // Gets the SPIR-V type underlying a variable.
+ const SPIRType &get_variable_data_type(const SPIRVariable &var) const;
+
+ // Gets the SPIR-V element type underlying an array variable.
+ SPIRType &get_variable_element_type(const SPIRVariable &var);
+
+ // Gets the SPIR-V element type underlying an array variable.
+ const SPIRType &get_variable_element_type(const SPIRVariable &var) const;
+
+ // Sets the qualified member identifier for OpTypeStruct ID, member number "index".
+ void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name);
+ void set_qualified_name(uint32_t id, const std::string &name);
+
+ // Returns if the given type refers to a sampled image.
+ bool is_sampled_image_type(const SPIRType &type);
+
+ const SPIREntryPoint &get_entry_point() const;
+ SPIREntryPoint &get_entry_point();
+ static bool is_tessellation_shader(spv::ExecutionModel model);
+
+ virtual std::string to_name(uint32_t id, bool allow_alias = true) const;
+ bool is_builtin_variable(const SPIRVariable &var) const;
+ bool is_builtin_type(const SPIRType &type) const;
+ bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const;
+ bool is_immutable(uint32_t id) const;
+ bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const;
+ bool is_scalar(const SPIRType &type) const;
+ bool is_vector(const SPIRType &type) const;
+ bool is_matrix(const SPIRType &type) const;
+ bool is_array(const SPIRType &type) const;
+ bool is_pointer(const SPIRType &type) const;
+ bool is_physical_pointer(const SPIRType &type) const;
+ bool is_physical_pointer_to_buffer_block(const SPIRType &type) const;
+ static bool is_runtime_size_array(const SPIRType &type);
+ uint32_t expression_type_id(uint32_t id) const;
+ const SPIRType &expression_type(uint32_t id) const;
+ bool expression_is_lvalue(uint32_t id) const;
+ bool variable_storage_is_aliased(const SPIRVariable &var);
+ SPIRVariable *maybe_get_backing_variable(uint32_t chain);
+
+ void register_read(uint32_t expr, uint32_t chain, bool forwarded);
+ void register_write(uint32_t chain);
+
+ inline bool is_continue(uint32_t next) const
+ {
+ return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0;
+ }
+
+ inline bool is_single_block_loop(uint32_t next) const
+ {
+ auto &block = get<SPIRBlock>(next);
+ return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next);
+ }
+
+ inline bool is_break(uint32_t next) const
+ {
+ return (ir.block_meta[next] &
+ (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
+ }
+
+ inline bool is_loop_break(uint32_t next) const
+ {
+ return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0;
+ }
+
+ inline bool is_conditional(uint32_t next) const
+ {
+ return (ir.block_meta[next] &
+ (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
+ }
+
+ // Dependency tracking for temporaries read from variables.
+ void flush_dependees(SPIRVariable &var);
+ void flush_all_active_variables();
+ void flush_control_dependent_expressions(uint32_t block);
+ void flush_all_atomic_capable_variables();
+ void flush_all_aliased_variables();
+ void register_global_read_dependencies(const SPIRBlock &func, uint32_t id);
+ void register_global_read_dependencies(const SPIRFunction &func, uint32_t id);
+ std::unordered_set<uint32_t> invalid_expressions;
+
+ void update_name_cache(std::unordered_set<std::string> &cache, std::string &name);
+
+ // A variant which takes two sets of names. The secondary is only used to verify there are no collisions,
+ // but the set is not updated when we have found a new name.
+ // Used primarily when adding block interface names.
+ void update_name_cache(std::unordered_set<std::string> &cache_primary,
+ const std::unordered_set<std::string> &cache_secondary, std::string &name);
+
+ bool function_is_pure(const SPIRFunction &func);
+ bool block_is_pure(const SPIRBlock &block);
+ bool function_is_control_dependent(const SPIRFunction &func);
+ bool block_is_control_dependent(const SPIRBlock &block);
+
+ bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const;
+ bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const;
+ bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const;
+ SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const;
+
+ void force_recompile();
+ void force_recompile_guarantee_forward_progress();
+ void clear_force_recompile();
+ bool is_forcing_recompilation() const;
+ bool is_force_recompile = false;
+ bool is_force_recompile_forward_progress = false;
+
+ bool block_is_noop(const SPIRBlock &block) const;
+ bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const;
+
+ bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const;
+ void inherit_expression_dependencies(uint32_t dst, uint32_t source);
+ void add_implied_read_expression(SPIRExpression &e, uint32_t source);
+ void add_implied_read_expression(SPIRAccessChain &e, uint32_t source);
+ void add_active_interface_variable(uint32_t var_id);
+
+ // For proper multiple entry point support, allow querying if an Input or Output
+ // variable is part of that entry points interface.
+ bool interface_variable_exists_in_entry_point(uint32_t id) const;
+
+ SmallVector<CombinedImageSampler> combined_image_samplers;
+
+ void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const
+ {
+ if (variable_remap_callback)
+ variable_remap_callback(type, var_name, type_name);
+ }
+
+ void set_ir(const ParsedIR &parsed);
+ void set_ir(ParsedIR &&parsed);
+ void parse_fixup();
+
+ // Used internally to implement various traversals for queries.
+ struct OpcodeHandler
+ {
+ virtual ~OpcodeHandler() = default;
+
+ // Return true if traversal should continue.
+ // If false, traversal will end immediately.
+ virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0;
+ virtual bool handle_terminator(const SPIRBlock &)
+ {
+ return true;
+ }
+
+ virtual bool follow_function_call(const SPIRFunction &)
+ {
+ return true;
+ }
+
+ virtual void set_current_block(const SPIRBlock &)
+ {
+ }
+
+ // Called after returning from a function or when entering a block,
+ // can be called multiple times per block,
+ // while set_current_block is only called on block entry.
+ virtual void rearm_current_block(const SPIRBlock &)
+ {
+ }
+
+ virtual bool begin_function_scope(const uint32_t *, uint32_t)
+ {
+ return true;
+ }
+
+ virtual bool end_function_scope(const uint32_t *, uint32_t)
+ {
+ return true;
+ }
+ };
+
+ struct BufferAccessHandler : OpcodeHandler
+ {
+ BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_)
+ : compiler(compiler_)
+ , ranges(ranges_)
+ , id(id_)
+ {
+ }
+
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+
+ const Compiler &compiler;
+ SmallVector<BufferRange> &ranges;
+ uint32_t id;
+
+ std::unordered_set<uint32_t> seen;
+ };
+
+ struct InterfaceVariableAccessHandler : OpcodeHandler
+ {
+ InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_)
+ : compiler(compiler_)
+ , variables(variables_)
+ {
+ }
+
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+
+ const Compiler &compiler;
+ std::unordered_set<VariableID> &variables;
+ };
+
+ struct CombinedImageSamplerHandler : OpcodeHandler
+ {
+ CombinedImageSamplerHandler(Compiler &compiler_)
+ : compiler(compiler_)
+ {
+ }
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+ bool begin_function_scope(const uint32_t *args, uint32_t length) override;
+ bool end_function_scope(const uint32_t *args, uint32_t length) override;
+
+ Compiler &compiler;
+
+ // Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to.
+ std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping;
+ std::stack<SPIRFunction *> functions;
+
+ uint32_t remap_parameter(uint32_t id);
+ void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length);
+ void pop_remap_parameters();
+ void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id,
+ VariableID sampler_id, bool depth);
+ };
+
+ struct DummySamplerForCombinedImageHandler : OpcodeHandler
+ {
+ DummySamplerForCombinedImageHandler(Compiler &compiler_)
+ : compiler(compiler_)
+ {
+ }
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+
+ Compiler &compiler;
+ bool need_dummy_sampler = false;
+ };
+
+ struct ActiveBuiltinHandler : OpcodeHandler
+ {
+ ActiveBuiltinHandler(Compiler &compiler_)
+ : compiler(compiler_)
+ {
+ }
+
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+ Compiler &compiler;
+
+ void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags);
+ void add_if_builtin(uint32_t id);
+ void add_if_builtin_or_block(uint32_t id);
+ void add_if_builtin(uint32_t id, bool allow_blocks);
+ };
+
+ bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const;
+ bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const;
+ // This must be an ordered data structure so we always pick the same type aliases.
+ SmallVector<uint32_t> global_struct_cache;
+
+ ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const;
+
+ VariableTypeRemapCallback variable_remap_callback;
+
+ bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type);
+
+ std::unordered_set<uint32_t> forced_temporaries;
+ std::unordered_set<uint32_t> forwarded_temporaries;
+ std::unordered_set<uint32_t> suppressed_usage_tracking;
+ std::unordered_set<uint32_t> hoisted_temporaries;
+ std::unordered_set<uint32_t> forced_invariant_temporaries;
+
+ Bitset active_input_builtins;
+ Bitset active_output_builtins;
+ uint32_t clip_distance_count = 0;
+ uint32_t cull_distance_count = 0;
+ bool position_invariant = false;
+
+ void analyze_parameter_preservation(
+ SPIRFunction &entry, const CFG &cfg,
+ const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks,
+ const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks);
+
+ // If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler.
+ // SPIR-V does not support this distinction, so we must keep track of this information outside the type system.
+ // There might be unrelated IDs found in this set which do not correspond to actual variables.
+ // This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs.
+ // Similar is implemented for images, as well as if subpass inputs are needed.
+ std::unordered_set<uint32_t> comparison_ids;
+ bool need_subpass_input = false;
+ bool need_subpass_input_ms = false;
+
+ // In certain backends, we will need to use a dummy sampler to be able to emit code.
+ // GLSL does not support texelFetch on texture2D objects, but SPIR-V does,
+ // so we need to workaround by having the application inject a dummy sampler.
+ uint32_t dummy_sampler_id = 0;
+
+ void analyze_image_and_sampler_usage();
+
+ struct CombinedImageSamplerDrefHandler : OpcodeHandler
+ {
+ CombinedImageSamplerDrefHandler(Compiler &compiler_)
+ : compiler(compiler_)
+ {
+ }
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+
+ Compiler &compiler;
+ std::unordered_set<uint32_t> dref_combined_samplers;
+ };
+
+ struct CombinedImageSamplerUsageHandler : OpcodeHandler
+ {
+ CombinedImageSamplerUsageHandler(Compiler &compiler_,
+ const std::unordered_set<uint32_t> &dref_combined_samplers_)
+ : compiler(compiler_)
+ , dref_combined_samplers(dref_combined_samplers_)
+ {
+ }
+
+ bool begin_function_scope(const uint32_t *args, uint32_t length) override;
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+ Compiler &compiler;
+ const std::unordered_set<uint32_t> &dref_combined_samplers;
+
+ std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy;
+ std::unordered_set<uint32_t> comparison_ids;
+
+ void add_hierarchy_to_comparison_ids(uint32_t ids);
+ bool need_subpass_input = false;
+ bool need_subpass_input_ms = false;
+ void add_dependency(uint32_t dst, uint32_t src);
+ };
+
+ void build_function_control_flow_graphs_and_analyze();
+ std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
+ const CFG &get_cfg_for_current_function() const;
+ const CFG &get_cfg_for_function(uint32_t id) const;
+
+ struct CFGBuilder : OpcodeHandler
+ {
+ explicit CFGBuilder(Compiler &compiler_);
+
+ bool follow_function_call(const SPIRFunction &func) override;
+ bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
+ Compiler &compiler;
+ std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
+ };
+
+ struct AnalyzeVariableScopeAccessHandler : OpcodeHandler
+ {
+ AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_);
+
+ bool follow_function_call(const SPIRFunction &) override;
+ void set_current_block(const SPIRBlock &block) override;
+
+ void notify_variable_access(uint32_t id, uint32_t block);
+ bool id_is_phi_variable(uint32_t id) const;
+ bool id_is_potential_temporary(uint32_t id) const;
+ bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
+ bool handle_terminator(const SPIRBlock &block) override;
+
+ Compiler &compiler;
+ SPIRFunction &entry;
+ std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block;
+ std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block;
+ std::unordered_map<uint32_t, uint32_t> result_id_to_type;
+ std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block;
+ std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block;
+ std::unordered_set<uint32_t> access_chain_expressions;
+ // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
+ // This is also relevant when forwarding opaque objects since we cannot lower these to temporaries.
+ std::unordered_map<uint32_t, std::unordered_set<uint32_t>> rvalue_forward_children;
+ const SPIRBlock *current_block = nullptr;
+ };
+
+ struct StaticExpressionAccessHandler : OpcodeHandler
+ {
+ StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_);
+ bool follow_function_call(const SPIRFunction &) override;
+ bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
+
+ Compiler &compiler;
+ uint32_t variable_id;
+ uint32_t static_expression = 0;
+ uint32_t write_count = 0;
+ };
+
+ struct PhysicalBlockMeta
+ {
+ uint32_t alignment = 0;
+ };
+
+ struct PhysicalStorageBufferPointerHandler : OpcodeHandler
+ {
+ explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_);
+ bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
+ Compiler &compiler;
+
+ std::unordered_set<uint32_t> non_block_types;
+ std::unordered_map<uint32_t, PhysicalBlockMeta> physical_block_type_meta;
+ std::unordered_map<uint32_t, PhysicalBlockMeta *> access_chain_to_physical_block;
+
+ void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length);
+ PhysicalBlockMeta *find_block_meta(uint32_t id) const;
+ bool type_is_bda_block_entry(uint32_t type_id) const;
+ void setup_meta_chain(uint32_t type_id, uint32_t var_id);
+ uint32_t get_minimum_scalar_alignment(const SPIRType &type) const;
+ void analyze_non_block_types_from_block(const SPIRType &type);
+ uint32_t get_base_non_block_type_id(uint32_t type_id) const;
+ };
+ void analyze_non_block_pointer_types();
+ SmallVector<uint32_t> physical_storage_non_block_pointer_types;
+ std::unordered_map<uint32_t, PhysicalBlockMeta> physical_storage_type_to_alignment;
+
+ void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler);
+ void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler,
+ bool single_function);
+ bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var);
+
+ // Finds all resources that are written to from inside the critical section, if present.
+ // The critical section is delimited by OpBeginInvocationInterlockEXT and
+ // OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written
+ // while inside the critical section must be placed in a raster order group.
+ struct InterlockedResourceAccessHandler : OpcodeHandler
+ {
+ InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id)
+ : compiler(compiler_)
+ {
+ call_stack.push_back(entry_point_id);
+ }
+
+ bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
+ bool begin_function_scope(const uint32_t *args, uint32_t length) override;
+ bool end_function_scope(const uint32_t *args, uint32_t length) override;
+
+ Compiler &compiler;
+ bool in_crit_sec = false;
+
+ uint32_t interlock_function_id = 0;
+ bool split_function_case = false;
+ bool control_flow_interlock = false;
+ bool use_critical_section = false;
+ bool call_stack_is_interlocked = false;
+ SmallVector<uint32_t> call_stack;
+
+ void access_potential_resource(uint32_t id);
+ };
+
+ struct InterlockedResourceAccessPrepassHandler : OpcodeHandler
+ {
+ InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id)
+ : compiler(compiler_)
+ {
+ call_stack.push_back(entry_point_id);
+ }
+
+ void rearm_current_block(const SPIRBlock &block) override;
+ bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
+ bool begin_function_scope(const uint32_t *args, uint32_t length) override;
+ bool end_function_scope(const uint32_t *args, uint32_t length) override;
+
+ Compiler &compiler;
+ uint32_t interlock_function_id = 0;
+ uint32_t current_block_id = 0;
+ bool split_function_case = false;
+ bool control_flow_interlock = false;
+ SmallVector<uint32_t> call_stack;
+ };
+
+ void analyze_interlocked_resource_usage();
+ // The set of all resources written while inside the critical section, if present.
+ std::unordered_set<uint32_t> interlocked_resources;
+ bool interlocked_is_complex = false;
+
+ void make_constant_null(uint32_t id, uint32_t type);
+
+ std::unordered_map<uint32_t, std::string> declared_block_names;
+
+ bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args,
+ uint32_t length);
+
+ Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const;
+ static bool is_desktop_only_format(spv::ImageFormat format);
+
+ bool is_depth_image(const SPIRType &type, uint32_t id) const;
+
+ void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0);
+ uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
+ bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
+ void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration);
+
+ void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
+ uint32_t value = 0);
+ uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
+ bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
+ void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration);
+
+ bool check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids);
+ bool type_contains_recursion(const SPIRType &type);
+ bool type_is_array_of_pointers(const SPIRType &type) const;
+ bool type_is_block_like(const SPIRType &type) const;
+ bool type_is_top_level_block(const SPIRType &type) const;
+ bool type_is_opaque_value(const SPIRType &type) const;
+
+ bool reflection_ssbo_instance_name_is_significant() const;
+ std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const;
+
+ bool flush_phi_required(BlockID from, BlockID to) const;
+
+ uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
+ uint32_t evaluate_constant_u32(uint32_t id) const;
+
+ bool is_vertex_like_shader() const;
+
+ // Get the correct case list for the OpSwitch, since it can be either a
+ // 32 bit wide condition or a 64 bit, but the type is not embedded in the
+ // instruction itself.
+ const SmallVector<SPIRBlock::Case> &get_case_list(const SPIRBlock &block) const;
+
+private:
+ // Used only to implement the old deprecated get_entry_point() interface.
+ const SPIREntryPoint &get_first_entry_point(const std::string &name) const;
+ SPIREntryPoint &get_first_entry_point(const std::string &name);
+};
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_cross_containers.hpp b/thirdparty/spirv-cross/spirv_cross_containers.hpp
new file mode 100644
index 0000000000..c496cb75be
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross_containers.hpp
@@ -0,0 +1,756 @@
+/*
+ * Copyright 2019-2021 Hans-Kristian Arntzen
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_CONTAINERS_HPP
+#define SPIRV_CROSS_CONTAINERS_HPP
+
+#include "spirv_cross_error_handling.hpp"
+#include <algorithm>
+#include <exception>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <stack>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <type_traits>
+#include <unordered_map>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+
+#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
+#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
+#else
+#define SPIRV_CROSS_NAMESPACE spirv_cross
+#endif
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+#ifndef SPIRV_CROSS_FORCE_STL_TYPES
+// std::aligned_storage does not support size == 0, so roll our own.
+template <typename T, size_t N>
+class AlignedBuffer
+{
+public:
+ T *data()
+ {
+#if defined(_MSC_VER) && _MSC_VER < 1900
+ // MSVC 2013 workarounds, sigh ...
+ // Only use this workaround on MSVC 2013 due to some confusion around default initialized unions.
+ // Spec seems to suggest the memory will be zero-initialized, which is *not* what we want.
+ return reinterpret_cast<T *>(u.aligned_char);
+#else
+ return reinterpret_cast<T *>(aligned_char);
+#endif
+ }
+
+private:
+#if defined(_MSC_VER) && _MSC_VER < 1900
+ // MSVC 2013 workarounds, sigh ...
+ union
+ {
+ char aligned_char[sizeof(T) * N];
+ double dummy_aligner;
+ } u;
+#else
+ alignas(T) char aligned_char[sizeof(T) * N];
+#endif
+};
+
+template <typename T>
+class AlignedBuffer<T, 0>
+{
+public:
+ T *data()
+ {
+ return nullptr;
+ }
+};
+
+// An immutable version of SmallVector which erases type information about storage.
+template <typename T>
+class VectorView
+{
+public:
+ T &operator[](size_t i) SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr[i];
+ }
+
+ const T &operator[](size_t i) const SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr[i];
+ }
+
+ bool empty() const SPIRV_CROSS_NOEXCEPT
+ {
+ return buffer_size == 0;
+ }
+
+ size_t size() const SPIRV_CROSS_NOEXCEPT
+ {
+ return buffer_size;
+ }
+
+ T *data() SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr;
+ }
+
+ const T *data() const SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr;
+ }
+
+ T *begin() SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr;
+ }
+
+ T *end() SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr + buffer_size;
+ }
+
+ const T *begin() const SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr;
+ }
+
+ const T *end() const SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr + buffer_size;
+ }
+
+ T &front() SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr[0];
+ }
+
+ const T &front() const SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr[0];
+ }
+
+ T &back() SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr[buffer_size - 1];
+ }
+
+ const T &back() const SPIRV_CROSS_NOEXCEPT
+ {
+ return ptr[buffer_size - 1];
+ }
+
+ // Makes it easier to consume SmallVector.
+#if defined(_MSC_VER) && _MSC_VER < 1900
+ explicit operator std::vector<T>() const
+ {
+ // Another MSVC 2013 workaround. It does not understand lvalue/rvalue qualified operations.
+ return std::vector<T>(ptr, ptr + buffer_size);
+ }
+#else
+ // Makes it easier to consume SmallVector.
+ explicit operator std::vector<T>() const &
+ {
+ return std::vector<T>(ptr, ptr + buffer_size);
+ }
+
+ // If we are converting as an r-value, we can pilfer our elements.
+ explicit operator std::vector<T>() &&
+ {
+ return std::vector<T>(std::make_move_iterator(ptr), std::make_move_iterator(ptr + buffer_size));
+ }
+#endif
+
+ // Avoid sliced copies. Base class should only be read as a reference.
+ VectorView(const VectorView &) = delete;
+ void operator=(const VectorView &) = delete;
+
+protected:
+ VectorView() = default;
+ T *ptr = nullptr;
+ size_t buffer_size = 0;
+};
+
+// Simple vector which supports up to N elements inline, without malloc/free.
+// We use a lot of throwaway vectors all over the place which triggers allocations.
+// This class only implements the subset of std::vector we need in SPIRV-Cross.
+// It is *NOT* a drop-in replacement in general projects.
+template <typename T, size_t N = 8>
+class SmallVector : public VectorView<T>
+{
+public:
+ SmallVector() SPIRV_CROSS_NOEXCEPT
+ {
+ this->ptr = stack_storage.data();
+ buffer_capacity = N;
+ }
+
+ template <typename U>
+ SmallVector(const U *arg_list_begin, const U *arg_list_end) SPIRV_CROSS_NOEXCEPT : SmallVector()
+ {
+ auto count = size_t(arg_list_end - arg_list_begin);
+ reserve(count);
+ for (size_t i = 0; i < count; i++, arg_list_begin++)
+ new (&this->ptr[i]) T(*arg_list_begin);
+ this->buffer_size = count;
+ }
+
+ template <typename U>
+ SmallVector(std::initializer_list<U> init) SPIRV_CROSS_NOEXCEPT : SmallVector(init.begin(), init.end())
+ {
+ }
+
+ template <typename U, size_t M>
+ explicit SmallVector(const U (&init)[M]) SPIRV_CROSS_NOEXCEPT : SmallVector(init, init + M)
+ {
+ }
+
+ SmallVector(SmallVector &&other) SPIRV_CROSS_NOEXCEPT : SmallVector()
+ {
+ *this = std::move(other);
+ }
+
+ SmallVector &operator=(SmallVector &&other) SPIRV_CROSS_NOEXCEPT
+ {
+ clear();
+ if (other.ptr != other.stack_storage.data())
+ {
+ // Pilfer allocated pointer.
+ if (this->ptr != stack_storage.data())
+ free(this->ptr);
+ this->ptr = other.ptr;
+ this->buffer_size = other.buffer_size;
+ buffer_capacity = other.buffer_capacity;
+ other.ptr = nullptr;
+ other.buffer_size = 0;
+ other.buffer_capacity = 0;
+ }
+ else
+ {
+ // Need to move the stack contents individually.
+ reserve(other.buffer_size);
+ for (size_t i = 0; i < other.buffer_size; i++)
+ {
+ new (&this->ptr[i]) T(std::move(other.ptr[i]));
+ other.ptr[i].~T();
+ }
+ this->buffer_size = other.buffer_size;
+ other.buffer_size = 0;
+ }
+ return *this;
+ }
+
+ SmallVector(const SmallVector &other) SPIRV_CROSS_NOEXCEPT : SmallVector()
+ {
+ *this = other;
+ }
+
+ SmallVector &operator=(const SmallVector &other) SPIRV_CROSS_NOEXCEPT
+ {
+ if (this == &other)
+ return *this;
+
+ clear();
+ reserve(other.buffer_size);
+ for (size_t i = 0; i < other.buffer_size; i++)
+ new (&this->ptr[i]) T(other.ptr[i]);
+ this->buffer_size = other.buffer_size;
+ return *this;
+ }
+
+ explicit SmallVector(size_t count) SPIRV_CROSS_NOEXCEPT : SmallVector()
+ {
+ resize(count);
+ }
+
+ ~SmallVector()
+ {
+ clear();
+ if (this->ptr != stack_storage.data())
+ free(this->ptr);
+ }
+
+ void clear() SPIRV_CROSS_NOEXCEPT
+ {
+ for (size_t i = 0; i < this->buffer_size; i++)
+ this->ptr[i].~T();
+ this->buffer_size = 0;
+ }
+
+ void push_back(const T &t) SPIRV_CROSS_NOEXCEPT
+ {
+ reserve(this->buffer_size + 1);
+ new (&this->ptr[this->buffer_size]) T(t);
+ this->buffer_size++;
+ }
+
+ void push_back(T &&t) SPIRV_CROSS_NOEXCEPT
+ {
+ reserve(this->buffer_size + 1);
+ new (&this->ptr[this->buffer_size]) T(std::move(t));
+ this->buffer_size++;
+ }
+
+ void pop_back() SPIRV_CROSS_NOEXCEPT
+ {
+ // Work around false positive warning on GCC 8.3.
+ // Calling pop_back on empty vector is undefined.
+ if (!this->empty())
+ resize(this->buffer_size - 1);
+ }
+
+ template <typename... Ts>
+ void emplace_back(Ts &&... ts) SPIRV_CROSS_NOEXCEPT
+ {
+ reserve(this->buffer_size + 1);
+ new (&this->ptr[this->buffer_size]) T(std::forward<Ts>(ts)...);
+ this->buffer_size++;
+ }
+
+ void reserve(size_t count) SPIRV_CROSS_NOEXCEPT
+ {
+ if ((count > (std::numeric_limits<size_t>::max)() / sizeof(T)) ||
+ (count > (std::numeric_limits<size_t>::max)() / 2))
+ {
+ // Only way this should ever happen is with garbage input, terminate.
+ std::terminate();
+ }
+
+ if (count > buffer_capacity)
+ {
+ size_t target_capacity = buffer_capacity;
+ if (target_capacity == 0)
+ target_capacity = 1;
+
+ // Weird parens works around macro issues on Windows if NOMINMAX is not used.
+ target_capacity = (std::max)(target_capacity, N);
+
+ // Need to ensure there is a POT value of target capacity which is larger than count,
+ // otherwise this will overflow.
+ while (target_capacity < count)
+ target_capacity <<= 1u;
+
+ T *new_buffer =
+ target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();
+
+ // If we actually fail this malloc, we are hosed anyways, there is no reason to attempt recovery.
+ if (!new_buffer)
+ std::terminate();
+
+ // In case for some reason two allocations both come from same stack.
+ if (new_buffer != this->ptr)
+ {
+ // We don't deal with types which can throw in move constructor.
+ for (size_t i = 0; i < this->buffer_size; i++)
+ {
+ new (&new_buffer[i]) T(std::move(this->ptr[i]));
+ this->ptr[i].~T();
+ }
+ }
+
+ if (this->ptr != stack_storage.data())
+ free(this->ptr);
+ this->ptr = new_buffer;
+ buffer_capacity = target_capacity;
+ }
+ }
+
+ void insert(T *itr, const T *insert_begin, const T *insert_end) SPIRV_CROSS_NOEXCEPT
+ {
+ auto count = size_t(insert_end - insert_begin);
+ if (itr == this->end())
+ {
+ reserve(this->buffer_size + count);
+ for (size_t i = 0; i < count; i++, insert_begin++)
+ new (&this->ptr[this->buffer_size + i]) T(*insert_begin);
+ this->buffer_size += count;
+ }
+ else
+ {
+ if (this->buffer_size + count > buffer_capacity)
+ {
+ auto target_capacity = this->buffer_size + count;
+ if (target_capacity == 0)
+ target_capacity = 1;
+ if (target_capacity < N)
+ target_capacity = N;
+
+ while (target_capacity < count)
+ target_capacity <<= 1u;
+
+ // Need to allocate new buffer. Move everything to a new buffer.
+ T *new_buffer =
+ target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();
+
+ // If we actually fail this malloc, we are hosed anyways, there is no reason to attempt recovery.
+ if (!new_buffer)
+ std::terminate();
+
+ // First, move elements from source buffer to new buffer.
+ // We don't deal with types which can throw in move constructor.
+ auto *target_itr = new_buffer;
+ auto *original_source_itr = this->begin();
+
+ if (new_buffer != this->ptr)
+ {
+ while (original_source_itr != itr)
+ {
+ new (target_itr) T(std::move(*original_source_itr));
+ original_source_itr->~T();
+ ++original_source_itr;
+ ++target_itr;
+ }
+ }
+
+ // Copy-construct new elements.
+ for (auto *source_itr = insert_begin; source_itr != insert_end; ++source_itr, ++target_itr)
+ new (target_itr) T(*source_itr);
+
+ // Move over the other half.
+ if (new_buffer != this->ptr || insert_begin != insert_end)
+ {
+ while (original_source_itr != this->end())
+ {
+ new (target_itr) T(std::move(*original_source_itr));
+ original_source_itr->~T();
+ ++original_source_itr;
+ ++target_itr;
+ }
+ }
+
+ if (this->ptr != stack_storage.data())
+ free(this->ptr);
+ this->ptr = new_buffer;
+ buffer_capacity = target_capacity;
+ }
+ else
+ {
+ // Move in place, need to be a bit careful about which elements are constructed and which are not.
+ // Move the end and construct the new elements.
+ auto *target_itr = this->end() + count;
+ auto *source_itr = this->end();
+ while (target_itr != this->end() && source_itr != itr)
+ {
+ --target_itr;
+ --source_itr;
+ new (target_itr) T(std::move(*source_itr));
+ }
+
+ // For already constructed elements we can move-assign.
+ std::move_backward(itr, source_itr, target_itr);
+
+ // For the inserts which go to already constructed elements, we can do a plain copy.
+ while (itr != this->end() && insert_begin != insert_end)
+ *itr++ = *insert_begin++;
+
+ // For inserts into newly allocated memory, we must copy-construct instead.
+ while (insert_begin != insert_end)
+ {
+ new (itr) T(*insert_begin);
+ ++itr;
+ ++insert_begin;
+ }
+ }
+
+ this->buffer_size += count;
+ }
+ }
+
+ void insert(T *itr, const T &value) SPIRV_CROSS_NOEXCEPT
+ {
+ insert(itr, &value, &value + 1);
+ }
+
+ T *erase(T *itr) SPIRV_CROSS_NOEXCEPT
+ {
+ std::move(itr + 1, this->end(), itr);
+ this->ptr[--this->buffer_size].~T();
+ return itr;
+ }
+
+ void erase(T *start_erase, T *end_erase) SPIRV_CROSS_NOEXCEPT
+ {
+ if (end_erase == this->end())
+ {
+ resize(size_t(start_erase - this->begin()));
+ }
+ else
+ {
+ auto new_size = this->buffer_size - (end_erase - start_erase);
+ std::move(end_erase, this->end(), start_erase);
+ resize(new_size);
+ }
+ }
+
+ void resize(size_t new_size) SPIRV_CROSS_NOEXCEPT
+ {
+ if (new_size < this->buffer_size)
+ {
+ for (size_t i = new_size; i < this->buffer_size; i++)
+ this->ptr[i].~T();
+ }
+ else if (new_size > this->buffer_size)
+ {
+ reserve(new_size);
+ for (size_t i = this->buffer_size; i < new_size; i++)
+ new (&this->ptr[i]) T();
+ }
+
+ this->buffer_size = new_size;
+ }
+
+private:
+ size_t buffer_capacity = 0;
+ AlignedBuffer<T, N> stack_storage;
+};
+
+// A vector without stack storage.
+// Could also be a typedef-ed to std::vector,
+// but might as well use the one we have.
+template <typename T>
+using Vector = SmallVector<T, 0>;
+
+#else // SPIRV_CROSS_FORCE_STL_TYPES
+
+template <typename T, size_t N = 8>
+using SmallVector = std::vector<T>;
+template <typename T>
+using Vector = std::vector<T>;
+template <typename T>
+using VectorView = std::vector<T>;
+
+#endif // SPIRV_CROSS_FORCE_STL_TYPES
+
+// An object pool which we use for allocating IVariant-derived objects.
+// We know we are going to allocate a bunch of objects of each type,
+// so amortize the mallocs.
+class ObjectPoolBase
+{
+public:
+ virtual ~ObjectPoolBase() = default;
+ virtual void deallocate_opaque(void *ptr) = 0;
+};
+
+template <typename T>
+class ObjectPool : public ObjectPoolBase
+{
+public:
+ explicit ObjectPool(unsigned start_object_count_ = 16)
+ : start_object_count(start_object_count_)
+ {
+ }
+
+ template <typename... P>
+ T *allocate(P &&... p)
+ {
+ if (vacants.empty())
+ {
+ unsigned num_objects = start_object_count << memory.size();
+ T *ptr = static_cast<T *>(malloc(num_objects * sizeof(T)));
+ if (!ptr)
+ return nullptr;
+
+ vacants.reserve(num_objects);
+ for (unsigned i = 0; i < num_objects; i++)
+ vacants.push_back(&ptr[i]);
+
+ memory.emplace_back(ptr);
+ }
+
+ T *ptr = vacants.back();
+ vacants.pop_back();
+ new (ptr) T(std::forward<P>(p)...);
+ return ptr;
+ }
+
+ void deallocate(T *ptr)
+ {
+ ptr->~T();
+ vacants.push_back(ptr);
+ }
+
+ void deallocate_opaque(void *ptr) override
+ {
+ deallocate(static_cast<T *>(ptr));
+ }
+
+ void clear()
+ {
+ vacants.clear();
+ memory.clear();
+ }
+
+protected:
+ Vector<T *> vacants;
+
+ struct MallocDeleter
+ {
+ void operator()(T *ptr)
+ {
+ ::free(ptr);
+ }
+ };
+
+ SmallVector<std::unique_ptr<T, MallocDeleter>> memory;
+ unsigned start_object_count;
+};
+
+template <size_t StackSize = 4096, size_t BlockSize = 4096>
+class StringStream
+{
+public:
+ StringStream()
+ {
+ reset();
+ }
+
+ ~StringStream()
+ {
+ reset();
+ }
+
+ // Disable copies and moves. Makes it easier to implement, and we don't need it.
+ StringStream(const StringStream &) = delete;
+ void operator=(const StringStream &) = delete;
+
+ template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
+ StringStream &operator<<(const T &t)
+ {
+ auto s = std::to_string(t);
+ append(s.data(), s.size());
+ return *this;
+ }
+
+ // Only overload this to make float/double conversions ambiguous.
+ StringStream &operator<<(uint32_t v)
+ {
+ auto s = std::to_string(v);
+ append(s.data(), s.size());
+ return *this;
+ }
+
+ StringStream &operator<<(char c)
+ {
+ append(&c, 1);
+ return *this;
+ }
+
+ StringStream &operator<<(const std::string &s)
+ {
+ append(s.data(), s.size());
+ return *this;
+ }
+
+ StringStream &operator<<(const char *s)
+ {
+ append(s, strlen(s));
+ return *this;
+ }
+
+ template <size_t N>
+ StringStream &operator<<(const char (&s)[N])
+ {
+ append(s, strlen(s));
+ return *this;
+ }
+
+ std::string str() const
+ {
+ std::string ret;
+ size_t target_size = 0;
+ for (auto &saved : saved_buffers)
+ target_size += saved.offset;
+ target_size += current_buffer.offset;
+ ret.reserve(target_size);
+
+ for (auto &saved : saved_buffers)
+ ret.insert(ret.end(), saved.buffer, saved.buffer + saved.offset);
+ ret.insert(ret.end(), current_buffer.buffer, current_buffer.buffer + current_buffer.offset);
+ return ret;
+ }
+
+ void reset()
+ {
+ for (auto &saved : saved_buffers)
+ if (saved.buffer != stack_buffer)
+ free(saved.buffer);
+ if (current_buffer.buffer != stack_buffer)
+ free(current_buffer.buffer);
+
+ saved_buffers.clear();
+ current_buffer.buffer = stack_buffer;
+ current_buffer.offset = 0;
+ current_buffer.size = sizeof(stack_buffer);
+ }
+
+private:
+ struct Buffer
+ {
+ char *buffer = nullptr;
+ size_t offset = 0;
+ size_t size = 0;
+ };
+ Buffer current_buffer;
+ char stack_buffer[StackSize];
+ SmallVector<Buffer> saved_buffers;
+
+ void append(const char *s, size_t len)
+ {
+ size_t avail = current_buffer.size - current_buffer.offset;
+ if (avail < len)
+ {
+ if (avail > 0)
+ {
+ memcpy(current_buffer.buffer + current_buffer.offset, s, avail);
+ s += avail;
+ len -= avail;
+ current_buffer.offset += avail;
+ }
+
+ saved_buffers.push_back(current_buffer);
+ size_t target_size = len > BlockSize ? len : BlockSize;
+ current_buffer.buffer = static_cast<char *>(malloc(target_size));
+ if (!current_buffer.buffer)
+ SPIRV_CROSS_THROW("Out of memory.");
+
+ memcpy(current_buffer.buffer, s, len);
+ current_buffer.offset = len;
+ current_buffer.size = target_size;
+ }
+ else
+ {
+ memcpy(current_buffer.buffer + current_buffer.offset, s, len);
+ current_buffer.offset += len;
+ }
+ }
+};
+
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_cross_error_handling.hpp b/thirdparty/spirv-cross/spirv_cross_error_handling.hpp
new file mode 100644
index 0000000000..91e6cf4f86
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross_error_handling.hpp
@@ -0,0 +1,99 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_ERROR_HANDLING
+#define SPIRV_CROSS_ERROR_HANDLING
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string>
+#ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS
+#include <stdexcept>
+#endif
+
+#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
+#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
+#else
+#define SPIRV_CROSS_NAMESPACE spirv_cross
+#endif
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+#ifdef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS
+#if !defined(_MSC_VER) || defined(__clang__)
+[[noreturn]]
+#elif defined(_MSC_VER)
+__declspec(noreturn)
+#endif
+inline void
+report_and_abort(const std::string &msg)
+{
+#ifdef NDEBUG
+ (void)msg;
+#else
+ fprintf(stderr, "There was a compiler error: %s\n", msg.c_str());
+#endif
+ fflush(stderr);
+ abort();
+}
+
+#define SPIRV_CROSS_THROW(x) report_and_abort(x)
+#else
+class CompilerError : public std::runtime_error
+{
+public:
+ explicit CompilerError(const std::string &str)
+ : std::runtime_error(str)
+ {
+ }
+
+ explicit CompilerError(const char *str)
+ : std::runtime_error(str)
+ {
+ }
+};
+
+#define SPIRV_CROSS_THROW(x) throw CompilerError(x)
+#endif
+
+// MSVC 2013 does not have noexcept. We need this for Variant to get move constructor to work correctly
+// instead of copy constructor.
+// MSVC 2013 ignores that move constructors cannot throw in std::vector, so just don't define it.
+#if defined(_MSC_VER) && _MSC_VER < 1900
+#define SPIRV_CROSS_NOEXCEPT
+#else
+#define SPIRV_CROSS_NOEXCEPT noexcept
+#endif
+
+#if __cplusplus >= 201402l
+#define SPIRV_CROSS_DEPRECATED(reason) [[deprecated(reason)]]
+#elif defined(__GNUC__)
+#define SPIRV_CROSS_DEPRECATED(reason) __attribute__((deprecated))
+#elif defined(_MSC_VER)
+#define SPIRV_CROSS_DEPRECATED(reason) __declspec(deprecated(reason))
+#else
+#define SPIRV_CROSS_DEPRECATED(reason)
+#endif
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_cross_parsed_ir.cpp b/thirdparty/spirv-cross/spirv_cross_parsed_ir.cpp
new file mode 100644
index 0000000000..3072cd8abb
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross_parsed_ir.cpp
@@ -0,0 +1,1083 @@
+/*
+ * Copyright 2018-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_cross_parsed_ir.hpp"
+#include <algorithm>
+#include <assert.h>
+
+using namespace std;
+using namespace spv;
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+ParsedIR::ParsedIR()
+{
+ // If we move ParsedIR, we need to make sure the pointer stays fixed since the child Variant objects consume a pointer to this group,
+ // so need an extra pointer here.
+ pool_group.reset(new ObjectPoolGroup);
+
+ pool_group->pools[TypeType].reset(new ObjectPool<SPIRType>);
+ pool_group->pools[TypeVariable].reset(new ObjectPool<SPIRVariable>);
+ pool_group->pools[TypeConstant].reset(new ObjectPool<SPIRConstant>);
+ pool_group->pools[TypeFunction].reset(new ObjectPool<SPIRFunction>);
+ pool_group->pools[TypeFunctionPrototype].reset(new ObjectPool<SPIRFunctionPrototype>);
+ pool_group->pools[TypeBlock].reset(new ObjectPool<SPIRBlock>);
+ pool_group->pools[TypeExtension].reset(new ObjectPool<SPIRExtension>);
+ pool_group->pools[TypeExpression].reset(new ObjectPool<SPIRExpression>);
+ pool_group->pools[TypeConstantOp].reset(new ObjectPool<SPIRConstantOp>);
+ pool_group->pools[TypeCombinedImageSampler].reset(new ObjectPool<SPIRCombinedImageSampler>);
+ pool_group->pools[TypeAccessChain].reset(new ObjectPool<SPIRAccessChain>);
+ pool_group->pools[TypeUndef].reset(new ObjectPool<SPIRUndef>);
+ pool_group->pools[TypeString].reset(new ObjectPool<SPIRString>);
+}
+
+// Should have been default-implemented, but need this on MSVC 2013.
+ParsedIR::ParsedIR(ParsedIR &&other) SPIRV_CROSS_NOEXCEPT
+{
+ *this = std::move(other);
+}
+
+ParsedIR &ParsedIR::operator=(ParsedIR &&other) SPIRV_CROSS_NOEXCEPT
+{
+ if (this != &other)
+ {
+ pool_group = std::move(other.pool_group);
+ spirv = std::move(other.spirv);
+ meta = std::move(other.meta);
+ for (int i = 0; i < TypeCount; i++)
+ ids_for_type[i] = std::move(other.ids_for_type[i]);
+ ids_for_constant_undef_or_type = std::move(other.ids_for_constant_undef_or_type);
+ ids_for_constant_or_variable = std::move(other.ids_for_constant_or_variable);
+ declared_capabilities = std::move(other.declared_capabilities);
+ declared_extensions = std::move(other.declared_extensions);
+ block_meta = std::move(other.block_meta);
+ continue_block_to_loop_header = std::move(other.continue_block_to_loop_header);
+ entry_points = std::move(other.entry_points);
+ ids = std::move(other.ids);
+ addressing_model = other.addressing_model;
+ memory_model = other.memory_model;
+
+ default_entry_point = other.default_entry_point;
+ source = other.source;
+ loop_iteration_depth_hard = other.loop_iteration_depth_hard;
+ loop_iteration_depth_soft = other.loop_iteration_depth_soft;
+
+ meta_needing_name_fixup = std::move(other.meta_needing_name_fixup);
+ load_type_width = std::move(other.load_type_width);
+ }
+ return *this;
+}
+
+ParsedIR::ParsedIR(const ParsedIR &other)
+ : ParsedIR()
+{
+ *this = other;
+}
+
+ParsedIR &ParsedIR::operator=(const ParsedIR &other)
+{
+ if (this != &other)
+ {
+ spirv = other.spirv;
+ meta = other.meta;
+ for (int i = 0; i < TypeCount; i++)
+ ids_for_type[i] = other.ids_for_type[i];
+ ids_for_constant_undef_or_type = other.ids_for_constant_undef_or_type;
+ ids_for_constant_or_variable = other.ids_for_constant_or_variable;
+ declared_capabilities = other.declared_capabilities;
+ declared_extensions = other.declared_extensions;
+ block_meta = other.block_meta;
+ continue_block_to_loop_header = other.continue_block_to_loop_header;
+ entry_points = other.entry_points;
+ default_entry_point = other.default_entry_point;
+ source = other.source;
+ loop_iteration_depth_hard = other.loop_iteration_depth_hard;
+ loop_iteration_depth_soft = other.loop_iteration_depth_soft;
+ addressing_model = other.addressing_model;
+ memory_model = other.memory_model;
+
+
+ meta_needing_name_fixup = other.meta_needing_name_fixup;
+ load_type_width = other.load_type_width;
+
+ // Very deliberate copying of IDs. There is no default copy constructor, nor a simple default constructor.
+ // Construct object first so we have the correct allocator set-up, then we can copy object into our new pool group.
+ ids.clear();
+ ids.reserve(other.ids.size());
+ for (size_t i = 0; i < other.ids.size(); i++)
+ {
+ ids.emplace_back(pool_group.get());
+ ids.back() = other.ids[i];
+ }
+ }
+ return *this;
+}
+
+void ParsedIR::set_id_bounds(uint32_t bounds)
+{
+ ids.reserve(bounds);
+ while (ids.size() < bounds)
+ ids.emplace_back(pool_group.get());
+
+ block_meta.resize(bounds);
+}
+
+// Roll our own versions of these functions to avoid potential locale shenanigans.
+static bool is_alpha(char c)
+{
+ return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
+}
+
+static bool is_numeric(char c)
+{
+ return c >= '0' && c <= '9';
+}
+
+static bool is_alphanumeric(char c)
+{
+ return is_alpha(c) || is_numeric(c);
+}
+
+static bool is_valid_identifier(const string &name)
+{
+ if (name.empty())
+ return true;
+
+ if (is_numeric(name[0]))
+ return false;
+
+ for (auto c : name)
+ if (!is_alphanumeric(c) && c != '_')
+ return false;
+
+ bool saw_underscore = false;
+ // Two underscores in a row is not a valid identifier either.
+ // Technically reserved, but it's easier to treat it as invalid.
+ for (auto c : name)
+ {
+ bool is_underscore = c == '_';
+ if (is_underscore && saw_underscore)
+ return false;
+ saw_underscore = is_underscore;
+ }
+
+ return true;
+}
+
+static bool is_reserved_prefix(const string &name)
+{
+ // Generic reserved identifiers used by the implementation.
+ return name.compare(0, 3, "gl_", 3) == 0 ||
+ // Ignore this case for now, might rewrite internal code to always use spv prefix.
+ //name.compare(0, 11, "SPIRV_Cross", 11) == 0 ||
+ name.compare(0, 3, "spv", 3) == 0;
+}
+
+static bool is_reserved_identifier(const string &name, bool member, bool allow_reserved_prefixes)
+{
+ if (!allow_reserved_prefixes && is_reserved_prefix(name))
+ return true;
+
+ if (member)
+ {
+ // Reserved member identifiers come in one form:
+ // _m[0-9]+$.
+ if (name.size() < 3)
+ return false;
+
+ if (name.compare(0, 2, "_m", 2) != 0)
+ return false;
+
+ size_t index = 2;
+ while (index < name.size() && is_numeric(name[index]))
+ index++;
+
+ return index == name.size();
+ }
+ else
+ {
+ // Reserved non-member identifiers come in two forms:
+ // _[0-9]+$, used for temporaries which map directly to a SPIR-V ID.
+ // _[0-9]+_, used for auxillary temporaries which derived from a SPIR-V ID.
+ if (name.size() < 2)
+ return false;
+
+ if (name[0] != '_' || !is_numeric(name[1]))
+ return false;
+
+ size_t index = 2;
+ while (index < name.size() && is_numeric(name[index]))
+ index++;
+
+ return index == name.size() || (index < name.size() && name[index] == '_');
+ }
+}
+
+bool ParsedIR::is_globally_reserved_identifier(std::string &str, bool allow_reserved_prefixes)
+{
+ return is_reserved_identifier(str, false, allow_reserved_prefixes);
+}
+
+uint32_t ParsedIR::get_spirv_version() const
+{
+ return spirv[1];
+}
+
+static string make_unreserved_identifier(const string &name)
+{
+ if (is_reserved_prefix(name))
+ return "_RESERVED_IDENTIFIER_FIXUP_" + name;
+ else
+ return "_RESERVED_IDENTIFIER_FIXUP" + name;
+}
+
+void ParsedIR::sanitize_underscores(std::string &str)
+{
+ // Compact adjacent underscores to make it valid.
+ auto dst = str.begin();
+ auto src = dst;
+ bool saw_underscore = false;
+ while (src != str.end())
+ {
+ bool is_underscore = *src == '_';
+ if (saw_underscore && is_underscore)
+ {
+ src++;
+ }
+ else
+ {
+ if (dst != src)
+ *dst = *src;
+ dst++;
+ src++;
+ saw_underscore = is_underscore;
+ }
+ }
+ str.erase(dst, str.end());
+}
+
+static string ensure_valid_identifier(const string &name)
+{
+ // Functions in glslangValidator are mangled with name(<mangled> stuff.
+ // Normally, we would never see '(' in any legal identifiers, so just strip them out.
+ auto str = name.substr(0, name.find('('));
+
+ if (str.empty())
+ return str;
+
+ if (is_numeric(str[0]))
+ str[0] = '_';
+
+ for (auto &c : str)
+ if (!is_alphanumeric(c) && c != '_')
+ c = '_';
+
+ ParsedIR::sanitize_underscores(str);
+ return str;
+}
+
+const string &ParsedIR::get_name(ID id) const
+{
+ auto *m = find_meta(id);
+ if (m)
+ return m->decoration.alias;
+ else
+ return empty_string;
+}
+
+const string &ParsedIR::get_member_name(TypeID id, uint32_t index) const
+{
+ auto *m = find_meta(id);
+ if (m)
+ {
+ if (index >= m->members.size())
+ return empty_string;
+ return m->members[index].alias;
+ }
+ else
+ return empty_string;
+}
+
+void ParsedIR::sanitize_identifier(std::string &name, bool member, bool allow_reserved_prefixes)
+{
+ if (!is_valid_identifier(name))
+ name = ensure_valid_identifier(name);
+ if (is_reserved_identifier(name, member, allow_reserved_prefixes))
+ name = make_unreserved_identifier(name);
+}
+
+void ParsedIR::fixup_reserved_names()
+{
+ for (uint32_t id : meta_needing_name_fixup)
+ {
+ // Don't rename remapped variables like 'gl_LastFragDepthARM'.
+ if (ids[id].get_type() == TypeVariable && get<SPIRVariable>(id).remapped_variable)
+ continue;
+
+ auto &m = meta[id];
+ sanitize_identifier(m.decoration.alias, false, false);
+ for (auto &memb : m.members)
+ sanitize_identifier(memb.alias, true, false);
+ }
+ meta_needing_name_fixup.clear();
+}
+
+void ParsedIR::set_name(ID id, const string &name)
+{
+ auto &m = meta[id];
+ m.decoration.alias = name;
+ if (!is_valid_identifier(name) || is_reserved_identifier(name, false, false))
+ meta_needing_name_fixup.insert(id);
+}
+
+void ParsedIR::set_member_name(TypeID id, uint32_t index, const string &name)
+{
+ auto &m = meta[id];
+ m.members.resize(max(m.members.size(), size_t(index) + 1));
+ m.members[index].alias = name;
+ if (!is_valid_identifier(name) || is_reserved_identifier(name, true, false))
+ meta_needing_name_fixup.insert(id);
+}
+
+void ParsedIR::set_decoration_string(ID id, Decoration decoration, const string &argument)
+{
+ auto &dec = meta[id].decoration;
+ dec.decoration_flags.set(decoration);
+
+ switch (decoration)
+ {
+ case DecorationHlslSemanticGOOGLE:
+ dec.hlsl_semantic = argument;
+ break;
+
+ case DecorationUserTypeGOOGLE:
+ dec.user_type = argument;
+ break;
+
+ default:
+ break;
+ }
+}
+
+void ParsedIR::set_decoration(ID id, Decoration decoration, uint32_t argument)
+{
+ auto &dec = meta[id].decoration;
+ dec.decoration_flags.set(decoration);
+
+ switch (decoration)
+ {
+ case DecorationBuiltIn:
+ dec.builtin = true;
+ dec.builtin_type = static_cast<BuiltIn>(argument);
+ break;
+
+ case DecorationLocation:
+ dec.location = argument;
+ break;
+
+ case DecorationComponent:
+ dec.component = argument;
+ break;
+
+ case DecorationOffset:
+ dec.offset = argument;
+ break;
+
+ case DecorationXfbBuffer:
+ dec.xfb_buffer = argument;
+ break;
+
+ case DecorationXfbStride:
+ dec.xfb_stride = argument;
+ break;
+
+ case DecorationStream:
+ dec.stream = argument;
+ break;
+
+ case DecorationArrayStride:
+ dec.array_stride = argument;
+ break;
+
+ case DecorationMatrixStride:
+ dec.matrix_stride = argument;
+ break;
+
+ case DecorationBinding:
+ dec.binding = argument;
+ break;
+
+ case DecorationDescriptorSet:
+ dec.set = argument;
+ break;
+
+ case DecorationInputAttachmentIndex:
+ dec.input_attachment = argument;
+ break;
+
+ case DecorationSpecId:
+ dec.spec_id = argument;
+ break;
+
+ case DecorationIndex:
+ dec.index = argument;
+ break;
+
+ case DecorationHlslCounterBufferGOOGLE:
+ meta[id].hlsl_magic_counter_buffer = argument;
+ meta[argument].hlsl_is_magic_counter_buffer = true;
+ break;
+
+ case DecorationFPRoundingMode:
+ dec.fp_rounding_mode = static_cast<FPRoundingMode>(argument);
+ break;
+
+ default:
+ break;
+ }
+}
+
+void ParsedIR::set_member_decoration(TypeID id, uint32_t index, Decoration decoration, uint32_t argument)
+{
+ auto &m = meta[id];
+ m.members.resize(max(m.members.size(), size_t(index) + 1));
+ auto &dec = m.members[index];
+ dec.decoration_flags.set(decoration);
+
+ switch (decoration)
+ {
+ case DecorationBuiltIn:
+ dec.builtin = true;
+ dec.builtin_type = static_cast<BuiltIn>(argument);
+ break;
+
+ case DecorationLocation:
+ dec.location = argument;
+ break;
+
+ case DecorationComponent:
+ dec.component = argument;
+ break;
+
+ case DecorationBinding:
+ dec.binding = argument;
+ break;
+
+ case DecorationOffset:
+ dec.offset = argument;
+ break;
+
+ case DecorationXfbBuffer:
+ dec.xfb_buffer = argument;
+ break;
+
+ case DecorationXfbStride:
+ dec.xfb_stride = argument;
+ break;
+
+ case DecorationStream:
+ dec.stream = argument;
+ break;
+
+ case DecorationSpecId:
+ dec.spec_id = argument;
+ break;
+
+ case DecorationMatrixStride:
+ dec.matrix_stride = argument;
+ break;
+
+ case DecorationIndex:
+ dec.index = argument;
+ break;
+
+ default:
+ break;
+ }
+}
+
+// Recursively marks any constants referenced by the specified constant instruction as being used
+// as an array length. The id must be a constant instruction (SPIRConstant or SPIRConstantOp).
+void ParsedIR::mark_used_as_array_length(ID id)
+{
+ switch (ids[id].get_type())
+ {
+ case TypeConstant:
+ get<SPIRConstant>(id).is_used_as_array_length = true;
+ break;
+
+ case TypeConstantOp:
+ {
+ auto &cop = get<SPIRConstantOp>(id);
+ if (cop.opcode == OpCompositeExtract)
+ mark_used_as_array_length(cop.arguments[0]);
+ else if (cop.opcode == OpCompositeInsert)
+ {
+ mark_used_as_array_length(cop.arguments[0]);
+ mark_used_as_array_length(cop.arguments[1]);
+ }
+ else
+ for (uint32_t arg_id : cop.arguments)
+ mark_used_as_array_length(arg_id);
+ break;
+ }
+
+ case TypeUndef:
+ break;
+
+ default:
+ assert(0);
+ }
+}
+
+Bitset ParsedIR::get_buffer_block_type_flags(const SPIRType &type) const
+{
+ if (type.member_types.empty())
+ return {};
+
+ Bitset all_members_flags = get_member_decoration_bitset(type.self, 0);
+ for (uint32_t i = 1; i < uint32_t(type.member_types.size()); i++)
+ all_members_flags.merge_and(get_member_decoration_bitset(type.self, i));
+ return all_members_flags;
+}
+
+Bitset ParsedIR::get_buffer_block_flags(const SPIRVariable &var) const
+{
+ auto &type = get<SPIRType>(var.basetype);
+ assert(type.basetype == SPIRType::Struct);
+
+ // Some flags like non-writable, non-readable are actually found
+ // as member decorations. If all members have a decoration set, propagate
+ // the decoration up as a regular variable decoration.
+ Bitset base_flags;
+ auto *m = find_meta(var.self);
+ if (m)
+ base_flags = m->decoration.decoration_flags;
+
+ if (type.member_types.empty())
+ return base_flags;
+
+ auto all_members_flags = get_buffer_block_type_flags(type);
+ base_flags.merge_or(all_members_flags);
+ return base_flags;
+}
+
+const Bitset &ParsedIR::get_member_decoration_bitset(TypeID id, uint32_t index) const
+{
+ auto *m = find_meta(id);
+ if (m)
+ {
+ if (index >= m->members.size())
+ return cleared_bitset;
+ return m->members[index].decoration_flags;
+ }
+ else
+ return cleared_bitset;
+}
+
+bool ParsedIR::has_decoration(ID id, Decoration decoration) const
+{
+ return get_decoration_bitset(id).get(decoration);
+}
+
+uint32_t ParsedIR::get_decoration(ID id, Decoration decoration) const
+{
+ auto *m = find_meta(id);
+ if (!m)
+ return 0;
+
+ auto &dec = m->decoration;
+ if (!dec.decoration_flags.get(decoration))
+ return 0;
+
+ switch (decoration)
+ {
+ case DecorationBuiltIn:
+ return dec.builtin_type;
+ case DecorationLocation:
+ return dec.location;
+ case DecorationComponent:
+ return dec.component;
+ case DecorationOffset:
+ return dec.offset;
+ case DecorationXfbBuffer:
+ return dec.xfb_buffer;
+ case DecorationXfbStride:
+ return dec.xfb_stride;
+ case DecorationStream:
+ return dec.stream;
+ case DecorationBinding:
+ return dec.binding;
+ case DecorationDescriptorSet:
+ return dec.set;
+ case DecorationInputAttachmentIndex:
+ return dec.input_attachment;
+ case DecorationSpecId:
+ return dec.spec_id;
+ case DecorationArrayStride:
+ return dec.array_stride;
+ case DecorationMatrixStride:
+ return dec.matrix_stride;
+ case DecorationIndex:
+ return dec.index;
+ case DecorationFPRoundingMode:
+ return dec.fp_rounding_mode;
+ default:
+ return 1;
+ }
+}
+
+const string &ParsedIR::get_decoration_string(ID id, Decoration decoration) const
+{
+ auto *m = find_meta(id);
+ if (!m)
+ return empty_string;
+
+ auto &dec = m->decoration;
+
+ if (!dec.decoration_flags.get(decoration))
+ return empty_string;
+
+ switch (decoration)
+ {
+ case DecorationHlslSemanticGOOGLE:
+ return dec.hlsl_semantic;
+
+ case DecorationUserTypeGOOGLE:
+ return dec.user_type;
+
+ default:
+ return empty_string;
+ }
+}
+
+void ParsedIR::unset_decoration(ID id, Decoration decoration)
+{
+ auto &dec = meta[id].decoration;
+ dec.decoration_flags.clear(decoration);
+ switch (decoration)
+ {
+ case DecorationBuiltIn:
+ dec.builtin = false;
+ break;
+
+ case DecorationLocation:
+ dec.location = 0;
+ break;
+
+ case DecorationComponent:
+ dec.component = 0;
+ break;
+
+ case DecorationOffset:
+ dec.offset = 0;
+ break;
+
+ case DecorationXfbBuffer:
+ dec.xfb_buffer = 0;
+ break;
+
+ case DecorationXfbStride:
+ dec.xfb_stride = 0;
+ break;
+
+ case DecorationStream:
+ dec.stream = 0;
+ break;
+
+ case DecorationBinding:
+ dec.binding = 0;
+ break;
+
+ case DecorationDescriptorSet:
+ dec.set = 0;
+ break;
+
+ case DecorationInputAttachmentIndex:
+ dec.input_attachment = 0;
+ break;
+
+ case DecorationSpecId:
+ dec.spec_id = 0;
+ break;
+
+ case DecorationHlslSemanticGOOGLE:
+ dec.hlsl_semantic.clear();
+ break;
+
+ case DecorationFPRoundingMode:
+ dec.fp_rounding_mode = FPRoundingModeMax;
+ break;
+
+ case DecorationHlslCounterBufferGOOGLE:
+ {
+ auto &counter = meta[id].hlsl_magic_counter_buffer;
+ if (counter)
+ {
+ meta[counter].hlsl_is_magic_counter_buffer = false;
+ counter = 0;
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+bool ParsedIR::has_member_decoration(TypeID id, uint32_t index, Decoration decoration) const
+{
+ return get_member_decoration_bitset(id, index).get(decoration);
+}
+
+uint32_t ParsedIR::get_member_decoration(TypeID id, uint32_t index, Decoration decoration) const
+{
+ auto *m = find_meta(id);
+ if (!m)
+ return 0;
+
+ if (index >= m->members.size())
+ return 0;
+
+ auto &dec = m->members[index];
+ if (!dec.decoration_flags.get(decoration))
+ return 0;
+
+ switch (decoration)
+ {
+ case DecorationBuiltIn:
+ return dec.builtin_type;
+ case DecorationLocation:
+ return dec.location;
+ case DecorationComponent:
+ return dec.component;
+ case DecorationBinding:
+ return dec.binding;
+ case DecorationOffset:
+ return dec.offset;
+ case DecorationXfbBuffer:
+ return dec.xfb_buffer;
+ case DecorationXfbStride:
+ return dec.xfb_stride;
+ case DecorationStream:
+ return dec.stream;
+ case DecorationSpecId:
+ return dec.spec_id;
+ case DecorationMatrixStride:
+ return dec.matrix_stride;
+ case DecorationIndex:
+ return dec.index;
+ default:
+ return 1;
+ }
+}
+
+const Bitset &ParsedIR::get_decoration_bitset(ID id) const
+{
+ auto *m = find_meta(id);
+ if (m)
+ {
+ auto &dec = m->decoration;
+ return dec.decoration_flags;
+ }
+ else
+ return cleared_bitset;
+}
+
+void ParsedIR::set_member_decoration_string(TypeID id, uint32_t index, Decoration decoration, const string &argument)
+{
+ auto &m = meta[id];
+ m.members.resize(max(m.members.size(), size_t(index) + 1));
+ auto &dec = meta[id].members[index];
+ dec.decoration_flags.set(decoration);
+
+ switch (decoration)
+ {
+ case DecorationHlslSemanticGOOGLE:
+ dec.hlsl_semantic = argument;
+ break;
+
+ default:
+ break;
+ }
+}
+
+const string &ParsedIR::get_member_decoration_string(TypeID id, uint32_t index, Decoration decoration) const
+{
+ auto *m = find_meta(id);
+ if (m)
+ {
+ if (!has_member_decoration(id, index, decoration))
+ return empty_string;
+
+ auto &dec = m->members[index];
+
+ switch (decoration)
+ {
+ case DecorationHlslSemanticGOOGLE:
+ return dec.hlsl_semantic;
+
+ default:
+ return empty_string;
+ }
+ }
+ else
+ return empty_string;
+}
+
+void ParsedIR::unset_member_decoration(TypeID id, uint32_t index, Decoration decoration)
+{
+ auto &m = meta[id];
+ if (index >= m.members.size())
+ return;
+
+ auto &dec = m.members[index];
+
+ dec.decoration_flags.clear(decoration);
+ switch (decoration)
+ {
+ case DecorationBuiltIn:
+ dec.builtin = false;
+ break;
+
+ case DecorationLocation:
+ dec.location = 0;
+ break;
+
+ case DecorationComponent:
+ dec.component = 0;
+ break;
+
+ case DecorationOffset:
+ dec.offset = 0;
+ break;
+
+ case DecorationXfbBuffer:
+ dec.xfb_buffer = 0;
+ break;
+
+ case DecorationXfbStride:
+ dec.xfb_stride = 0;
+ break;
+
+ case DecorationStream:
+ dec.stream = 0;
+ break;
+
+ case DecorationSpecId:
+ dec.spec_id = 0;
+ break;
+
+ case DecorationHlslSemanticGOOGLE:
+ dec.hlsl_semantic.clear();
+ break;
+
+ default:
+ break;
+ }
+}
+
+uint32_t ParsedIR::increase_bound_by(uint32_t incr_amount)
+{
+ auto curr_bound = ids.size();
+ auto new_bound = curr_bound + incr_amount;
+
+ ids.reserve(ids.size() + incr_amount);
+ for (uint32_t i = 0; i < incr_amount; i++)
+ ids.emplace_back(pool_group.get());
+
+ block_meta.resize(new_bound);
+ return uint32_t(curr_bound);
+}
+
+void ParsedIR::remove_typed_id(Types type, ID id)
+{
+ auto &type_ids = ids_for_type[type];
+ type_ids.erase(remove(begin(type_ids), end(type_ids), id), end(type_ids));
+}
+
+void ParsedIR::reset_all_of_type(Types type)
+{
+ for (auto &id : ids_for_type[type])
+ if (ids[id].get_type() == type)
+ ids[id].reset();
+
+ ids_for_type[type].clear();
+}
+
+void ParsedIR::add_typed_id(Types type, ID id)
+{
+ if (loop_iteration_depth_hard != 0)
+ SPIRV_CROSS_THROW("Cannot add typed ID while looping over it.");
+
+ if (loop_iteration_depth_soft != 0)
+ {
+ if (!ids[id].empty())
+ SPIRV_CROSS_THROW("Cannot override IDs when loop is soft locked.");
+ return;
+ }
+
+ if (ids[id].empty() || ids[id].get_type() != type)
+ {
+ switch (type)
+ {
+ case TypeConstant:
+ ids_for_constant_or_variable.push_back(id);
+ ids_for_constant_undef_or_type.push_back(id);
+ break;
+
+ case TypeVariable:
+ ids_for_constant_or_variable.push_back(id);
+ break;
+
+ case TypeType:
+ case TypeConstantOp:
+ case TypeUndef:
+ ids_for_constant_undef_or_type.push_back(id);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (ids[id].empty())
+ {
+ ids_for_type[type].push_back(id);
+ }
+ else if (ids[id].get_type() != type)
+ {
+ remove_typed_id(ids[id].get_type(), id);
+ ids_for_type[type].push_back(id);
+ }
+}
+
+const Meta *ParsedIR::find_meta(ID id) const
+{
+ auto itr = meta.find(id);
+ if (itr != end(meta))
+ return &itr->second;
+ else
+ return nullptr;
+}
+
+Meta *ParsedIR::find_meta(ID id)
+{
+ auto itr = meta.find(id);
+ if (itr != end(meta))
+ return &itr->second;
+ else
+ return nullptr;
+}
+
+ParsedIR::LoopLock ParsedIR::create_loop_hard_lock() const
+{
+ return ParsedIR::LoopLock(&loop_iteration_depth_hard);
+}
+
+ParsedIR::LoopLock ParsedIR::create_loop_soft_lock() const
+{
+ return ParsedIR::LoopLock(&loop_iteration_depth_soft);
+}
+
+ParsedIR::LoopLock::~LoopLock()
+{
+ if (lock)
+ (*lock)--;
+}
+
+ParsedIR::LoopLock::LoopLock(uint32_t *lock_)
+ : lock(lock_)
+{
+ if (lock)
+ (*lock)++;
+}
+
+ParsedIR::LoopLock::LoopLock(LoopLock &&other) SPIRV_CROSS_NOEXCEPT
+{
+ *this = std::move(other);
+}
+
+ParsedIR::LoopLock &ParsedIR::LoopLock::operator=(LoopLock &&other) SPIRV_CROSS_NOEXCEPT
+{
+ if (lock)
+ (*lock)--;
+ lock = other.lock;
+ other.lock = nullptr;
+ return *this;
+}
+
+void ParsedIR::make_constant_null(uint32_t id, uint32_t type, bool add_to_typed_id_set)
+{
+ auto &constant_type = get<SPIRType>(type);
+
+ if (constant_type.pointer)
+ {
+ if (add_to_typed_id_set)
+ add_typed_id(TypeConstant, id);
+ auto &constant = variant_set<SPIRConstant>(ids[id], type);
+ constant.self = id;
+ constant.make_null(constant_type);
+ }
+ else if (!constant_type.array.empty())
+ {
+ assert(constant_type.parent_type);
+ uint32_t parent_id = increase_bound_by(1);
+ make_constant_null(parent_id, constant_type.parent_type, add_to_typed_id_set);
+
+ if (!constant_type.array_size_literal.back())
+ SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal.");
+
+ SmallVector<uint32_t> elements(constant_type.array.back());
+ for (uint32_t i = 0; i < constant_type.array.back(); i++)
+ elements[i] = parent_id;
+
+ if (add_to_typed_id_set)
+ add_typed_id(TypeConstant, id);
+ variant_set<SPIRConstant>(ids[id], type, elements.data(), uint32_t(elements.size()), false).self = id;
+ }
+ else if (!constant_type.member_types.empty())
+ {
+ uint32_t member_ids = increase_bound_by(uint32_t(constant_type.member_types.size()));
+ SmallVector<uint32_t> elements(constant_type.member_types.size());
+ for (uint32_t i = 0; i < constant_type.member_types.size(); i++)
+ {
+ make_constant_null(member_ids + i, constant_type.member_types[i], add_to_typed_id_set);
+ elements[i] = member_ids + i;
+ }
+
+ if (add_to_typed_id_set)
+ add_typed_id(TypeConstant, id);
+ variant_set<SPIRConstant>(ids[id], type, elements.data(), uint32_t(elements.size()), false).self = id;
+ }
+ else
+ {
+ if (add_to_typed_id_set)
+ add_typed_id(TypeConstant, id);
+ auto &constant = variant_set<SPIRConstant>(ids[id], type);
+ constant.self = id;
+ constant.make_null(constant_type);
+ }
+}
+
+} // namespace SPIRV_CROSS_NAMESPACE
diff --git a/thirdparty/spirv-cross/spirv_cross_parsed_ir.hpp b/thirdparty/spirv-cross/spirv_cross_parsed_ir.hpp
new file mode 100644
index 0000000000..3892248aaa
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross_parsed_ir.hpp
@@ -0,0 +1,256 @@
+/*
+ * Copyright 2018-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_PARSED_IR_HPP
+#define SPIRV_CROSS_PARSED_IR_HPP
+
+#include "spirv_common.hpp"
+#include <stdint.h>
+#include <unordered_map>
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+
+// This data structure holds all information needed to perform cross-compilation and reflection.
+// It is the output of the Parser, but any implementation could create this structure.
+// It is intentionally very "open" and struct-like with some helper functions to deal with decorations.
+// Parser is the reference implementation of how this data structure should be filled in.
+
+class ParsedIR
+{
+private:
+ // This must be destroyed after the "ids" vector.
+ std::unique_ptr<ObjectPoolGroup> pool_group;
+
+public:
+ ParsedIR();
+
+ // Due to custom allocations from object pools, we cannot use a default copy constructor.
+ ParsedIR(const ParsedIR &other);
+ ParsedIR &operator=(const ParsedIR &other);
+
+ // Moves are unproblematic, but we need to implement it anyways, since MSVC 2013 does not understand
+ // how to default-implement these.
+ ParsedIR(ParsedIR &&other) SPIRV_CROSS_NOEXCEPT;
+ ParsedIR &operator=(ParsedIR &&other) SPIRV_CROSS_NOEXCEPT;
+
+ // Resizes ids, meta and block_meta.
+ void set_id_bounds(uint32_t bounds);
+
+ // The raw SPIR-V, instructions and opcodes refer to this by offset + count.
+ std::vector<uint32_t> spirv;
+
+ // Holds various data structures which inherit from IVariant.
+ SmallVector<Variant> ids;
+
+ // Various meta data for IDs, decorations, names, etc.
+ std::unordered_map<ID, Meta> meta;
+
+ // Holds all IDs which have a certain type.
+ // This is needed so we can iterate through a specific kind of resource quickly,
+ // and in-order of module declaration.
+ SmallVector<ID> ids_for_type[TypeCount];
+
+ // Special purpose lists which contain a union of types.
+ // This is needed so we can declare specialization constants and structs in an interleaved fashion,
+ // among other things.
+ // Constants can be undef or of struct type, and struct array sizes can use specialization constants.
+ SmallVector<ID> ids_for_constant_undef_or_type;
+ SmallVector<ID> ids_for_constant_or_variable;
+
+ // We need to keep track of the width the Ops that contains a type for the
+ // OpSwitch instruction, since this one doesn't contains the type in the
+ // instruction itself. And in some case we need to cast the condition to
+ // wider types. We only need the width to do the branch fixup since the
+ // type check itself can be done at runtime
+ std::unordered_map<ID, uint32_t> load_type_width;
+
+ // Declared capabilities and extensions in the SPIR-V module.
+ // Not really used except for reflection at the moment.
+ SmallVector<spv::Capability> declared_capabilities;
+ SmallVector<std::string> declared_extensions;
+
+ // Meta data about blocks. The cross-compiler needs to query if a block is either of these types.
+ // It is a bitset as there can be more than one tag per block.
+ enum BlockMetaFlagBits
+ {
+ BLOCK_META_LOOP_HEADER_BIT = 1 << 0,
+ BLOCK_META_CONTINUE_BIT = 1 << 1,
+ BLOCK_META_LOOP_MERGE_BIT = 1 << 2,
+ BLOCK_META_SELECTION_MERGE_BIT = 1 << 3,
+ BLOCK_META_MULTISELECT_MERGE_BIT = 1 << 4
+ };
+ using BlockMetaFlags = uint8_t;
+ SmallVector<BlockMetaFlags> block_meta;
+ std::unordered_map<BlockID, BlockID> continue_block_to_loop_header;
+
+ // Normally, we'd stick SPIREntryPoint in ids array, but it conflicts with SPIRFunction.
+ // Entry points can therefore be seen as some sort of meta structure.
+ std::unordered_map<FunctionID, SPIREntryPoint> entry_points;
+ FunctionID default_entry_point = 0;
+
+ struct Source
+ {
+ uint32_t version = 0;
+ bool es = false;
+ bool known = false;
+ bool hlsl = false;
+
+ Source() = default;
+ };
+
+ Source source;
+
+ spv::AddressingModel addressing_model = spv::AddressingModelMax;
+ spv::MemoryModel memory_model = spv::MemoryModelMax;
+
+ // Decoration handling methods.
+ // Can be useful for simple "raw" reflection.
+ // However, most members are here because the Parser needs most of these,
+ // and might as well just have the whole suite of decoration/name handling in one place.
+ void set_name(ID id, const std::string &name);
+ const std::string &get_name(ID id) const;
+ void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0);
+ void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument);
+ bool has_decoration(ID id, spv::Decoration decoration) const;
+ uint32_t get_decoration(ID id, spv::Decoration decoration) const;
+ const std::string &get_decoration_string(ID id, spv::Decoration decoration) const;
+ const Bitset &get_decoration_bitset(ID id) const;
+ void unset_decoration(ID id, spv::Decoration decoration);
+
+ // Decoration handling methods (for members of a struct).
+ void set_member_name(TypeID id, uint32_t index, const std::string &name);
+ const std::string &get_member_name(TypeID id, uint32_t index) const;
+ void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0);
+ void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
+ const std::string &argument);
+ uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
+ const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const;
+ bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
+ const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const;
+ void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration);
+
+ void mark_used_as_array_length(ID id);
+ uint32_t increase_bound_by(uint32_t count);
+ Bitset get_buffer_block_flags(const SPIRVariable &var) const;
+ Bitset get_buffer_block_type_flags(const SPIRType &type) const;
+
+ void add_typed_id(Types type, ID id);
+ void remove_typed_id(Types type, ID id);
+
+ class LoopLock
+ {
+ public:
+ explicit LoopLock(uint32_t *counter);
+ LoopLock(const LoopLock &) = delete;
+ void operator=(const LoopLock &) = delete;
+ LoopLock(LoopLock &&other) SPIRV_CROSS_NOEXCEPT;
+ LoopLock &operator=(LoopLock &&other) SPIRV_CROSS_NOEXCEPT;
+ ~LoopLock();
+
+ private:
+ uint32_t *lock = nullptr;
+ };
+
+ // This must be held while iterating over a type ID array.
+ // It is undefined if someone calls set<>() while we're iterating over a data structure, so we must
+ // make sure that this case is avoided.
+
+ // If we have a hard lock, it is an error to call set<>(), and an exception is thrown.
+ // If we have a soft lock, we silently ignore any additions to the typed arrays.
+ // This should only be used for physical ID remapping where we need to create an ID, but we will never
+ // care about iterating over them.
+ LoopLock create_loop_hard_lock() const;
+ LoopLock create_loop_soft_lock() const;
+
+ template <typename T, typename Op>
+ void for_each_typed_id(const Op &op)
+ {
+ auto loop_lock = create_loop_hard_lock();
+ for (auto &id : ids_for_type[T::type])
+ {
+ if (ids[id].get_type() == static_cast<Types>(T::type))
+ op(id, get<T>(id));
+ }
+ }
+
+ template <typename T, typename Op>
+ void for_each_typed_id(const Op &op) const
+ {
+ auto loop_lock = create_loop_hard_lock();
+ for (auto &id : ids_for_type[T::type])
+ {
+ if (ids[id].get_type() == static_cast<Types>(T::type))
+ op(id, get<T>(id));
+ }
+ }
+
+ template <typename T>
+ void reset_all_of_type()
+ {
+ reset_all_of_type(static_cast<Types>(T::type));
+ }
+
+ void reset_all_of_type(Types type);
+
+ Meta *find_meta(ID id);
+ const Meta *find_meta(ID id) const;
+
+ const std::string &get_empty_string() const
+ {
+ return empty_string;
+ }
+
+ void make_constant_null(uint32_t id, uint32_t type, bool add_to_typed_id_set);
+
+ void fixup_reserved_names();
+
+ static void sanitize_underscores(std::string &str);
+ static void sanitize_identifier(std::string &str, bool member, bool allow_reserved_prefixes);
+ static bool is_globally_reserved_identifier(std::string &str, bool allow_reserved_prefixes);
+
+ uint32_t get_spirv_version() const;
+
+private:
+ template <typename T>
+ T &get(uint32_t id)
+ {
+ return variant_get<T>(ids[id]);
+ }
+
+ template <typename T>
+ const T &get(uint32_t id) const
+ {
+ return variant_get<T>(ids[id]);
+ }
+
+ mutable uint32_t loop_iteration_depth_hard = 0;
+ mutable uint32_t loop_iteration_depth_soft = 0;
+ std::string empty_string;
+ Bitset cleared_bitset;
+
+ std::unordered_set<uint32_t> meta_needing_name_fixup;
+};
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_cross_util.cpp b/thirdparty/spirv-cross/spirv_cross_util.cpp
new file mode 100644
index 0000000000..7cff010d1c
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross_util.cpp
@@ -0,0 +1,77 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_cross_util.hpp"
+#include "spirv_common.hpp"
+
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+
+namespace spirv_cross_util
+{
+void rename_interface_variable(Compiler &compiler, const SmallVector<Resource> &resources, uint32_t location,
+ const std::string &name)
+{
+ for (auto &v : resources)
+ {
+ if (!compiler.has_decoration(v.id, spv::DecorationLocation))
+ continue;
+
+ auto loc = compiler.get_decoration(v.id, spv::DecorationLocation);
+ if (loc != location)
+ continue;
+
+ auto &type = compiler.get_type(v.base_type_id);
+
+ // This is more of a friendly variant. If we need to rename interface variables, we might have to rename
+ // structs as well and make sure all the names match up.
+ if (type.basetype == SPIRType::Struct)
+ {
+ compiler.set_name(v.base_type_id, join("SPIRV_Cross_Interface_Location", location));
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ compiler.set_member_name(v.base_type_id, i, join("InterfaceMember", i));
+ }
+
+ compiler.set_name(v.id, name);
+ }
+}
+
+void inherit_combined_sampler_bindings(Compiler &compiler)
+{
+ auto &samplers = compiler.get_combined_image_samplers();
+ for (auto &s : samplers)
+ {
+ if (compiler.has_decoration(s.image_id, spv::DecorationDescriptorSet))
+ {
+ uint32_t set = compiler.get_decoration(s.image_id, spv::DecorationDescriptorSet);
+ compiler.set_decoration(s.combined_id, spv::DecorationDescriptorSet, set);
+ }
+
+ if (compiler.has_decoration(s.image_id, spv::DecorationBinding))
+ {
+ uint32_t binding = compiler.get_decoration(s.image_id, spv::DecorationBinding);
+ compiler.set_decoration(s.combined_id, spv::DecorationBinding, binding);
+ }
+ }
+}
+} // namespace spirv_cross_util
diff --git a/thirdparty/spirv-cross/spirv_cross_util.hpp b/thirdparty/spirv-cross/spirv_cross_util.hpp
new file mode 100644
index 0000000000..e6e3fcdb63
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_cross_util.hpp
@@ -0,0 +1,37 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_UTIL_HPP
+#define SPIRV_CROSS_UTIL_HPP
+
+#include "spirv_cross.hpp"
+
+namespace spirv_cross_util
+{
+void rename_interface_variable(SPIRV_CROSS_NAMESPACE::Compiler &compiler,
+ const SPIRV_CROSS_NAMESPACE::SmallVector<SPIRV_CROSS_NAMESPACE::Resource> &resources,
+ uint32_t location, const std::string &name);
+void inherit_combined_sampler_bindings(SPIRV_CROSS_NAMESPACE::Compiler &compiler);
+} // namespace spirv_cross_util
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_glsl.cpp b/thirdparty/spirv-cross/spirv_glsl.cpp
new file mode 100644
index 0000000000..fad1132e82
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_glsl.cpp
@@ -0,0 +1,19109 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_glsl.hpp"
+#include "GLSL.std.450.h"
+#include "spirv_common.hpp"
+#include <algorithm>
+#include <assert.h>
+#include <cmath>
+#include <limits>
+#include <locale.h>
+#include <utility>
+#include <array>
+
+#ifndef _WIN32
+#include <langinfo.h>
+#endif
+#include <locale.h>
+
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+using namespace std;
+
+enum ExtraSubExpressionType
+{
+ // Create masks above any legal ID range to allow multiple address spaces into the extra_sub_expressions map.
+ EXTRA_SUB_EXPRESSION_TYPE_STREAM_OFFSET = 0x10000000,
+ EXTRA_SUB_EXPRESSION_TYPE_AUX = 0x20000000
+};
+
+static bool is_unsigned_opcode(Op op)
+{
+ // Don't have to be exhaustive, only relevant for legacy target checking ...
+ switch (op)
+ {
+ case OpShiftRightLogical:
+ case OpUGreaterThan:
+ case OpUGreaterThanEqual:
+ case OpULessThan:
+ case OpULessThanEqual:
+ case OpUConvert:
+ case OpUDiv:
+ case OpUMod:
+ case OpUMulExtended:
+ case OpConvertUToF:
+ case OpConvertFToU:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool is_unsigned_glsl_opcode(GLSLstd450 op)
+{
+ // Don't have to be exhaustive, only relevant for legacy target checking ...
+ switch (op)
+ {
+ case GLSLstd450UClamp:
+ case GLSLstd450UMin:
+ case GLSLstd450UMax:
+ case GLSLstd450FindUMsb:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool packing_is_vec4_padded(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingHLSLCbuffer:
+ case BufferPackingHLSLCbufferPackOffset:
+ case BufferPackingStd140:
+ case BufferPackingStd140EnhancedLayout:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool packing_is_hlsl(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingHLSLCbuffer:
+ case BufferPackingHLSLCbufferPackOffset:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool packing_has_flexible_offset(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingStd140:
+ case BufferPackingStd430:
+ case BufferPackingScalar:
+ case BufferPackingHLSLCbuffer:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+static bool packing_is_scalar(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingScalar:
+ case BufferPackingScalarEnhancedLayout:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static BufferPackingStandard packing_to_substruct_packing(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingStd140EnhancedLayout:
+ return BufferPackingStd140;
+ case BufferPackingStd430EnhancedLayout:
+ return BufferPackingStd430;
+ case BufferPackingHLSLCbufferPackOffset:
+ return BufferPackingHLSLCbuffer;
+ case BufferPackingScalarEnhancedLayout:
+ return BufferPackingScalar;
+ default:
+ return packing;
+ }
+}
+
+void CompilerGLSL::init()
+{
+ if (ir.source.known)
+ {
+ options.es = ir.source.es;
+ options.version = ir.source.version;
+ }
+
+ // Query the locale to see what the decimal point is.
+ // We'll rely on fixing it up ourselves in the rare case we have a comma-as-decimal locale
+ // rather than setting locales ourselves. Settings locales in a safe and isolated way is rather
+ // tricky.
+#ifdef _WIN32
+ // On Windows, localeconv uses thread-local storage, so it should be fine.
+ const struct lconv *conv = localeconv();
+ if (conv && conv->decimal_point)
+ current_locale_radix_character = *conv->decimal_point;
+#elif defined(__ANDROID__) && __ANDROID_API__ < 26
+ // nl_langinfo is not supported on this platform, fall back to the worse alternative.
+ const struct lconv *conv = localeconv();
+ if (conv && conv->decimal_point)
+ current_locale_radix_character = *conv->decimal_point;
+#else
+ // localeconv, the portable function is not MT safe ...
+ const char *decimal_point = nl_langinfo(RADIXCHAR);
+ if (decimal_point && *decimal_point != '\0')
+ current_locale_radix_character = *decimal_point;
+#endif
+}
+
+static const char *to_pls_layout(PlsFormat format)
+{
+ switch (format)
+ {
+ case PlsR11FG11FB10F:
+ return "layout(r11f_g11f_b10f) ";
+ case PlsR32F:
+ return "layout(r32f) ";
+ case PlsRG16F:
+ return "layout(rg16f) ";
+ case PlsRGB10A2:
+ return "layout(rgb10_a2) ";
+ case PlsRGBA8:
+ return "layout(rgba8) ";
+ case PlsRG16:
+ return "layout(rg16) ";
+ case PlsRGBA8I:
+ return "layout(rgba8i)";
+ case PlsRG16I:
+ return "layout(rg16i) ";
+ case PlsRGB10A2UI:
+ return "layout(rgb10_a2ui) ";
+ case PlsRGBA8UI:
+ return "layout(rgba8ui) ";
+ case PlsRG16UI:
+ return "layout(rg16ui) ";
+ case PlsR32UI:
+ return "layout(r32ui) ";
+ default:
+ return "";
+ }
+}
+
+static std::pair<spv::Op, SPIRType::BaseType> pls_format_to_basetype(PlsFormat format)
+{
+ switch (format)
+ {
+ default:
+ case PlsR11FG11FB10F:
+ case PlsR32F:
+ case PlsRG16F:
+ case PlsRGB10A2:
+ case PlsRGBA8:
+ case PlsRG16:
+ return std::make_pair(spv::OpTypeFloat, SPIRType::Float);
+
+ case PlsRGBA8I:
+ case PlsRG16I:
+ return std::make_pair(spv::OpTypeInt, SPIRType::Int);
+
+ case PlsRGB10A2UI:
+ case PlsRGBA8UI:
+ case PlsRG16UI:
+ case PlsR32UI:
+ return std::make_pair(spv::OpTypeInt, SPIRType::UInt);
+ }
+}
+
+static uint32_t pls_format_to_components(PlsFormat format)
+{
+ switch (format)
+ {
+ default:
+ case PlsR32F:
+ case PlsR32UI:
+ return 1;
+
+ case PlsRG16F:
+ case PlsRG16:
+ case PlsRG16UI:
+ case PlsRG16I:
+ return 2;
+
+ case PlsR11FG11FB10F:
+ return 3;
+
+ case PlsRGB10A2:
+ case PlsRGBA8:
+ case PlsRGBA8I:
+ case PlsRGB10A2UI:
+ case PlsRGBA8UI:
+ return 4;
+ }
+}
+
+const char *CompilerGLSL::vector_swizzle(int vecsize, int index)
+{
+ static const char *const swizzle[4][4] = {
+ { ".x", ".y", ".z", ".w" },
+ { ".xy", ".yz", ".zw", nullptr },
+ { ".xyz", ".yzw", nullptr, nullptr },
+#if defined(__GNUC__) && (__GNUC__ == 9)
+ // This works around a GCC 9 bug, see details in https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90947.
+ // This array ends up being compiled as all nullptrs, tripping the assertions below.
+ { "", nullptr, nullptr, "$" },
+#else
+ { "", nullptr, nullptr, nullptr },
+#endif
+ };
+
+ assert(vecsize >= 1 && vecsize <= 4);
+ assert(index >= 0 && index < 4);
+ assert(swizzle[vecsize - 1][index]);
+
+ return swizzle[vecsize - 1][index];
+}
+
+void CompilerGLSL::reset(uint32_t iteration_count)
+{
+ // Sanity check the iteration count to be robust against a certain class of bugs where
+ // we keep forcing recompilations without making clear forward progress.
+ // In buggy situations we will loop forever, or loop for an unbounded number of iterations.
+ // Certain types of recompilations are considered to make forward progress,
+ // but in almost all situations, we'll never see more than 3 iterations.
+ // It is highly context-sensitive when we need to force recompilation,
+ // and it is not practical with the current architecture
+ // to resolve everything up front.
+ if (iteration_count >= options.force_recompile_max_debug_iterations && !is_force_recompile_forward_progress)
+ SPIRV_CROSS_THROW("Maximum compilation loops detected and no forward progress was made. Must be a SPIRV-Cross bug!");
+
+ // We do some speculative optimizations which should pretty much always work out,
+ // but just in case the SPIR-V is rather weird, recompile until it's happy.
+ // This typically only means one extra pass.
+ clear_force_recompile();
+
+ // Clear invalid expression tracking.
+ invalid_expressions.clear();
+ composite_insert_overwritten.clear();
+ current_function = nullptr;
+
+ // Clear temporary usage tracking.
+ expression_usage_counts.clear();
+ forwarded_temporaries.clear();
+ suppressed_usage_tracking.clear();
+
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ flushed_phi_variables.clear();
+
+ current_emitting_switch_stack.clear();
+
+ reset_name_caches();
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t, SPIRFunction &func) {
+ func.active = false;
+ func.flush_undeclared = true;
+ });
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { var.dependees.clear(); });
+
+ ir.reset_all_of_type<SPIRExpression>();
+ ir.reset_all_of_type<SPIRAccessChain>();
+
+ statement_count = 0;
+ indent = 0;
+ current_loop_level = 0;
+}
+
+void CompilerGLSL::remap_pls_variables()
+{
+ for (auto &input : pls_inputs)
+ {
+ auto &var = get<SPIRVariable>(input.id);
+
+ bool input_is_target = false;
+ if (var.storage == StorageClassUniformConstant)
+ {
+ auto &type = get<SPIRType>(var.basetype);
+ input_is_target = type.image.dim == DimSubpassData;
+ }
+
+ if (var.storage != StorageClassInput && !input_is_target)
+ SPIRV_CROSS_THROW("Can only use in and target variables for PLS inputs.");
+ var.remapped_variable = true;
+ }
+
+ for (auto &output : pls_outputs)
+ {
+ auto &var = get<SPIRVariable>(output.id);
+ if (var.storage != StorageClassOutput)
+ SPIRV_CROSS_THROW("Can only use out variables for PLS outputs.");
+ var.remapped_variable = true;
+ }
+}
+
+void CompilerGLSL::remap_ext_framebuffer_fetch(uint32_t input_attachment_index, uint32_t color_location, bool coherent)
+{
+ subpass_to_framebuffer_fetch_attachment.push_back({ input_attachment_index, color_location });
+ inout_color_attachments.push_back({ color_location, coherent });
+}
+
+bool CompilerGLSL::location_is_framebuffer_fetch(uint32_t location) const
+{
+ return std::find_if(begin(inout_color_attachments), end(inout_color_attachments),
+ [&](const std::pair<uint32_t, bool> &elem) {
+ return elem.first == location;
+ }) != end(inout_color_attachments);
+}
+
+bool CompilerGLSL::location_is_non_coherent_framebuffer_fetch(uint32_t location) const
+{
+ return std::find_if(begin(inout_color_attachments), end(inout_color_attachments),
+ [&](const std::pair<uint32_t, bool> &elem) {
+ return elem.first == location && !elem.second;
+ }) != end(inout_color_attachments);
+}
+
+void CompilerGLSL::find_static_extensions()
+{
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, const SPIRType &type) {
+ if (type.basetype == SPIRType::Double)
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("FP64 not supported in ES profile.");
+ if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_gpu_shader_fp64");
+ }
+ else if (type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64)
+ {
+ if (options.es && options.version < 310) // GL_NV_gpu_shader5 fallback requires 310.
+ SPIRV_CROSS_THROW("64-bit integers not supported in ES profile before version 310.");
+ require_extension_internal("GL_ARB_gpu_shader_int64");
+ }
+ else if (type.basetype == SPIRType::Half)
+ {
+ require_extension_internal("GL_EXT_shader_explicit_arithmetic_types_float16");
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_shader_16bit_storage");
+ }
+ else if (type.basetype == SPIRType::SByte || type.basetype == SPIRType::UByte)
+ {
+ require_extension_internal("GL_EXT_shader_explicit_arithmetic_types_int8");
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_shader_8bit_storage");
+ }
+ else if (type.basetype == SPIRType::Short || type.basetype == SPIRType::UShort)
+ {
+ require_extension_internal("GL_EXT_shader_explicit_arithmetic_types_int16");
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_shader_16bit_storage");
+ }
+ });
+
+ auto &execution = get_entry_point();
+ switch (execution.model)
+ {
+ case ExecutionModelGLCompute:
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_compute_shader");
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for compute shaders.");
+ break;
+
+ case ExecutionModelGeometry:
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_EXT_geometry_shader");
+ if (!options.es && options.version < 150)
+ require_extension_internal("GL_ARB_geometry_shader4");
+
+ if (execution.flags.get(ExecutionModeInvocations) && execution.invocations != 1)
+ {
+ // Instanced GS is part of 400 core or this extension.
+ if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_gpu_shader5");
+ }
+ break;
+
+ case ExecutionModelTessellationEvaluation:
+ case ExecutionModelTessellationControl:
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_EXT_tessellation_shader");
+ if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_tessellation_shader");
+ break;
+
+ case ExecutionModelRayGenerationKHR:
+ case ExecutionModelIntersectionKHR:
+ case ExecutionModelAnyHitKHR:
+ case ExecutionModelClosestHitKHR:
+ case ExecutionModelMissKHR:
+ case ExecutionModelCallableKHR:
+ // NV enums are aliases.
+ if (options.es || options.version < 460)
+ SPIRV_CROSS_THROW("Ray tracing shaders require non-es profile with version 460 or above.");
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Ray tracing requires Vulkan semantics.");
+
+ // Need to figure out if we should target KHR or NV extension based on capabilities.
+ for (auto &cap : ir.declared_capabilities)
+ {
+ if (cap == CapabilityRayTracingKHR || cap == CapabilityRayQueryKHR ||
+ cap == CapabilityRayTraversalPrimitiveCullingKHR)
+ {
+ ray_tracing_is_khr = true;
+ break;
+ }
+ }
+
+ if (ray_tracing_is_khr)
+ {
+ // In KHR ray tracing we pass payloads by pointer instead of location,
+ // so make sure we assign locations properly.
+ ray_tracing_khr_fixup_locations();
+ require_extension_internal("GL_EXT_ray_tracing");
+ }
+ else
+ require_extension_internal("GL_NV_ray_tracing");
+ break;
+
+ case ExecutionModelMeshEXT:
+ case ExecutionModelTaskEXT:
+ if (options.es || options.version < 450)
+ SPIRV_CROSS_THROW("Mesh shaders require GLSL 450 or above.");
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Mesh shaders require Vulkan semantics.");
+ require_extension_internal("GL_EXT_mesh_shader");
+ break;
+
+ default:
+ break;
+ }
+
+ if (!pls_inputs.empty() || !pls_outputs.empty())
+ {
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("Can only use GL_EXT_shader_pixel_local_storage in fragment shaders.");
+ require_extension_internal("GL_EXT_shader_pixel_local_storage");
+ }
+
+ if (!inout_color_attachments.empty())
+ {
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("Can only use GL_EXT_shader_framebuffer_fetch in fragment shaders.");
+ if (options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Cannot use EXT_shader_framebuffer_fetch in Vulkan GLSL.");
+
+ bool has_coherent = false;
+ bool has_incoherent = false;
+
+ for (auto &att : inout_color_attachments)
+ {
+ if (att.second)
+ has_coherent = true;
+ else
+ has_incoherent = true;
+ }
+
+ if (has_coherent)
+ require_extension_internal("GL_EXT_shader_framebuffer_fetch");
+ if (has_incoherent)
+ require_extension_internal("GL_EXT_shader_framebuffer_fetch_non_coherent");
+ }
+
+ if (options.separate_shader_objects && !options.es && options.version < 410)
+ require_extension_internal("GL_ARB_separate_shader_objects");
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_buffer_reference is only supported in Vulkan GLSL.");
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("GL_EXT_buffer_reference requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("GL_EXT_buffer_reference requires GLSL 450.");
+ require_extension_internal("GL_EXT_buffer_reference2");
+ }
+ else if (ir.addressing_model != AddressingModelLogical)
+ {
+ SPIRV_CROSS_THROW("Only Logical and PhysicalStorageBuffer64EXT addressing models are supported.");
+ }
+
+ // Check for nonuniform qualifier and passthrough.
+ // Instead of looping over all decorations to find this, just look at capabilities.
+ for (auto &cap : ir.declared_capabilities)
+ {
+ switch (cap)
+ {
+ case CapabilityShaderNonUniformEXT:
+ if (!options.vulkan_semantics)
+ require_extension_internal("GL_NV_gpu_shader5");
+ else
+ require_extension_internal("GL_EXT_nonuniform_qualifier");
+ break;
+ case CapabilityRuntimeDescriptorArrayEXT:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_nonuniform_qualifier is only supported in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_nonuniform_qualifier");
+ break;
+
+ case CapabilityGeometryShaderPassthroughNV:
+ if (execution.model == ExecutionModelGeometry)
+ {
+ require_extension_internal("GL_NV_geometry_shader_passthrough");
+ execution.geometry_passthrough = true;
+ }
+ break;
+
+ case CapabilityVariablePointers:
+ case CapabilityVariablePointersStorageBuffer:
+ SPIRV_CROSS_THROW("VariablePointers capability is not supported in GLSL.");
+
+ case CapabilityMultiView:
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_multiview");
+ else
+ {
+ require_extension_internal("GL_OVR_multiview2");
+ if (options.ovr_multiview_view_count == 0)
+ SPIRV_CROSS_THROW("ovr_multiview_view_count must be non-zero when using GL_OVR_multiview2.");
+ if (get_execution_model() != ExecutionModelVertex)
+ SPIRV_CROSS_THROW("OVR_multiview2 can only be used with Vertex shaders.");
+ }
+ break;
+
+ case CapabilityRayQueryKHR:
+ if (options.es || options.version < 460 || !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("RayQuery requires Vulkan GLSL 460.");
+ require_extension_internal("GL_EXT_ray_query");
+ ray_tracing_is_khr = true;
+ break;
+
+ case CapabilityRayTraversalPrimitiveCullingKHR:
+ if (options.es || options.version < 460 || !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("RayQuery requires Vulkan GLSL 460.");
+ require_extension_internal("GL_EXT_ray_flags_primitive_culling");
+ ray_tracing_is_khr = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (options.ovr_multiview_view_count)
+ {
+ if (options.vulkan_semantics)
+ SPIRV_CROSS_THROW("OVR_multiview2 cannot be used with Vulkan semantics.");
+ if (get_execution_model() != ExecutionModelVertex)
+ SPIRV_CROSS_THROW("OVR_multiview2 can only be used with Vertex shaders.");
+ require_extension_internal("GL_OVR_multiview2");
+ }
+
+ // KHR one is likely to get promoted at some point, so if we don't see an explicit SPIR-V extension, assume KHR.
+ for (auto &ext : ir.declared_extensions)
+ if (ext == "SPV_NV_fragment_shader_barycentric")
+ barycentric_is_nv = true;
+}
+
+void CompilerGLSL::require_polyfill(Polyfill polyfill, bool relaxed)
+{
+ uint32_t &polyfills = (relaxed && (options.es || options.vulkan_semantics)) ?
+ required_polyfills_relaxed : required_polyfills;
+
+ if ((polyfills & polyfill) == 0)
+ {
+ polyfills |= polyfill;
+ force_recompile();
+ }
+}
+
+void CompilerGLSL::ray_tracing_khr_fixup_locations()
+{
+ uint32_t location = 0;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ // Incoming payload storage can also be used for tracing.
+ if (var.storage != StorageClassRayPayloadKHR && var.storage != StorageClassCallableDataKHR &&
+ var.storage != StorageClassIncomingRayPayloadKHR && var.storage != StorageClassIncomingCallableDataKHR)
+ return;
+ if (is_hidden_variable(var))
+ return;
+ set_decoration(var.self, DecorationLocation, location++);
+ });
+}
+
+string CompilerGLSL::compile()
+{
+ ir.fixup_reserved_names();
+
+ if (!options.vulkan_semantics)
+ {
+ // only NV_gpu_shader5 supports divergent indexing on OpenGL, and it does so without extra qualifiers
+ backend.nonuniform_qualifier = "";
+ backend.needs_row_major_load_workaround = options.enable_row_major_load_workaround;
+ }
+ backend.allow_precision_qualifiers = options.vulkan_semantics || options.es;
+ backend.force_gl_in_out_block = true;
+ backend.supports_extensions = true;
+ backend.use_array_constructor = true;
+ backend.workgroup_size_is_hidden = true;
+ backend.requires_relaxed_precision_analysis = options.es || options.vulkan_semantics;
+ backend.support_precise_qualifier =
+ (!options.es && options.version >= 400) || (options.es && options.version >= 320);
+
+ if (is_legacy_es())
+ backend.support_case_fallthrough = false;
+
+ // Scan the SPIR-V to find trivial uses of extensions.
+ fixup_anonymous_struct_names();
+ fixup_type_alias();
+ reorder_type_alias();
+ build_function_control_flow_graphs_and_analyze();
+ find_static_extensions();
+ fixup_image_load_store_access();
+ update_active_builtins();
+ analyze_image_and_sampler_usage();
+ analyze_interlocked_resource_usage();
+ if (!inout_color_attachments.empty())
+ emit_inout_fragment_outputs_copy_to_subpass_inputs();
+
+ // Shaders might cast unrelated data to pointers of non-block types.
+ // Find all such instances and make sure we can cast the pointers to a synthesized block type.
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ analyze_non_block_pointer_types();
+
+ uint32_t pass_count = 0;
+ do
+ {
+ reset(pass_count);
+
+ buffer.reset();
+
+ emit_header();
+ emit_resources();
+ emit_extension_workarounds(get_execution_model());
+
+ if (required_polyfills != 0)
+ emit_polyfills(required_polyfills, false);
+ if ((options.es || options.vulkan_semantics) && required_polyfills_relaxed != 0)
+ emit_polyfills(required_polyfills_relaxed, true);
+
+ emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
+
+ pass_count++;
+ } while (is_forcing_recompilation());
+
+ // Implement the interlocked wrapper function at the end.
+ // The body was implemented in lieu of main().
+ if (interlocked_is_complex)
+ {
+ statement("void main()");
+ begin_scope();
+ statement("// Interlocks were used in a way not compatible with GLSL, this is very slow.");
+ statement("SPIRV_Cross_beginInvocationInterlock();");
+ statement("spvMainInterlockedBody();");
+ statement("SPIRV_Cross_endInvocationInterlock();");
+ end_scope();
+ }
+
+ // Entry point in GLSL is always main().
+ get_entry_point().name = "main";
+
+ return buffer.str();
+}
+
+std::string CompilerGLSL::get_partial_source()
+{
+ return buffer.str();
+}
+
+void CompilerGLSL::build_workgroup_size(SmallVector<string> &arguments, const SpecializationConstant &wg_x,
+ const SpecializationConstant &wg_y, const SpecializationConstant &wg_z)
+{
+ auto &execution = get_entry_point();
+ bool builtin_workgroup = execution.workgroup_size.constant != 0;
+ bool use_local_size_id = !builtin_workgroup && execution.flags.get(ExecutionModeLocalSizeId);
+
+ if (wg_x.id)
+ {
+ if (options.vulkan_semantics)
+ arguments.push_back(join("local_size_x_id = ", wg_x.constant_id));
+ else
+ arguments.push_back(join("local_size_x = ", get<SPIRConstant>(wg_x.id).specialization_constant_macro_name));
+ }
+ else if (use_local_size_id && execution.workgroup_size.id_x)
+ arguments.push_back(join("local_size_x = ", get<SPIRConstant>(execution.workgroup_size.id_x).scalar()));
+ else
+ arguments.push_back(join("local_size_x = ", execution.workgroup_size.x));
+
+ if (wg_y.id)
+ {
+ if (options.vulkan_semantics)
+ arguments.push_back(join("local_size_y_id = ", wg_y.constant_id));
+ else
+ arguments.push_back(join("local_size_y = ", get<SPIRConstant>(wg_y.id).specialization_constant_macro_name));
+ }
+ else if (use_local_size_id && execution.workgroup_size.id_y)
+ arguments.push_back(join("local_size_y = ", get<SPIRConstant>(execution.workgroup_size.id_y).scalar()));
+ else
+ arguments.push_back(join("local_size_y = ", execution.workgroup_size.y));
+
+ if (wg_z.id)
+ {
+ if (options.vulkan_semantics)
+ arguments.push_back(join("local_size_z_id = ", wg_z.constant_id));
+ else
+ arguments.push_back(join("local_size_z = ", get<SPIRConstant>(wg_z.id).specialization_constant_macro_name));
+ }
+ else if (use_local_size_id && execution.workgroup_size.id_z)
+ arguments.push_back(join("local_size_z = ", get<SPIRConstant>(execution.workgroup_size.id_z).scalar()));
+ else
+ arguments.push_back(join("local_size_z = ", execution.workgroup_size.z));
+}
+
+void CompilerGLSL::request_subgroup_feature(ShaderSubgroupSupportHelper::Feature feature)
+{
+ if (options.vulkan_semantics)
+ {
+ auto khr_extension = ShaderSubgroupSupportHelper::get_KHR_extension_for_feature(feature);
+ require_extension_internal(ShaderSubgroupSupportHelper::get_extension_name(khr_extension));
+ }
+ else
+ {
+ if (!shader_subgroup_supporter.is_feature_requested(feature))
+ force_recompile();
+ shader_subgroup_supporter.request_feature(feature);
+ }
+}
+
+void CompilerGLSL::emit_header()
+{
+ auto &execution = get_entry_point();
+ statement("#version ", options.version, options.es && options.version > 100 ? " es" : "");
+
+ if (!options.es && options.version < 420)
+ {
+ // Needed for binding = # on UBOs, etc.
+ if (options.enable_420pack_extension)
+ {
+ statement("#ifdef GL_ARB_shading_language_420pack");
+ statement("#extension GL_ARB_shading_language_420pack : require");
+ statement("#endif");
+ }
+ // Needed for: layout(early_fragment_tests) in;
+ if (execution.flags.get(ExecutionModeEarlyFragmentTests))
+ require_extension_internal("GL_ARB_shader_image_load_store");
+ }
+
+ // Needed for: layout(post_depth_coverage) in;
+ if (execution.flags.get(ExecutionModePostDepthCoverage))
+ require_extension_internal("GL_ARB_post_depth_coverage");
+
+ // Needed for: layout({pixel,sample}_interlock_[un]ordered) in;
+ bool interlock_used = execution.flags.get(ExecutionModePixelInterlockOrderedEXT) ||
+ execution.flags.get(ExecutionModePixelInterlockUnorderedEXT) ||
+ execution.flags.get(ExecutionModeSampleInterlockOrderedEXT) ||
+ execution.flags.get(ExecutionModeSampleInterlockUnorderedEXT);
+
+ if (interlock_used)
+ {
+ if (options.es)
+ {
+ if (options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for fragment shader interlock.");
+ require_extension_internal("GL_NV_fragment_shader_interlock");
+ }
+ else
+ {
+ if (options.version < 420)
+ require_extension_internal("GL_ARB_shader_image_load_store");
+ require_extension_internal("GL_ARB_fragment_shader_interlock");
+ }
+ }
+
+ for (auto &ext : forced_extensions)
+ {
+ if (ext == "GL_ARB_gpu_shader_int64")
+ {
+ statement("#if defined(GL_ARB_gpu_shader_int64)");
+ statement("#extension GL_ARB_gpu_shader_int64 : require");
+ if (!options.vulkan_semantics || options.es)
+ {
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ }
+ statement("#else");
+ statement("#error No extension available for 64-bit integers.");
+ statement("#endif");
+ }
+ else if (ext == "GL_EXT_shader_explicit_arithmetic_types_float16")
+ {
+ // Special case, this extension has a potential fallback to another vendor extension in normal GLSL.
+ // GL_AMD_gpu_shader_half_float is a superset, so try that first.
+ statement("#if defined(GL_AMD_gpu_shader_half_float)");
+ statement("#extension GL_AMD_gpu_shader_half_float : require");
+ if (!options.vulkan_semantics)
+ {
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ }
+ else
+ {
+ statement("#elif defined(GL_EXT_shader_explicit_arithmetic_types_float16)");
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require");
+ }
+ statement("#else");
+ statement("#error No extension available for FP16.");
+ statement("#endif");
+ }
+ else if (ext == "GL_EXT_shader_explicit_arithmetic_types_int8")
+ {
+ if (options.vulkan_semantics)
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require");
+ else
+ {
+ statement("#if defined(GL_EXT_shader_explicit_arithmetic_types_int8)");
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require");
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ statement("#else");
+ statement("#error No extension available for Int8.");
+ statement("#endif");
+ }
+ }
+ else if (ext == "GL_EXT_shader_explicit_arithmetic_types_int16")
+ {
+ if (options.vulkan_semantics)
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require");
+ else
+ {
+ statement("#if defined(GL_EXT_shader_explicit_arithmetic_types_int16)");
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require");
+ statement("#elif defined(GL_AMD_gpu_shader_int16)");
+ statement("#extension GL_AMD_gpu_shader_int16 : require");
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ statement("#else");
+ statement("#error No extension available for Int16.");
+ statement("#endif");
+ }
+ }
+ else if (ext == "GL_ARB_post_depth_coverage")
+ {
+ if (options.es)
+ statement("#extension GL_EXT_post_depth_coverage : require");
+ else
+ {
+ statement("#if defined(GL_ARB_post_depth_coverge)");
+ statement("#extension GL_ARB_post_depth_coverage : require");
+ statement("#else");
+ statement("#extension GL_EXT_post_depth_coverage : require");
+ statement("#endif");
+ }
+ }
+ else if (!options.vulkan_semantics && ext == "GL_ARB_shader_draw_parameters")
+ {
+ // Soft-enable this extension on plain GLSL.
+ statement("#ifdef ", ext);
+ statement("#extension ", ext, " : enable");
+ statement("#endif");
+ }
+ else if (ext == "GL_EXT_control_flow_attributes")
+ {
+ // These are just hints so we can conditionally enable and fallback in the shader.
+ statement("#if defined(GL_EXT_control_flow_attributes)");
+ statement("#extension GL_EXT_control_flow_attributes : require");
+ statement("#define SPIRV_CROSS_FLATTEN [[flatten]]");
+ statement("#define SPIRV_CROSS_BRANCH [[dont_flatten]]");
+ statement("#define SPIRV_CROSS_UNROLL [[unroll]]");
+ statement("#define SPIRV_CROSS_LOOP [[dont_unroll]]");
+ statement("#else");
+ statement("#define SPIRV_CROSS_FLATTEN");
+ statement("#define SPIRV_CROSS_BRANCH");
+ statement("#define SPIRV_CROSS_UNROLL");
+ statement("#define SPIRV_CROSS_LOOP");
+ statement("#endif");
+ }
+ else if (ext == "GL_NV_fragment_shader_interlock")
+ {
+ statement("#extension GL_NV_fragment_shader_interlock : require");
+ statement("#define SPIRV_Cross_beginInvocationInterlock() beginInvocationInterlockNV()");
+ statement("#define SPIRV_Cross_endInvocationInterlock() endInvocationInterlockNV()");
+ }
+ else if (ext == "GL_ARB_fragment_shader_interlock")
+ {
+ statement("#ifdef GL_ARB_fragment_shader_interlock");
+ statement("#extension GL_ARB_fragment_shader_interlock : enable");
+ statement("#define SPIRV_Cross_beginInvocationInterlock() beginInvocationInterlockARB()");
+ statement("#define SPIRV_Cross_endInvocationInterlock() endInvocationInterlockARB()");
+ statement("#elif defined(GL_INTEL_fragment_shader_ordering)");
+ statement("#extension GL_INTEL_fragment_shader_ordering : enable");
+ statement("#define SPIRV_Cross_beginInvocationInterlock() beginFragmentShaderOrderingINTEL()");
+ statement("#define SPIRV_Cross_endInvocationInterlock()");
+ statement("#endif");
+ }
+ else
+ statement("#extension ", ext, " : require");
+ }
+
+ if (!options.vulkan_semantics)
+ {
+ using Supp = ShaderSubgroupSupportHelper;
+ auto result = shader_subgroup_supporter.resolve();
+
+ for (uint32_t feature_index = 0; feature_index < Supp::FeatureCount; feature_index++)
+ {
+ auto feature = static_cast<Supp::Feature>(feature_index);
+ if (!shader_subgroup_supporter.is_feature_requested(feature))
+ continue;
+
+ auto exts = Supp::get_candidates_for_feature(feature, result);
+ if (exts.empty())
+ continue;
+
+ statement("");
+
+ for (auto &ext : exts)
+ {
+ const char *name = Supp::get_extension_name(ext);
+ const char *extra_predicate = Supp::get_extra_required_extension_predicate(ext);
+ auto extra_names = Supp::get_extra_required_extension_names(ext);
+ statement(&ext != &exts.front() ? "#elif" : "#if", " defined(", name, ")",
+ (*extra_predicate != '\0' ? " && " : ""), extra_predicate);
+ for (const auto &e : extra_names)
+ statement("#extension ", e, " : enable");
+ statement("#extension ", name, " : require");
+ }
+
+ if (!Supp::can_feature_be_implemented_without_extensions(feature))
+ {
+ statement("#else");
+ statement("#error No extensions available to emulate requested subgroup feature.");
+ }
+
+ statement("#endif");
+ }
+ }
+
+ for (auto &header : header_lines)
+ statement(header);
+
+ SmallVector<string> inputs;
+ SmallVector<string> outputs;
+
+ switch (execution.model)
+ {
+ case ExecutionModelVertex:
+ if (options.ovr_multiview_view_count)
+ inputs.push_back(join("num_views = ", options.ovr_multiview_view_count));
+ break;
+ case ExecutionModelGeometry:
+ if ((execution.flags.get(ExecutionModeInvocations)) && execution.invocations != 1)
+ inputs.push_back(join("invocations = ", execution.invocations));
+ if (execution.flags.get(ExecutionModeInputPoints))
+ inputs.push_back("points");
+ if (execution.flags.get(ExecutionModeInputLines))
+ inputs.push_back("lines");
+ if (execution.flags.get(ExecutionModeInputLinesAdjacency))
+ inputs.push_back("lines_adjacency");
+ if (execution.flags.get(ExecutionModeTriangles))
+ inputs.push_back("triangles");
+ if (execution.flags.get(ExecutionModeInputTrianglesAdjacency))
+ inputs.push_back("triangles_adjacency");
+
+ if (!execution.geometry_passthrough)
+ {
+ // For passthrough, these are implies and cannot be declared in shader.
+ outputs.push_back(join("max_vertices = ", execution.output_vertices));
+ if (execution.flags.get(ExecutionModeOutputTriangleStrip))
+ outputs.push_back("triangle_strip");
+ if (execution.flags.get(ExecutionModeOutputPoints))
+ outputs.push_back("points");
+ if (execution.flags.get(ExecutionModeOutputLineStrip))
+ outputs.push_back("line_strip");
+ }
+ break;
+
+ case ExecutionModelTessellationControl:
+ if (execution.flags.get(ExecutionModeOutputVertices))
+ outputs.push_back(join("vertices = ", execution.output_vertices));
+ break;
+
+ case ExecutionModelTessellationEvaluation:
+ if (execution.flags.get(ExecutionModeQuads))
+ inputs.push_back("quads");
+ if (execution.flags.get(ExecutionModeTriangles))
+ inputs.push_back("triangles");
+ if (execution.flags.get(ExecutionModeIsolines))
+ inputs.push_back("isolines");
+ if (execution.flags.get(ExecutionModePointMode))
+ inputs.push_back("point_mode");
+
+ if (!execution.flags.get(ExecutionModeIsolines))
+ {
+ if (execution.flags.get(ExecutionModeVertexOrderCw))
+ inputs.push_back("cw");
+ if (execution.flags.get(ExecutionModeVertexOrderCcw))
+ inputs.push_back("ccw");
+ }
+
+ if (execution.flags.get(ExecutionModeSpacingFractionalEven))
+ inputs.push_back("fractional_even_spacing");
+ if (execution.flags.get(ExecutionModeSpacingFractionalOdd))
+ inputs.push_back("fractional_odd_spacing");
+ if (execution.flags.get(ExecutionModeSpacingEqual))
+ inputs.push_back("equal_spacing");
+ break;
+
+ case ExecutionModelGLCompute:
+ case ExecutionModelTaskEXT:
+ case ExecutionModelMeshEXT:
+ {
+ if (execution.workgroup_size.constant != 0 || execution.flags.get(ExecutionModeLocalSizeId))
+ {
+ SpecializationConstant wg_x, wg_y, wg_z;
+ get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+
+ // If there are any spec constants on legacy GLSL, defer declaration, we need to set up macro
+ // declarations before we can emit the work group size.
+ if (options.vulkan_semantics ||
+ ((wg_x.id == ConstantID(0)) && (wg_y.id == ConstantID(0)) && (wg_z.id == ConstantID(0))))
+ build_workgroup_size(inputs, wg_x, wg_y, wg_z);
+ }
+ else
+ {
+ inputs.push_back(join("local_size_x = ", execution.workgroup_size.x));
+ inputs.push_back(join("local_size_y = ", execution.workgroup_size.y));
+ inputs.push_back(join("local_size_z = ", execution.workgroup_size.z));
+ }
+
+ if (execution.model == ExecutionModelMeshEXT)
+ {
+ outputs.push_back(join("max_vertices = ", execution.output_vertices));
+ outputs.push_back(join("max_primitives = ", execution.output_primitives));
+ if (execution.flags.get(ExecutionModeOutputTrianglesEXT))
+ outputs.push_back("triangles");
+ else if (execution.flags.get(ExecutionModeOutputLinesEXT))
+ outputs.push_back("lines");
+ else if (execution.flags.get(ExecutionModeOutputPoints))
+ outputs.push_back("points");
+ }
+ break;
+ }
+
+ case ExecutionModelFragment:
+ if (options.es)
+ {
+ switch (options.fragment.default_float_precision)
+ {
+ case Options::Lowp:
+ statement("precision lowp float;");
+ break;
+
+ case Options::Mediump:
+ statement("precision mediump float;");
+ break;
+
+ case Options::Highp:
+ statement("precision highp float;");
+ break;
+
+ default:
+ break;
+ }
+
+ switch (options.fragment.default_int_precision)
+ {
+ case Options::Lowp:
+ statement("precision lowp int;");
+ break;
+
+ case Options::Mediump:
+ statement("precision mediump int;");
+ break;
+
+ case Options::Highp:
+ statement("precision highp int;");
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (execution.flags.get(ExecutionModeEarlyFragmentTests))
+ inputs.push_back("early_fragment_tests");
+ if (execution.flags.get(ExecutionModePostDepthCoverage))
+ inputs.push_back("post_depth_coverage");
+
+ if (interlock_used)
+ statement("#if defined(GL_ARB_fragment_shader_interlock)");
+
+ if (execution.flags.get(ExecutionModePixelInterlockOrderedEXT))
+ statement("layout(pixel_interlock_ordered) in;");
+ else if (execution.flags.get(ExecutionModePixelInterlockUnorderedEXT))
+ statement("layout(pixel_interlock_unordered) in;");
+ else if (execution.flags.get(ExecutionModeSampleInterlockOrderedEXT))
+ statement("layout(sample_interlock_ordered) in;");
+ else if (execution.flags.get(ExecutionModeSampleInterlockUnorderedEXT))
+ statement("layout(sample_interlock_unordered) in;");
+
+ if (interlock_used)
+ {
+ statement("#elif !defined(GL_INTEL_fragment_shader_ordering)");
+ statement("#error Fragment Shader Interlock/Ordering extension missing!");
+ statement("#endif");
+ }
+
+ if (!options.es && execution.flags.get(ExecutionModeDepthGreater))
+ statement("layout(depth_greater) out float gl_FragDepth;");
+ else if (!options.es && execution.flags.get(ExecutionModeDepthLess))
+ statement("layout(depth_less) out float gl_FragDepth;");
+
+ break;
+
+ default:
+ break;
+ }
+
+ for (auto &cap : ir.declared_capabilities)
+ if (cap == CapabilityRayTraversalPrimitiveCullingKHR)
+ statement("layout(primitive_culling);");
+
+ if (!inputs.empty())
+ statement("layout(", merge(inputs), ") in;");
+ if (!outputs.empty())
+ statement("layout(", merge(outputs), ") out;");
+
+ statement("");
+}
+
+bool CompilerGLSL::type_is_empty(const SPIRType &type)
+{
+ return type.basetype == SPIRType::Struct && type.member_types.empty();
+}
+
+void CompilerGLSL::emit_struct(SPIRType &type)
+{
+ // Struct types can be stamped out multiple times
+ // with just different offsets, matrix layouts, etc ...
+ // Type-punning with these types is legal, which complicates things
+ // when we are storing struct and array types in an SSBO for example.
+ // If the type master is packed however, we can no longer assume that the struct declaration will be redundant.
+ if (type.type_alias != TypeID(0) &&
+ !has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ return;
+
+ add_resource_name(type.self);
+ auto name = type_to_glsl(type);
+
+ statement(!backend.explicit_struct_type ? "struct " : "", name);
+ begin_scope();
+
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ bool emitted = false;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ emitted = true;
+ }
+
+ // Don't declare empty structs in GLSL, this is not allowed.
+ if (type_is_empty(type) && !backend.supports_empty_struct)
+ {
+ statement("int empty_struct_member;");
+ emitted = true;
+ }
+
+ if (has_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget))
+ emit_struct_padding_target(type);
+
+ end_scope_decl();
+
+ if (emitted)
+ statement("");
+}
+
+string CompilerGLSL::to_interpolation_qualifiers(const Bitset &flags)
+{
+ string res;
+ //if (flags & (1ull << DecorationSmooth))
+ // res += "smooth ";
+ if (flags.get(DecorationFlat))
+ res += "flat ";
+ if (flags.get(DecorationNoPerspective))
+ {
+ if (options.es)
+ {
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("noperspective requires ESSL 300.");
+ require_extension_internal("GL_NV_shader_noperspective_interpolation");
+ }
+ else if (is_legacy_desktop())
+ require_extension_internal("GL_EXT_gpu_shader4");
+ res += "noperspective ";
+ }
+ if (flags.get(DecorationCentroid))
+ res += "centroid ";
+ if (flags.get(DecorationPatch))
+ res += "patch ";
+ if (flags.get(DecorationSample))
+ {
+ if (options.es)
+ {
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("sample requires ESSL 300.");
+ else if (options.version < 320)
+ require_extension_internal("GL_OES_shader_multisample_interpolation");
+ }
+ res += "sample ";
+ }
+ if (flags.get(DecorationInvariant) && (options.es || options.version >= 120))
+ res += "invariant ";
+ if (flags.get(DecorationPerPrimitiveEXT))
+ {
+ res += "perprimitiveEXT ";
+ require_extension_internal("GL_EXT_mesh_shader");
+ }
+
+ if (flags.get(DecorationExplicitInterpAMD))
+ {
+ require_extension_internal("GL_AMD_shader_explicit_vertex_parameter");
+ res += "__explicitInterpAMD ";
+ }
+
+ if (flags.get(DecorationPerVertexKHR))
+ {
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("pervertexEXT requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("pervertexEXT requires GLSL 450.");
+
+ if (barycentric_is_nv)
+ {
+ require_extension_internal("GL_NV_fragment_shader_barycentric");
+ res += "pervertexNV ";
+ }
+ else
+ {
+ require_extension_internal("GL_EXT_fragment_shader_barycentric");
+ res += "pervertexEXT ";
+ }
+ }
+
+ return res;
+}
+
+string CompilerGLSL::layout_for_member(const SPIRType &type, uint32_t index)
+{
+ if (is_legacy())
+ return "";
+
+ bool is_block = has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+ if (!is_block)
+ return "";
+
+ auto &memb = ir.meta[type.self].members;
+ if (index >= memb.size())
+ return "";
+ auto &dec = memb[index];
+
+ SmallVector<string> attr;
+
+ if (has_member_decoration(type.self, index, DecorationPassthroughNV))
+ attr.push_back("passthrough");
+
+ // We can only apply layouts on members in block interfaces.
+ // This is a bit problematic because in SPIR-V decorations are applied on the struct types directly.
+ // This is not supported on GLSL, so we have to make the assumption that if a struct within our buffer block struct
+ // has a decoration, it was originally caused by a top-level layout() qualifier in GLSL.
+ //
+ // We would like to go from (SPIR-V style):
+ //
+ // struct Foo { layout(row_major) mat4 matrix; };
+ // buffer UBO { Foo foo; };
+ //
+ // to
+ //
+ // struct Foo { mat4 matrix; }; // GLSL doesn't support any layout shenanigans in raw struct declarations.
+ // buffer UBO { layout(row_major) Foo foo; }; // Apply the layout on top-level.
+ auto flags = combined_decoration_for_member(type, index);
+
+ if (flags.get(DecorationRowMajor))
+ attr.push_back("row_major");
+ // We don't emit any global layouts, so column_major is default.
+ //if (flags & (1ull << DecorationColMajor))
+ // attr.push_back("column_major");
+
+ if (dec.decoration_flags.get(DecorationLocation) && can_use_io_location(type.storage, true))
+ attr.push_back(join("location = ", dec.location));
+
+ // Can only declare component if we can declare location.
+ if (dec.decoration_flags.get(DecorationComponent) && can_use_io_location(type.storage, true))
+ {
+ if (!options.es)
+ {
+ if (options.version < 440 && options.version >= 140)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ else if (options.version < 140)
+ SPIRV_CROSS_THROW("Component decoration is not supported in targets below GLSL 1.40.");
+ attr.push_back(join("component = ", dec.component));
+ }
+ else
+ SPIRV_CROSS_THROW("Component decoration is not supported in ES targets.");
+ }
+
+ // SPIRVCrossDecorationPacked is set by layout_for_variable earlier to mark that we need to emit offset qualifiers.
+ // This is only done selectively in GLSL as needed.
+ if (has_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset) &&
+ dec.decoration_flags.get(DecorationOffset))
+ attr.push_back(join("offset = ", dec.offset));
+ else if (type.storage == StorageClassOutput && dec.decoration_flags.get(DecorationOffset))
+ attr.push_back(join("xfb_offset = ", dec.offset));
+
+ if (attr.empty())
+ return "";
+
+ string res = "layout(";
+ res += merge(attr);
+ res += ") ";
+ return res;
+}
+
+const char *CompilerGLSL::format_to_glsl(spv::ImageFormat format)
+{
+ if (options.es && is_desktop_only_format(format))
+ SPIRV_CROSS_THROW("Attempting to use image format not supported in ES profile.");
+
+ switch (format)
+ {
+ case ImageFormatRgba32f:
+ return "rgba32f";
+ case ImageFormatRgba16f:
+ return "rgba16f";
+ case ImageFormatR32f:
+ return "r32f";
+ case ImageFormatRgba8:
+ return "rgba8";
+ case ImageFormatRgba8Snorm:
+ return "rgba8_snorm";
+ case ImageFormatRg32f:
+ return "rg32f";
+ case ImageFormatRg16f:
+ return "rg16f";
+ case ImageFormatRgba32i:
+ return "rgba32i";
+ case ImageFormatRgba16i:
+ return "rgba16i";
+ case ImageFormatR32i:
+ return "r32i";
+ case ImageFormatRgba8i:
+ return "rgba8i";
+ case ImageFormatRg32i:
+ return "rg32i";
+ case ImageFormatRg16i:
+ return "rg16i";
+ case ImageFormatRgba32ui:
+ return "rgba32ui";
+ case ImageFormatRgba16ui:
+ return "rgba16ui";
+ case ImageFormatR32ui:
+ return "r32ui";
+ case ImageFormatRgba8ui:
+ return "rgba8ui";
+ case ImageFormatRg32ui:
+ return "rg32ui";
+ case ImageFormatRg16ui:
+ return "rg16ui";
+ case ImageFormatR11fG11fB10f:
+ return "r11f_g11f_b10f";
+ case ImageFormatR16f:
+ return "r16f";
+ case ImageFormatRgb10A2:
+ return "rgb10_a2";
+ case ImageFormatR8:
+ return "r8";
+ case ImageFormatRg8:
+ return "rg8";
+ case ImageFormatR16:
+ return "r16";
+ case ImageFormatRg16:
+ return "rg16";
+ case ImageFormatRgba16:
+ return "rgba16";
+ case ImageFormatR16Snorm:
+ return "r16_snorm";
+ case ImageFormatRg16Snorm:
+ return "rg16_snorm";
+ case ImageFormatRgba16Snorm:
+ return "rgba16_snorm";
+ case ImageFormatR8Snorm:
+ return "r8_snorm";
+ case ImageFormatRg8Snorm:
+ return "rg8_snorm";
+ case ImageFormatR8ui:
+ return "r8ui";
+ case ImageFormatRg8ui:
+ return "rg8ui";
+ case ImageFormatR16ui:
+ return "r16ui";
+ case ImageFormatRgb10a2ui:
+ return "rgb10_a2ui";
+ case ImageFormatR8i:
+ return "r8i";
+ case ImageFormatRg8i:
+ return "rg8i";
+ case ImageFormatR16i:
+ return "r16i";
+ case ImageFormatR64i:
+ return "r64i";
+ case ImageFormatR64ui:
+ return "r64ui";
+ default:
+ case ImageFormatUnknown:
+ return nullptr;
+ }
+}
+
+uint32_t CompilerGLSL::type_to_packed_base_size(const SPIRType &type, BufferPackingStandard)
+{
+ switch (type.basetype)
+ {
+ case SPIRType::Double:
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ return 8;
+ case SPIRType::Float:
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ return 4;
+ case SPIRType::Half:
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ return 2;
+ case SPIRType::SByte:
+ case SPIRType::UByte:
+ return 1;
+
+ default:
+ SPIRV_CROSS_THROW("Unrecognized type in type_to_packed_base_size.");
+ }
+}
+
+uint32_t CompilerGLSL::type_to_packed_alignment(const SPIRType &type, const Bitset &flags,
+ BufferPackingStandard packing)
+{
+ // If using PhysicalStorageBufferEXT storage class, this is a pointer,
+ // and is 64-bit.
+ if (is_physical_pointer(type))
+ {
+ if (!type.pointer)
+ SPIRV_CROSS_THROW("Types in PhysicalStorageBufferEXT must be pointers.");
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ {
+ if (packing_is_vec4_padded(packing) && type_is_array_of_pointers(type))
+ return 16;
+ else
+ return 8;
+ }
+ else
+ SPIRV_CROSS_THROW("AddressingModelPhysicalStorageBuffer64EXT must be used for PhysicalStorageBufferEXT.");
+ }
+ else if (is_array(type))
+ {
+ uint32_t minimum_alignment = 1;
+ if (packing_is_vec4_padded(packing))
+ minimum_alignment = 16;
+
+ auto *tmp = &get<SPIRType>(type.parent_type);
+ while (!tmp->array.empty())
+ tmp = &get<SPIRType>(tmp->parent_type);
+
+ // Get the alignment of the base type, then maybe round up.
+ return max(minimum_alignment, type_to_packed_alignment(*tmp, flags, packing));
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ // Rule 9. Structs alignments are maximum alignment of its members.
+ uint32_t alignment = 1;
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ auto member_flags = ir.meta[type.self].members[i].decoration_flags;
+ alignment =
+ max(alignment, type_to_packed_alignment(get<SPIRType>(type.member_types[i]), member_flags, packing));
+ }
+
+ // In std140, struct alignment is rounded up to 16.
+ if (packing_is_vec4_padded(packing))
+ alignment = max<uint32_t>(alignment, 16u);
+
+ return alignment;
+ }
+ else
+ {
+ const uint32_t base_alignment = type_to_packed_base_size(type, packing);
+
+ // Alignment requirement for scalar block layout is always the alignment for the most basic component.
+ if (packing_is_scalar(packing))
+ return base_alignment;
+
+ // Vectors are *not* aligned in HLSL, but there's an extra rule where vectors cannot straddle
+ // a vec4, this is handled outside since that part knows our current offset.
+ if (type.columns == 1 && packing_is_hlsl(packing))
+ return base_alignment;
+
+ // From 7.6.2.2 in GL 4.5 core spec.
+ // Rule 1
+ if (type.vecsize == 1 && type.columns == 1)
+ return base_alignment;
+
+ // Rule 2
+ if ((type.vecsize == 2 || type.vecsize == 4) && type.columns == 1)
+ return type.vecsize * base_alignment;
+
+ // Rule 3
+ if (type.vecsize == 3 && type.columns == 1)
+ return 4 * base_alignment;
+
+ // Rule 4 implied. Alignment does not change in std430.
+
+ // Rule 5. Column-major matrices are stored as arrays of
+ // vectors.
+ if (flags.get(DecorationColMajor) && type.columns > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ return 4 * base_alignment;
+ else if (type.vecsize == 3)
+ return 4 * base_alignment;
+ else
+ return type.vecsize * base_alignment;
+ }
+
+ // Rule 6 implied.
+
+ // Rule 7.
+ if (flags.get(DecorationRowMajor) && type.vecsize > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ return 4 * base_alignment;
+ else if (type.columns == 3)
+ return 4 * base_alignment;
+ else
+ return type.columns * base_alignment;
+ }
+
+ // Rule 8 implied.
+ }
+
+ SPIRV_CROSS_THROW("Did not find suitable rule for type. Bogus decorations?");
+}
+
+uint32_t CompilerGLSL::type_to_packed_array_stride(const SPIRType &type, const Bitset &flags,
+ BufferPackingStandard packing)
+{
+ // Array stride is equal to aligned size of the underlying type.
+ uint32_t parent = type.parent_type;
+ assert(parent);
+
+ auto &tmp = get<SPIRType>(parent);
+
+ uint32_t size = type_to_packed_size(tmp, flags, packing);
+ uint32_t alignment = type_to_packed_alignment(type, flags, packing);
+ return (size + alignment - 1) & ~(alignment - 1);
+}
+
+uint32_t CompilerGLSL::type_to_packed_size(const SPIRType &type, const Bitset &flags, BufferPackingStandard packing)
+{
+ // If using PhysicalStorageBufferEXT storage class, this is a pointer,
+ // and is 64-bit.
+ if (is_physical_pointer(type))
+ {
+ if (!type.pointer)
+ SPIRV_CROSS_THROW("Types in PhysicalStorageBufferEXT must be pointers.");
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ return 8;
+ else
+ SPIRV_CROSS_THROW("AddressingModelPhysicalStorageBuffer64EXT must be used for PhysicalStorageBufferEXT.");
+ }
+ else if (is_array(type))
+ {
+ uint32_t packed_size = to_array_size_literal(type) * type_to_packed_array_stride(type, flags, packing);
+
+ // For arrays of vectors and matrices in HLSL, the last element has a size which depends on its vector size,
+ // so that it is possible to pack other vectors into the last element.
+ if (packing_is_hlsl(packing) && type.basetype != SPIRType::Struct)
+ packed_size -= (4 - type.vecsize) * (type.width / 8);
+
+ return packed_size;
+ }
+
+ uint32_t size = 0;
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ uint32_t pad_alignment = 1;
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ auto member_flags = ir.meta[type.self].members[i].decoration_flags;
+ auto &member_type = get<SPIRType>(type.member_types[i]);
+
+ uint32_t packed_alignment = type_to_packed_alignment(member_type, member_flags, packing);
+ uint32_t alignment = max(packed_alignment, pad_alignment);
+
+ // The next member following a struct member is aligned to the base alignment of the struct that came before.
+ // GL 4.5 spec, 7.6.2.2.
+ if (member_type.basetype == SPIRType::Struct)
+ pad_alignment = packed_alignment;
+ else
+ pad_alignment = 1;
+
+ size = (size + alignment - 1) & ~(alignment - 1);
+ size += type_to_packed_size(member_type, member_flags, packing);
+ }
+ }
+ else
+ {
+ const uint32_t base_alignment = type_to_packed_base_size(type, packing);
+
+ if (packing_is_scalar(packing))
+ {
+ size = type.vecsize * type.columns * base_alignment;
+ }
+ else
+ {
+ if (type.columns == 1)
+ size = type.vecsize * base_alignment;
+
+ if (flags.get(DecorationColMajor) && type.columns > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ size = type.columns * 4 * base_alignment;
+ else if (type.vecsize == 3)
+ size = type.columns * 4 * base_alignment;
+ else
+ size = type.columns * type.vecsize * base_alignment;
+ }
+
+ if (flags.get(DecorationRowMajor) && type.vecsize > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ size = type.vecsize * 4 * base_alignment;
+ else if (type.columns == 3)
+ size = type.vecsize * 4 * base_alignment;
+ else
+ size = type.vecsize * type.columns * base_alignment;
+ }
+
+ // For matrices in HLSL, the last element has a size which depends on its vector size,
+ // so that it is possible to pack other vectors into the last element.
+ if (packing_is_hlsl(packing) && type.columns > 1)
+ size -= (4 - type.vecsize) * (type.width / 8);
+ }
+ }
+
+ return size;
+}
+
+bool CompilerGLSL::buffer_is_packing_standard(const SPIRType &type, BufferPackingStandard packing,
+ uint32_t *failed_validation_index, uint32_t start_offset,
+ uint32_t end_offset)
+{
+ // This is very tricky and error prone, but try to be exhaustive and correct here.
+ // SPIR-V doesn't directly say if we're using std430 or std140.
+ // SPIR-V communicates this using Offset and ArrayStride decorations (which is what really matters),
+ // so we have to try to infer whether or not the original GLSL source was std140 or std430 based on this information.
+ // We do not have to consider shared or packed since these layouts are not allowed in Vulkan SPIR-V (they are useless anyways, and custom offsets would do the same thing).
+ //
+ // It is almost certain that we're using std430, but it gets tricky with arrays in particular.
+ // We will assume std430, but infer std140 if we can prove the struct is not compliant with std430.
+ //
+ // The only two differences between std140 and std430 are related to padding alignment/array stride
+ // in arrays and structs. In std140 they take minimum vec4 alignment.
+ // std430 only removes the vec4 requirement.
+
+ uint32_t offset = 0;
+ uint32_t pad_alignment = 1;
+
+ bool is_top_level_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ auto &memb_type = get<SPIRType>(type.member_types[i]);
+
+ auto *type_meta = ir.find_meta(type.self);
+ auto member_flags = type_meta ? type_meta->members[i].decoration_flags : Bitset{};
+
+ // Verify alignment rules.
+ uint32_t packed_alignment = type_to_packed_alignment(memb_type, member_flags, packing);
+
+ // This is a rather dirty workaround to deal with some cases of OpSpecConstantOp used as array size, e.g:
+ // layout(constant_id = 0) const int s = 10;
+ // const int S = s + 5; // SpecConstantOp
+ // buffer Foo { int data[S]; }; // <-- Very hard for us to deduce a fixed value here,
+ // we would need full implementation of compile-time constant folding. :(
+ // If we are the last member of a struct, there might be cases where the actual size of that member is irrelevant
+ // for our analysis (e.g. unsized arrays).
+ // This lets us simply ignore that there are spec constant op sized arrays in our buffers.
+ // Querying size of this member will fail, so just don't call it unless we have to.
+ //
+ // This is likely "best effort" we can support without going into unacceptably complicated workarounds.
+ bool member_can_be_unsized =
+ is_top_level_block && size_t(i + 1) == type.member_types.size() && !memb_type.array.empty();
+
+ uint32_t packed_size = 0;
+ if (!member_can_be_unsized || packing_is_hlsl(packing))
+ packed_size = type_to_packed_size(memb_type, member_flags, packing);
+
+ // We only need to care about this if we have non-array types which can straddle the vec4 boundary.
+ uint32_t actual_offset = type_struct_member_offset(type, i);
+
+ if (packing_is_hlsl(packing))
+ {
+ // If a member straddles across a vec4 boundary, alignment is actually vec4.
+ uint32_t target_offset;
+
+ // If we intend to use explicit packing, we must check for improper straddle with that offset.
+ // In implicit packing, we must check with implicit offset, since the explicit offset
+ // might have already accounted for the straddle, and we'd miss the alignment promotion to vec4.
+ // This is important when packing sub-structs that don't support packoffset().
+ if (packing_has_flexible_offset(packing))
+ target_offset = actual_offset;
+ else
+ target_offset = offset;
+
+ uint32_t begin_word = target_offset / 16;
+ uint32_t end_word = (target_offset + packed_size - 1) / 16;
+
+ if (begin_word != end_word)
+ packed_alignment = max<uint32_t>(packed_alignment, 16u);
+ }
+
+ // Field is not in the specified range anymore and we can ignore any further fields.
+ if (actual_offset >= end_offset)
+ break;
+
+ uint32_t alignment = max(packed_alignment, pad_alignment);
+ offset = (offset + alignment - 1) & ~(alignment - 1);
+
+ // The next member following a struct member is aligned to the base alignment of the struct that came before.
+ // GL 4.5 spec, 7.6.2.2.
+ if (memb_type.basetype == SPIRType::Struct && !memb_type.pointer)
+ pad_alignment = packed_alignment;
+ else
+ pad_alignment = 1;
+
+ // Only care about packing if we are in the given range
+ if (actual_offset >= start_offset)
+ {
+ // We only care about offsets in std140, std430, etc ...
+ // For EnhancedLayout variants, we have the flexibility to choose our own offsets.
+ if (!packing_has_flexible_offset(packing))
+ {
+ if (actual_offset != offset) // This cannot be the packing we're looking for.
+ {
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+ }
+ else if ((actual_offset & (alignment - 1)) != 0)
+ {
+ // We still need to verify that alignment rules are observed, even if we have explicit offset.
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+
+ // Verify array stride rules.
+ if (is_array(memb_type) &&
+ type_to_packed_array_stride(memb_type, member_flags, packing) !=
+ type_struct_member_array_stride(type, i))
+ {
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+
+ // Verify that sub-structs also follow packing rules.
+ // We cannot use enhanced layouts on substructs, so they better be up to spec.
+ auto substruct_packing = packing_to_substruct_packing(packing);
+
+ if (!memb_type.pointer && !memb_type.member_types.empty() &&
+ !buffer_is_packing_standard(memb_type, substruct_packing))
+ {
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+ }
+
+ // Bump size.
+ offset = actual_offset + packed_size;
+ }
+
+ return true;
+}
+
+bool CompilerGLSL::can_use_io_location(StorageClass storage, bool block)
+{
+ // Location specifiers are must have in SPIR-V, but they aren't really supported in earlier versions of GLSL.
+ // Be very explicit here about how to solve the issue.
+ if ((get_execution_model() != ExecutionModelVertex && storage == StorageClassInput) ||
+ (get_execution_model() != ExecutionModelFragment && storage == StorageClassOutput))
+ {
+ uint32_t minimum_desktop_version = block ? 440 : 410;
+ // ARB_enhanced_layouts vs ARB_separate_shader_objects ...
+
+ if (!options.es && options.version < minimum_desktop_version && !options.separate_shader_objects)
+ return false;
+ else if (options.es && options.version < 310)
+ return false;
+ }
+
+ if ((get_execution_model() == ExecutionModelVertex && storage == StorageClassInput) ||
+ (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput))
+ {
+ if (options.es && options.version < 300)
+ return false;
+ else if (!options.es && options.version < 330)
+ return false;
+ }
+
+ if (storage == StorageClassUniform || storage == StorageClassUniformConstant || storage == StorageClassPushConstant)
+ {
+ if (options.es && options.version < 310)
+ return false;
+ else if (!options.es && options.version < 430)
+ return false;
+ }
+
+ return true;
+}
+
+string CompilerGLSL::layout_for_variable(const SPIRVariable &var)
+{
+ // FIXME: Come up with a better solution for when to disable layouts.
+ // Having layouts depend on extensions as well as which types
+ // of layouts are used. For now, the simple solution is to just disable
+ // layouts for legacy versions.
+ if (is_legacy())
+ return "";
+
+ if (subpass_input_is_framebuffer_fetch(var.self))
+ return "";
+
+ SmallVector<string> attr;
+
+ auto &type = get<SPIRType>(var.basetype);
+ auto &flags = get_decoration_bitset(var.self);
+ auto &typeflags = get_decoration_bitset(type.self);
+
+ if (flags.get(DecorationPassthroughNV))
+ attr.push_back("passthrough");
+
+ if (options.vulkan_semantics && var.storage == StorageClassPushConstant)
+ attr.push_back("push_constant");
+ else if (var.storage == StorageClassShaderRecordBufferKHR)
+ attr.push_back(ray_tracing_is_khr ? "shaderRecordEXT" : "shaderRecordNV");
+
+ if (flags.get(DecorationRowMajor))
+ attr.push_back("row_major");
+ if (flags.get(DecorationColMajor))
+ attr.push_back("column_major");
+
+ if (options.vulkan_semantics)
+ {
+ if (flags.get(DecorationInputAttachmentIndex))
+ attr.push_back(join("input_attachment_index = ", get_decoration(var.self, DecorationInputAttachmentIndex)));
+ }
+
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ if (flags.get(DecorationLocation) && can_use_io_location(var.storage, is_block))
+ {
+ Bitset combined_decoration;
+ for (uint32_t i = 0; i < ir.meta[type.self].members.size(); i++)
+ combined_decoration.merge_or(combined_decoration_for_member(type, i));
+
+ // If our members have location decorations, we don't need to
+ // emit location decorations at the top as well (looks weird).
+ if (!combined_decoration.get(DecorationLocation))
+ attr.push_back(join("location = ", get_decoration(var.self, DecorationLocation)));
+ }
+
+ if (get_execution_model() == ExecutionModelFragment && var.storage == StorageClassOutput &&
+ location_is_non_coherent_framebuffer_fetch(get_decoration(var.self, DecorationLocation)))
+ {
+ attr.push_back("noncoherent");
+ }
+
+ // Transform feedback
+ bool uses_enhanced_layouts = false;
+ if (is_block && var.storage == StorageClassOutput)
+ {
+ // For blocks, there is a restriction where xfb_stride/xfb_buffer must only be declared on the block itself,
+ // since all members must match the same xfb_buffer. The only thing we will declare for members of the block
+ // is the xfb_offset.
+ uint32_t member_count = uint32_t(type.member_types.size());
+ bool have_xfb_buffer_stride = false;
+ bool have_any_xfb_offset = false;
+ bool have_geom_stream = false;
+ uint32_t xfb_stride = 0, xfb_buffer = 0, geom_stream = 0;
+
+ if (flags.get(DecorationXfbBuffer) && flags.get(DecorationXfbStride))
+ {
+ have_xfb_buffer_stride = true;
+ xfb_buffer = get_decoration(var.self, DecorationXfbBuffer);
+ xfb_stride = get_decoration(var.self, DecorationXfbStride);
+ }
+
+ if (flags.get(DecorationStream))
+ {
+ have_geom_stream = true;
+ geom_stream = get_decoration(var.self, DecorationStream);
+ }
+
+ // Verify that none of the members violate our assumption.
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (has_member_decoration(type.self, i, DecorationStream))
+ {
+ uint32_t member_geom_stream = get_member_decoration(type.self, i, DecorationStream);
+ if (have_geom_stream && member_geom_stream != geom_stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = member_geom_stream;
+ }
+
+ // Only members with an Offset decoration participate in XFB.
+ if (!has_member_decoration(type.self, i, DecorationOffset))
+ continue;
+ have_any_xfb_offset = true;
+
+ if (has_member_decoration(type.self, i, DecorationXfbBuffer))
+ {
+ uint32_t buffer_index = get_member_decoration(type.self, i, DecorationXfbBuffer);
+ if (have_xfb_buffer_stride && buffer_index != xfb_buffer)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_buffer = buffer_index;
+ }
+
+ if (has_member_decoration(type.self, i, DecorationXfbStride))
+ {
+ uint32_t stride = get_member_decoration(type.self, i, DecorationXfbStride);
+ if (have_xfb_buffer_stride && stride != xfb_stride)
+ SPIRV_CROSS_THROW("IO block member XfbStride mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_stride = stride;
+ }
+ }
+
+ if (have_xfb_buffer_stride && have_any_xfb_offset)
+ {
+ attr.push_back(join("xfb_buffer = ", xfb_buffer));
+ attr.push_back(join("xfb_stride = ", xfb_stride));
+ uses_enhanced_layouts = true;
+ }
+
+ if (have_geom_stream)
+ {
+ if (get_execution_model() != ExecutionModelGeometry)
+ SPIRV_CROSS_THROW("Geometry streams can only be used in geometry shaders.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Multiple geometry streams not supported in ESSL.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_transform_feedback3");
+ attr.push_back(join("stream = ", get_decoration(var.self, DecorationStream)));
+ }
+ }
+ else if (var.storage == StorageClassOutput)
+ {
+ if (flags.get(DecorationXfbBuffer) && flags.get(DecorationXfbStride) && flags.get(DecorationOffset))
+ {
+ // XFB for standalone variables, we can emit all decorations.
+ attr.push_back(join("xfb_buffer = ", get_decoration(var.self, DecorationXfbBuffer)));
+ attr.push_back(join("xfb_stride = ", get_decoration(var.self, DecorationXfbStride)));
+ attr.push_back(join("xfb_offset = ", get_decoration(var.self, DecorationOffset)));
+ uses_enhanced_layouts = true;
+ }
+
+ if (flags.get(DecorationStream))
+ {
+ if (get_execution_model() != ExecutionModelGeometry)
+ SPIRV_CROSS_THROW("Geometry streams can only be used in geometry shaders.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Multiple geometry streams not supported in ESSL.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_transform_feedback3");
+ attr.push_back(join("stream = ", get_decoration(var.self, DecorationStream)));
+ }
+ }
+
+ // Can only declare Component if we can declare location.
+ if (flags.get(DecorationComponent) && can_use_io_location(var.storage, is_block))
+ {
+ uses_enhanced_layouts = true;
+ attr.push_back(join("component = ", get_decoration(var.self, DecorationComponent)));
+ }
+
+ if (uses_enhanced_layouts)
+ {
+ if (!options.es)
+ {
+ if (options.version < 440 && options.version >= 140)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ else if (options.version < 140)
+ SPIRV_CROSS_THROW("GL_ARB_enhanced_layouts is not supported in targets below GLSL 1.40.");
+ if (!options.es && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ }
+ else if (options.es)
+ SPIRV_CROSS_THROW("GL_ARB_enhanced_layouts is not supported in ESSL.");
+ }
+
+ if (flags.get(DecorationIndex))
+ attr.push_back(join("index = ", get_decoration(var.self, DecorationIndex)));
+
+ // Do not emit set = decoration in regular GLSL output, but
+ // we need to preserve it in Vulkan GLSL mode.
+ if (var.storage != StorageClassPushConstant && var.storage != StorageClassShaderRecordBufferKHR)
+ {
+ if (flags.get(DecorationDescriptorSet) && options.vulkan_semantics)
+ attr.push_back(join("set = ", get_decoration(var.self, DecorationDescriptorSet)));
+ }
+
+ bool push_constant_block = options.vulkan_semantics && var.storage == StorageClassPushConstant;
+ bool ssbo_block = var.storage == StorageClassStorageBuffer || var.storage == StorageClassShaderRecordBufferKHR ||
+ (var.storage == StorageClassUniform && typeflags.get(DecorationBufferBlock));
+ bool emulated_ubo = var.storage == StorageClassPushConstant && options.emit_push_constant_as_uniform_buffer;
+ bool ubo_block = var.storage == StorageClassUniform && typeflags.get(DecorationBlock);
+
+ // GL 3.0/GLSL 1.30 is not considered legacy, but it doesn't have UBOs ...
+ bool can_use_buffer_blocks = (options.es && options.version >= 300) || (!options.es && options.version >= 140);
+
+ // pretend no UBOs when options say so
+ if (ubo_block && options.emit_uniform_buffer_as_plain_uniforms)
+ can_use_buffer_blocks = false;
+
+ bool can_use_binding;
+ if (options.es)
+ can_use_binding = options.version >= 310;
+ else
+ can_use_binding = options.enable_420pack_extension || (options.version >= 420);
+
+ // Make sure we don't emit binding layout for a classic uniform on GLSL 1.30.
+ if (!can_use_buffer_blocks && var.storage == StorageClassUniform)
+ can_use_binding = false;
+
+ if (var.storage == StorageClassShaderRecordBufferKHR)
+ can_use_binding = false;
+
+ if (can_use_binding && flags.get(DecorationBinding))
+ attr.push_back(join("binding = ", get_decoration(var.self, DecorationBinding)));
+
+ if (var.storage != StorageClassOutput && flags.get(DecorationOffset))
+ attr.push_back(join("offset = ", get_decoration(var.self, DecorationOffset)));
+
+ // Instead of adding explicit offsets for every element here, just assume we're using std140 or std430.
+ // If SPIR-V does not comply with either layout, we cannot really work around it.
+ if (can_use_buffer_blocks && (ubo_block || emulated_ubo))
+ {
+ attr.push_back(buffer_to_packing_standard(type, false, true));
+ }
+ else if (can_use_buffer_blocks && (push_constant_block || ssbo_block))
+ {
+ attr.push_back(buffer_to_packing_standard(type, true, true));
+ }
+
+ // For images, the type itself adds a layout qualifer.
+ // Only emit the format for storage images.
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2)
+ {
+ const char *fmt = format_to_glsl(type.image.format);
+ if (fmt)
+ attr.push_back(fmt);
+ }
+
+ if (attr.empty())
+ return "";
+
+ string res = "layout(";
+ res += merge(attr);
+ res += ") ";
+ return res;
+}
+
+string CompilerGLSL::buffer_to_packing_standard(const SPIRType &type,
+ bool support_std430_without_scalar_layout,
+ bool support_enhanced_layouts)
+{
+ if (support_std430_without_scalar_layout && buffer_is_packing_standard(type, BufferPackingStd430))
+ return "std430";
+ else if (buffer_is_packing_standard(type, BufferPackingStd140))
+ return "std140";
+ else if (options.vulkan_semantics && buffer_is_packing_standard(type, BufferPackingScalar))
+ {
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "scalar";
+ }
+ else if (support_std430_without_scalar_layout &&
+ support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingStd430EnhancedLayout))
+ {
+ if (options.es && !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Push constant block cannot be expressed as neither std430 nor std140. ES-targets do "
+ "not support GL_ARB_enhanced_layouts.");
+ if (!options.es && !options.vulkan_semantics && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ return "std430";
+ }
+ else if (support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingStd140EnhancedLayout))
+ {
+ // Fallback time. We might be able to use the ARB_enhanced_layouts to deal with this difference,
+ // however, we can only use layout(offset) on the block itself, not any substructs, so the substructs better be the appropriate layout.
+ // Enhanced layouts seem to always work in Vulkan GLSL, so no need for extensions there.
+ if (options.es && !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Push constant block cannot be expressed as neither std430 nor std140. ES-targets do "
+ "not support GL_ARB_enhanced_layouts.");
+ if (!options.es && !options.vulkan_semantics && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ return "std140";
+ }
+ else if (options.vulkan_semantics &&
+ support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingScalarEnhancedLayout))
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "scalar";
+ }
+ else if (!support_std430_without_scalar_layout && options.vulkan_semantics &&
+ buffer_is_packing_standard(type, BufferPackingStd430))
+ {
+ // UBOs can support std430 with GL_EXT_scalar_block_layout.
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "std430";
+ }
+ else if (!support_std430_without_scalar_layout && options.vulkan_semantics &&
+ support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingStd430EnhancedLayout))
+ {
+ // UBOs can support std430 with GL_EXT_scalar_block_layout.
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "std430";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("Buffer block cannot be expressed as any of std430, std140, scalar, even with enhanced "
+ "layouts. You can try flattening this block to support a more flexible layout.");
+ }
+}
+
+void CompilerGLSL::emit_push_constant_block(const SPIRVariable &var)
+{
+ if (flattened_buffer_blocks.count(var.self))
+ emit_buffer_block_flattened(var);
+ else if (options.vulkan_semantics)
+ emit_push_constant_block_vulkan(var);
+ else if (options.emit_push_constant_as_uniform_buffer)
+ emit_buffer_block_native(var);
+ else
+ emit_push_constant_block_glsl(var);
+}
+
+void CompilerGLSL::emit_push_constant_block_vulkan(const SPIRVariable &var)
+{
+ emit_buffer_block(var);
+}
+
+void CompilerGLSL::emit_push_constant_block_glsl(const SPIRVariable &var)
+{
+ // OpenGL has no concept of push constant blocks, implement it as a uniform struct.
+ auto &type = get<SPIRType>(var.basetype);
+
+ unset_decoration(var.self, DecorationBinding);
+ unset_decoration(var.self, DecorationDescriptorSet);
+
+#if 0
+ if (flags & ((1ull << DecorationBinding) | (1ull << DecorationDescriptorSet)))
+ SPIRV_CROSS_THROW("Push constant blocks cannot be compiled to GLSL with Binding or Set syntax. "
+ "Remap to location with reflection API first or disable these decorations.");
+#endif
+
+ // We're emitting the push constant block as a regular struct, so disable the block qualifier temporarily.
+ // Otherwise, we will end up emitting layout() qualifiers on naked structs which is not allowed.
+ bool block_flag = has_decoration(type.self, DecorationBlock);
+ unset_decoration(type.self, DecorationBlock);
+
+ emit_struct(type);
+
+ if (block_flag)
+ set_decoration(type.self, DecorationBlock);
+
+ emit_uniform(var);
+ statement("");
+}
+
+void CompilerGLSL::emit_buffer_block(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool ubo_block = var.storage == StorageClassUniform && has_decoration(type.self, DecorationBlock);
+
+ if (flattened_buffer_blocks.count(var.self))
+ emit_buffer_block_flattened(var);
+ else if (is_legacy() || (!options.es && options.version == 130) ||
+ (ubo_block && options.emit_uniform_buffer_as_plain_uniforms))
+ emit_buffer_block_legacy(var);
+ else
+ emit_buffer_block_native(var);
+}
+
+void CompilerGLSL::emit_buffer_block_legacy(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool ssbo = var.storage == StorageClassStorageBuffer ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+ if (ssbo)
+ SPIRV_CROSS_THROW("SSBOs not supported in legacy targets.");
+
+ // We're emitting the push constant block as a regular struct, so disable the block qualifier temporarily.
+ // Otherwise, we will end up emitting layout() qualifiers on naked structs which is not allowed.
+ auto &block_flags = ir.meta[type.self].decoration.decoration_flags;
+ bool block_flag = block_flags.get(DecorationBlock);
+ block_flags.clear(DecorationBlock);
+ emit_struct(type);
+ if (block_flag)
+ block_flags.set(DecorationBlock);
+ emit_uniform(var);
+ statement("");
+}
+
+void CompilerGLSL::emit_buffer_reference_block(uint32_t type_id, bool forward_declaration)
+{
+ auto &type = get<SPIRType>(type_id);
+ string buffer_name;
+
+ if (forward_declaration && is_physical_pointer_to_buffer_block(type))
+ {
+ // Block names should never alias, but from HLSL input they kind of can because block types are reused for UAVs ...
+ // Allow aliased name since we might be declaring the block twice. Once with buffer reference (forward declared) and one proper declaration.
+ // The names must match up.
+ buffer_name = to_name(type.self, false);
+
+ // Shaders never use the block by interface name, so we don't
+ // have to track this other than updating name caches.
+ // If we have a collision for any reason, just fallback immediately.
+ if (ir.meta[type.self].decoration.alias.empty() ||
+ block_ssbo_names.find(buffer_name) != end(block_ssbo_names) ||
+ resource_names.find(buffer_name) != end(resource_names))
+ {
+ buffer_name = join("_", type.self);
+ }
+
+ // Make sure we get something unique for both global name scope and block name scope.
+ // See GLSL 4.5 spec: section 4.3.9 for details.
+ add_variable(block_ssbo_names, resource_names, buffer_name);
+
+ // If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
+ // This cannot conflict with anything else, so we're safe now.
+ // We cannot reuse this fallback name in neither global scope (blocked by block_names) nor block name scope.
+ if (buffer_name.empty())
+ buffer_name = join("_", type.self);
+
+ block_names.insert(buffer_name);
+ block_ssbo_names.insert(buffer_name);
+
+ // Ensure we emit the correct name when emitting non-forward pointer type.
+ ir.meta[type.self].decoration.alias = buffer_name;
+ }
+ else
+ {
+ buffer_name = type_to_glsl(type);
+ }
+
+ if (!forward_declaration)
+ {
+ auto itr = physical_storage_type_to_alignment.find(type_id);
+ uint32_t alignment = 0;
+ if (itr != physical_storage_type_to_alignment.end())
+ alignment = itr->second.alignment;
+
+ if (is_physical_pointer_to_buffer_block(type))
+ {
+ SmallVector<std::string> attributes;
+ attributes.push_back("buffer_reference");
+ if (alignment)
+ attributes.push_back(join("buffer_reference_align = ", alignment));
+ attributes.push_back(buffer_to_packing_standard(type, true, true));
+
+ auto flags = ir.get_buffer_block_type_flags(type);
+ string decorations;
+ if (flags.get(DecorationRestrict))
+ decorations += " restrict";
+ if (flags.get(DecorationCoherent))
+ decorations += " coherent";
+ if (flags.get(DecorationNonReadable))
+ decorations += " writeonly";
+ if (flags.get(DecorationNonWritable))
+ decorations += " readonly";
+
+ statement("layout(", merge(attributes), ")", decorations, " buffer ", buffer_name);
+ }
+ else
+ {
+ string packing_standard;
+ if (type.basetype == SPIRType::Struct)
+ {
+ // The non-block type is embedded in a block, so we cannot use enhanced layouts :(
+ packing_standard = buffer_to_packing_standard(type, true, false) + ", ";
+ }
+ else if (is_array(get_pointee_type(type)))
+ {
+ SPIRType wrap_type{OpTypeStruct};
+ wrap_type.self = ir.increase_bound_by(1);
+ wrap_type.member_types.push_back(get_pointee_type_id(type_id));
+ ir.set_member_decoration(wrap_type.self, 0, DecorationOffset, 0);
+ packing_standard = buffer_to_packing_standard(wrap_type, true, false) + ", ";
+ }
+
+ if (alignment)
+ statement("layout(", packing_standard, "buffer_reference, buffer_reference_align = ", alignment, ") buffer ", buffer_name);
+ else
+ statement("layout(", packing_standard, "buffer_reference) buffer ", buffer_name);
+ }
+
+ begin_scope();
+
+ if (is_physical_pointer_to_buffer_block(type))
+ {
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ }
+ }
+ else
+ {
+ auto &pointee_type = get_pointee_type(type);
+ statement(type_to_glsl(pointee_type), " value", type_to_array_glsl(pointee_type, 0), ";");
+ }
+
+ end_scope_decl();
+ statement("");
+ }
+ else
+ {
+ statement("layout(buffer_reference) buffer ", buffer_name, ";");
+ }
+}
+
+void CompilerGLSL::emit_buffer_block_native(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+
+ Bitset flags = ir.get_buffer_block_flags(var);
+ bool ssbo = var.storage == StorageClassStorageBuffer || var.storage == StorageClassShaderRecordBufferKHR ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+ bool is_restrict = ssbo && flags.get(DecorationRestrict);
+ bool is_writeonly = ssbo && flags.get(DecorationNonReadable);
+ bool is_readonly = ssbo && flags.get(DecorationNonWritable);
+ bool is_coherent = ssbo && flags.get(DecorationCoherent);
+
+ // Block names should never alias, but from HLSL input they kind of can because block types are reused for UAVs ...
+ auto buffer_name = to_name(type.self, false);
+
+ auto &block_namespace = ssbo ? block_ssbo_names : block_ubo_names;
+
+ // Shaders never use the block by interface name, so we don't
+ // have to track this other than updating name caches.
+ // If we have a collision for any reason, just fallback immediately.
+ if (ir.meta[type.self].decoration.alias.empty() || block_namespace.find(buffer_name) != end(block_namespace) ||
+ resource_names.find(buffer_name) != end(resource_names))
+ {
+ buffer_name = get_block_fallback_name(var.self);
+ }
+
+ // Make sure we get something unique for both global name scope and block name scope.
+ // See GLSL 4.5 spec: section 4.3.9 for details.
+ add_variable(block_namespace, resource_names, buffer_name);
+
+ // If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
+ // This cannot conflict with anything else, so we're safe now.
+ // We cannot reuse this fallback name in neither global scope (blocked by block_names) nor block name scope.
+ if (buffer_name.empty())
+ buffer_name = join("_", get<SPIRType>(var.basetype).self, "_", var.self);
+
+ block_names.insert(buffer_name);
+ block_namespace.insert(buffer_name);
+
+ // Save for post-reflection later.
+ declared_block_names[var.self] = buffer_name;
+
+ statement(layout_for_variable(var), is_coherent ? "coherent " : "", is_restrict ? "restrict " : "",
+ is_writeonly ? "writeonly " : "", is_readonly ? "readonly " : "", ssbo ? "buffer " : "uniform ",
+ buffer_name);
+
+ begin_scope();
+
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ }
+
+ // Don't declare empty blocks in GLSL, this is not allowed.
+ if (type_is_empty(type) && !backend.supports_empty_struct)
+ statement("int empty_struct_member;");
+
+ // var.self can be used as a backup name for the block name,
+ // so we need to make sure we don't disturb the name here on a recompile.
+ // It will need to be reset if we have to recompile.
+ preserve_alias_on_reset(var.self);
+ add_resource_name(var.self);
+ end_scope_decl(to_name(var.self) + type_to_array_glsl(type, var.self));
+ statement("");
+}
+
+void CompilerGLSL::emit_buffer_block_flattened(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+
+ // Block names should never alias.
+ auto buffer_name = to_name(type.self, false);
+ size_t buffer_size = (get_declared_struct_size(type) + 15) / 16;
+
+ SPIRType::BaseType basic_type;
+ if (get_common_basic_type(type, basic_type))
+ {
+ SPIRType tmp { OpTypeVector };
+ tmp.basetype = basic_type;
+ tmp.vecsize = 4;
+ if (basic_type != SPIRType::Float && basic_type != SPIRType::Int && basic_type != SPIRType::UInt)
+ SPIRV_CROSS_THROW("Basic types in a flattened UBO must be float, int or uint.");
+
+ auto flags = ir.get_buffer_block_flags(var);
+ statement("uniform ", flags_to_qualifiers_glsl(tmp, flags), type_to_glsl(tmp), " ", buffer_name, "[",
+ buffer_size, "];");
+ }
+ else
+ SPIRV_CROSS_THROW("All basic types in a flattened block must be the same.");
+}
+
+const char *CompilerGLSL::to_storage_qualifiers_glsl(const SPIRVariable &var)
+{
+ auto &execution = get_entry_point();
+
+ if (subpass_input_is_framebuffer_fetch(var.self))
+ return "";
+
+ if (var.storage == StorageClassInput || var.storage == StorageClassOutput)
+ {
+ if (is_legacy() && execution.model == ExecutionModelVertex)
+ return var.storage == StorageClassInput ? "attribute " : "varying ";
+ else if (is_legacy() && execution.model == ExecutionModelFragment)
+ return "varying "; // Fragment outputs are renamed so they never hit this case.
+ else if (execution.model == ExecutionModelFragment && var.storage == StorageClassOutput)
+ {
+ uint32_t loc = get_decoration(var.self, DecorationLocation);
+ bool is_inout = location_is_framebuffer_fetch(loc);
+ if (is_inout)
+ return "inout ";
+ else
+ return "out ";
+ }
+ else
+ return var.storage == StorageClassInput ? "in " : "out ";
+ }
+ else if (var.storage == StorageClassUniformConstant || var.storage == StorageClassUniform ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassAtomicCounter)
+ {
+ return "uniform ";
+ }
+ else if (var.storage == StorageClassRayPayloadKHR)
+ {
+ return ray_tracing_is_khr ? "rayPayloadEXT " : "rayPayloadNV ";
+ }
+ else if (var.storage == StorageClassIncomingRayPayloadKHR)
+ {
+ return ray_tracing_is_khr ? "rayPayloadInEXT " : "rayPayloadInNV ";
+ }
+ else if (var.storage == StorageClassHitAttributeKHR)
+ {
+ return ray_tracing_is_khr ? "hitAttributeEXT " : "hitAttributeNV ";
+ }
+ else if (var.storage == StorageClassCallableDataKHR)
+ {
+ return ray_tracing_is_khr ? "callableDataEXT " : "callableDataNV ";
+ }
+ else if (var.storage == StorageClassIncomingCallableDataKHR)
+ {
+ return ray_tracing_is_khr ? "callableDataInEXT " : "callableDataInNV ";
+ }
+
+ return "";
+}
+
+void CompilerGLSL::emit_flattened_io_block_member(const std::string &basename, const SPIRType &type, const char *qual,
+ const SmallVector<uint32_t> &indices)
+{
+ uint32_t member_type_id = type.self;
+ const SPIRType *member_type = &type;
+ const SPIRType *parent_type = nullptr;
+ auto flattened_name = basename;
+ for (auto &index : indices)
+ {
+ flattened_name += "_";
+ flattened_name += to_member_name(*member_type, index);
+ parent_type = member_type;
+ member_type_id = member_type->member_types[index];
+ member_type = &get<SPIRType>(member_type_id);
+ }
+
+ assert(member_type->basetype != SPIRType::Struct);
+
+ // We're overriding struct member names, so ensure we do so on the primary type.
+ if (parent_type->type_alias)
+ parent_type = &get<SPIRType>(parent_type->type_alias);
+
+ // Sanitize underscores because joining the two identifiers might create more than 1 underscore in a row,
+ // which is not allowed.
+ ParsedIR::sanitize_underscores(flattened_name);
+
+ uint32_t last_index = indices.back();
+
+ // Pass in the varying qualifier here so it will appear in the correct declaration order.
+ // Replace member name while emitting it so it encodes both struct name and member name.
+ auto backup_name = get_member_name(parent_type->self, last_index);
+ auto member_name = to_member_name(*parent_type, last_index);
+ set_member_name(parent_type->self, last_index, flattened_name);
+ emit_struct_member(*parent_type, member_type_id, last_index, qual);
+ // Restore member name.
+ set_member_name(parent_type->self, last_index, member_name);
+}
+
+void CompilerGLSL::emit_flattened_io_block_struct(const std::string &basename, const SPIRType &type, const char *qual,
+ const SmallVector<uint32_t> &indices)
+{
+ auto sub_indices = indices;
+ sub_indices.push_back(0);
+
+ const SPIRType *member_type = &type;
+ for (auto &index : indices)
+ member_type = &get<SPIRType>(member_type->member_types[index]);
+
+ assert(member_type->basetype == SPIRType::Struct);
+
+ if (!member_type->array.empty())
+ SPIRV_CROSS_THROW("Cannot flatten array of structs in I/O blocks.");
+
+ for (uint32_t i = 0; i < uint32_t(member_type->member_types.size()); i++)
+ {
+ sub_indices.back() = i;
+ if (get<SPIRType>(member_type->member_types[i]).basetype == SPIRType::Struct)
+ emit_flattened_io_block_struct(basename, type, qual, sub_indices);
+ else
+ emit_flattened_io_block_member(basename, type, qual, sub_indices);
+ }
+}
+
+void CompilerGLSL::emit_flattened_io_block(const SPIRVariable &var, const char *qual)
+{
+ auto &var_type = get<SPIRType>(var.basetype);
+ if (!var_type.array.empty())
+ SPIRV_CROSS_THROW("Array of varying structs cannot be flattened to legacy-compatible varyings.");
+
+ // Emit flattened types based on the type alias. Normally, we are never supposed to emit
+ // struct declarations for aliased types.
+ auto &type = var_type.type_alias ? get<SPIRType>(var_type.type_alias) : var_type;
+
+ auto old_flags = ir.meta[type.self].decoration.decoration_flags;
+ // Emit the members as if they are part of a block to get all qualifiers.
+ ir.meta[type.self].decoration.decoration_flags.set(DecorationBlock);
+
+ type.member_name_cache.clear();
+
+ SmallVector<uint32_t> member_indices;
+ member_indices.push_back(0);
+ auto basename = to_name(var.self);
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ auto &membertype = get<SPIRType>(member);
+
+ member_indices.back() = i;
+ if (membertype.basetype == SPIRType::Struct)
+ emit_flattened_io_block_struct(basename, type, qual, member_indices);
+ else
+ emit_flattened_io_block_member(basename, type, qual, member_indices);
+ i++;
+ }
+
+ ir.meta[type.self].decoration.decoration_flags = old_flags;
+
+ // Treat this variable as fully flattened from now on.
+ flattened_structs[var.self] = true;
+}
+
+void CompilerGLSL::emit_interface_block(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+
+ if (var.storage == StorageClassInput && type.basetype == SPIRType::Double &&
+ !options.es && options.version < 410)
+ {
+ require_extension_internal("GL_ARB_vertex_attrib_64bit");
+ }
+
+ // Either make it plain in/out or in/out blocks depending on what shader is doing ...
+ bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
+ const char *qual = to_storage_qualifiers_glsl(var);
+
+ if (block)
+ {
+ // ESSL earlier than 310 and GLSL earlier than 150 did not support
+ // I/O variables which are struct types.
+ // To support this, flatten the struct into separate varyings instead.
+ if (options.force_flattened_io_blocks || (options.es && options.version < 310) ||
+ (!options.es && options.version < 150))
+ {
+ // I/O blocks on ES require version 310 with Android Extension Pack extensions, or core version 320.
+ // On desktop, I/O blocks were introduced with geometry shaders in GL 3.2 (GLSL 150).
+ emit_flattened_io_block(var, qual);
+ }
+ else
+ {
+ if (options.es && options.version < 320)
+ {
+ // Geometry and tessellation extensions imply this extension.
+ if (!has_extension("GL_EXT_geometry_shader") && !has_extension("GL_EXT_tessellation_shader"))
+ require_extension_internal("GL_EXT_shader_io_blocks");
+ }
+
+ // Workaround to make sure we can emit "patch in/out" correctly.
+ fixup_io_block_patch_primitive_qualifiers(var);
+
+ // Block names should never alias.
+ auto block_name = to_name(type.self, false);
+
+ // The namespace for I/O blocks is separate from other variables in GLSL.
+ auto &block_namespace = type.storage == StorageClassInput ? block_input_names : block_output_names;
+
+ // Shaders never use the block by interface name, so we don't
+ // have to track this other than updating name caches.
+ if (block_name.empty() || block_namespace.find(block_name) != end(block_namespace))
+ block_name = get_fallback_name(type.self);
+ else
+ block_namespace.insert(block_name);
+
+ // If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
+ // This cannot conflict with anything else, so we're safe now.
+ if (block_name.empty())
+ block_name = join("_", get<SPIRType>(var.basetype).self, "_", var.self);
+
+ // Instance names cannot alias block names.
+ resource_names.insert(block_name);
+
+ const char *block_qualifier;
+ if (has_decoration(var.self, DecorationPatch))
+ block_qualifier = "patch ";
+ else if (has_decoration(var.self, DecorationPerPrimitiveEXT))
+ block_qualifier = "perprimitiveEXT ";
+ else
+ block_qualifier = "";
+
+ statement(layout_for_variable(var), block_qualifier, qual, block_name);
+ begin_scope();
+
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ }
+
+ add_resource_name(var.self);
+ end_scope_decl(join(to_name(var.self), type_to_array_glsl(type, var.self)));
+ statement("");
+ }
+ }
+ else
+ {
+ // ESSL earlier than 310 and GLSL earlier than 150 did not support
+ // I/O variables which are struct types.
+ // To support this, flatten the struct into separate varyings instead.
+ if (type.basetype == SPIRType::Struct &&
+ (options.force_flattened_io_blocks || (options.es && options.version < 310) ||
+ (!options.es && options.version < 150)))
+ {
+ emit_flattened_io_block(var, qual);
+ }
+ else
+ {
+ add_resource_name(var.self);
+
+ // Legacy GLSL did not support int attributes, we automatically
+ // declare them as float and cast them on load/store
+ SPIRType newtype = type;
+ if (is_legacy() && var.storage == StorageClassInput && type.basetype == SPIRType::Int)
+ newtype.basetype = SPIRType::Float;
+
+ // Tessellation control and evaluation shaders must have either
+ // gl_MaxPatchVertices or unsized arrays for input arrays.
+ // Opt for unsized as it's the more "correct" variant to use.
+ if (type.storage == StorageClassInput && !type.array.empty() &&
+ !has_decoration(var.self, DecorationPatch) &&
+ (get_entry_point().model == ExecutionModelTessellationControl ||
+ get_entry_point().model == ExecutionModelTessellationEvaluation))
+ {
+ newtype.array.back() = 0;
+ newtype.array_size_literal.back() = true;
+ }
+
+ statement(layout_for_variable(var), to_qualifiers_glsl(var.self),
+ variable_decl(newtype, to_name(var.self), var.self), ";");
+ }
+ }
+}
+
+void CompilerGLSL::emit_uniform(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
+ {
+ if (!options.es && options.version < 420)
+ require_extension_internal("GL_ARB_shader_image_load_store");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for shader image load store.");
+ }
+
+ add_resource_name(var.self);
+ statement(layout_for_variable(var), variable_decl(var), ";");
+}
+
+string CompilerGLSL::constant_value_macro_name(uint32_t id)
+{
+ return join("SPIRV_CROSS_CONSTANT_ID_", id);
+}
+
+void CompilerGLSL::emit_specialization_constant_op(const SPIRConstantOp &constant)
+{
+ auto &type = get<SPIRType>(constant.basetype);
+ // This will break. It is bogus and should not be legal.
+ if (type_is_top_level_block(type))
+ return;
+ add_resource_name(constant.self);
+ auto name = to_name(constant.self);
+ statement("const ", variable_decl(type, name), " = ", constant_op_expression(constant), ";");
+}
+
+int CompilerGLSL::get_constant_mapping_to_workgroup_component(const SPIRConstant &c) const
+{
+ auto &entry_point = get_entry_point();
+ int index = -1;
+
+ // Need to redirect specialization constants which are used as WorkGroupSize to the builtin,
+ // since the spec constant declarations are never explicitly declared.
+ if (entry_point.workgroup_size.constant == 0 && entry_point.flags.get(ExecutionModeLocalSizeId))
+ {
+ if (c.self == entry_point.workgroup_size.id_x)
+ index = 0;
+ else if (c.self == entry_point.workgroup_size.id_y)
+ index = 1;
+ else if (c.self == entry_point.workgroup_size.id_z)
+ index = 2;
+ }
+
+ return index;
+}
+
+void CompilerGLSL::emit_constant(const SPIRConstant &constant)
+{
+ auto &type = get<SPIRType>(constant.constant_type);
+
+ // This will break. It is bogus and should not be legal.
+ if (type_is_top_level_block(type))
+ return;
+
+ SpecializationConstant wg_x, wg_y, wg_z;
+ ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+
+ // This specialization constant is implicitly declared by emitting layout() in;
+ if (constant.self == workgroup_size_id)
+ return;
+
+ // These specialization constants are implicitly declared by emitting layout() in;
+ // In legacy GLSL, we will still need to emit macros for these, so a layout() in; declaration
+ // later can use macro overrides for work group size.
+ bool is_workgroup_size_constant = ConstantID(constant.self) == wg_x.id || ConstantID(constant.self) == wg_y.id ||
+ ConstantID(constant.self) == wg_z.id;
+
+ if (options.vulkan_semantics && is_workgroup_size_constant)
+ {
+ // Vulkan GLSL does not need to declare workgroup spec constants explicitly, it is handled in layout().
+ return;
+ }
+ else if (!options.vulkan_semantics && is_workgroup_size_constant &&
+ !has_decoration(constant.self, DecorationSpecId))
+ {
+ // Only bother declaring a workgroup size if it is actually a specialization constant, because we need macros.
+ return;
+ }
+
+ add_resource_name(constant.self);
+ auto name = to_name(constant.self);
+
+ // Only scalars have constant IDs.
+ if (has_decoration(constant.self, DecorationSpecId))
+ {
+ if (options.vulkan_semantics)
+ {
+ statement("layout(constant_id = ", get_decoration(constant.self, DecorationSpecId), ") const ",
+ variable_decl(type, name), " = ", constant_expression(constant), ";");
+ }
+ else
+ {
+ const string &macro_name = constant.specialization_constant_macro_name;
+ statement("#ifndef ", macro_name);
+ statement("#define ", macro_name, " ", constant_expression(constant));
+ statement("#endif");
+
+ // For workgroup size constants, only emit the macros.
+ if (!is_workgroup_size_constant)
+ statement("const ", variable_decl(type, name), " = ", macro_name, ";");
+ }
+ }
+ else
+ {
+ statement("const ", variable_decl(type, name), " = ", constant_expression(constant), ";");
+ }
+}
+
+void CompilerGLSL::emit_entry_point_declarations()
+{
+}
+
+void CompilerGLSL::replace_illegal_names(const unordered_set<string> &keywords)
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (is_hidden_variable(var))
+ return;
+
+ auto *meta = ir.find_meta(var.self);
+ if (!meta)
+ return;
+
+ auto &m = meta->decoration;
+ if (keywords.find(m.alias) != end(keywords))
+ m.alias = join("_", m.alias);
+ });
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t, const SPIRFunction &func) {
+ auto *meta = ir.find_meta(func.self);
+ if (!meta)
+ return;
+
+ auto &m = meta->decoration;
+ if (keywords.find(m.alias) != end(keywords))
+ m.alias = join("_", m.alias);
+ });
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, const SPIRType &type) {
+ auto *meta = ir.find_meta(type.self);
+ if (!meta)
+ return;
+
+ auto &m = meta->decoration;
+ if (keywords.find(m.alias) != end(keywords))
+ m.alias = join("_", m.alias);
+
+ for (auto &memb : meta->members)
+ if (keywords.find(memb.alias) != end(keywords))
+ memb.alias = join("_", memb.alias);
+ });
+}
+
+void CompilerGLSL::replace_illegal_names()
+{
+ // clang-format off
+ static const unordered_set<string> keywords = {
+ "abs", "acos", "acosh", "all", "any", "asin", "asinh", "atan", "atanh",
+ "atomicAdd", "atomicCompSwap", "atomicCounter", "atomicCounterDecrement", "atomicCounterIncrement",
+ "atomicExchange", "atomicMax", "atomicMin", "atomicOr", "atomicXor",
+ "bitCount", "bitfieldExtract", "bitfieldInsert", "bitfieldReverse",
+ "ceil", "cos", "cosh", "cross", "degrees",
+ "dFdx", "dFdxCoarse", "dFdxFine",
+ "dFdy", "dFdyCoarse", "dFdyFine",
+ "distance", "dot", "EmitStreamVertex", "EmitVertex", "EndPrimitive", "EndStreamPrimitive", "equal", "exp", "exp2",
+ "faceforward", "findLSB", "findMSB", "float16BitsToInt16", "float16BitsToUint16", "floatBitsToInt", "floatBitsToUint", "floor", "fma", "fract",
+ "frexp", "fwidth", "fwidthCoarse", "fwidthFine",
+ "greaterThan", "greaterThanEqual", "groupMemoryBarrier",
+ "imageAtomicAdd", "imageAtomicAnd", "imageAtomicCompSwap", "imageAtomicExchange", "imageAtomicMax", "imageAtomicMin", "imageAtomicOr", "imageAtomicXor",
+ "imageLoad", "imageSamples", "imageSize", "imageStore", "imulExtended", "int16BitsToFloat16", "intBitsToFloat", "interpolateAtOffset", "interpolateAtCentroid", "interpolateAtSample",
+ "inverse", "inversesqrt", "isinf", "isnan", "ldexp", "length", "lessThan", "lessThanEqual", "log", "log2",
+ "matrixCompMult", "max", "memoryBarrier", "memoryBarrierAtomicCounter", "memoryBarrierBuffer", "memoryBarrierImage", "memoryBarrierShared",
+ "min", "mix", "mod", "modf", "noise", "noise1", "noise2", "noise3", "noise4", "normalize", "not", "notEqual",
+ "outerProduct", "packDouble2x32", "packHalf2x16", "packInt2x16", "packInt4x16", "packSnorm2x16", "packSnorm4x8",
+ "packUint2x16", "packUint4x16", "packUnorm2x16", "packUnorm4x8", "pow",
+ "radians", "reflect", "refract", "round", "roundEven", "sign", "sin", "sinh", "smoothstep", "sqrt", "step",
+ "tan", "tanh", "texelFetch", "texelFetchOffset", "texture", "textureGather", "textureGatherOffset", "textureGatherOffsets",
+ "textureGrad", "textureGradOffset", "textureLod", "textureLodOffset", "textureOffset", "textureProj", "textureProjGrad",
+ "textureProjGradOffset", "textureProjLod", "textureProjLodOffset", "textureProjOffset", "textureQueryLevels", "textureQueryLod", "textureSamples", "textureSize",
+ "transpose", "trunc", "uaddCarry", "uint16BitsToFloat16", "uintBitsToFloat", "umulExtended", "unpackDouble2x32", "unpackHalf2x16", "unpackInt2x16", "unpackInt4x16",
+ "unpackSnorm2x16", "unpackSnorm4x8", "unpackUint2x16", "unpackUint4x16", "unpackUnorm2x16", "unpackUnorm4x8", "usubBorrow",
+
+ "active", "asm", "atomic_uint", "attribute", "bool", "break", "buffer",
+ "bvec2", "bvec3", "bvec4", "case", "cast", "centroid", "class", "coherent", "common", "const", "continue", "default", "discard",
+ "dmat2", "dmat2x2", "dmat2x3", "dmat2x4", "dmat3", "dmat3x2", "dmat3x3", "dmat3x4", "dmat4", "dmat4x2", "dmat4x3", "dmat4x4",
+ "do", "double", "dvec2", "dvec3", "dvec4", "else", "enum", "extern", "external", "false", "filter", "fixed", "flat", "float",
+ "for", "fvec2", "fvec3", "fvec4", "goto", "half", "highp", "hvec2", "hvec3", "hvec4", "if", "iimage1D", "iimage1DArray",
+ "iimage2D", "iimage2DArray", "iimage2DMS", "iimage2DMSArray", "iimage2DRect", "iimage3D", "iimageBuffer", "iimageCube",
+ "iimageCubeArray", "image1D", "image1DArray", "image2D", "image2DArray", "image2DMS", "image2DMSArray", "image2DRect",
+ "image3D", "imageBuffer", "imageCube", "imageCubeArray", "in", "inline", "inout", "input", "int", "interface", "invariant",
+ "isampler1D", "isampler1DArray", "isampler2D", "isampler2DArray", "isampler2DMS", "isampler2DMSArray", "isampler2DRect",
+ "isampler3D", "isamplerBuffer", "isamplerCube", "isamplerCubeArray", "ivec2", "ivec3", "ivec4", "layout", "long", "lowp",
+ "mat2", "mat2x2", "mat2x3", "mat2x4", "mat3", "mat3x2", "mat3x3", "mat3x4", "mat4", "mat4x2", "mat4x3", "mat4x4", "mediump",
+ "namespace", "noinline", "noperspective", "out", "output", "packed", "partition", "patch", "precise", "precision", "public", "readonly",
+ "resource", "restrict", "return", "sample", "sampler1D", "sampler1DArray", "sampler1DArrayShadow",
+ "sampler1DShadow", "sampler2D", "sampler2DArray", "sampler2DArrayShadow", "sampler2DMS", "sampler2DMSArray",
+ "sampler2DRect", "sampler2DRectShadow", "sampler2DShadow", "sampler3D", "sampler3DRect", "samplerBuffer",
+ "samplerCube", "samplerCubeArray", "samplerCubeArrayShadow", "samplerCubeShadow", "shared", "short", "sizeof", "smooth", "static",
+ "struct", "subroutine", "superp", "switch", "template", "this", "true", "typedef", "uimage1D", "uimage1DArray", "uimage2D",
+ "uimage2DArray", "uimage2DMS", "uimage2DMSArray", "uimage2DRect", "uimage3D", "uimageBuffer", "uimageCube",
+ "uimageCubeArray", "uint", "uniform", "union", "unsigned", "usampler1D", "usampler1DArray", "usampler2D", "usampler2DArray",
+ "usampler2DMS", "usampler2DMSArray", "usampler2DRect", "usampler3D", "usamplerBuffer", "usamplerCube",
+ "usamplerCubeArray", "using", "uvec2", "uvec3", "uvec4", "varying", "vec2", "vec3", "vec4", "void", "volatile",
+ "while", "writeonly",
+ };
+ // clang-format on
+
+ replace_illegal_names(keywords);
+}
+
+void CompilerGLSL::replace_fragment_output(SPIRVariable &var)
+{
+ auto &m = ir.meta[var.self].decoration;
+ uint32_t location = 0;
+ if (m.decoration_flags.get(DecorationLocation))
+ location = m.location;
+
+ // If our variable is arrayed, we must not emit the array part of this as the SPIR-V will
+ // do the access chain part of this for us.
+ auto &type = get<SPIRType>(var.basetype);
+
+ if (type.array.empty())
+ {
+ // Redirect the write to a specific render target in legacy GLSL.
+ m.alias = join("gl_FragData[", location, "]");
+
+ if (is_legacy_es() && location != 0)
+ require_extension_internal("GL_EXT_draw_buffers");
+ }
+ else if (type.array.size() == 1)
+ {
+ // If location is non-zero, we probably have to add an offset.
+ // This gets really tricky since we'd have to inject an offset in the access chain.
+ // FIXME: This seems like an extremely odd-ball case, so it's probably fine to leave it like this for now.
+ m.alias = "gl_FragData";
+ if (location != 0)
+ SPIRV_CROSS_THROW("Arrayed output variable used, but location is not 0. "
+ "This is unimplemented in SPIRV-Cross.");
+
+ if (is_legacy_es())
+ require_extension_internal("GL_EXT_draw_buffers");
+ }
+ else
+ SPIRV_CROSS_THROW("Array-of-array output variable used. This cannot be implemented in legacy GLSL.");
+
+ var.compat_builtin = true; // We don't want to declare this variable, but use the name as-is.
+}
+
+void CompilerGLSL::replace_fragment_outputs()
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ if (!is_builtin_variable(var) && !var.remapped_variable && type.pointer && var.storage == StorageClassOutput)
+ replace_fragment_output(var);
+ });
+}
+
+string CompilerGLSL::remap_swizzle(const SPIRType &out_type, uint32_t input_components, const string &expr)
+{
+ if (out_type.vecsize == input_components)
+ return expr;
+ else if (input_components == 1 && !backend.can_swizzle_scalar)
+ return join(type_to_glsl(out_type), "(", expr, ")");
+ else
+ {
+ // FIXME: This will not work with packed expressions.
+ auto e = enclose_expression(expr) + ".";
+ // Just clamp the swizzle index if we have more outputs than inputs.
+ for (uint32_t c = 0; c < out_type.vecsize; c++)
+ e += index_to_swizzle(min(c, input_components - 1));
+ if (backend.swizzle_is_function && out_type.vecsize > 1)
+ e += "()";
+
+ remove_duplicate_swizzle(e);
+ return e;
+ }
+}
+
+void CompilerGLSL::emit_pls()
+{
+ auto &execution = get_entry_point();
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("Pixel local storage only supported in fragment shaders.");
+
+ if (!options.es)
+ SPIRV_CROSS_THROW("Pixel local storage only supported in OpenGL ES.");
+
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("Pixel local storage only supported in ESSL 3.0 and above.");
+
+ if (!pls_inputs.empty())
+ {
+ statement("__pixel_local_inEXT _PLSIn");
+ begin_scope();
+ for (auto &input : pls_inputs)
+ statement(pls_decl(input), ";");
+ end_scope_decl();
+ statement("");
+ }
+
+ if (!pls_outputs.empty())
+ {
+ statement("__pixel_local_outEXT _PLSOut");
+ begin_scope();
+ for (auto &output : pls_outputs)
+ statement(pls_decl(output), ";");
+ end_scope_decl();
+ statement("");
+ }
+}
+
+void CompilerGLSL::fixup_image_load_store_access()
+{
+ if (!options.enable_storage_image_qualifier_deduction)
+ return;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var, const SPIRVariable &) {
+ auto &vartype = expression_type(var);
+ if (vartype.basetype == SPIRType::Image && vartype.image.sampled == 2)
+ {
+ // Very old glslangValidator and HLSL compilers do not emit required qualifiers here.
+ // Solve this by making the image access as restricted as possible and loosen up if we need to.
+ // If any no-read/no-write flags are actually set, assume that the compiler knows what it's doing.
+
+ if (!has_decoration(var, DecorationNonWritable) && !has_decoration(var, DecorationNonReadable))
+ {
+ set_decoration(var, DecorationNonWritable);
+ set_decoration(var, DecorationNonReadable);
+ }
+ }
+ });
+}
+
+static bool is_block_builtin(BuiltIn builtin)
+{
+ return builtin == BuiltInPosition || builtin == BuiltInPointSize || builtin == BuiltInClipDistance ||
+ builtin == BuiltInCullDistance;
+}
+
+bool CompilerGLSL::should_force_emit_builtin_block(StorageClass storage)
+{
+ // If the builtin block uses XFB, we need to force explicit redeclaration of the builtin block.
+
+ if (storage != StorageClassOutput)
+ return false;
+ bool should_force = false;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (should_force)
+ return;
+
+ auto &type = this->get<SPIRType>(var.basetype);
+ bool block = has_decoration(type.self, DecorationBlock);
+ if (var.storage == storage && block && is_builtin_variable(var))
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (has_member_decoration(type.self, i, DecorationBuiltIn) &&
+ is_block_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn))) &&
+ has_member_decoration(type.self, i, DecorationOffset))
+ {
+ should_force = true;
+ }
+ }
+ }
+ else if (var.storage == storage && !block && is_builtin_variable(var))
+ {
+ if (is_block_builtin(BuiltIn(get_decoration(type.self, DecorationBuiltIn))) &&
+ has_decoration(var.self, DecorationOffset))
+ {
+ should_force = true;
+ }
+ }
+ });
+
+ // If we're declaring clip/cull planes with control points we need to force block declaration.
+ if ((get_execution_model() == ExecutionModelTessellationControl ||
+ get_execution_model() == ExecutionModelMeshEXT) &&
+ (clip_distance_count || cull_distance_count))
+ {
+ should_force = true;
+ }
+
+ // Either glslang bug or oversight, but global invariant position does not work in mesh shaders.
+ if (get_execution_model() == ExecutionModelMeshEXT && position_invariant)
+ should_force = true;
+
+ return should_force;
+}
+
+void CompilerGLSL::fixup_implicit_builtin_block_names(ExecutionModel model)
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ bool block = has_decoration(type.self, DecorationBlock);
+ if ((var.storage == StorageClassOutput || var.storage == StorageClassInput) && block &&
+ is_builtin_variable(var))
+ {
+ if (model != ExecutionModelMeshEXT)
+ {
+ // Make sure the array has a supported name in the code.
+ if (var.storage == StorageClassOutput)
+ set_name(var.self, "gl_out");
+ else if (var.storage == StorageClassInput)
+ set_name(var.self, "gl_in");
+ }
+ else
+ {
+ auto flags = get_buffer_block_flags(var.self);
+ if (flags.get(DecorationPerPrimitiveEXT))
+ {
+ set_name(var.self, "gl_MeshPrimitivesEXT");
+ set_name(type.self, "gl_MeshPerPrimitiveEXT");
+ }
+ else
+ {
+ set_name(var.self, "gl_MeshVerticesEXT");
+ set_name(type.self, "gl_MeshPerVertexEXT");
+ }
+ }
+ }
+
+ if (model == ExecutionModelMeshEXT && var.storage == StorageClassOutput && !block)
+ {
+ auto *m = ir.find_meta(var.self);
+ if (m && m->decoration.builtin)
+ {
+ auto builtin_type = m->decoration.builtin_type;
+ if (builtin_type == BuiltInPrimitivePointIndicesEXT)
+ set_name(var.self, "gl_PrimitivePointIndicesEXT");
+ else if (builtin_type == BuiltInPrimitiveLineIndicesEXT)
+ set_name(var.self, "gl_PrimitiveLineIndicesEXT");
+ else if (builtin_type == BuiltInPrimitiveTriangleIndicesEXT)
+ set_name(var.self, "gl_PrimitiveTriangleIndicesEXT");
+ }
+ }
+ });
+}
+
+void CompilerGLSL::emit_declared_builtin_block(StorageClass storage, ExecutionModel model)
+{
+ Bitset emitted_builtins;
+ Bitset global_builtins;
+ const SPIRVariable *block_var = nullptr;
+ bool emitted_block = false;
+
+ // Need to use declared size in the type.
+ // These variables might have been declared, but not statically used, so we haven't deduced their size yet.
+ uint32_t cull_distance_size = 0;
+ uint32_t clip_distance_size = 0;
+
+ bool have_xfb_buffer_stride = false;
+ bool have_geom_stream = false;
+ bool have_any_xfb_offset = false;
+ uint32_t xfb_stride = 0, xfb_buffer = 0, geom_stream = 0;
+ std::unordered_map<uint32_t, uint32_t> builtin_xfb_offsets;
+
+ const auto builtin_is_per_vertex_set = [](BuiltIn builtin) -> bool {
+ return builtin == BuiltInPosition || builtin == BuiltInPointSize ||
+ builtin == BuiltInClipDistance || builtin == BuiltInCullDistance;
+ };
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ bool block = has_decoration(type.self, DecorationBlock);
+ Bitset builtins;
+
+ if (var.storage == storage && block && is_builtin_variable(var))
+ {
+ uint32_t index = 0;
+ for (auto &m : ir.meta[type.self].members)
+ {
+ if (m.builtin && builtin_is_per_vertex_set(m.builtin_type))
+ {
+ builtins.set(m.builtin_type);
+ if (m.builtin_type == BuiltInCullDistance)
+ cull_distance_size = to_array_size_literal(this->get<SPIRType>(type.member_types[index]));
+ else if (m.builtin_type == BuiltInClipDistance)
+ clip_distance_size = to_array_size_literal(this->get<SPIRType>(type.member_types[index]));
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationOffset))
+ {
+ have_any_xfb_offset = true;
+ builtin_xfb_offsets[m.builtin_type] = m.offset;
+ }
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationStream))
+ {
+ uint32_t stream = m.stream;
+ if (have_geom_stream && geom_stream != stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = stream;
+ }
+ }
+ index++;
+ }
+
+ if (storage == StorageClassOutput && has_decoration(var.self, DecorationXfbBuffer) &&
+ has_decoration(var.self, DecorationXfbStride))
+ {
+ uint32_t buffer_index = get_decoration(var.self, DecorationXfbBuffer);
+ uint32_t stride = get_decoration(var.self, DecorationXfbStride);
+ if (have_xfb_buffer_stride && buffer_index != xfb_buffer)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ if (have_xfb_buffer_stride && stride != xfb_stride)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_buffer = buffer_index;
+ xfb_stride = stride;
+ }
+
+ if (storage == StorageClassOutput && has_decoration(var.self, DecorationStream))
+ {
+ uint32_t stream = get_decoration(var.self, DecorationStream);
+ if (have_geom_stream && geom_stream != stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = stream;
+ }
+ }
+ else if (var.storage == storage && !block && is_builtin_variable(var))
+ {
+ // While we're at it, collect all declared global builtins (HLSL mostly ...).
+ auto &m = ir.meta[var.self].decoration;
+ if (m.builtin && builtin_is_per_vertex_set(m.builtin_type))
+ {
+ // For mesh/tesc output, Clip/Cull is an array-of-array. Look at innermost array type
+ // for correct result.
+ global_builtins.set(m.builtin_type);
+ if (m.builtin_type == BuiltInCullDistance)
+ cull_distance_size = to_array_size_literal(type, 0);
+ else if (m.builtin_type == BuiltInClipDistance)
+ clip_distance_size = to_array_size_literal(type, 0);
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationXfbStride) &&
+ m.decoration_flags.get(DecorationXfbBuffer) && m.decoration_flags.get(DecorationOffset))
+ {
+ have_any_xfb_offset = true;
+ builtin_xfb_offsets[m.builtin_type] = m.offset;
+ uint32_t buffer_index = m.xfb_buffer;
+ uint32_t stride = m.xfb_stride;
+ if (have_xfb_buffer_stride && buffer_index != xfb_buffer)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ if (have_xfb_buffer_stride && stride != xfb_stride)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_buffer = buffer_index;
+ xfb_stride = stride;
+ }
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationStream))
+ {
+ uint32_t stream = get_decoration(var.self, DecorationStream);
+ if (have_geom_stream && geom_stream != stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = stream;
+ }
+ }
+ }
+
+ if (builtins.empty())
+ return;
+
+ if (emitted_block)
+ SPIRV_CROSS_THROW("Cannot use more than one builtin I/O block.");
+
+ emitted_builtins = builtins;
+ emitted_block = true;
+ block_var = &var;
+ });
+
+ global_builtins =
+ Bitset(global_builtins.get_lower() & ((1ull << BuiltInPosition) | (1ull << BuiltInPointSize) |
+ (1ull << BuiltInClipDistance) | (1ull << BuiltInCullDistance)));
+
+ // Try to collect all other declared builtins.
+ if (!emitted_block)
+ emitted_builtins = global_builtins;
+
+ // Can't declare an empty interface block.
+ if (emitted_builtins.empty())
+ return;
+
+ if (storage == StorageClassOutput)
+ {
+ SmallVector<string> attr;
+ if (have_xfb_buffer_stride && have_any_xfb_offset)
+ {
+ if (!options.es)
+ {
+ if (options.version < 440 && options.version >= 140)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ else if (options.version < 140)
+ SPIRV_CROSS_THROW("Component decoration is not supported in targets below GLSL 1.40.");
+ if (!options.es && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ }
+ else if (options.es)
+ SPIRV_CROSS_THROW("Need GL_ARB_enhanced_layouts for xfb_stride or xfb_buffer.");
+ attr.push_back(join("xfb_buffer = ", xfb_buffer, ", xfb_stride = ", xfb_stride));
+ }
+
+ if (have_geom_stream)
+ {
+ if (get_execution_model() != ExecutionModelGeometry)
+ SPIRV_CROSS_THROW("Geometry streams can only be used in geometry shaders.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Multiple geometry streams not supported in ESSL.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_transform_feedback3");
+ attr.push_back(join("stream = ", geom_stream));
+ }
+
+ if (model == ExecutionModelMeshEXT)
+ statement("out gl_MeshPerVertexEXT");
+ else if (!attr.empty())
+ statement("layout(", merge(attr), ") out gl_PerVertex");
+ else
+ statement("out gl_PerVertex");
+ }
+ else
+ {
+ // If we have passthrough, there is no way PerVertex cannot be passthrough.
+ if (get_entry_point().geometry_passthrough)
+ statement("layout(passthrough) in gl_PerVertex");
+ else
+ statement("in gl_PerVertex");
+ }
+
+ begin_scope();
+ if (emitted_builtins.get(BuiltInPosition))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInPosition);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") vec4 gl_Position;");
+ else if (position_invariant)
+ statement("invariant vec4 gl_Position;");
+ else
+ statement("vec4 gl_Position;");
+ }
+
+ if (emitted_builtins.get(BuiltInPointSize))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInPointSize);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") float gl_PointSize;");
+ else
+ statement("float gl_PointSize;");
+ }
+
+ if (emitted_builtins.get(BuiltInClipDistance))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInClipDistance);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") float gl_ClipDistance[", clip_distance_size, "];");
+ else
+ statement("float gl_ClipDistance[", clip_distance_size, "];");
+ }
+
+ if (emitted_builtins.get(BuiltInCullDistance))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInCullDistance);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") float gl_CullDistance[", cull_distance_size, "];");
+ else
+ statement("float gl_CullDistance[", cull_distance_size, "];");
+ }
+
+ bool builtin_array = model == ExecutionModelTessellationControl ||
+ (model == ExecutionModelMeshEXT && storage == StorageClassOutput) ||
+ (model == ExecutionModelGeometry && storage == StorageClassInput) ||
+ (model == ExecutionModelTessellationEvaluation && storage == StorageClassInput);
+
+ if (builtin_array)
+ {
+ const char *instance_name;
+ if (model == ExecutionModelMeshEXT)
+ instance_name = "gl_MeshVerticesEXT"; // Per primitive is never synthesized.
+ else
+ instance_name = storage == StorageClassInput ? "gl_in" : "gl_out";
+
+ if (model == ExecutionModelTessellationControl && storage == StorageClassOutput)
+ end_scope_decl(join(instance_name, "[", get_entry_point().output_vertices, "]"));
+ else
+ end_scope_decl(join(instance_name, "[]"));
+ }
+ else
+ end_scope_decl();
+ statement("");
+}
+
+bool CompilerGLSL::variable_is_lut(const SPIRVariable &var) const
+{
+ bool statically_assigned = var.statically_assigned && var.static_expression != ID(0) && var.remapped_variable;
+
+ if (statically_assigned)
+ {
+ auto *constant = maybe_get<SPIRConstant>(var.static_expression);
+ if (constant && constant->is_used_as_lut)
+ return true;
+ }
+
+ return false;
+}
+
+void CompilerGLSL::emit_resources()
+{
+ auto &execution = get_entry_point();
+
+ replace_illegal_names();
+
+ // Legacy GL uses gl_FragData[], redeclare all fragment outputs
+ // with builtins.
+ if (execution.model == ExecutionModelFragment && is_legacy())
+ replace_fragment_outputs();
+
+ // Emit PLS blocks if we have such variables.
+ if (!pls_inputs.empty() || !pls_outputs.empty())
+ emit_pls();
+
+ switch (execution.model)
+ {
+ case ExecutionModelGeometry:
+ case ExecutionModelTessellationControl:
+ case ExecutionModelTessellationEvaluation:
+ case ExecutionModelMeshEXT:
+ fixup_implicit_builtin_block_names(execution.model);
+ break;
+
+ default:
+ break;
+ }
+
+ bool global_invariant_position = position_invariant && (options.es || options.version >= 120);
+
+ // Emit custom gl_PerVertex for SSO compatibility.
+ if (options.separate_shader_objects && !options.es && execution.model != ExecutionModelFragment)
+ {
+ switch (execution.model)
+ {
+ case ExecutionModelGeometry:
+ case ExecutionModelTessellationControl:
+ case ExecutionModelTessellationEvaluation:
+ emit_declared_builtin_block(StorageClassInput, execution.model);
+ emit_declared_builtin_block(StorageClassOutput, execution.model);
+ global_invariant_position = false;
+ break;
+
+ case ExecutionModelVertex:
+ case ExecutionModelMeshEXT:
+ emit_declared_builtin_block(StorageClassOutput, execution.model);
+ global_invariant_position = false;
+ break;
+
+ default:
+ break;
+ }
+ }
+ else if (should_force_emit_builtin_block(StorageClassOutput))
+ {
+ emit_declared_builtin_block(StorageClassOutput, execution.model);
+ global_invariant_position = false;
+ }
+ else if (execution.geometry_passthrough)
+ {
+ // Need to declare gl_in with Passthrough.
+ // If we're doing passthrough, we cannot emit an output block, so the output block test above will never pass.
+ emit_declared_builtin_block(StorageClassInput, execution.model);
+ }
+ else
+ {
+ // Need to redeclare clip/cull distance with explicit size to use them.
+ // SPIR-V mandates these builtins have a size declared.
+ const char *storage = execution.model == ExecutionModelFragment ? "in" : "out";
+ if (clip_distance_count != 0)
+ statement(storage, " float gl_ClipDistance[", clip_distance_count, "];");
+ if (cull_distance_count != 0)
+ statement(storage, " float gl_CullDistance[", cull_distance_count, "];");
+ if (clip_distance_count != 0 || cull_distance_count != 0)
+ statement("");
+ }
+
+ if (global_invariant_position)
+ {
+ statement("invariant gl_Position;");
+ statement("");
+ }
+
+ bool emitted = false;
+
+ // If emitted Vulkan GLSL,
+ // emit specialization constants as actual floats,
+ // spec op expressions will redirect to the constant name.
+ //
+ {
+ auto loop_lock = ir.create_loop_hard_lock();
+ for (auto &id_ : ir.ids_for_constant_undef_or_type)
+ {
+ auto &id = ir.ids[id_];
+
+ // Skip declaring any bogus constants or undefs which use block types.
+ // We don't declare block types directly, so this will never work.
+ // Should not be legal SPIR-V, so this is considered a workaround.
+
+ if (id.get_type() == TypeConstant)
+ {
+ auto &c = id.get<SPIRConstant>();
+
+ bool needs_declaration = c.specialization || c.is_used_as_lut;
+
+ if (needs_declaration)
+ {
+ if (!options.vulkan_semantics && c.specialization)
+ {
+ c.specialization_constant_macro_name =
+ constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
+ }
+ emit_constant(c);
+ emitted = true;
+ }
+ }
+ else if (id.get_type() == TypeConstantOp)
+ {
+ emit_specialization_constant_op(id.get<SPIRConstantOp>());
+ emitted = true;
+ }
+ else if (id.get_type() == TypeType)
+ {
+ auto *type = &id.get<SPIRType>();
+
+ bool is_natural_struct = type->basetype == SPIRType::Struct && type->array.empty() && !type->pointer &&
+ (!has_decoration(type->self, DecorationBlock) &&
+ !has_decoration(type->self, DecorationBufferBlock));
+
+ // Special case, ray payload and hit attribute blocks are not really blocks, just regular structs.
+ if (type->basetype == SPIRType::Struct && type->pointer &&
+ has_decoration(type->self, DecorationBlock) &&
+ (type->storage == StorageClassRayPayloadKHR || type->storage == StorageClassIncomingRayPayloadKHR ||
+ type->storage == StorageClassHitAttributeKHR))
+ {
+ type = &get<SPIRType>(type->parent_type);
+ is_natural_struct = true;
+ }
+
+ if (is_natural_struct)
+ {
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ emit_struct(*type);
+ }
+ }
+ else if (id.get_type() == TypeUndef)
+ {
+ auto &undef = id.get<SPIRUndef>();
+ auto &type = this->get<SPIRType>(undef.basetype);
+ // OpUndef can be void for some reason ...
+ if (type.basetype == SPIRType::Void)
+ return;
+
+ // This will break. It is bogus and should not be legal.
+ if (type_is_top_level_block(type))
+ return;
+
+ string initializer;
+ if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ initializer = join(" = ", to_zero_initialized_expression(undef.basetype));
+
+ // FIXME: If used in a constant, we must declare it as one.
+ statement(variable_decl(type, to_name(undef.self), undef.self), initializer, ";");
+ emitted = true;
+ }
+ }
+ }
+
+ if (emitted)
+ statement("");
+
+ // If we needed to declare work group size late, check here.
+ // If the work group size depends on a specialization constant, we need to declare the layout() block
+ // after constants (and their macros) have been declared.
+ if (execution.model == ExecutionModelGLCompute && !options.vulkan_semantics &&
+ (execution.workgroup_size.constant != 0 || execution.flags.get(ExecutionModeLocalSizeId)))
+ {
+ SpecializationConstant wg_x, wg_y, wg_z;
+ get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+
+ if ((wg_x.id != ConstantID(0)) || (wg_y.id != ConstantID(0)) || (wg_z.id != ConstantID(0)))
+ {
+ SmallVector<string> inputs;
+ build_workgroup_size(inputs, wg_x, wg_y, wg_z);
+ statement("layout(", merge(inputs), ") in;");
+ statement("");
+ }
+ }
+
+ emitted = false;
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ {
+ // Output buffer reference blocks.
+ // Do this in two stages, one with forward declaration,
+ // and one without. Buffer reference blocks can reference themselves
+ // to support things like linked lists.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t id, SPIRType &type) {
+ if (is_physical_pointer(type))
+ {
+ bool emit_type = true;
+ if (!is_physical_pointer_to_buffer_block(type))
+ {
+ // Only forward-declare if we intend to emit it in the non_block_pointer types.
+ // Otherwise, these are just "benign" pointer types that exist as a result of access chains.
+ emit_type = std::find(physical_storage_non_block_pointer_types.begin(),
+ physical_storage_non_block_pointer_types.end(),
+ id) != physical_storage_non_block_pointer_types.end();
+ }
+
+ if (emit_type)
+ emit_buffer_reference_block(id, true);
+ }
+ });
+
+ for (auto type : physical_storage_non_block_pointer_types)
+ emit_buffer_reference_block(type, false);
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t id, SPIRType &type) {
+ if (is_physical_pointer_to_buffer_block(type))
+ emit_buffer_reference_block(id, false);
+ });
+ }
+
+ // Output UBOs and SSBOs
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ bool is_block_storage = type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform ||
+ type.storage == StorageClassShaderRecordBufferKHR;
+ bool has_block_flags = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+
+ if (var.storage != StorageClassFunction && type.pointer && is_block_storage && !is_hidden_variable(var) &&
+ has_block_flags)
+ {
+ emit_buffer_block(var);
+ }
+ });
+
+ // Output push constant blocks
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ if (var.storage != StorageClassFunction && type.pointer && type.storage == StorageClassPushConstant &&
+ !is_hidden_variable(var))
+ {
+ emit_push_constant_block(var);
+ }
+ });
+
+ bool skip_separate_image_sampler = !combined_image_samplers.empty() || !options.vulkan_semantics;
+
+ // Output Uniform Constants (values, samplers, images, etc).
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ // If we're remapping separate samplers and images, only emit the combined samplers.
+ if (skip_separate_image_sampler)
+ {
+ // Sampler buffers are always used without a sampler, and they will also work in regular GL.
+ bool sampler_buffer = type.basetype == SPIRType::Image && type.image.dim == DimBuffer;
+ bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
+ bool separate_sampler = type.basetype == SPIRType::Sampler;
+ if (!sampler_buffer && (separate_image || separate_sampler))
+ return;
+ }
+
+ if (var.storage != StorageClassFunction && type.pointer &&
+ (type.storage == StorageClassUniformConstant || type.storage == StorageClassAtomicCounter ||
+ type.storage == StorageClassRayPayloadKHR || type.storage == StorageClassIncomingRayPayloadKHR ||
+ type.storage == StorageClassCallableDataKHR || type.storage == StorageClassIncomingCallableDataKHR ||
+ type.storage == StorageClassHitAttributeKHR) &&
+ !is_hidden_variable(var))
+ {
+ emit_uniform(var);
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ bool emitted_base_instance = false;
+
+ // Output in/out interfaces.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ bool is_hidden = is_hidden_variable(var);
+
+ // Unused output I/O variables might still be required to implement framebuffer fetch.
+ if (var.storage == StorageClassOutput && !is_legacy() &&
+ location_is_framebuffer_fetch(get_decoration(var.self, DecorationLocation)) != 0)
+ {
+ is_hidden = false;
+ }
+
+ if (var.storage != StorageClassFunction && type.pointer &&
+ (var.storage == StorageClassInput || var.storage == StorageClassOutput) &&
+ interface_variable_exists_in_entry_point(var.self) && !is_hidden)
+ {
+ if (options.es && get_execution_model() == ExecutionModelVertex && var.storage == StorageClassInput &&
+ type.array.size() == 1)
+ {
+ SPIRV_CROSS_THROW("OpenGL ES doesn't support array input variables in vertex shader.");
+ }
+ emit_interface_block(var);
+ emitted = true;
+ }
+ else if (is_builtin_variable(var))
+ {
+ auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ // For gl_InstanceIndex emulation on GLES, the API user needs to
+ // supply this uniform.
+
+ // The draw parameter extension is soft-enabled on GL with some fallbacks.
+ if (!options.vulkan_semantics)
+ {
+ if (!emitted_base_instance &&
+ ((options.vertex.support_nonzero_base_instance && builtin == BuiltInInstanceIndex) ||
+ (builtin == BuiltInBaseInstance)))
+ {
+ statement("#ifdef GL_ARB_shader_draw_parameters");
+ statement("#define SPIRV_Cross_BaseInstance gl_BaseInstanceARB");
+ statement("#else");
+ // A crude, but simple workaround which should be good enough for non-indirect draws.
+ statement("uniform int SPIRV_Cross_BaseInstance;");
+ statement("#endif");
+ emitted = true;
+ emitted_base_instance = true;
+ }
+ else if (builtin == BuiltInBaseVertex)
+ {
+ statement("#ifdef GL_ARB_shader_draw_parameters");
+ statement("#define SPIRV_Cross_BaseVertex gl_BaseVertexARB");
+ statement("#else");
+ // A crude, but simple workaround which should be good enough for non-indirect draws.
+ statement("uniform int SPIRV_Cross_BaseVertex;");
+ statement("#endif");
+ }
+ else if (builtin == BuiltInDrawIndex)
+ {
+ statement("#ifndef GL_ARB_shader_draw_parameters");
+ // Cannot really be worked around.
+ statement("#error GL_ARB_shader_draw_parameters is not supported.");
+ statement("#endif");
+ }
+ }
+ }
+ });
+
+ // Global variables.
+ for (auto global : global_variables)
+ {
+ auto &var = get<SPIRVariable>(global);
+ if (is_hidden_variable(var, true))
+ continue;
+
+ if (var.storage != StorageClassOutput)
+ {
+ if (!variable_is_lut(var))
+ {
+ add_resource_name(var.self);
+
+ string initializer;
+ if (options.force_zero_initialized_variables && var.storage == StorageClassPrivate &&
+ !var.initializer && !var.static_expression && type_can_zero_initialize(get_variable_data_type(var)))
+ {
+ initializer = join(" = ", to_zero_initialized_expression(get_variable_data_type_id(var)));
+ }
+
+ statement(variable_decl(var), initializer, ";");
+ emitted = true;
+ }
+ }
+ else if (var.initializer && maybe_get<SPIRConstant>(var.initializer) != nullptr)
+ {
+ emit_output_variable_initializer(var);
+ }
+ }
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerGLSL::emit_output_variable_initializer(const SPIRVariable &var)
+{
+ // If a StorageClassOutput variable has an initializer, we need to initialize it in main().
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ auto &type = get<SPIRType>(var.basetype);
+ bool is_patch = has_decoration(var.self, DecorationPatch);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ bool is_control_point = get_execution_model() == ExecutionModelTessellationControl && !is_patch;
+
+ if (is_block)
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ bool type_is_array = type.array.size() == 1;
+ uint32_t array_size = 1;
+ if (type_is_array)
+ array_size = to_array_size_literal(type);
+ uint32_t iteration_count = is_control_point ? 1 : array_size;
+
+ // If the initializer is a block, we must initialize each block member one at a time.
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ // These outputs might not have been properly declared, so don't initialize them in that case.
+ if (has_member_decoration(type.self, i, DecorationBuiltIn))
+ {
+ if (get_member_decoration(type.self, i, DecorationBuiltIn) == BuiltInCullDistance &&
+ !cull_distance_count)
+ continue;
+
+ if (get_member_decoration(type.self, i, DecorationBuiltIn) == BuiltInClipDistance &&
+ !clip_distance_count)
+ continue;
+ }
+
+ // We need to build a per-member array first, essentially transposing from AoS to SoA.
+ // This code path hits when we have an array of blocks.
+ string lut_name;
+ if (type_is_array)
+ {
+ lut_name = join("_", var.self, "_", i, "_init");
+ uint32_t member_type_id = get<SPIRType>(var.basetype).member_types[i];
+ auto &member_type = get<SPIRType>(member_type_id);
+ auto array_type = member_type;
+ array_type.parent_type = member_type_id;
+ array_type.op = OpTypeArray;
+ array_type.array.push_back(array_size);
+ array_type.array_size_literal.push_back(true);
+
+ SmallVector<string> exprs;
+ exprs.reserve(array_size);
+ auto &c = get<SPIRConstant>(var.initializer);
+ for (uint32_t j = 0; j < array_size; j++)
+ exprs.push_back(to_expression(get<SPIRConstant>(c.subconstants[j]).subconstants[i]));
+ statement("const ", type_to_glsl(array_type), " ", lut_name, type_to_array_glsl(array_type, 0), " = ",
+ type_to_glsl_constructor(array_type), "(", merge(exprs, ", "), ");");
+ }
+
+ for (uint32_t j = 0; j < iteration_count; j++)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ AccessChainMeta meta;
+ auto &c = this->get<SPIRConstant>(var.initializer);
+
+ uint32_t invocation_id = 0;
+ uint32_t member_index_id = 0;
+ if (is_control_point)
+ {
+ uint32_t ids = ir.increase_bound_by(3);
+ auto &uint_type = set<SPIRType>(ids, OpTypeInt);
+ uint_type.basetype = SPIRType::UInt;
+ uint_type.width = 32;
+ set<SPIRExpression>(ids + 1, builtin_to_glsl(BuiltInInvocationId, StorageClassInput), ids, true);
+ set<SPIRConstant>(ids + 2, ids, i, false);
+ invocation_id = ids + 1;
+ member_index_id = ids + 2;
+ }
+
+ if (is_patch)
+ {
+ statement("if (gl_InvocationID == 0)");
+ begin_scope();
+ }
+
+ if (type_is_array && !is_control_point)
+ {
+ uint32_t indices[2] = { j, i };
+ auto chain = access_chain_internal(var.self, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &meta);
+ statement(chain, " = ", lut_name, "[", j, "];");
+ }
+ else if (is_control_point)
+ {
+ uint32_t indices[2] = { invocation_id, member_index_id };
+ auto chain = access_chain_internal(var.self, indices, 2, 0, &meta);
+ statement(chain, " = ", lut_name, "[", builtin_to_glsl(BuiltInInvocationId, StorageClassInput), "];");
+ }
+ else
+ {
+ auto chain =
+ access_chain_internal(var.self, &i, 1, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &meta);
+ statement(chain, " = ", to_expression(c.subconstants[i]), ";");
+ }
+
+ if (is_patch)
+ end_scope();
+ });
+ }
+ }
+ }
+ else if (is_control_point)
+ {
+ auto lut_name = join("_", var.self, "_init");
+ statement("const ", type_to_glsl(type), " ", lut_name, type_to_array_glsl(type, 0),
+ " = ", to_expression(var.initializer), ";");
+ entry_func.fixup_hooks_in.push_back([&, lut_name]() {
+ statement(to_expression(var.self), "[gl_InvocationID] = ", lut_name, "[gl_InvocationID];");
+ });
+ }
+ else if (has_decoration(var.self, DecorationBuiltIn) &&
+ BuiltIn(get_decoration(var.self, DecorationBuiltIn)) == BuiltInSampleMask)
+ {
+ // We cannot copy the array since gl_SampleMask is unsized in GLSL. Unroll time! <_<
+ entry_func.fixup_hooks_in.push_back([&] {
+ auto &c = this->get<SPIRConstant>(var.initializer);
+ uint32_t num_constants = uint32_t(c.subconstants.size());
+ for (uint32_t i = 0; i < num_constants; i++)
+ {
+ // Don't use to_expression on constant since it might be uint, just fish out the raw int.
+ statement(to_expression(var.self), "[", i, "] = ",
+ convert_to_string(this->get<SPIRConstant>(c.subconstants[i]).scalar_i32()), ";");
+ }
+ });
+ }
+ else
+ {
+ auto lut_name = join("_", var.self, "_init");
+ statement("const ", type_to_glsl(type), " ", lut_name,
+ type_to_array_glsl(type, var.self), " = ", to_expression(var.initializer), ";");
+ entry_func.fixup_hooks_in.push_back([&, lut_name, is_patch]() {
+ if (is_patch)
+ {
+ statement("if (gl_InvocationID == 0)");
+ begin_scope();
+ }
+ statement(to_expression(var.self), " = ", lut_name, ";");
+ if (is_patch)
+ end_scope();
+ });
+ }
+}
+
+void CompilerGLSL::emit_subgroup_arithmetic_workaround(const std::string &func, Op op, GroupOperation group_op)
+{
+ std::string result;
+ switch (group_op)
+ {
+ case GroupOperationReduce:
+ result = "reduction";
+ break;
+
+ case GroupOperationExclusiveScan:
+ result = "excl_scan";
+ break;
+
+ case GroupOperationInclusiveScan:
+ result = "incl_scan";
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Unsupported workaround for arithmetic group operation");
+ }
+
+ struct TypeInfo
+ {
+ std::string type;
+ std::string identity;
+ };
+
+ std::vector<TypeInfo> type_infos;
+ switch (op)
+ {
+ case OpGroupNonUniformIAdd:
+ {
+ type_infos.emplace_back(TypeInfo{ "uint", "0u" });
+ type_infos.emplace_back(TypeInfo{ "uvec2", "uvec2(0u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec3", "uvec3(0u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec4", "uvec4(0u)" });
+ type_infos.emplace_back(TypeInfo{ "int", "0" });
+ type_infos.emplace_back(TypeInfo{ "ivec2", "ivec2(0)" });
+ type_infos.emplace_back(TypeInfo{ "ivec3", "ivec3(0)" });
+ type_infos.emplace_back(TypeInfo{ "ivec4", "ivec4(0)" });
+ break;
+ }
+
+ case OpGroupNonUniformFAdd:
+ {
+ type_infos.emplace_back(TypeInfo{ "float", "0.0f" });
+ type_infos.emplace_back(TypeInfo{ "vec2", "vec2(0.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec3", "vec3(0.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec4", "vec4(0.0f)" });
+ // ARB_gpu_shader_fp64 is required in GL4.0 which in turn is required by NV_thread_shuffle
+ type_infos.emplace_back(TypeInfo{ "double", "0.0LF" });
+ type_infos.emplace_back(TypeInfo{ "dvec2", "dvec2(0.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec3", "dvec3(0.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec4", "dvec4(0.0LF)" });
+ break;
+ }
+
+ case OpGroupNonUniformIMul:
+ {
+ type_infos.emplace_back(TypeInfo{ "uint", "1u" });
+ type_infos.emplace_back(TypeInfo{ "uvec2", "uvec2(1u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec3", "uvec3(1u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec4", "uvec4(1u)" });
+ type_infos.emplace_back(TypeInfo{ "int", "1" });
+ type_infos.emplace_back(TypeInfo{ "ivec2", "ivec2(1)" });
+ type_infos.emplace_back(TypeInfo{ "ivec3", "ivec3(1)" });
+ type_infos.emplace_back(TypeInfo{ "ivec4", "ivec4(1)" });
+ break;
+ }
+
+ case OpGroupNonUniformFMul:
+ {
+ type_infos.emplace_back(TypeInfo{ "float", "1.0f" });
+ type_infos.emplace_back(TypeInfo{ "vec2", "vec2(1.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec3", "vec3(1.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec4", "vec4(1.0f)" });
+ type_infos.emplace_back(TypeInfo{ "double", "0.0LF" });
+ type_infos.emplace_back(TypeInfo{ "dvec2", "dvec2(1.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec3", "dvec3(1.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec4", "dvec4(1.0LF)" });
+ break;
+ }
+
+ default:
+ SPIRV_CROSS_THROW("Unsupported workaround for arithmetic group operation");
+ }
+
+ const bool op_is_addition = op == OpGroupNonUniformIAdd || op == OpGroupNonUniformFAdd;
+ const bool op_is_multiplication = op == OpGroupNonUniformIMul || op == OpGroupNonUniformFMul;
+ std::string op_symbol;
+ if (op_is_addition)
+ {
+ op_symbol = "+=";
+ }
+ else if (op_is_multiplication)
+ {
+ op_symbol = "*=";
+ }
+
+ for (const TypeInfo &t : type_infos)
+ {
+ statement(t.type, " ", func, "(", t.type, " v)");
+ begin_scope();
+ statement(t.type, " ", result, " = ", t.identity, ";");
+ statement("uvec4 active_threads = subgroupBallot(true);");
+ statement("if (subgroupBallotBitCount(active_threads) == gl_SubgroupSize)");
+ begin_scope();
+ statement("uint total = gl_SubgroupSize / 2u;");
+ statement(result, " = v;");
+ statement("for (uint i = 1u; i <= total; i <<= 1u)");
+ begin_scope();
+ statement("bool valid;");
+ if (group_op == GroupOperationReduce)
+ {
+ statement(t.type, " s = shuffleXorNV(", result, ", i, gl_SubgroupSize, valid);");
+ }
+ else if (group_op == GroupOperationExclusiveScan || group_op == GroupOperationInclusiveScan)
+ {
+ statement(t.type, " s = shuffleUpNV(", result, ", i, gl_SubgroupSize, valid);");
+ }
+ if (op_is_addition || op_is_multiplication)
+ {
+ statement(result, " ", op_symbol, " valid ? s : ", t.identity, ";");
+ }
+ end_scope();
+ if (group_op == GroupOperationExclusiveScan)
+ {
+ statement(result, " = shuffleUpNV(", result, ", 1u, gl_SubgroupSize);");
+ statement("if (subgroupElect())");
+ begin_scope();
+ statement(result, " = ", t.identity, ";");
+ end_scope();
+ }
+ end_scope();
+ statement("else");
+ begin_scope();
+ if (group_op == GroupOperationExclusiveScan)
+ {
+ statement("uint total = subgroupBallotBitCount(gl_SubgroupLtMask);");
+ }
+ else if (group_op == GroupOperationInclusiveScan)
+ {
+ statement("uint total = subgroupBallotBitCount(gl_SubgroupLeMask);");
+ }
+ statement("for (uint i = 0u; i < gl_SubgroupSize; ++i)");
+ begin_scope();
+ statement("bool valid = subgroupBallotBitExtract(active_threads, i);");
+ statement(t.type, " s = shuffleNV(v, i, gl_SubgroupSize);");
+ if (group_op == GroupOperationExclusiveScan || group_op == GroupOperationInclusiveScan)
+ {
+ statement("valid = valid && (i < total);");
+ }
+ if (op_is_addition || op_is_multiplication)
+ {
+ statement(result, " ", op_symbol, " valid ? s : ", t.identity, ";");
+ }
+ end_scope();
+ end_scope();
+ statement("return ", result, ";");
+ end_scope();
+ }
+}
+
+void CompilerGLSL::emit_extension_workarounds(spv::ExecutionModel model)
+{
+ static const char *workaround_types[] = { "int", "ivec2", "ivec3", "ivec4", "uint", "uvec2", "uvec3", "uvec4",
+ "float", "vec2", "vec3", "vec4", "double", "dvec2", "dvec3", "dvec4" };
+
+ if (!options.vulkan_semantics)
+ {
+ using Supp = ShaderSubgroupSupportHelper;
+ auto result = shader_subgroup_supporter.resolve();
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupMask))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupMask, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupEqMask uvec4(gl_ThreadEqMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupGeMask uvec4(gl_ThreadGeMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupGtMask uvec4(gl_ThreadGtMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupLeMask uvec4(gl_ThreadLeMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupLtMask uvec4(gl_ThreadLtMaskNV, 0u, 0u, 0u)");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("#define gl_SubgroupEqMask uvec4(unpackUint2x32(gl_SubGroupEqMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupGeMask uvec4(unpackUint2x32(gl_SubGroupGeMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupGtMask uvec4(unpackUint2x32(gl_SubGroupGtMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupLeMask uvec4(unpackUint2x32(gl_SubGroupLeMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupLtMask uvec4(unpackUint2x32(gl_SubGroupLtMaskARB), 0u, 0u)");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupSize))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupSize, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupSize gl_WarpSizeNV");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("#define gl_SubgroupSize gl_SubGroupSizeARB");
+ break;
+ case Supp::AMD_gcn_shader:
+ statement("#define gl_SubgroupSize uint(gl_SIMDGroupSizeAMD)");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupInvocationID))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupInvocationID, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupInvocationID gl_ThreadInWarpNV");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("#define gl_SubgroupInvocationID gl_SubGroupInvocationARB");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupID))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupID, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupID gl_WarpIDNV");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::NumSubgroups))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::NumSubgroups, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_NumSubgroups gl_WarpsPerSMNV");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBroadcast_First))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupBroadcast_First, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_shuffle:
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcastFirst(", t,
+ " value) { return shuffleNV(value, findLSB(ballotThreadNV(true)), gl_WarpSizeNV); }");
+ }
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcast(", t,
+ " value, uint id) { return shuffleNV(value, id, gl_WarpSizeNV); }");
+ }
+ break;
+ case Supp::ARB_shader_ballot:
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcastFirst(", t,
+ " value) { return readFirstInvocationARB(value); }");
+ }
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcast(", t,
+ " value, uint id) { return readInvocationARB(value, id); }");
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallotFindLSB_MSB))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupBallotFindLSB_MSB, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("uint subgroupBallotFindLSB(uvec4 value) { return findLSB(value.x); }");
+ statement("uint subgroupBallotFindMSB(uvec4 value) { return findMSB(value.x); }");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#else");
+ statement("uint subgroupBallotFindLSB(uvec4 value)");
+ begin_scope();
+ statement("int firstLive = findLSB(value.x);");
+ statement("return uint(firstLive != -1 ? firstLive : (findLSB(value.y) + 32));");
+ end_scope();
+ statement("uint subgroupBallotFindMSB(uvec4 value)");
+ begin_scope();
+ statement("int firstLive = findMSB(value.y);");
+ statement("return uint(firstLive != -1 ? (firstLive + 32) : findMSB(value.x));");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupAll_Any_AllEqualBool))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupAll_Any_AllEqualBool, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_gpu_shader_5:
+ statement("bool subgroupAll(bool value) { return allThreadsNV(value); }");
+ statement("bool subgroupAny(bool value) { return anyThreadNV(value); }");
+ statement("bool subgroupAllEqual(bool value) { return allThreadsEqualNV(value); }");
+ break;
+ case Supp::ARB_shader_group_vote:
+ statement("bool subgroupAll(bool v) { return allInvocationsARB(v); }");
+ statement("bool subgroupAny(bool v) { return anyInvocationARB(v); }");
+ statement("bool subgroupAllEqual(bool v) { return allInvocationsEqualARB(v); }");
+ break;
+ case Supp::AMD_gcn_shader:
+ statement("bool subgroupAll(bool value) { return ballotAMD(value) == ballotAMD(true); }");
+ statement("bool subgroupAny(bool value) { return ballotAMD(value) != 0ull; }");
+ statement("bool subgroupAllEqual(bool value) { uint64_t b = ballotAMD(value); return b == 0ull || "
+ "b == ballotAMD(true); }");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupAllEqualT))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_vote");
+ statement(
+ "#define _SPIRV_CROSS_SUBGROUP_ALL_EQUAL_WORKAROUND(type) bool subgroupAllEqual(type value) { return "
+ "subgroupAllEqual(subgroupBroadcastFirst(value) == value); }");
+ for (const char *t : workaround_types)
+ statement("_SPIRV_CROSS_SUBGROUP_ALL_EQUAL_WORKAROUND(", t, ")");
+ statement("#undef _SPIRV_CROSS_SUBGROUP_ALL_EQUAL_WORKAROUND");
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallot))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupBallot, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("uvec4 subgroupBallot(bool v) { return uvec4(ballotThreadNV(v), 0u, 0u, 0u); }");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("uvec4 subgroupBallot(bool v) { return uvec4(unpackUint2x32(ballotARB(v)), 0u, 0u); }");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupElect))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("bool subgroupElect()");
+ begin_scope();
+ statement("uvec4 activeMask = subgroupBallot(true);");
+ statement("uint firstLive = subgroupBallotFindLSB(activeMask);");
+ statement("return gl_SubgroupInvocationID == firstLive;");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBarrier))
+ {
+ // Extensions we're using in place of GL_KHR_shader_subgroup_basic state
+ // that subgroup execute in lockstep so this barrier is implicit.
+ // However the GL 4.6 spec also states that `barrier` implies a shared memory barrier,
+ // and a specific test of optimizing scans by leveraging lock-step invocation execution,
+ // has shown that a `memoryBarrierShared` is needed in place of a `subgroupBarrier`.
+ // https://github.com/buildaworldnet/IrrlichtBAW/commit/d8536857991b89a30a6b65d29441e51b64c2c7ad#diff-9f898d27be1ea6fc79b03d9b361e299334c1a347b6e4dc344ee66110c6aa596aR19
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("void subgroupBarrier() { memoryBarrierShared(); }");
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupMemBarrier))
+ {
+ if (model == spv::ExecutionModelGLCompute)
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("void subgroupMemoryBarrier() { groupMemoryBarrier(); }");
+ statement("void subgroupMemoryBarrierBuffer() { groupMemoryBarrier(); }");
+ statement("void subgroupMemoryBarrierShared() { memoryBarrierShared(); }");
+ statement("void subgroupMemoryBarrierImage() { groupMemoryBarrier(); }");
+ statement("#endif");
+ }
+ else
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("void subgroupMemoryBarrier() { memoryBarrier(); }");
+ statement("void subgroupMemoryBarrierBuffer() { memoryBarrierBuffer(); }");
+ statement("void subgroupMemoryBarrierImage() { memoryBarrierImage(); }");
+ statement("#endif");
+ }
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupInverseBallot_InclBitCount_ExclBitCout))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_ballot");
+ statement("bool subgroupInverseBallot(uvec4 value)");
+ begin_scope();
+ statement("return any(notEqual(value.xy & gl_SubgroupEqMask.xy, uvec2(0u)));");
+ end_scope();
+
+ statement("uint subgroupBallotInclusiveBitCount(uvec4 value)");
+ begin_scope();
+ statement("uvec2 v = value.xy & gl_SubgroupLeMask.xy;");
+ statement("ivec2 c = bitCount(v);");
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("return uint(c.x);");
+ statement_no_indent("#else");
+ statement("return uint(c.x + c.y);");
+ statement_no_indent("#endif");
+ end_scope();
+
+ statement("uint subgroupBallotExclusiveBitCount(uvec4 value)");
+ begin_scope();
+ statement("uvec2 v = value.xy & gl_SubgroupLtMask.xy;");
+ statement("ivec2 c = bitCount(v);");
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("return uint(c.x);");
+ statement_no_indent("#else");
+ statement("return uint(c.x + c.y);");
+ statement_no_indent("#endif");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallotBitCount))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_ballot");
+ statement("uint subgroupBallotBitCount(uvec4 value)");
+ begin_scope();
+ statement("ivec2 c = bitCount(value.xy);");
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("return uint(c.x);");
+ statement_no_indent("#else");
+ statement("return uint(c.x + c.y);");
+ statement_no_indent("#endif");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallotBitExtract))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_ballot");
+ statement("bool subgroupBallotBitExtract(uvec4 value, uint index)");
+ begin_scope();
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("uint shifted = value.x >> index;");
+ statement_no_indent("#else");
+ statement("uint shifted = value[index >> 5u] >> (index & 0x1fu);");
+ statement_no_indent("#endif");
+ statement("return (shifted & 1u) != 0u;");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ auto arithmetic_feature_helper =
+ [&](Supp::Feature feat, std::string func_name, spv::Op op, spv::GroupOperation group_op)
+ {
+ if (shader_subgroup_supporter.is_feature_requested(feat))
+ {
+ auto exts = Supp::get_candidates_for_feature(feat, result);
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_shuffle:
+ emit_subgroup_arithmetic_workaround(func_name, op, group_op);
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+ };
+
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIAddReduce, "subgroupAdd", OpGroupNonUniformIAdd,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIAddExclusiveScan, "subgroupExclusiveAdd",
+ OpGroupNonUniformIAdd, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIAddInclusiveScan, "subgroupInclusiveAdd",
+ OpGroupNonUniformIAdd, GroupOperationInclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFAddReduce, "subgroupAdd", OpGroupNonUniformFAdd,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFAddExclusiveScan, "subgroupExclusiveAdd",
+ OpGroupNonUniformFAdd, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFAddInclusiveScan, "subgroupInclusiveAdd",
+ OpGroupNonUniformFAdd, GroupOperationInclusiveScan);
+
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIMulReduce, "subgroupMul", OpGroupNonUniformIMul,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIMulExclusiveScan, "subgroupExclusiveMul",
+ OpGroupNonUniformIMul, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIMulInclusiveScan, "subgroupInclusiveMul",
+ OpGroupNonUniformIMul, GroupOperationInclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFMulReduce, "subgroupMul", OpGroupNonUniformFMul,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFMulExclusiveScan, "subgroupExclusiveMul",
+ OpGroupNonUniformFMul, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFMulInclusiveScan, "subgroupInclusiveMul",
+ OpGroupNonUniformFMul, GroupOperationInclusiveScan);
+ }
+
+ if (!workaround_ubo_load_overload_types.empty())
+ {
+ for (auto &type_id : workaround_ubo_load_overload_types)
+ {
+ auto &type = get<SPIRType>(type_id);
+
+ if (options.es && is_matrix(type))
+ {
+ // Need both variants.
+ // GLSL cannot overload on precision, so need to dispatch appropriately.
+ statement("highp ", type_to_glsl(type), " spvWorkaroundRowMajor(highp ", type_to_glsl(type), " wrap) { return wrap; }");
+ statement("mediump ", type_to_glsl(type), " spvWorkaroundRowMajorMP(mediump ", type_to_glsl(type), " wrap) { return wrap; }");
+ }
+ else
+ {
+ statement(type_to_glsl(type), " spvWorkaroundRowMajor(", type_to_glsl(type), " wrap) { return wrap; }");
+ }
+ }
+ statement("");
+ }
+}
+
+void CompilerGLSL::emit_polyfills(uint32_t polyfills, bool relaxed)
+{
+ const char *qual = "";
+ const char *suffix = (options.es && relaxed) ? "MP" : "";
+ if (options.es)
+ qual = relaxed ? "mediump " : "highp ";
+
+ if (polyfills & PolyfillTranspose2x2)
+ {
+ statement(qual, "mat2 spvTranspose", suffix, "(", qual, "mat2 m)");
+ begin_scope();
+ statement("return mat2(m[0][0], m[1][0], m[0][1], m[1][1]);");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillTranspose3x3)
+ {
+ statement(qual, "mat3 spvTranspose", suffix, "(", qual, "mat3 m)");
+ begin_scope();
+ statement("return mat3(m[0][0], m[1][0], m[2][0], m[0][1], m[1][1], m[2][1], m[0][2], m[1][2], m[2][2]);");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillTranspose4x4)
+ {
+ statement(qual, "mat4 spvTranspose", suffix, "(", qual, "mat4 m)");
+ begin_scope();
+ statement("return mat4(m[0][0], m[1][0], m[2][0], m[3][0], m[0][1], m[1][1], m[2][1], m[3][1], m[0][2], "
+ "m[1][2], m[2][2], m[3][2], m[0][3], m[1][3], m[2][3], m[3][3]);");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillDeterminant2x2)
+ {
+ statement(qual, "float spvDeterminant", suffix, "(", qual, "mat2 m)");
+ begin_scope();
+ statement("return m[0][0] * m[1][1] - m[0][1] * m[1][0];");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillDeterminant3x3)
+ {
+ statement(qual, "float spvDeterminant", suffix, "(", qual, "mat3 m)");
+ begin_scope();
+ statement("return dot(m[0], vec3(m[1][1] * m[2][2] - m[1][2] * m[2][1], "
+ "m[1][2] * m[2][0] - m[1][0] * m[2][2], "
+ "m[1][0] * m[2][1] - m[1][1] * m[2][0]));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillDeterminant4x4)
+ {
+ statement(qual, "float spvDeterminant", suffix, "(", qual, "mat4 m)");
+ begin_scope();
+ statement("return dot(m[0], vec4("
+ "m[2][1] * m[3][2] * m[1][3] - m[3][1] * m[2][2] * m[1][3] + m[3][1] * m[1][2] * m[2][3] - m[1][1] * m[3][2] * m[2][3] - m[2][1] * m[1][2] * m[3][3] + m[1][1] * m[2][2] * m[3][3], "
+ "m[3][0] * m[2][2] * m[1][3] - m[2][0] * m[3][2] * m[1][3] - m[3][0] * m[1][2] * m[2][3] + m[1][0] * m[3][2] * m[2][3] + m[2][0] * m[1][2] * m[3][3] - m[1][0] * m[2][2] * m[3][3], "
+ "m[2][0] * m[3][1] * m[1][3] - m[3][0] * m[2][1] * m[1][3] + m[3][0] * m[1][1] * m[2][3] - m[1][0] * m[3][1] * m[2][3] - m[2][0] * m[1][1] * m[3][3] + m[1][0] * m[2][1] * m[3][3], "
+ "m[3][0] * m[2][1] * m[1][2] - m[2][0] * m[3][1] * m[1][2] - m[3][0] * m[1][1] * m[2][2] + m[1][0] * m[3][1] * m[2][2] + m[2][0] * m[1][1] * m[3][2] - m[1][0] * m[2][1] * m[3][2]));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillMatrixInverse2x2)
+ {
+ statement(qual, "mat2 spvInverse", suffix, "(", qual, "mat2 m)");
+ begin_scope();
+ statement("return mat2(m[1][1], -m[0][1], -m[1][0], m[0][0]) "
+ "* (1.0 / (m[0][0] * m[1][1] - m[1][0] * m[0][1]));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillMatrixInverse3x3)
+ {
+ statement(qual, "mat3 spvInverse", suffix, "(", qual, "mat3 m)");
+ begin_scope();
+ statement(qual, "vec3 t = vec3(m[1][1] * m[2][2] - m[1][2] * m[2][1], m[1][2] * m[2][0] - m[1][0] * m[2][2], m[1][0] * m[2][1] - m[1][1] * m[2][0]);");
+ statement("return mat3(t[0], "
+ "m[0][2] * m[2][1] - m[0][1] * m[2][2], "
+ "m[0][1] * m[1][2] - m[0][2] * m[1][1], "
+ "t[1], "
+ "m[0][0] * m[2][2] - m[0][2] * m[2][0], "
+ "m[0][2] * m[1][0] - m[0][0] * m[1][2], "
+ "t[2], "
+ "m[0][1] * m[2][0] - m[0][0] * m[2][1], "
+ "m[0][0] * m[1][1] - m[0][1] * m[1][0]) "
+ "* (1.0 / dot(m[0], t));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillMatrixInverse4x4)
+ {
+ statement(qual, "mat4 spvInverse", suffix, "(", qual, "mat4 m)");
+ begin_scope();
+ statement(qual, "vec4 t = vec4("
+ "m[2][1] * m[3][2] * m[1][3] - m[3][1] * m[2][2] * m[1][3] + m[3][1] * m[1][2] * m[2][3] - m[1][1] * m[3][2] * m[2][3] - m[2][1] * m[1][2] * m[3][3] + m[1][1] * m[2][2] * m[3][3], "
+ "m[3][0] * m[2][2] * m[1][3] - m[2][0] * m[3][2] * m[1][3] - m[3][0] * m[1][2] * m[2][3] + m[1][0] * m[3][2] * m[2][3] + m[2][0] * m[1][2] * m[3][3] - m[1][0] * m[2][2] * m[3][3], "
+ "m[2][0] * m[3][1] * m[1][3] - m[3][0] * m[2][1] * m[1][3] + m[3][0] * m[1][1] * m[2][3] - m[1][0] * m[3][1] * m[2][3] - m[2][0] * m[1][1] * m[3][3] + m[1][0] * m[2][1] * m[3][3], "
+ "m[3][0] * m[2][1] * m[1][2] - m[2][0] * m[3][1] * m[1][2] - m[3][0] * m[1][1] * m[2][2] + m[1][0] * m[3][1] * m[2][2] + m[2][0] * m[1][1] * m[3][2] - m[1][0] * m[2][1] * m[3][2]);");
+ statement("return mat4("
+ "t[0], "
+ "m[3][1] * m[2][2] * m[0][3] - m[2][1] * m[3][2] * m[0][3] - m[3][1] * m[0][2] * m[2][3] + m[0][1] * m[3][2] * m[2][3] + m[2][1] * m[0][2] * m[3][3] - m[0][1] * m[2][2] * m[3][3], "
+ "m[1][1] * m[3][2] * m[0][3] - m[3][1] * m[1][2] * m[0][3] + m[3][1] * m[0][2] * m[1][3] - m[0][1] * m[3][2] * m[1][3] - m[1][1] * m[0][2] * m[3][3] + m[0][1] * m[1][2] * m[3][3], "
+ "m[2][1] * m[1][2] * m[0][3] - m[1][1] * m[2][2] * m[0][3] - m[2][1] * m[0][2] * m[1][3] + m[0][1] * m[2][2] * m[1][3] + m[1][1] * m[0][2] * m[2][3] - m[0][1] * m[1][2] * m[2][3], "
+ "t[1], "
+ "m[2][0] * m[3][2] * m[0][3] - m[3][0] * m[2][2] * m[0][3] + m[3][0] * m[0][2] * m[2][3] - m[0][0] * m[3][2] * m[2][3] - m[2][0] * m[0][2] * m[3][3] + m[0][0] * m[2][2] * m[3][3], "
+ "m[3][0] * m[1][2] * m[0][3] - m[1][0] * m[3][2] * m[0][3] - m[3][0] * m[0][2] * m[1][3] + m[0][0] * m[3][2] * m[1][3] + m[1][0] * m[0][2] * m[3][3] - m[0][0] * m[1][2] * m[3][3], "
+ "m[1][0] * m[2][2] * m[0][3] - m[2][0] * m[1][2] * m[0][3] + m[2][0] * m[0][2] * m[1][3] - m[0][0] * m[2][2] * m[1][3] - m[1][0] * m[0][2] * m[2][3] + m[0][0] * m[1][2] * m[2][3], "
+ "t[2], "
+ "m[3][0] * m[2][1] * m[0][3] - m[2][0] * m[3][1] * m[0][3] - m[3][0] * m[0][1] * m[2][3] + m[0][0] * m[3][1] * m[2][3] + m[2][0] * m[0][1] * m[3][3] - m[0][0] * m[2][1] * m[3][3], "
+ "m[1][0] * m[3][1] * m[0][3] - m[3][0] * m[1][1] * m[0][3] + m[3][0] * m[0][1] * m[1][3] - m[0][0] * m[3][1] * m[1][3] - m[1][0] * m[0][1] * m[3][3] + m[0][0] * m[1][1] * m[3][3], "
+ "m[2][0] * m[1][1] * m[0][3] - m[1][0] * m[2][1] * m[0][3] - m[2][0] * m[0][1] * m[1][3] + m[0][0] * m[2][1] * m[1][3] + m[1][0] * m[0][1] * m[2][3] - m[0][0] * m[1][1] * m[2][3], "
+ "t[3], "
+ "m[2][0] * m[3][1] * m[0][2] - m[3][0] * m[2][1] * m[0][2] + m[3][0] * m[0][1] * m[2][2] - m[0][0] * m[3][1] * m[2][2] - m[2][0] * m[0][1] * m[3][2] + m[0][0] * m[2][1] * m[3][2], "
+ "m[3][0] * m[1][1] * m[0][2] - m[1][0] * m[3][1] * m[0][2] - m[3][0] * m[0][1] * m[1][2] + m[0][0] * m[3][1] * m[1][2] + m[1][0] * m[0][1] * m[3][2] - m[0][0] * m[1][1] * m[3][2], "
+ "m[1][0] * m[2][1] * m[0][2] - m[2][0] * m[1][1] * m[0][2] + m[2][0] * m[0][1] * m[1][2] - m[0][0] * m[2][1] * m[1][2] - m[1][0] * m[0][1] * m[2][2] + m[0][0] * m[1][1] * m[2][2]) "
+ "* (1.0 / dot(m[0], t));");
+ end_scope();
+ statement("");
+ }
+
+ if (!relaxed)
+ {
+ static const Polyfill polys[3][3] = {
+ { PolyfillNMin16, PolyfillNMin32, PolyfillNMin64 },
+ { PolyfillNMax16, PolyfillNMax32, PolyfillNMax64 },
+ { PolyfillNClamp16, PolyfillNClamp32, PolyfillNClamp64 },
+ };
+
+ static const GLSLstd450 glsl_ops[] = { GLSLstd450NMin, GLSLstd450NMax, GLSLstd450NClamp };
+ static const char *spv_ops[] = { "spvNMin", "spvNMax", "spvNClamp" };
+ bool has_poly = false;
+
+ for (uint32_t i = 0; i < 3; i++)
+ {
+ for (uint32_t j = 0; j < 3; j++)
+ {
+ if ((polyfills & polys[i][j]) == 0)
+ continue;
+
+ const char *types[3][4] = {
+ { "float16_t", "f16vec2", "f16vec3", "f16vec4" },
+ { "float", "vec2", "vec3", "vec4" },
+ { "double", "dvec2", "dvec3", "dvec4" },
+ };
+
+ for (uint32_t k = 0; k < 4; k++)
+ {
+ auto *type = types[j][k];
+
+ if (i < 2)
+ {
+ statement("spirv_instruction(set = \"GLSL.std.450\", id = ", glsl_ops[i], ") ",
+ type, " ", spv_ops[i], "(", type, ", ", type, ");");
+ }
+ else
+ {
+ statement("spirv_instruction(set = \"GLSL.std.450\", id = ", glsl_ops[i], ") ",
+ type, " ", spv_ops[i], "(", type, ", ", type, ", ", type, ");");
+ }
+
+ has_poly = true;
+ }
+ }
+ }
+
+ if (has_poly)
+ statement("");
+ }
+ else
+ {
+ // Mediump intrinsics don't work correctly, so wrap the intrinsic in an outer shell that ensures mediump
+ // propagation.
+
+ static const Polyfill polys[3][3] = {
+ { PolyfillNMin16, PolyfillNMin32, PolyfillNMin64 },
+ { PolyfillNMax16, PolyfillNMax32, PolyfillNMax64 },
+ { PolyfillNClamp16, PolyfillNClamp32, PolyfillNClamp64 },
+ };
+
+ static const char *spv_ops[] = { "spvNMin", "spvNMax", "spvNClamp" };
+
+ for (uint32_t i = 0; i < 3; i++)
+ {
+ for (uint32_t j = 0; j < 3; j++)
+ {
+ if ((polyfills & polys[i][j]) == 0)
+ continue;
+
+ const char *types[3][4] = {
+ { "float16_t", "f16vec2", "f16vec3", "f16vec4" },
+ { "float", "vec2", "vec3", "vec4" },
+ { "double", "dvec2", "dvec3", "dvec4" },
+ };
+
+ for (uint32_t k = 0; k < 4; k++)
+ {
+ auto *type = types[j][k];
+
+ if (i < 2)
+ {
+ statement("mediump ", type, " ", spv_ops[i], "Relaxed(",
+ "mediump ", type, " a, mediump ", type, " b)");
+ begin_scope();
+ statement("mediump ", type, " res = ", spv_ops[i], "(a, b);");
+ statement("return res;");
+ end_scope();
+ statement("");
+ }
+ else
+ {
+ statement("mediump ", type, " ", spv_ops[i], "Relaxed(",
+ "mediump ", type, " a, mediump ", type, " b, mediump ", type, " c)");
+ begin_scope();
+ statement("mediump ", type, " res = ", spv_ops[i], "(a, b, c);");
+ statement("return res;");
+ end_scope();
+ statement("");
+ }
+ }
+ }
+ }
+ }
+}
+
+// Returns a string representation of the ID, usable as a function arg.
+// Default is to simply return the expression representation fo the arg ID.
+// Subclasses may override to modify the return value.
+string CompilerGLSL::to_func_call_arg(const SPIRFunction::Parameter &, uint32_t id)
+{
+ // Make sure that we use the name of the original variable, and not the parameter alias.
+ uint32_t name_id = id;
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ name_id = var->basevariable;
+ return to_expression(name_id);
+}
+
+void CompilerGLSL::force_temporary_and_recompile(uint32_t id)
+{
+ auto res = forced_temporaries.insert(id);
+
+ // Forcing new temporaries guarantees forward progress.
+ if (res.second)
+ force_recompile_guarantee_forward_progress();
+ else
+ force_recompile();
+}
+
+uint32_t CompilerGLSL::consume_temporary_in_precision_context(uint32_t type_id, uint32_t id, Options::Precision precision)
+{
+ // Constants do not have innate precision.
+ auto handle_type = ir.ids[id].get_type();
+ if (handle_type == TypeConstant || handle_type == TypeConstantOp || handle_type == TypeUndef)
+ return id;
+
+ // Ignore anything that isn't 32-bit values.
+ auto &type = get<SPIRType>(type_id);
+ if (type.pointer)
+ return id;
+ if (type.basetype != SPIRType::Float && type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int)
+ return id;
+
+ if (precision == Options::DontCare)
+ {
+ // If precision is consumed as don't care (operations only consisting of constants),
+ // we need to bind the expression to a temporary,
+ // otherwise we have no way of controlling the precision later.
+ auto itr = forced_temporaries.insert(id);
+ if (itr.second)
+ force_recompile_guarantee_forward_progress();
+ return id;
+ }
+
+ auto current_precision = has_decoration(id, DecorationRelaxedPrecision) ? Options::Mediump : Options::Highp;
+ if (current_precision == precision)
+ return id;
+
+ auto itr = temporary_to_mirror_precision_alias.find(id);
+ if (itr == temporary_to_mirror_precision_alias.end())
+ {
+ uint32_t alias_id = ir.increase_bound_by(1);
+ auto &m = ir.meta[alias_id];
+ if (auto *input_m = ir.find_meta(id))
+ m = *input_m;
+
+ const char *prefix;
+ if (precision == Options::Mediump)
+ {
+ set_decoration(alias_id, DecorationRelaxedPrecision);
+ prefix = "mp_copy_";
+ }
+ else
+ {
+ unset_decoration(alias_id, DecorationRelaxedPrecision);
+ prefix = "hp_copy_";
+ }
+
+ auto alias_name = join(prefix, to_name(id));
+ ParsedIR::sanitize_underscores(alias_name);
+ set_name(alias_id, alias_name);
+
+ emit_op(type_id, alias_id, to_expression(id), true);
+ temporary_to_mirror_precision_alias[id] = alias_id;
+ forced_temporaries.insert(id);
+ forced_temporaries.insert(alias_id);
+ force_recompile_guarantee_forward_progress();
+ id = alias_id;
+ }
+ else
+ {
+ id = itr->second;
+ }
+
+ return id;
+}
+
+void CompilerGLSL::handle_invalid_expression(uint32_t id)
+{
+ // We tried to read an invalidated expression.
+ // This means we need another pass at compilation, but next time,
+ // force temporary variables so that they cannot be invalidated.
+ force_temporary_and_recompile(id);
+
+ // If the invalid expression happened as a result of a CompositeInsert
+ // overwrite, we must block this from happening next iteration.
+ if (composite_insert_overwritten.count(id))
+ block_composite_insert_overwrite.insert(id);
+}
+
+// Converts the format of the current expression from packed to unpacked,
+// by wrapping the expression in a constructor of the appropriate type.
+// GLSL does not support packed formats, so simply return the expression.
+// Subclasses that do will override.
+string CompilerGLSL::unpack_expression_type(string expr_str, const SPIRType &, uint32_t, bool, bool)
+{
+ return expr_str;
+}
+
+// Sometimes we proactively enclosed an expression where it turns out we might have not needed it after all.
+void CompilerGLSL::strip_enclosed_expression(string &expr)
+{
+ if (expr.size() < 2 || expr.front() != '(' || expr.back() != ')')
+ return;
+
+ // Have to make sure that our first and last parens actually enclose everything inside it.
+ uint32_t paren_count = 0;
+ for (auto &c : expr)
+ {
+ if (c == '(')
+ paren_count++;
+ else if (c == ')')
+ {
+ paren_count--;
+
+ // If we hit 0 and this is not the final char, our first and final parens actually don't
+ // enclose the expression, and we cannot strip, e.g.: (a + b) * (c + d).
+ if (paren_count == 0 && &c != &expr.back())
+ return;
+ }
+ }
+ expr.erase(expr.size() - 1, 1);
+ expr.erase(begin(expr));
+}
+
+bool CompilerGLSL::needs_enclose_expression(const std::string &expr)
+{
+ bool need_parens = false;
+
+ // If the expression starts with a unary we need to enclose to deal with cases where we have back-to-back
+ // unary expressions.
+ if (!expr.empty())
+ {
+ auto c = expr.front();
+ if (c == '-' || c == '+' || c == '!' || c == '~' || c == '&' || c == '*')
+ need_parens = true;
+ }
+
+ if (!need_parens)
+ {
+ uint32_t paren_count = 0;
+ for (auto c : expr)
+ {
+ if (c == '(' || c == '[')
+ paren_count++;
+ else if (c == ')' || c == ']')
+ {
+ assert(paren_count);
+ paren_count--;
+ }
+ else if (c == ' ' && paren_count == 0)
+ {
+ need_parens = true;
+ break;
+ }
+ }
+ assert(paren_count == 0);
+ }
+
+ return need_parens;
+}
+
+string CompilerGLSL::enclose_expression(const string &expr)
+{
+ // If this expression contains any spaces which are not enclosed by parentheses,
+ // we need to enclose it so we can treat the whole string as an expression.
+ // This happens when two expressions have been part of a binary op earlier.
+ if (needs_enclose_expression(expr))
+ return join('(', expr, ')');
+ else
+ return expr;
+}
+
+string CompilerGLSL::dereference_expression(const SPIRType &expr_type, const std::string &expr)
+{
+ // If this expression starts with an address-of operator ('&'), then
+ // just return the part after the operator.
+ // TODO: Strip parens if unnecessary?
+ if (expr.front() == '&')
+ return expr.substr(1);
+ else if (backend.native_pointers)
+ return join('*', expr);
+ else if (is_physical_pointer(expr_type) && !is_physical_pointer_to_buffer_block(expr_type))
+ return join(enclose_expression(expr), ".value");
+ else
+ return expr;
+}
+
+string CompilerGLSL::address_of_expression(const std::string &expr)
+{
+ if (expr.size() > 3 && expr[0] == '(' && expr[1] == '*' && expr.back() == ')')
+ {
+ // If we have an expression which looks like (*foo), taking the address of it is the same as stripping
+ // the first two and last characters. We might have to enclose the expression.
+ // This doesn't work for cases like (*foo + 10),
+ // but this is an r-value expression which we cannot take the address of anyways.
+ return enclose_expression(expr.substr(2, expr.size() - 3));
+ }
+ else if (expr.front() == '*')
+ {
+ // If this expression starts with a dereference operator ('*'), then
+ // just return the part after the operator.
+ return expr.substr(1);
+ }
+ else
+ return join('&', enclose_expression(expr));
+}
+
+// Just like to_expression except that we enclose the expression inside parentheses if needed.
+string CompilerGLSL::to_enclosed_expression(uint32_t id, bool register_expression_read)
+{
+ return enclose_expression(to_expression(id, register_expression_read));
+}
+
+// Used explicitly when we want to read a row-major expression, but without any transpose shenanigans.
+// need_transpose must be forced to false.
+string CompilerGLSL::to_unpacked_row_major_matrix_expression(uint32_t id)
+{
+ return unpack_expression_type(to_expression(id), expression_type(id),
+ get_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID),
+ has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked), true);
+}
+
+string CompilerGLSL::to_unpacked_expression(uint32_t id, bool register_expression_read)
+{
+ // If we need to transpose, it will also take care of unpacking rules.
+ auto *e = maybe_get<SPIRExpression>(id);
+ bool need_transpose = e && e->need_transpose;
+ bool is_remapped = has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID);
+ bool is_packed = has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+
+ if (!need_transpose && (is_remapped || is_packed))
+ {
+ return unpack_expression_type(to_expression(id, register_expression_read),
+ get_pointee_type(expression_type_id(id)),
+ get_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID),
+ has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked), false);
+ }
+ else
+ return to_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_enclosed_unpacked_expression(uint32_t id, bool register_expression_read)
+{
+ return enclose_expression(to_unpacked_expression(id, register_expression_read));
+}
+
+string CompilerGLSL::to_dereferenced_expression(uint32_t id, bool register_expression_read)
+{
+ auto &type = expression_type(id);
+
+ if (is_pointer(type) && should_dereference(id))
+ return dereference_expression(type, to_enclosed_expression(id, register_expression_read));
+ else
+ return to_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_pointer_expression(uint32_t id, bool register_expression_read)
+{
+ auto &type = expression_type(id);
+ if (is_pointer(type) && expression_is_lvalue(id) && !should_dereference(id))
+ return address_of_expression(to_enclosed_expression(id, register_expression_read));
+ else
+ return to_unpacked_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_enclosed_pointer_expression(uint32_t id, bool register_expression_read)
+{
+ auto &type = expression_type(id);
+ if (is_pointer(type) && expression_is_lvalue(id) && !should_dereference(id))
+ return address_of_expression(to_enclosed_expression(id, register_expression_read));
+ else
+ return to_enclosed_unpacked_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_extract_component_expression(uint32_t id, uint32_t index)
+{
+ auto expr = to_enclosed_expression(id);
+ if (has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked))
+ return join(expr, "[", index, "]");
+ else
+ return join(expr, ".", index_to_swizzle(index));
+}
+
+string CompilerGLSL::to_extract_constant_composite_expression(uint32_t result_type, const SPIRConstant &c,
+ const uint32_t *chain, uint32_t length)
+{
+ // It is kinda silly if application actually enter this path since they know the constant up front.
+ // It is useful here to extract the plain constant directly.
+ SPIRConstant tmp;
+ tmp.constant_type = result_type;
+ auto &composite_type = get<SPIRType>(c.constant_type);
+ assert(composite_type.basetype != SPIRType::Struct && composite_type.array.empty());
+ assert(!c.specialization);
+
+ if (is_matrix(composite_type))
+ {
+ if (length == 2)
+ {
+ tmp.m.c[0].vecsize = 1;
+ tmp.m.columns = 1;
+ tmp.m.c[0].r[0] = c.m.c[chain[0]].r[chain[1]];
+ }
+ else
+ {
+ assert(length == 1);
+ tmp.m.c[0].vecsize = composite_type.vecsize;
+ tmp.m.columns = 1;
+ tmp.m.c[0] = c.m.c[chain[0]];
+ }
+ }
+ else
+ {
+ assert(length == 1);
+ tmp.m.c[0].vecsize = 1;
+ tmp.m.columns = 1;
+ tmp.m.c[0].r[0] = c.m.c[0].r[chain[0]];
+ }
+
+ return constant_expression(tmp);
+}
+
+string CompilerGLSL::to_rerolled_array_expression(const SPIRType &parent_type,
+ const string &base_expr, const SPIRType &type)
+{
+ bool remapped_boolean = parent_type.basetype == SPIRType::Struct &&
+ type.basetype == SPIRType::Boolean &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean;
+
+ SPIRType tmp_type { OpNop };
+ if (remapped_boolean)
+ {
+ tmp_type = get<SPIRType>(type.parent_type);
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ }
+ else if (type.basetype == SPIRType::Boolean && backend.boolean_in_struct_remapped_type != SPIRType::Boolean)
+ {
+ // It's possible that we have an r-value expression that was OpLoaded from a struct.
+ // We have to reroll this and explicitly cast the input to bool, because the r-value is short.
+ tmp_type = get<SPIRType>(type.parent_type);
+ remapped_boolean = true;
+ }
+
+ uint32_t size = to_array_size_literal(type);
+ auto &parent = get<SPIRType>(type.parent_type);
+ string expr = "{ ";
+
+ for (uint32_t i = 0; i < size; i++)
+ {
+ auto subexpr = join(base_expr, "[", convert_to_string(i), "]");
+ if (!is_array(parent))
+ {
+ if (remapped_boolean)
+ subexpr = join(type_to_glsl(tmp_type), "(", subexpr, ")");
+ expr += subexpr;
+ }
+ else
+ expr += to_rerolled_array_expression(parent_type, subexpr, parent);
+
+ if (i + 1 < size)
+ expr += ", ";
+ }
+
+ expr += " }";
+ return expr;
+}
+
+string CompilerGLSL::to_composite_constructor_expression(const SPIRType &parent_type, uint32_t id, bool block_like_type)
+{
+ auto &type = expression_type(id);
+
+ bool reroll_array = false;
+ bool remapped_boolean = parent_type.basetype == SPIRType::Struct &&
+ type.basetype == SPIRType::Boolean &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean;
+
+ if (is_array(type))
+ {
+ reroll_array = !backend.array_is_value_type ||
+ (block_like_type && !backend.array_is_value_type_in_buffer_blocks);
+
+ if (remapped_boolean)
+ {
+ // Forced to reroll if we have to change bool[] to short[].
+ reroll_array = true;
+ }
+ }
+
+ if (reroll_array)
+ {
+ // For this case, we need to "re-roll" an array initializer from a temporary.
+ // We cannot simply pass the array directly, since it decays to a pointer and it cannot
+ // participate in a struct initializer. E.g.
+ // float arr[2] = { 1.0, 2.0 };
+ // Foo foo = { arr }; must be transformed to
+ // Foo foo = { { arr[0], arr[1] } };
+ // The array sizes cannot be deduced from specialization constants since we cannot use any loops.
+
+ // We're only triggering one read of the array expression, but this is fine since arrays have to be declared
+ // as temporaries anyways.
+ return to_rerolled_array_expression(parent_type, to_enclosed_expression(id), type);
+ }
+ else
+ {
+ auto expr = to_unpacked_expression(id);
+ if (remapped_boolean)
+ {
+ auto tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ expr = join(type_to_glsl(tmp_type), "(", expr, ")");
+ }
+
+ return expr;
+ }
+}
+
+string CompilerGLSL::to_non_uniform_aware_expression(uint32_t id)
+{
+ string expr = to_expression(id);
+
+ if (has_decoration(id, DecorationNonUniform))
+ convert_non_uniform_expression(expr, id);
+
+ return expr;
+}
+
+string CompilerGLSL::to_expression(uint32_t id, bool register_expression_read)
+{
+ auto itr = invalid_expressions.find(id);
+ if (itr != end(invalid_expressions))
+ handle_invalid_expression(id);
+
+ if (ir.ids[id].get_type() == TypeExpression)
+ {
+ // We might have a more complex chain of dependencies.
+ // A possible scenario is that we
+ //
+ // %1 = OpLoad
+ // %2 = OpDoSomething %1 %1. here %2 will have a dependency on %1.
+ // %3 = OpDoSomethingAgain %2 %2. Here %3 will lose the link to %1 since we don't propagate the dependencies like that.
+ // OpStore %1 %foo // Here we can invalidate %1, and hence all expressions which depend on %1. Only %2 will know since it's part of invalid_expressions.
+ // %4 = OpDoSomethingAnotherTime %3 %3 // If we forward all expressions we will see %1 expression after store, not before.
+ //
+ // However, we can propagate up a list of depended expressions when we used %2, so we can check if %2 is invalid when reading %3 after the store,
+ // and see that we should not forward reads of the original variable.
+ auto &expr = get<SPIRExpression>(id);
+ for (uint32_t dep : expr.expression_dependencies)
+ if (invalid_expressions.find(dep) != end(invalid_expressions))
+ handle_invalid_expression(dep);
+ }
+
+ if (register_expression_read)
+ track_expression_read(id);
+
+ switch (ir.ids[id].get_type())
+ {
+ case TypeExpression:
+ {
+ auto &e = get<SPIRExpression>(id);
+ if (e.base_expression)
+ return to_enclosed_expression(e.base_expression) + e.expression;
+ else if (e.need_transpose)
+ {
+ // This should not be reached for access chains, since we always deal explicitly with transpose state
+ // when consuming an access chain expression.
+ uint32_t physical_type_id = get_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID);
+ bool is_packed = has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ return convert_row_major_matrix(e.expression, get<SPIRType>(e.expression_type), physical_type_id,
+ is_packed, relaxed);
+ }
+ else if (flattened_structs.count(id))
+ {
+ return load_flattened_struct(e.expression, get<SPIRType>(e.expression_type));
+ }
+ else
+ {
+ if (is_forcing_recompilation())
+ {
+ // During first compilation phase, certain expression patterns can trigger exponential growth of memory.
+ // Avoid this by returning dummy expressions during this phase.
+ // Do not use empty expressions here, because those are sentinels for other cases.
+ return "_";
+ }
+ else
+ return e.expression;
+ }
+ }
+
+ case TypeConstant:
+ {
+ auto &c = get<SPIRConstant>(id);
+ auto &type = get<SPIRType>(c.constant_type);
+
+ // WorkGroupSize may be a constant.
+ if (has_decoration(c.self, DecorationBuiltIn))
+ return builtin_to_glsl(BuiltIn(get_decoration(c.self, DecorationBuiltIn)), StorageClassGeneric);
+ else if (c.specialization)
+ {
+ if (backend.workgroup_size_is_hidden)
+ {
+ int wg_index = get_constant_mapping_to_workgroup_component(c);
+ if (wg_index >= 0)
+ {
+ auto wg_size = join(builtin_to_glsl(BuiltInWorkgroupSize, StorageClassInput), vector_swizzle(1, wg_index));
+ if (type.basetype != SPIRType::UInt)
+ wg_size = bitcast_expression(type, SPIRType::UInt, wg_size);
+ return wg_size;
+ }
+ }
+
+ if (expression_is_forwarded(id))
+ return constant_expression(c);
+
+ return to_name(id);
+ }
+ else if (c.is_used_as_lut)
+ return to_name(id);
+ else if (type.basetype == SPIRType::Struct && !backend.can_declare_struct_inline)
+ return to_name(id);
+ else if (!type.array.empty() && !backend.can_declare_arrays_inline)
+ return to_name(id);
+ else
+ return constant_expression(c);
+ }
+
+ case TypeConstantOp:
+ return to_name(id);
+
+ case TypeVariable:
+ {
+ auto &var = get<SPIRVariable>(id);
+ // If we try to use a loop variable before the loop header, we have to redirect it to the static expression,
+ // the variable has not been declared yet.
+ if (var.statically_assigned || (var.loop_variable && !var.loop_variable_enable))
+ {
+ // We might try to load from a loop variable before it has been initialized.
+ // Prefer static expression and fallback to initializer.
+ if (var.static_expression)
+ return to_expression(var.static_expression);
+ else if (var.initializer)
+ return to_expression(var.initializer);
+ else
+ {
+ // We cannot declare the variable yet, so have to fake it.
+ uint32_t undef_id = ir.increase_bound_by(1);
+ return emit_uninitialized_temporary_expression(get_variable_data_type_id(var), undef_id).expression;
+ }
+ }
+ else if (var.deferred_declaration)
+ {
+ var.deferred_declaration = false;
+ return variable_decl(var);
+ }
+ else if (flattened_structs.count(id))
+ {
+ return load_flattened_struct(to_name(id), get<SPIRType>(var.basetype));
+ }
+ else
+ {
+ auto &dec = ir.meta[var.self].decoration;
+ if (dec.builtin)
+ return builtin_to_glsl(dec.builtin_type, var.storage);
+ else
+ return to_name(id);
+ }
+ }
+
+ case TypeCombinedImageSampler:
+ // This type should never be taken the expression of directly.
+ // The intention is that texture sampling functions will extract the image and samplers
+ // separately and take their expressions as needed.
+ // GLSL does not use this type because OpSampledImage immediately creates a combined image sampler
+ // expression ala sampler2D(texture, sampler).
+ SPIRV_CROSS_THROW("Combined image samplers have no default expression representation.");
+
+ case TypeAccessChain:
+ // We cannot express this type. They only have meaning in other OpAccessChains, OpStore or OpLoad.
+ SPIRV_CROSS_THROW("Access chains have no default expression representation.");
+
+ default:
+ return to_name(id);
+ }
+}
+
+SmallVector<ConstantID> CompilerGLSL::get_composite_constant_ids(ConstantID const_id)
+{
+ if (auto *constant = maybe_get<SPIRConstant>(const_id))
+ {
+ const auto &type = get<SPIRType>(constant->constant_type);
+ if (is_array(type) || type.basetype == SPIRType::Struct)
+ return constant->subconstants;
+ if (is_matrix(type))
+ return SmallVector<ConstantID>(constant->m.id);
+ if (is_vector(type))
+ return SmallVector<ConstantID>(constant->m.c[0].id);
+ SPIRV_CROSS_THROW("Unexpected scalar constant!");
+ }
+ if (!const_composite_insert_ids.count(const_id))
+ SPIRV_CROSS_THROW("Unimplemented for this OpSpecConstantOp!");
+ return const_composite_insert_ids[const_id];
+}
+
+void CompilerGLSL::fill_composite_constant(SPIRConstant &constant, TypeID type_id,
+ const SmallVector<ConstantID> &initializers)
+{
+ auto &type = get<SPIRType>(type_id);
+ constant.specialization = true;
+ if (is_array(type) || type.basetype == SPIRType::Struct)
+ {
+ constant.subconstants = initializers;
+ }
+ else if (is_matrix(type))
+ {
+ constant.m.columns = type.columns;
+ for (uint32_t i = 0; i < type.columns; ++i)
+ {
+ constant.m.id[i] = initializers[i];
+ constant.m.c[i].vecsize = type.vecsize;
+ }
+ }
+ else if (is_vector(type))
+ {
+ constant.m.c[0].vecsize = type.vecsize;
+ for (uint32_t i = 0; i < type.vecsize; ++i)
+ constant.m.c[0].id[i] = initializers[i];
+ }
+ else
+ SPIRV_CROSS_THROW("Unexpected scalar in SpecConstantOp CompositeInsert!");
+}
+
+void CompilerGLSL::set_composite_constant(ConstantID const_id, TypeID type_id,
+ const SmallVector<ConstantID> &initializers)
+{
+ if (maybe_get<SPIRConstantOp>(const_id))
+ {
+ const_composite_insert_ids[const_id] = initializers;
+ return;
+ }
+
+ auto &constant = set<SPIRConstant>(const_id, type_id);
+ fill_composite_constant(constant, type_id, initializers);
+ forwarded_temporaries.insert(const_id);
+}
+
+TypeID CompilerGLSL::get_composite_member_type(TypeID type_id, uint32_t member_idx)
+{
+ auto &type = get<SPIRType>(type_id);
+ if (is_array(type))
+ return type.parent_type;
+ if (type.basetype == SPIRType::Struct)
+ return type.member_types[member_idx];
+ if (is_matrix(type))
+ return type.parent_type;
+ if (is_vector(type))
+ return type.parent_type;
+ SPIRV_CROSS_THROW("Shouldn't reach lower than vector handling OpSpecConstantOp CompositeInsert!");
+}
+
+string CompilerGLSL::constant_op_expression(const SPIRConstantOp &cop)
+{
+ auto &type = get<SPIRType>(cop.basetype);
+ bool binary = false;
+ bool unary = false;
+ string op;
+
+ if (is_legacy() && is_unsigned_opcode(cop.opcode))
+ SPIRV_CROSS_THROW("Unsigned integers are not supported on legacy targets.");
+
+ // TODO: Find a clean way to reuse emit_instruction.
+ switch (cop.opcode)
+ {
+ case OpSConvert:
+ case OpUConvert:
+ case OpFConvert:
+ op = type_to_glsl_constructor(type);
+ break;
+
+#define GLSL_BOP(opname, x) \
+ case Op##opname: \
+ binary = true; \
+ op = x; \
+ break
+
+#define GLSL_UOP(opname, x) \
+ case Op##opname: \
+ unary = true; \
+ op = x; \
+ break
+
+ GLSL_UOP(SNegate, "-");
+ GLSL_UOP(Not, "~");
+ GLSL_BOP(IAdd, "+");
+ GLSL_BOP(ISub, "-");
+ GLSL_BOP(IMul, "*");
+ GLSL_BOP(SDiv, "/");
+ GLSL_BOP(UDiv, "/");
+ GLSL_BOP(UMod, "%");
+ GLSL_BOP(SMod, "%");
+ GLSL_BOP(ShiftRightLogical, ">>");
+ GLSL_BOP(ShiftRightArithmetic, ">>");
+ GLSL_BOP(ShiftLeftLogical, "<<");
+ GLSL_BOP(BitwiseOr, "|");
+ GLSL_BOP(BitwiseXor, "^");
+ GLSL_BOP(BitwiseAnd, "&");
+ GLSL_BOP(LogicalOr, "||");
+ GLSL_BOP(LogicalAnd, "&&");
+ GLSL_UOP(LogicalNot, "!");
+ GLSL_BOP(LogicalEqual, "==");
+ GLSL_BOP(LogicalNotEqual, "!=");
+ GLSL_BOP(IEqual, "==");
+ GLSL_BOP(INotEqual, "!=");
+ GLSL_BOP(ULessThan, "<");
+ GLSL_BOP(SLessThan, "<");
+ GLSL_BOP(ULessThanEqual, "<=");
+ GLSL_BOP(SLessThanEqual, "<=");
+ GLSL_BOP(UGreaterThan, ">");
+ GLSL_BOP(SGreaterThan, ">");
+ GLSL_BOP(UGreaterThanEqual, ">=");
+ GLSL_BOP(SGreaterThanEqual, ">=");
+
+ case OpSRem:
+ {
+ uint32_t op0 = cop.arguments[0];
+ uint32_t op1 = cop.arguments[1];
+ return join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ", "(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), ")");
+ }
+
+ case OpSelect:
+ {
+ if (cop.arguments.size() < 3)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ // This one is pretty annoying. It's triggered from
+ // uint(bool), int(bool) from spec constants.
+ // In order to preserve its compile-time constness in Vulkan GLSL,
+ // we need to reduce the OpSelect expression back to this simplified model.
+ // If we cannot, fail.
+ if (to_trivial_mix_op(type, op, cop.arguments[2], cop.arguments[1], cop.arguments[0]))
+ {
+ // Implement as a simple cast down below.
+ }
+ else
+ {
+ // Implement a ternary and pray the compiler understands it :)
+ return to_ternary_expression(type, cop.arguments[0], cop.arguments[1], cop.arguments[2]);
+ }
+ break;
+ }
+
+ case OpVectorShuffle:
+ {
+ string expr = type_to_glsl_constructor(type);
+ expr += "(";
+
+ uint32_t left_components = expression_type(cop.arguments[0]).vecsize;
+ string left_arg = to_enclosed_expression(cop.arguments[0]);
+ string right_arg = to_enclosed_expression(cop.arguments[1]);
+
+ for (uint32_t i = 2; i < uint32_t(cop.arguments.size()); i++)
+ {
+ uint32_t index = cop.arguments[i];
+ if (index == 0xFFFFFFFF)
+ {
+ SPIRConstant c;
+ c.constant_type = type.parent_type;
+ assert(type.parent_type != ID(0));
+ expr += constant_expression(c);
+ }
+ else if (index >= left_components)
+ {
+ expr += right_arg + "." + "xyzw"[index - left_components];
+ }
+ else
+ {
+ expr += left_arg + "." + "xyzw"[index];
+ }
+
+ if (i + 1 < uint32_t(cop.arguments.size()))
+ expr += ", ";
+ }
+
+ expr += ")";
+ return expr;
+ }
+
+ case OpCompositeExtract:
+ {
+ auto expr = access_chain_internal(cop.arguments[0], &cop.arguments[1], uint32_t(cop.arguments.size() - 1),
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ return expr;
+ }
+
+ case OpCompositeInsert:
+ {
+ SmallVector<ConstantID> new_init = get_composite_constant_ids(cop.arguments[1]);
+ uint32_t idx;
+ uint32_t target_id = cop.self;
+ uint32_t target_type_id = cop.basetype;
+ // We have to drill down to the part we want to modify, and create new
+ // constants for each containing part.
+ for (idx = 2; idx < cop.arguments.size() - 1; ++idx)
+ {
+ uint32_t new_const = ir.increase_bound_by(1);
+ uint32_t old_const = new_init[cop.arguments[idx]];
+ new_init[cop.arguments[idx]] = new_const;
+ set_composite_constant(target_id, target_type_id, new_init);
+ new_init = get_composite_constant_ids(old_const);
+ target_id = new_const;
+ target_type_id = get_composite_member_type(target_type_id, cop.arguments[idx]);
+ }
+ // Now replace the initializer with the one from this instruction.
+ new_init[cop.arguments[idx]] = cop.arguments[0];
+ set_composite_constant(target_id, target_type_id, new_init);
+ SPIRConstant tmp_const(cop.basetype);
+ fill_composite_constant(tmp_const, cop.basetype, const_composite_insert_ids[cop.self]);
+ return constant_expression(tmp_const);
+ }
+
+ default:
+ // Some opcodes are unimplemented here, these are currently not possible to test from glslang.
+ SPIRV_CROSS_THROW("Unimplemented spec constant op.");
+ }
+
+ uint32_t bit_width = 0;
+ if (unary || binary || cop.opcode == OpSConvert || cop.opcode == OpUConvert)
+ bit_width = expression_type(cop.arguments[0]).width;
+
+ SPIRType::BaseType input_type;
+ bool skip_cast_if_equal_type = opcode_is_sign_invariant(cop.opcode);
+
+ switch (cop.opcode)
+ {
+ case OpIEqual:
+ case OpINotEqual:
+ input_type = to_signed_basetype(bit_width);
+ break;
+
+ case OpSLessThan:
+ case OpSLessThanEqual:
+ case OpSGreaterThan:
+ case OpSGreaterThanEqual:
+ case OpSMod:
+ case OpSDiv:
+ case OpShiftRightArithmetic:
+ case OpSConvert:
+ case OpSNegate:
+ input_type = to_signed_basetype(bit_width);
+ break;
+
+ case OpULessThan:
+ case OpULessThanEqual:
+ case OpUGreaterThan:
+ case OpUGreaterThanEqual:
+ case OpUMod:
+ case OpUDiv:
+ case OpShiftRightLogical:
+ case OpUConvert:
+ input_type = to_unsigned_basetype(bit_width);
+ break;
+
+ default:
+ input_type = type.basetype;
+ break;
+ }
+
+#undef GLSL_BOP
+#undef GLSL_UOP
+ if (binary)
+ {
+ if (cop.arguments.size() < 2)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ string cast_op0;
+ string cast_op1;
+ auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, cop.arguments[0],
+ cop.arguments[1], skip_cast_if_equal_type);
+
+ if (type.basetype != input_type && type.basetype != SPIRType::Boolean)
+ {
+ expected_type.basetype = input_type;
+ auto expr = bitcast_glsl_op(type, expected_type);
+ expr += '(';
+ expr += join(cast_op0, " ", op, " ", cast_op1);
+ expr += ')';
+ return expr;
+ }
+ else
+ return join("(", cast_op0, " ", op, " ", cast_op1, ")");
+ }
+ else if (unary)
+ {
+ if (cop.arguments.size() < 1)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ // Auto-bitcast to result type as needed.
+ // Works around various casting scenarios in glslang as there is no OpBitcast for specialization constants.
+ return join("(", op, bitcast_glsl(type, cop.arguments[0]), ")");
+ }
+ else if (cop.opcode == OpSConvert || cop.opcode == OpUConvert)
+ {
+ if (cop.arguments.size() < 1)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ auto &arg_type = expression_type(cop.arguments[0]);
+ if (arg_type.width < type.width && input_type != arg_type.basetype)
+ {
+ auto expected = arg_type;
+ expected.basetype = input_type;
+ return join(op, "(", bitcast_glsl(expected, cop.arguments[0]), ")");
+ }
+ else
+ return join(op, "(", to_expression(cop.arguments[0]), ")");
+ }
+ else
+ {
+ if (cop.arguments.size() < 1)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+ return join(op, "(", to_expression(cop.arguments[0]), ")");
+ }
+}
+
+string CompilerGLSL::constant_expression(const SPIRConstant &c,
+ bool inside_block_like_struct_scope,
+ bool inside_struct_scope)
+{
+ auto &type = get<SPIRType>(c.constant_type);
+
+ if (is_pointer(type))
+ {
+ return backend.null_pointer_literal;
+ }
+ else if (!c.subconstants.empty())
+ {
+ // Handles Arrays and structures.
+ string res;
+
+ // Only consider the decay if we are inside a struct scope where we are emitting a member with Offset decoration.
+ // Outside a block-like struct declaration, we can always bind to a constant array with templated type.
+ // Should look at ArrayStride here as well, but it's possible to declare a constant struct
+ // with Offset = 0, using no ArrayStride on the enclosed array type.
+ // A particular CTS test hits this scenario.
+ bool array_type_decays = inside_block_like_struct_scope &&
+ is_array(type) &&
+ !backend.array_is_value_type_in_buffer_blocks;
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ bool needs_trailing_tracket = false;
+ if (backend.use_initializer_list && backend.use_typed_initializer_list && type.basetype == SPIRType::Struct &&
+ !is_array(type))
+ {
+ res = type_to_glsl_constructor(type) + "{ ";
+ }
+ else if (backend.use_initializer_list && backend.use_typed_initializer_list && backend.array_is_value_type &&
+ is_array(type) && !array_type_decays)
+ {
+ const auto *p_type = &type;
+ SPIRType tmp_type { OpNop };
+
+ if (inside_struct_scope &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean &&
+ type.basetype == SPIRType::Boolean)
+ {
+ tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ p_type = &tmp_type;
+ }
+
+ res = type_to_glsl_constructor(*p_type) + "({ ";
+ needs_trailing_tracket = true;
+ }
+ else if (backend.use_initializer_list)
+ {
+ res = "{ ";
+ }
+ else
+ {
+ res = type_to_glsl_constructor(type) + "(";
+ }
+
+ uint32_t subconstant_index = 0;
+ for (auto &elem : c.subconstants)
+ {
+ if (auto *op = maybe_get<SPIRConstantOp>(elem))
+ {
+ res += constant_op_expression(*op);
+ }
+ else if (maybe_get<SPIRUndef>(elem) != nullptr)
+ {
+ res += to_name(elem);
+ }
+ else
+ {
+ auto &subc = get<SPIRConstant>(elem);
+ if (subc.specialization && !expression_is_forwarded(elem))
+ res += to_name(elem);
+ else
+ {
+ if (!is_array(type) && type.basetype == SPIRType::Struct)
+ {
+ // When we get down to emitting struct members, override the block-like information.
+ // For constants, we can freely mix and match block-like state.
+ inside_block_like_struct_scope =
+ has_member_decoration(type.self, subconstant_index, DecorationOffset);
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ inside_struct_scope = true;
+
+ res += constant_expression(subc, inside_block_like_struct_scope, inside_struct_scope);
+ }
+ }
+
+ if (&elem != &c.subconstants.back())
+ res += ", ";
+
+ subconstant_index++;
+ }
+
+ res += backend.use_initializer_list ? " }" : ")";
+ if (needs_trailing_tracket)
+ res += ")";
+
+ return res;
+ }
+ else if (type.basetype == SPIRType::Struct && type.member_types.size() == 0)
+ {
+ // Metal tessellation likes empty structs which are then constant expressions.
+ if (backend.supports_empty_struct)
+ return "{ }";
+ else if (backend.use_typed_initializer_list)
+ return join(type_to_glsl(type), "{ 0 }");
+ else if (backend.use_initializer_list)
+ return "{ 0 }";
+ else
+ return join(type_to_glsl(type), "(0)");
+ }
+ else if (c.columns() == 1)
+ {
+ auto res = constant_expression_vector(c, 0);
+
+ if (inside_struct_scope &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean &&
+ type.basetype == SPIRType::Boolean)
+ {
+ SPIRType tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ res = join(type_to_glsl(tmp_type), "(", res, ")");
+ }
+
+ return res;
+ }
+ else
+ {
+ string res = type_to_glsl(type) + "(";
+ for (uint32_t col = 0; col < c.columns(); col++)
+ {
+ if (c.specialization_constant_id(col) != 0)
+ res += to_name(c.specialization_constant_id(col));
+ else
+ res += constant_expression_vector(c, col);
+
+ if (col + 1 < c.columns())
+ res += ", ";
+ }
+ res += ")";
+
+ if (inside_struct_scope &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean &&
+ type.basetype == SPIRType::Boolean)
+ {
+ SPIRType tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ res = join(type_to_glsl(tmp_type), "(", res, ")");
+ }
+
+ return res;
+ }
+}
+
+#ifdef _MSC_VER
+// snprintf does not exist or is buggy on older MSVC versions, some of them
+// being used by MinGW. Use sprintf instead and disable corresponding warning.
+#pragma warning(push)
+#pragma warning(disable : 4996)
+#endif
+
+string CompilerGLSL::convert_half_to_string(const SPIRConstant &c, uint32_t col, uint32_t row)
+{
+ string res;
+ float float_value = c.scalar_f16(col, row);
+
+ // There is no literal "hf" in GL_NV_gpu_shader5, so to avoid lots
+ // of complicated workarounds, just value-cast to the half type always.
+ if (std::isnan(float_value) || std::isinf(float_value))
+ {
+ SPIRType type { OpTypeFloat };
+ type.basetype = SPIRType::Half;
+ type.vecsize = 1;
+ type.columns = 1;
+
+ if (float_value == numeric_limits<float>::infinity())
+ res = join(type_to_glsl(type), "(1.0 / 0.0)");
+ else if (float_value == -numeric_limits<float>::infinity())
+ res = join(type_to_glsl(type), "(-1.0 / 0.0)");
+ else if (std::isnan(float_value))
+ res = join(type_to_glsl(type), "(0.0 / 0.0)");
+ else
+ SPIRV_CROSS_THROW("Cannot represent non-finite floating point constant.");
+ }
+ else
+ {
+ SPIRType type { OpTypeFloat };
+ type.basetype = SPIRType::Half;
+ type.vecsize = 1;
+ type.columns = 1;
+ res = join(type_to_glsl(type), "(", format_float(float_value), ")");
+ }
+
+ return res;
+}
+
+string CompilerGLSL::convert_float_to_string(const SPIRConstant &c, uint32_t col, uint32_t row)
+{
+ string res;
+ float float_value = c.scalar_f32(col, row);
+
+ if (std::isnan(float_value) || std::isinf(float_value))
+ {
+ // Use special representation.
+ if (!is_legacy())
+ {
+ SPIRType out_type { OpTypeFloat };
+ SPIRType in_type { OpTypeInt };
+ out_type.basetype = SPIRType::Float;
+ in_type.basetype = SPIRType::UInt;
+ out_type.vecsize = 1;
+ in_type.vecsize = 1;
+ out_type.width = 32;
+ in_type.width = 32;
+
+ char print_buffer[32];
+#ifdef _WIN32
+ sprintf(print_buffer, "0x%xu", c.scalar(col, row));
+#else
+ snprintf(print_buffer, sizeof(print_buffer), "0x%xu", c.scalar(col, row));
+#endif
+
+ const char *comment = "inf";
+ if (float_value == -numeric_limits<float>::infinity())
+ comment = "-inf";
+ else if (std::isnan(float_value))
+ comment = "nan";
+ res = join(bitcast_glsl_op(out_type, in_type), "(", print_buffer, " /* ", comment, " */)");
+ }
+ else
+ {
+ if (float_value == numeric_limits<float>::infinity())
+ {
+ if (backend.float_literal_suffix)
+ res = "(1.0f / 0.0f)";
+ else
+ res = "(1.0 / 0.0)";
+ }
+ else if (float_value == -numeric_limits<float>::infinity())
+ {
+ if (backend.float_literal_suffix)
+ res = "(-1.0f / 0.0f)";
+ else
+ res = "(-1.0 / 0.0)";
+ }
+ else if (std::isnan(float_value))
+ {
+ if (backend.float_literal_suffix)
+ res = "(0.0f / 0.0f)";
+ else
+ res = "(0.0 / 0.0)";
+ }
+ else
+ SPIRV_CROSS_THROW("Cannot represent non-finite floating point constant.");
+ }
+ }
+ else
+ {
+ res = format_float(float_value);
+ if (backend.float_literal_suffix)
+ res += "f";
+ }
+
+ return res;
+}
+
+std::string CompilerGLSL::convert_double_to_string(const SPIRConstant &c, uint32_t col, uint32_t row)
+{
+ string res;
+ double double_value = c.scalar_f64(col, row);
+
+ if (std::isnan(double_value) || std::isinf(double_value))
+ {
+ // Use special representation.
+ if (!is_legacy())
+ {
+ SPIRType out_type { OpTypeFloat };
+ SPIRType in_type { OpTypeInt };
+ out_type.basetype = SPIRType::Double;
+ in_type.basetype = SPIRType::UInt64;
+ out_type.vecsize = 1;
+ in_type.vecsize = 1;
+ out_type.width = 64;
+ in_type.width = 64;
+
+ uint64_t u64_value = c.scalar_u64(col, row);
+
+ if (options.es && options.version < 310) // GL_NV_gpu_shader5 fallback requires 310.
+ SPIRV_CROSS_THROW("64-bit integers not supported in ES profile before version 310.");
+ require_extension_internal("GL_ARB_gpu_shader_int64");
+
+ char print_buffer[64];
+#ifdef _WIN32
+ sprintf(print_buffer, "0x%llx%s", static_cast<unsigned long long>(u64_value),
+ backend.long_long_literal_suffix ? "ull" : "ul");
+#else
+ snprintf(print_buffer, sizeof(print_buffer), "0x%llx%s", static_cast<unsigned long long>(u64_value),
+ backend.long_long_literal_suffix ? "ull" : "ul");
+#endif
+
+ const char *comment = "inf";
+ if (double_value == -numeric_limits<double>::infinity())
+ comment = "-inf";
+ else if (std::isnan(double_value))
+ comment = "nan";
+ res = join(bitcast_glsl_op(out_type, in_type), "(", print_buffer, " /* ", comment, " */)");
+ }
+ else
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("FP64 not supported in ES profile.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_gpu_shader_fp64");
+
+ if (double_value == numeric_limits<double>::infinity())
+ {
+ if (backend.double_literal_suffix)
+ res = "(1.0lf / 0.0lf)";
+ else
+ res = "(1.0 / 0.0)";
+ }
+ else if (double_value == -numeric_limits<double>::infinity())
+ {
+ if (backend.double_literal_suffix)
+ res = "(-1.0lf / 0.0lf)";
+ else
+ res = "(-1.0 / 0.0)";
+ }
+ else if (std::isnan(double_value))
+ {
+ if (backend.double_literal_suffix)
+ res = "(0.0lf / 0.0lf)";
+ else
+ res = "(0.0 / 0.0)";
+ }
+ else
+ SPIRV_CROSS_THROW("Cannot represent non-finite floating point constant.");
+ }
+ }
+ else
+ {
+ res = format_double(double_value);
+ if (backend.double_literal_suffix)
+ res += "lf";
+ }
+
+ return res;
+}
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+string CompilerGLSL::constant_expression_vector(const SPIRConstant &c, uint32_t vector)
+{
+ auto type = get<SPIRType>(c.constant_type);
+ type.columns = 1;
+
+ auto scalar_type = type;
+ scalar_type.vecsize = 1;
+
+ string res;
+ bool splat = backend.use_constructor_splatting && c.vector_size() > 1;
+ bool swizzle_splat = backend.can_swizzle_scalar && c.vector_size() > 1;
+
+ if (!type_is_floating_point(type))
+ {
+ // Cannot swizzle literal integers as a special case.
+ swizzle_splat = false;
+ }
+
+ if (splat || swizzle_splat)
+ {
+ // Cannot use constant splatting if we have specialization constants somewhere in the vector.
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.specialization_constant_id(vector, i) != 0)
+ {
+ splat = false;
+ swizzle_splat = false;
+ break;
+ }
+ }
+ }
+
+ if (splat || swizzle_splat)
+ {
+ if (type.width == 64)
+ {
+ uint64_t ident = c.scalar_u64(vector, 0);
+ for (uint32_t i = 1; i < c.vector_size(); i++)
+ {
+ if (ident != c.scalar_u64(vector, i))
+ {
+ splat = false;
+ swizzle_splat = false;
+ break;
+ }
+ }
+ }
+ else
+ {
+ uint32_t ident = c.scalar(vector, 0);
+ for (uint32_t i = 1; i < c.vector_size(); i++)
+ {
+ if (ident != c.scalar(vector, i))
+ {
+ splat = false;
+ swizzle_splat = false;
+ }
+ }
+ }
+ }
+
+ if (c.vector_size() > 1 && !swizzle_splat)
+ res += type_to_glsl(type) + "(";
+
+ switch (type.basetype)
+ {
+ case SPIRType::Half:
+ if (splat || swizzle_splat)
+ {
+ res += convert_half_to_string(c, vector, 0);
+ if (swizzle_splat)
+ res = remap_swizzle(get<SPIRType>(c.constant_type), 1, res);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_half_to_string(c, vector, i);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Float:
+ if (splat || swizzle_splat)
+ {
+ res += convert_float_to_string(c, vector, 0);
+ if (swizzle_splat)
+ res = remap_swizzle(get<SPIRType>(c.constant_type), 1, res);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_float_to_string(c, vector, i);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Double:
+ if (splat || swizzle_splat)
+ {
+ res += convert_double_to_string(c, vector, 0);
+ if (swizzle_splat)
+ res = remap_swizzle(get<SPIRType>(c.constant_type), 1, res);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_double_to_string(c, vector, i);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Int64:
+ {
+ auto tmp = type;
+ tmp.vecsize = 1;
+ tmp.columns = 1;
+ auto int64_type = type_to_glsl(tmp);
+
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_i64(vector, 0), int64_type, backend.long_long_literal_suffix);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_to_string(c.scalar_i64(vector, i), int64_type, backend.long_long_literal_suffix);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+ }
+
+ case SPIRType::UInt64:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_u64(vector, 0));
+ if (backend.long_long_literal_suffix)
+ res += "ull";
+ else
+ res += "ul";
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += convert_to_string(c.scalar_u64(vector, i));
+ if (backend.long_long_literal_suffix)
+ res += "ull";
+ else
+ res += "ul";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::UInt:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar(vector, 0));
+ if (is_legacy())
+ {
+ // Fake unsigned constant literals with signed ones if possible.
+ // Things like array sizes, etc, tend to be unsigned even though they could just as easily be signed.
+ if (c.scalar_i32(vector, 0) < 0)
+ SPIRV_CROSS_THROW("Tried to convert uint literal into int, but this made the literal negative.");
+ }
+ else if (backend.uint32_t_literal_suffix)
+ res += "u";
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += convert_to_string(c.scalar(vector, i));
+ if (is_legacy())
+ {
+ // Fake unsigned constant literals with signed ones if possible.
+ // Things like array sizes, etc, tend to be unsigned even though they could just as easily be signed.
+ if (c.scalar_i32(vector, i) < 0)
+ SPIRV_CROSS_THROW("Tried to convert uint literal into int, but this made "
+ "the literal negative.");
+ }
+ else if (backend.uint32_t_literal_suffix)
+ res += "u";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Int:
+ if (splat)
+ res += convert_to_string(c.scalar_i32(vector, 0));
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_to_string(c.scalar_i32(vector, i));
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::UShort:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ if (*backend.uint16_t_literal_suffix)
+ {
+ res += convert_to_string(c.scalar_u16(vector, i));
+ res += backend.uint16_t_literal_suffix;
+ }
+ else
+ {
+ // If backend doesn't have a literal suffix, we need to value cast.
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_u16(vector, i));
+ res += ")";
+ }
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Short:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_i16(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ if (*backend.int16_t_literal_suffix)
+ {
+ res += convert_to_string(c.scalar_i16(vector, i));
+ res += backend.int16_t_literal_suffix;
+ }
+ else
+ {
+ // If backend doesn't have a literal suffix, we need to value cast.
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_i16(vector, i));
+ res += ")";
+ }
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::UByte:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_u8(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_u8(vector, i));
+ res += ")";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::SByte:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_i8(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_i8(vector, i));
+ res += ")";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Boolean:
+ if (splat)
+ res += c.scalar(vector, 0) ? "true" : "false";
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += c.scalar(vector, i) ? "true" : "false";
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid constant expression basetype.");
+ }
+
+ if (c.vector_size() > 1 && !swizzle_splat)
+ res += ")";
+
+ return res;
+}
+
+SPIRExpression &CompilerGLSL::emit_uninitialized_temporary_expression(uint32_t type, uint32_t id)
+{
+ forced_temporaries.insert(id);
+ emit_uninitialized_temporary(type, id);
+ return set<SPIRExpression>(id, to_name(id), type, true);
+}
+
+void CompilerGLSL::emit_uninitialized_temporary(uint32_t result_type, uint32_t result_id)
+{
+ // If we're declaring temporaries inside continue blocks,
+ // we must declare the temporary in the loop header so that the continue block can avoid declaring new variables.
+ if (!block_temporary_hoisting && current_continue_block && !hoisted_temporaries.count(result_id))
+ {
+ auto &header = get<SPIRBlock>(current_continue_block->loop_dominator);
+ if (find_if(begin(header.declare_temporary), end(header.declare_temporary),
+ [result_type, result_id](const pair<uint32_t, uint32_t> &tmp) {
+ return tmp.first == result_type && tmp.second == result_id;
+ }) == end(header.declare_temporary))
+ {
+ header.declare_temporary.emplace_back(result_type, result_id);
+ hoisted_temporaries.insert(result_id);
+ force_recompile();
+ }
+ }
+ else if (hoisted_temporaries.count(result_id) == 0)
+ {
+ auto &type = get<SPIRType>(result_type);
+ auto &flags = get_decoration_bitset(result_id);
+
+ // The result_id has not been made into an expression yet, so use flags interface.
+ add_local_variable_name(result_id);
+
+ string initializer;
+ if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ initializer = join(" = ", to_zero_initialized_expression(result_type));
+
+ statement(flags_to_qualifiers_glsl(type, flags), variable_decl(type, to_name(result_id)), initializer, ";");
+ }
+}
+
+string CompilerGLSL::declare_temporary(uint32_t result_type, uint32_t result_id)
+{
+ auto &type = get<SPIRType>(result_type);
+
+ // If we're declaring temporaries inside continue blocks,
+ // we must declare the temporary in the loop header so that the continue block can avoid declaring new variables.
+ if (!block_temporary_hoisting && current_continue_block && !hoisted_temporaries.count(result_id))
+ {
+ auto &header = get<SPIRBlock>(current_continue_block->loop_dominator);
+ if (find_if(begin(header.declare_temporary), end(header.declare_temporary),
+ [result_type, result_id](const pair<uint32_t, uint32_t> &tmp) {
+ return tmp.first == result_type && tmp.second == result_id;
+ }) == end(header.declare_temporary))
+ {
+ header.declare_temporary.emplace_back(result_type, result_id);
+ hoisted_temporaries.insert(result_id);
+ force_recompile_guarantee_forward_progress();
+ }
+
+ return join(to_name(result_id), " = ");
+ }
+ else if (hoisted_temporaries.count(result_id))
+ {
+ // The temporary has already been declared earlier, so just "declare" the temporary by writing to it.
+ return join(to_name(result_id), " = ");
+ }
+ else
+ {
+ // The result_id has not been made into an expression yet, so use flags interface.
+ add_local_variable_name(result_id);
+ auto &flags = get_decoration_bitset(result_id);
+ return join(flags_to_qualifiers_glsl(type, flags), variable_decl(type, to_name(result_id)), " = ");
+ }
+}
+
+bool CompilerGLSL::expression_is_forwarded(uint32_t id) const
+{
+ return forwarded_temporaries.count(id) != 0;
+}
+
+bool CompilerGLSL::expression_suppresses_usage_tracking(uint32_t id) const
+{
+ return suppressed_usage_tracking.count(id) != 0;
+}
+
+bool CompilerGLSL::expression_read_implies_multiple_reads(uint32_t id) const
+{
+ auto *expr = maybe_get<SPIRExpression>(id);
+ if (!expr)
+ return false;
+
+ // If we're emitting code at a deeper loop level than when we emitted the expression,
+ // we're probably reading the same expression over and over.
+ return current_loop_level > expr->emitted_loop_level;
+}
+
+SPIRExpression &CompilerGLSL::emit_op(uint32_t result_type, uint32_t result_id, const string &rhs, bool forwarding,
+ bool suppress_usage_tracking)
+{
+ if (forwarding && (forced_temporaries.find(result_id) == end(forced_temporaries)))
+ {
+ // Just forward it without temporary.
+ // If the forward is trivial, we do not force flushing to temporary for this expression.
+ forwarded_temporaries.insert(result_id);
+ if (suppress_usage_tracking)
+ suppressed_usage_tracking.insert(result_id);
+
+ return set<SPIRExpression>(result_id, rhs, result_type, true);
+ }
+ else
+ {
+ // If expression isn't immutable, bind it to a temporary and make the new temporary immutable (they always are).
+ statement(declare_temporary(result_type, result_id), rhs, ";");
+ return set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
+ }
+}
+
+void CompilerGLSL::emit_unary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op)
+{
+ bool forward = should_forward(op0);
+ emit_op(result_type, result_id, join(op, to_enclosed_unpacked_expression(op0)), forward);
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_unary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op)
+{
+ auto &type = get<SPIRType>(result_type);
+ bool forward = should_forward(op0);
+ emit_op(result_type, result_id, join(type_to_glsl(type), "(", op, to_enclosed_unpacked_expression(op0), ")"), forward);
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_mesh_tasks(SPIRBlock &block)
+{
+ statement("EmitMeshTasksEXT(",
+ to_unpacked_expression(block.mesh.groups[0]), ", ",
+ to_unpacked_expression(block.mesh.groups[1]), ", ",
+ to_unpacked_expression(block.mesh.groups[2]), ");");
+}
+
+void CompilerGLSL::emit_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op)
+{
+ // Various FP arithmetic opcodes such as add, sub, mul will hit this.
+ bool force_temporary_precise = backend.support_precise_qualifier &&
+ has_decoration(result_id, DecorationNoContraction) &&
+ type_is_floating_point(get<SPIRType>(result_type));
+ bool forward = should_forward(op0) && should_forward(op1) && !force_temporary_precise;
+
+ emit_op(result_type, result_id,
+ join(to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1)), forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_unrolled_unary_op(uint32_t result_type, uint32_t result_id, uint32_t operand, const char *op)
+{
+ auto &type = get<SPIRType>(result_type);
+ auto expr = type_to_glsl_constructor(type);
+ expr += '(';
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ // Make sure to call to_expression multiple times to ensure
+ // that these expressions are properly flushed to temporaries if needed.
+ expr += op;
+ expr += to_extract_component_expression(operand, i);
+
+ if (i + 1 < type.vecsize)
+ expr += ", ";
+ }
+ expr += ')';
+ emit_op(result_type, result_id, expr, should_forward(operand));
+
+ inherit_expression_dependencies(result_id, operand);
+}
+
+void CompilerGLSL::emit_unrolled_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, bool negate, SPIRType::BaseType expected_type)
+{
+ auto &type0 = expression_type(op0);
+ auto &type1 = expression_type(op1);
+
+ SPIRType target_type0 = type0;
+ SPIRType target_type1 = type1;
+ target_type0.basetype = expected_type;
+ target_type1.basetype = expected_type;
+ target_type0.vecsize = 1;
+ target_type1.vecsize = 1;
+
+ auto &type = get<SPIRType>(result_type);
+ auto expr = type_to_glsl_constructor(type);
+ expr += '(';
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ // Make sure to call to_expression multiple times to ensure
+ // that these expressions are properly flushed to temporaries if needed.
+ if (negate)
+ expr += "!(";
+
+ if (expected_type != SPIRType::Unknown && type0.basetype != expected_type)
+ expr += bitcast_expression(target_type0, type0.basetype, to_extract_component_expression(op0, i));
+ else
+ expr += to_extract_component_expression(op0, i);
+
+ expr += ' ';
+ expr += op;
+ expr += ' ';
+
+ if (expected_type != SPIRType::Unknown && type1.basetype != expected_type)
+ expr += bitcast_expression(target_type1, type1.basetype, to_extract_component_expression(op1, i));
+ else
+ expr += to_extract_component_expression(op1, i);
+
+ if (negate)
+ expr += ")";
+
+ if (i + 1 < type.vecsize)
+ expr += ", ";
+ }
+ expr += ')';
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1));
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+SPIRType CompilerGLSL::binary_op_bitcast_helper(string &cast_op0, string &cast_op1, SPIRType::BaseType &input_type,
+ uint32_t op0, uint32_t op1, bool skip_cast_if_equal_type)
+{
+ auto &type0 = expression_type(op0);
+ auto &type1 = expression_type(op1);
+
+ // We have to bitcast if our inputs are of different type, or if our types are not equal to expected inputs.
+ // For some functions like OpIEqual and INotEqual, we don't care if inputs are of different types than expected
+ // since equality test is exactly the same.
+ bool cast = (type0.basetype != type1.basetype) || (!skip_cast_if_equal_type && type0.basetype != input_type);
+
+ // Create a fake type so we can bitcast to it.
+ // We only deal with regular arithmetic types here like int, uints and so on.
+ SPIRType expected_type{type0.op};
+ expected_type.basetype = input_type;
+ expected_type.vecsize = type0.vecsize;
+ expected_type.columns = type0.columns;
+ expected_type.width = type0.width;
+
+ if (cast)
+ {
+ cast_op0 = bitcast_glsl(expected_type, op0);
+ cast_op1 = bitcast_glsl(expected_type, op1);
+ }
+ else
+ {
+ // If we don't cast, our actual input type is that of the first (or second) argument.
+ cast_op0 = to_enclosed_unpacked_expression(op0);
+ cast_op1 = to_enclosed_unpacked_expression(op1);
+ input_type = type0.basetype;
+ }
+
+ return expected_type;
+}
+
+bool CompilerGLSL::emit_complex_bitcast(uint32_t result_type, uint32_t id, uint32_t op0)
+{
+ // Some bitcasts may require complex casting sequences, and are implemented here.
+ // Otherwise a simply unary function will do with bitcast_glsl_op.
+
+ auto &output_type = get<SPIRType>(result_type);
+ auto &input_type = expression_type(op0);
+ string expr;
+
+ if (output_type.basetype == SPIRType::Half && input_type.basetype == SPIRType::Float && input_type.vecsize == 1)
+ expr = join("unpackFloat2x16(floatBitsToUint(", to_unpacked_expression(op0), "))");
+ else if (output_type.basetype == SPIRType::Float && input_type.basetype == SPIRType::Half &&
+ input_type.vecsize == 2)
+ expr = join("uintBitsToFloat(packFloat2x16(", to_unpacked_expression(op0), "))");
+ else
+ return false;
+
+ emit_op(result_type, id, expr, should_forward(op0));
+ return true;
+}
+
+void CompilerGLSL::emit_binary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, SPIRType::BaseType input_type,
+ bool skip_cast_if_equal_type,
+ bool implicit_integer_promotion)
+{
+ string cast_op0, cast_op1;
+ auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, skip_cast_if_equal_type);
+ auto &out_type = get<SPIRType>(result_type);
+
+ // We might have casted away from the result type, so bitcast again.
+ // For example, arithmetic right shift with uint inputs.
+ // Special case boolean outputs since relational opcodes output booleans instead of int/uint.
+ auto bitop = join(cast_op0, " ", op, " ", cast_op1);
+ string expr;
+
+ if (implicit_integer_promotion)
+ {
+ // Simple value cast.
+ expr = join(type_to_glsl(out_type), '(', bitop, ')');
+ }
+ else if (out_type.basetype != input_type && out_type.basetype != SPIRType::Boolean)
+ {
+ expected_type.basetype = input_type;
+ expr = join(bitcast_glsl_op(out_type, expected_type), '(', bitop, ')');
+ }
+ else
+ {
+ expr = std::move(bitop);
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_unary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op)
+{
+ bool forward = should_forward(op0);
+ emit_op(result_type, result_id, join(op, "(", to_unpacked_expression(op0), ")"), forward);
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_binary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ // Opaque types (e.g. OpTypeSampledImage) must always be forwarded in GLSL
+ const auto &type = get_type(result_type);
+ bool must_forward = type_is_opaque_value(type);
+ bool forward = must_forward || (should_forward(op0) && should_forward(op1));
+ emit_op(result_type, result_id, join(op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ")"),
+ forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ auto &type = get<SPIRType>(result_type);
+ if (type_is_floating_point(type))
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Floating point atomics requires Vulkan semantics.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Floating point atomics requires desktop GLSL.");
+ require_extension_internal("GL_EXT_shader_atomic_float");
+ }
+
+ forced_temporaries.insert(result_id);
+ emit_op(result_type, result_id,
+ join(op, "(", to_non_uniform_aware_expression(op0), ", ",
+ to_unpacked_expression(op1), ")"), false);
+ flush_all_atomic_capable_variables();
+}
+
+void CompilerGLSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id,
+ uint32_t op0, uint32_t op1, uint32_t op2,
+ const char *op)
+{
+ forced_temporaries.insert(result_id);
+ emit_op(result_type, result_id,
+ join(op, "(", to_non_uniform_aware_expression(op0), ", ",
+ to_unpacked_expression(op1), ", ", to_unpacked_expression(op2), ")"), false);
+ flush_all_atomic_capable_variables();
+}
+
+void CompilerGLSL::emit_unary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op,
+ SPIRType::BaseType input_type, SPIRType::BaseType expected_result_type)
+{
+ auto &out_type = get<SPIRType>(result_type);
+ auto &expr_type = expression_type(op0);
+ auto expected_type = out_type;
+
+ // Bit-widths might be different in unary cases because we use it for SConvert/UConvert and friends.
+ expected_type.basetype = input_type;
+ expected_type.width = expr_type.width;
+
+ string cast_op;
+ if (expr_type.basetype != input_type)
+ {
+ if (expr_type.basetype == SPIRType::Boolean)
+ cast_op = join(type_to_glsl(expected_type), "(", to_unpacked_expression(op0), ")");
+ else
+ cast_op = bitcast_glsl(expected_type, op0);
+ }
+ else
+ cast_op = to_unpacked_expression(op0);
+
+ string expr;
+ if (out_type.basetype != expected_result_type)
+ {
+ expected_type.basetype = expected_result_type;
+ expected_type.width = out_type.width;
+ if (out_type.basetype == SPIRType::Boolean)
+ expr = type_to_glsl(out_type);
+ else
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0));
+ inherit_expression_dependencies(result_id, op0);
+}
+
+// Very special case. Handling bitfieldExtract requires us to deal with different bitcasts of different signs
+// and different vector sizes all at once. Need a special purpose method here.
+void CompilerGLSL::emit_trinary_func_op_bitextract(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op,
+ SPIRType::BaseType expected_result_type,
+ SPIRType::BaseType input_type0, SPIRType::BaseType input_type1,
+ SPIRType::BaseType input_type2)
+{
+ auto &out_type = get<SPIRType>(result_type);
+ auto expected_type = out_type;
+ expected_type.basetype = input_type0;
+
+ string cast_op0 =
+ expression_type(op0).basetype != input_type0 ? bitcast_glsl(expected_type, op0) : to_unpacked_expression(op0);
+
+ auto op1_expr = to_unpacked_expression(op1);
+ auto op2_expr = to_unpacked_expression(op2);
+
+ // Use value casts here instead. Input must be exactly int or uint, but SPIR-V might be 16-bit.
+ expected_type.basetype = input_type1;
+ expected_type.vecsize = 1;
+ string cast_op1 = expression_type(op1).basetype != input_type1 ?
+ join(type_to_glsl_constructor(expected_type), "(", op1_expr, ")") :
+ op1_expr;
+
+ expected_type.basetype = input_type2;
+ expected_type.vecsize = 1;
+ string cast_op2 = expression_type(op2).basetype != input_type2 ?
+ join(type_to_glsl_constructor(expected_type), "(", op2_expr, ")") :
+ op2_expr;
+
+ string expr;
+ if (out_type.basetype != expected_result_type)
+ {
+ expected_type.vecsize = out_type.vecsize;
+ expected_type.basetype = expected_result_type;
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1) && should_forward(op2));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+}
+
+void CompilerGLSL::emit_trinary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op, SPIRType::BaseType input_type)
+{
+ auto &out_type = get<SPIRType>(result_type);
+ auto expected_type = out_type;
+ expected_type.basetype = input_type;
+ string cast_op0 =
+ expression_type(op0).basetype != input_type ? bitcast_glsl(expected_type, op0) : to_unpacked_expression(op0);
+ string cast_op1 =
+ expression_type(op1).basetype != input_type ? bitcast_glsl(expected_type, op1) : to_unpacked_expression(op1);
+ string cast_op2 =
+ expression_type(op2).basetype != input_type ? bitcast_glsl(expected_type, op2) : to_unpacked_expression(op2);
+
+ string expr;
+ if (out_type.basetype != input_type)
+ {
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1) && should_forward(op2));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+}
+
+void CompilerGLSL::emit_binary_func_op_cast_clustered(uint32_t result_type, uint32_t result_id, uint32_t op0,
+ uint32_t op1, const char *op, SPIRType::BaseType input_type)
+{
+ // Special purpose method for implementing clustered subgroup opcodes.
+ // Main difference is that op1 does not participate in any casting, it needs to be a literal.
+ auto &out_type = get<SPIRType>(result_type);
+ auto expected_type = out_type;
+ expected_type.basetype = input_type;
+ string cast_op0 =
+ expression_type(op0).basetype != input_type ? bitcast_glsl(expected_type, op0) : to_unpacked_expression(op0);
+
+ string expr;
+ if (out_type.basetype != input_type)
+ {
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", to_expression(op1), ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", to_expression(op1), ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0));
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_binary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, SPIRType::BaseType input_type, bool skip_cast_if_equal_type)
+{
+ string cast_op0, cast_op1;
+ auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, skip_cast_if_equal_type);
+ auto &out_type = get<SPIRType>(result_type);
+
+ // Special case boolean outputs since relational opcodes output booleans instead of int/uint.
+ string expr;
+ if (out_type.basetype != input_type && out_type.basetype != SPIRType::Boolean)
+ {
+ expected_type.basetype = input_type;
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_trinary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2);
+ emit_op(result_type, result_id,
+ join(op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ", ",
+ to_unpacked_expression(op2), ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+}
+
+void CompilerGLSL::emit_quaternary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, uint32_t op3, const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2) && should_forward(op3);
+ emit_op(result_type, result_id,
+ join(op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ", ",
+ to_unpacked_expression(op2), ", ", to_unpacked_expression(op3), ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+ inherit_expression_dependencies(result_id, op3);
+}
+
+void CompilerGLSL::emit_bitfield_insert_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, uint32_t op3, const char *op,
+ SPIRType::BaseType offset_count_type)
+{
+ // Only need to cast offset/count arguments. Types of base/insert must be same as result type,
+ // and bitfieldInsert is sign invariant.
+ bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2) && should_forward(op3);
+
+ auto op0_expr = to_unpacked_expression(op0);
+ auto op1_expr = to_unpacked_expression(op1);
+ auto op2_expr = to_unpacked_expression(op2);
+ auto op3_expr = to_unpacked_expression(op3);
+
+ assert(offset_count_type == SPIRType::UInt || offset_count_type == SPIRType::Int);
+ SPIRType target_type { OpTypeInt };
+ target_type.width = 32;
+ target_type.vecsize = 1;
+ target_type.basetype = offset_count_type;
+
+ if (expression_type(op2).basetype != offset_count_type)
+ {
+ // Value-cast here. Input might be 16-bit. GLSL requires int.
+ op2_expr = join(type_to_glsl_constructor(target_type), "(", op2_expr, ")");
+ }
+
+ if (expression_type(op3).basetype != offset_count_type)
+ {
+ // Value-cast here. Input might be 16-bit. GLSL requires int.
+ op3_expr = join(type_to_glsl_constructor(target_type), "(", op3_expr, ")");
+ }
+
+ emit_op(result_type, result_id, join(op, "(", op0_expr, ", ", op1_expr, ", ", op2_expr, ", ", op3_expr, ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+ inherit_expression_dependencies(result_id, op3);
+}
+
+string CompilerGLSL::legacy_tex_op(const std::string &op, const SPIRType &imgtype, uint32_t tex)
+{
+ const char *type;
+ switch (imgtype.image.dim)
+ {
+ case spv::Dim1D:
+ // Force 2D path for ES.
+ if (options.es)
+ type = (imgtype.image.arrayed && !options.es) ? "2DArray" : "2D";
+ else
+ type = (imgtype.image.arrayed && !options.es) ? "1DArray" : "1D";
+ break;
+ case spv::Dim2D:
+ type = (imgtype.image.arrayed && !options.es) ? "2DArray" : "2D";
+ break;
+ case spv::Dim3D:
+ type = "3D";
+ break;
+ case spv::DimCube:
+ type = "Cube";
+ break;
+ case spv::DimRect:
+ type = "2DRect";
+ break;
+ case spv::DimBuffer:
+ type = "Buffer";
+ break;
+ case spv::DimSubpassData:
+ type = "2D";
+ break;
+ default:
+ type = "";
+ break;
+ }
+
+ // In legacy GLSL, an extension is required for textureLod in the fragment
+ // shader or textureGrad anywhere.
+ bool legacy_lod_ext = false;
+ auto &execution = get_entry_point();
+ if (op == "textureGrad" || op == "textureProjGrad" ||
+ ((op == "textureLod" || op == "textureProjLod") && execution.model != ExecutionModelVertex))
+ {
+ if (is_legacy_es())
+ {
+ legacy_lod_ext = true;
+ require_extension_internal("GL_EXT_shader_texture_lod");
+ }
+ else if (is_legacy_desktop())
+ require_extension_internal("GL_ARB_shader_texture_lod");
+ }
+
+ if (op == "textureLodOffset" || op == "textureProjLodOffset")
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW(join(op, " not allowed in legacy ES"));
+
+ require_extension_internal("GL_EXT_gpu_shader4");
+ }
+
+ // GLES has very limited support for shadow samplers.
+ // Basically shadow2D and shadow2DProj work through EXT_shadow_samplers,
+ // everything else can just throw
+ bool is_comparison = is_depth_image(imgtype, tex);
+ if (is_comparison && is_legacy_es())
+ {
+ if (op == "texture" || op == "textureProj")
+ require_extension_internal("GL_EXT_shadow_samplers");
+ else
+ SPIRV_CROSS_THROW(join(op, " not allowed on depth samplers in legacy ES"));
+
+ if (imgtype.image.dim == spv::DimCube)
+ return "shadowCubeNV";
+ }
+
+ if (op == "textureSize")
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("textureSize not supported in legacy ES");
+ if (is_comparison)
+ SPIRV_CROSS_THROW("textureSize not supported on shadow sampler in legacy GLSL");
+ require_extension_internal("GL_EXT_gpu_shader4");
+ }
+
+ if (op == "texelFetch" && is_legacy_es())
+ SPIRV_CROSS_THROW("texelFetch not supported in legacy ES");
+
+ bool is_es_and_depth = is_legacy_es() && is_comparison;
+ std::string type_prefix = is_comparison ? "shadow" : "texture";
+
+ if (op == "texture")
+ return is_es_and_depth ? join(type_prefix, type, "EXT") : join(type_prefix, type);
+ else if (op == "textureLod")
+ return join(type_prefix, type, legacy_lod_ext ? "LodEXT" : "Lod");
+ else if (op == "textureProj")
+ return join(type_prefix, type, is_es_and_depth ? "ProjEXT" : "Proj");
+ else if (op == "textureGrad")
+ return join(type_prefix, type, is_legacy_es() ? "GradEXT" : is_legacy_desktop() ? "GradARB" : "Grad");
+ else if (op == "textureProjLod")
+ return join(type_prefix, type, legacy_lod_ext ? "ProjLodEXT" : "ProjLod");
+ else if (op == "textureLodOffset")
+ return join(type_prefix, type, "LodOffset");
+ else if (op == "textureProjGrad")
+ return join(type_prefix, type,
+ is_legacy_es() ? "ProjGradEXT" : is_legacy_desktop() ? "ProjGradARB" : "ProjGrad");
+ else if (op == "textureProjLodOffset")
+ return join(type_prefix, type, "ProjLodOffset");
+ else if (op == "textureSize")
+ return join("textureSize", type);
+ else if (op == "texelFetch")
+ return join("texelFetch", type);
+ else
+ {
+ SPIRV_CROSS_THROW(join("Unsupported legacy texture op: ", op));
+ }
+}
+
+bool CompilerGLSL::to_trivial_mix_op(const SPIRType &type, string &op, uint32_t left, uint32_t right, uint32_t lerp)
+{
+ auto *cleft = maybe_get<SPIRConstant>(left);
+ auto *cright = maybe_get<SPIRConstant>(right);
+ auto &lerptype = expression_type(lerp);
+
+ // If our targets aren't constants, we cannot use construction.
+ if (!cleft || !cright)
+ return false;
+
+ // If our targets are spec constants, we cannot use construction.
+ if (cleft->specialization || cright->specialization)
+ return false;
+
+ auto &value_type = get<SPIRType>(cleft->constant_type);
+
+ if (lerptype.basetype != SPIRType::Boolean)
+ return false;
+ if (value_type.basetype == SPIRType::Struct || is_array(value_type))
+ return false;
+ if (!backend.use_constructor_splatting && value_type.vecsize != lerptype.vecsize)
+ return false;
+
+ // Only valid way in SPIR-V 1.4 to use matrices in select is a scalar select.
+ // matrix(scalar) constructor fills in diagnonals, so gets messy very quickly.
+ // Just avoid this case.
+ if (value_type.columns > 1)
+ return false;
+
+ // If our bool selects between 0 and 1, we can cast from bool instead, making our trivial constructor.
+ bool ret = true;
+ for (uint32_t row = 0; ret && row < value_type.vecsize; row++)
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ ret = cleft->scalar_u16(0, row) == 0 && cright->scalar_u16(0, row) == 1;
+ break;
+
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ ret = cleft->scalar(0, row) == 0 && cright->scalar(0, row) == 1;
+ break;
+
+ case SPIRType::Half:
+ ret = cleft->scalar_f16(0, row) == 0.0f && cright->scalar_f16(0, row) == 1.0f;
+ break;
+
+ case SPIRType::Float:
+ ret = cleft->scalar_f32(0, row) == 0.0f && cright->scalar_f32(0, row) == 1.0f;
+ break;
+
+ case SPIRType::Double:
+ ret = cleft->scalar_f64(0, row) == 0.0 && cright->scalar_f64(0, row) == 1.0;
+ break;
+
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ ret = cleft->scalar_u64(0, row) == 0 && cright->scalar_u64(0, row) == 1;
+ break;
+
+ default:
+ ret = false;
+ break;
+ }
+ }
+
+ if (ret)
+ op = type_to_glsl_constructor(type);
+ return ret;
+}
+
+string CompilerGLSL::to_ternary_expression(const SPIRType &restype, uint32_t select, uint32_t true_value,
+ uint32_t false_value)
+{
+ string expr;
+ auto &lerptype = expression_type(select);
+
+ if (lerptype.vecsize == 1)
+ expr = join(to_enclosed_expression(select), " ? ", to_enclosed_pointer_expression(true_value), " : ",
+ to_enclosed_pointer_expression(false_value));
+ else
+ {
+ auto swiz = [this](uint32_t expression, uint32_t i) { return to_extract_component_expression(expression, i); };
+
+ expr = type_to_glsl_constructor(restype);
+ expr += "(";
+ for (uint32_t i = 0; i < restype.vecsize; i++)
+ {
+ expr += swiz(select, i);
+ expr += " ? ";
+ expr += swiz(true_value, i);
+ expr += " : ";
+ expr += swiz(false_value, i);
+ if (i + 1 < restype.vecsize)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+
+ return expr;
+}
+
+void CompilerGLSL::emit_mix_op(uint32_t result_type, uint32_t id, uint32_t left, uint32_t right, uint32_t lerp)
+{
+ auto &lerptype = expression_type(lerp);
+ auto &restype = get<SPIRType>(result_type);
+
+ // If this results in a variable pointer, assume it may be written through.
+ if (restype.pointer)
+ {
+ register_write(left);
+ register_write(right);
+ }
+
+ string mix_op;
+ bool has_boolean_mix = *backend.boolean_mix_function &&
+ ((options.es && options.version >= 310) || (!options.es && options.version >= 450));
+ bool trivial_mix = to_trivial_mix_op(restype, mix_op, left, right, lerp);
+
+ // Cannot use boolean mix when the lerp argument is just one boolean,
+ // fall back to regular trinary statements.
+ if (lerptype.vecsize == 1)
+ has_boolean_mix = false;
+
+ // If we can reduce the mix to a simple cast, do so.
+ // This helps for cases like int(bool), uint(bool) which is implemented with
+ // OpSelect bool 1 0.
+ if (trivial_mix)
+ {
+ emit_unary_func_op(result_type, id, lerp, mix_op.c_str());
+ }
+ else if (!has_boolean_mix && lerptype.basetype == SPIRType::Boolean)
+ {
+ // Boolean mix not supported on desktop without extension.
+ // Was added in OpenGL 4.5 with ES 3.1 compat.
+ //
+ // Could use GL_EXT_shader_integer_mix on desktop at least,
+ // but Apple doesn't support it. :(
+ // Just implement it as ternary expressions.
+ auto expr = to_ternary_expression(get<SPIRType>(result_type), lerp, right, left);
+ emit_op(result_type, id, expr, should_forward(left) && should_forward(right) && should_forward(lerp));
+ inherit_expression_dependencies(id, left);
+ inherit_expression_dependencies(id, right);
+ inherit_expression_dependencies(id, lerp);
+ }
+ else if (lerptype.basetype == SPIRType::Boolean)
+ emit_trinary_func_op(result_type, id, left, right, lerp, backend.boolean_mix_function);
+ else
+ emit_trinary_func_op(result_type, id, left, right, lerp, "mix");
+}
+
+string CompilerGLSL::to_combined_image_sampler(VariableID image_id, VariableID samp_id)
+{
+ // Keep track of the array indices we have used to load the image.
+ // We'll need to use the same array index into the combined image sampler array.
+ auto image_expr = to_non_uniform_aware_expression(image_id);
+ string array_expr;
+ auto array_index = image_expr.find_first_of('[');
+ if (array_index != string::npos)
+ array_expr = image_expr.substr(array_index, string::npos);
+
+ auto &args = current_function->arguments;
+
+ // For GLSL and ESSL targets, we must enumerate all possible combinations for sampler2D(texture2D, sampler) and redirect
+ // all possible combinations into new sampler2D uniforms.
+ auto *image = maybe_get_backing_variable(image_id);
+ auto *samp = maybe_get_backing_variable(samp_id);
+ if (image)
+ image_id = image->self;
+ if (samp)
+ samp_id = samp->self;
+
+ auto image_itr = find_if(begin(args), end(args),
+ [image_id](const SPIRFunction::Parameter &param) { return image_id == param.id; });
+
+ auto sampler_itr = find_if(begin(args), end(args),
+ [samp_id](const SPIRFunction::Parameter &param) { return samp_id == param.id; });
+
+ if (image_itr != end(args) || sampler_itr != end(args))
+ {
+ // If any parameter originates from a parameter, we will find it in our argument list.
+ bool global_image = image_itr == end(args);
+ bool global_sampler = sampler_itr == end(args);
+ VariableID iid = global_image ? image_id : VariableID(uint32_t(image_itr - begin(args)));
+ VariableID sid = global_sampler ? samp_id : VariableID(uint32_t(sampler_itr - begin(args)));
+
+ auto &combined = current_function->combined_parameters;
+ auto itr = find_if(begin(combined), end(combined), [=](const SPIRFunction::CombinedImageSamplerParameter &p) {
+ return p.global_image == global_image && p.global_sampler == global_sampler && p.image_id == iid &&
+ p.sampler_id == sid;
+ });
+
+ if (itr != end(combined))
+ return to_expression(itr->id) + array_expr;
+ else
+ {
+ SPIRV_CROSS_THROW("Cannot find mapping for combined sampler parameter, was "
+ "build_combined_image_samplers() used "
+ "before compile() was called?");
+ }
+ }
+ else
+ {
+ // For global sampler2D, look directly at the global remapping table.
+ auto &mapping = combined_image_samplers;
+ auto itr = find_if(begin(mapping), end(mapping), [image_id, samp_id](const CombinedImageSampler &combined) {
+ return combined.image_id == image_id && combined.sampler_id == samp_id;
+ });
+
+ if (itr != end(combined_image_samplers))
+ return to_expression(itr->combined_id) + array_expr;
+ else
+ {
+ SPIRV_CROSS_THROW("Cannot find mapping for combined sampler, was build_combined_image_samplers() used "
+ "before compile() was called?");
+ }
+ }
+}
+
+bool CompilerGLSL::is_supported_subgroup_op_in_opengl(spv::Op op, const uint32_t *ops)
+{
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ case OpControlBarrier:
+ case OpMemoryBarrier:
+ case OpGroupNonUniformBallotBitCount:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformInverseBallot:
+ return true;
+ case OpGroupNonUniformIAdd:
+ case OpGroupNonUniformFAdd:
+ case OpGroupNonUniformIMul:
+ case OpGroupNonUniformFMul:
+ {
+ const GroupOperation operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationReduce || operation == GroupOperationInclusiveScan ||
+ operation == GroupOperationExclusiveScan)
+ {
+ return true;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ default:
+ return false;
+ }
+}
+
+void CompilerGLSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
+{
+ if (options.vulkan_semantics && combined_image_samplers.empty())
+ {
+ emit_binary_func_op(result_type, result_id, image_id, samp_id,
+ type_to_glsl(get<SPIRType>(result_type), result_id).c_str());
+ }
+ else
+ {
+ // Make sure to suppress usage tracking. It is illegal to create temporaries of opaque types.
+ emit_op(result_type, result_id, to_combined_image_sampler(image_id, samp_id), true, true);
+ }
+
+ // Make sure to suppress usage tracking and any expression invalidation.
+ // It is illegal to create temporaries of opaque types.
+ forwarded_temporaries.erase(result_id);
+}
+
+static inline bool image_opcode_is_sample_no_dref(Op op)
+{
+ switch (op)
+ {
+ case OpImageSampleExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageFetch:
+ case OpImageRead:
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseFetch:
+ case OpImageSparseRead:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+void CompilerGLSL::emit_sparse_feedback_temporaries(uint32_t result_type_id, uint32_t id, uint32_t &feedback_id,
+ uint32_t &texel_id)
+{
+ // Need to allocate two temporaries.
+ if (options.es)
+ SPIRV_CROSS_THROW("Sparse texture feedback is not supported on ESSL.");
+ require_extension_internal("GL_ARB_sparse_texture2");
+
+ auto &temps = extra_sub_expressions[id];
+ if (temps == 0)
+ temps = ir.increase_bound_by(2);
+
+ feedback_id = temps + 0;
+ texel_id = temps + 1;
+
+ auto &return_type = get<SPIRType>(result_type_id);
+ if (return_type.basetype != SPIRType::Struct || return_type.member_types.size() != 2)
+ SPIRV_CROSS_THROW("Invalid return type for sparse feedback.");
+ emit_uninitialized_temporary(return_type.member_types[0], feedback_id);
+ emit_uninitialized_temporary(return_type.member_types[1], texel_id);
+}
+
+uint32_t CompilerGLSL::get_sparse_feedback_texel_id(uint32_t id) const
+{
+ auto itr = extra_sub_expressions.find(id);
+ if (itr == extra_sub_expressions.end())
+ return 0;
+ else
+ return itr->second + 1;
+}
+
+void CompilerGLSL::emit_texture_op(const Instruction &i, bool sparse)
+{
+ auto *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ SmallVector<uint32_t> inherited_expressions;
+
+ uint32_t result_type_id = ops[0];
+ uint32_t id = ops[1];
+ auto &return_type = get<SPIRType>(result_type_id);
+
+ uint32_t sparse_code_id = 0;
+ uint32_t sparse_texel_id = 0;
+ if (sparse)
+ emit_sparse_feedback_temporaries(result_type_id, id, sparse_code_id, sparse_texel_id);
+
+ bool forward = false;
+ string expr = to_texture_op(i, sparse, &forward, inherited_expressions);
+
+ if (sparse)
+ {
+ statement(to_expression(sparse_code_id), " = ", expr, ";");
+ expr = join(type_to_glsl(return_type), "(", to_expression(sparse_code_id), ", ", to_expression(sparse_texel_id),
+ ")");
+ forward = true;
+ inherited_expressions.clear();
+ }
+
+ emit_op(result_type_id, id, expr, forward);
+ for (auto &inherit : inherited_expressions)
+ inherit_expression_dependencies(id, inherit);
+
+ // Do not register sparse ops as control dependent as they are always lowered to a temporary.
+ switch (op)
+ {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ register_control_dependent_expression(id);
+ break;
+
+ default:
+ break;
+ }
+}
+
+std::string CompilerGLSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
+ SmallVector<uint32_t> &inherited_expressions)
+{
+ auto *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+ uint32_t length = i.length;
+
+ uint32_t result_type_id = ops[0];
+ VariableID img = ops[2];
+ uint32_t coord = ops[3];
+ uint32_t dref = 0;
+ uint32_t comp = 0;
+ bool gather = false;
+ bool proj = false;
+ bool fetch = false;
+ bool nonuniform_expression = false;
+ const uint32_t *opt = nullptr;
+
+ auto &result_type = get<SPIRType>(result_type_id);
+
+ inherited_expressions.push_back(coord);
+ if (has_decoration(img, DecorationNonUniform) && !maybe_get_backing_variable(img))
+ nonuniform_expression = true;
+
+ switch (op)
+ {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ dref = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ break;
+
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ dref = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ proj = true;
+ break;
+
+ case OpImageDrefGather:
+ case OpImageSparseDrefGather:
+ dref = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ gather = true;
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("textureGather requires ESSL 310.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("textureGather with depth compare requires GLSL 400.");
+ break;
+
+ case OpImageGather:
+ case OpImageSparseGather:
+ comp = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ gather = true;
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("textureGather requires ESSL 310.");
+ else if (!options.es && options.version < 400)
+ {
+ if (!expression_is_constant_null(comp))
+ SPIRV_CROSS_THROW("textureGather with component requires GLSL 400.");
+ require_extension_internal("GL_ARB_texture_gather");
+ }
+ break;
+
+ case OpImageFetch:
+ case OpImageSparseFetch:
+ case OpImageRead: // Reads == fetches in Metal (other langs will not get here)
+ opt = &ops[4];
+ length -= 4;
+ fetch = true;
+ break;
+
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ opt = &ops[4];
+ length -= 4;
+ proj = true;
+ break;
+
+ default:
+ opt = &ops[4];
+ length -= 4;
+ break;
+ }
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ uint32_t coord_components = 0;
+ switch (imgtype.image.dim)
+ {
+ case spv::Dim1D:
+ coord_components = 1;
+ break;
+ case spv::Dim2D:
+ coord_components = 2;
+ break;
+ case spv::Dim3D:
+ coord_components = 3;
+ break;
+ case spv::DimCube:
+ coord_components = 3;
+ break;
+ case spv::DimBuffer:
+ coord_components = 1;
+ break;
+ default:
+ coord_components = 2;
+ break;
+ }
+
+ if (dref)
+ inherited_expressions.push_back(dref);
+
+ if (proj)
+ coord_components++;
+ if (imgtype.image.arrayed)
+ coord_components++;
+
+ uint32_t bias = 0;
+ uint32_t lod = 0;
+ uint32_t grad_x = 0;
+ uint32_t grad_y = 0;
+ uint32_t coffset = 0;
+ uint32_t offset = 0;
+ uint32_t coffsets = 0;
+ uint32_t sample = 0;
+ uint32_t minlod = 0;
+ uint32_t flags = 0;
+
+ if (length)
+ {
+ flags = *opt++;
+ length--;
+ }
+
+ auto test = [&](uint32_t &v, uint32_t flag) {
+ if (length && (flags & flag))
+ {
+ v = *opt++;
+ inherited_expressions.push_back(v);
+ length--;
+ }
+ };
+
+ test(bias, ImageOperandsBiasMask);
+ test(lod, ImageOperandsLodMask);
+ test(grad_x, ImageOperandsGradMask);
+ test(grad_y, ImageOperandsGradMask);
+ test(coffset, ImageOperandsConstOffsetMask);
+ test(offset, ImageOperandsOffsetMask);
+ test(coffsets, ImageOperandsConstOffsetsMask);
+ test(sample, ImageOperandsSampleMask);
+ test(minlod, ImageOperandsMinLodMask);
+
+ TextureFunctionBaseArguments base_args = {};
+ base_args.img = img;
+ base_args.imgtype = &imgtype;
+ base_args.is_fetch = fetch != 0;
+ base_args.is_gather = gather != 0;
+ base_args.is_proj = proj != 0;
+
+ string expr;
+ TextureFunctionNameArguments name_args = {};
+
+ name_args.base = base_args;
+ name_args.has_array_offsets = coffsets != 0;
+ name_args.has_offset = coffset != 0 || offset != 0;
+ name_args.has_grad = grad_x != 0 || grad_y != 0;
+ name_args.has_dref = dref != 0;
+ name_args.is_sparse_feedback = sparse;
+ name_args.has_min_lod = minlod != 0;
+ name_args.lod = lod;
+ expr += to_function_name(name_args);
+ expr += "(";
+
+ uint32_t sparse_texel_id = 0;
+ if (sparse)
+ sparse_texel_id = get_sparse_feedback_texel_id(ops[1]);
+
+ TextureFunctionArguments args = {};
+ args.base = base_args;
+ args.coord = coord;
+ args.coord_components = coord_components;
+ args.dref = dref;
+ args.grad_x = grad_x;
+ args.grad_y = grad_y;
+ args.lod = lod;
+ args.has_array_offsets = coffsets != 0;
+
+ if (coffsets)
+ args.offset = coffsets;
+ else if (coffset)
+ args.offset = coffset;
+ else
+ args.offset = offset;
+
+ args.bias = bias;
+ args.component = comp;
+ args.sample = sample;
+ args.sparse_texel = sparse_texel_id;
+ args.min_lod = minlod;
+ args.nonuniform_expression = nonuniform_expression;
+ expr += to_function_args(args, forward);
+ expr += ")";
+
+ // texture(samplerXShadow) returns float. shadowX() returns vec4, but only in desktop GLSL. Swizzle here.
+ if (is_legacy() && !options.es && is_depth_image(imgtype, img))
+ expr += ".r";
+
+ // Sampling from a texture which was deduced to be a depth image, might actually return 1 component here.
+ // Remap back to 4 components as sampling opcodes expect.
+ if (backend.comparison_image_samples_scalar && image_opcode_is_sample_no_dref(op))
+ {
+ bool image_is_depth = false;
+ const auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+ VariableID image_id = combined ? combined->image : img;
+
+ if (combined && is_depth_image(imgtype, combined->image))
+ image_is_depth = true;
+ else if (is_depth_image(imgtype, img))
+ image_is_depth = true;
+
+ // We must also check the backing variable for the image.
+ // We might have loaded an OpImage, and used that handle for two different purposes.
+ // Once with comparison, once without.
+ auto *image_variable = maybe_get_backing_variable(image_id);
+ if (image_variable && is_depth_image(get<SPIRType>(image_variable->basetype), image_variable->self))
+ image_is_depth = true;
+
+ if (image_is_depth)
+ expr = remap_swizzle(result_type, 1, expr);
+ }
+
+ if (!sparse && !backend.support_small_type_sampling_result && result_type.width < 32)
+ {
+ // Just value cast (narrowing) to expected type since we cannot rely on narrowing to work automatically.
+ // Hopefully compiler picks this up and converts the texturing instruction to the appropriate precision.
+ expr = join(type_to_glsl_constructor(result_type), "(", expr, ")");
+ }
+
+ // Deals with reads from MSL. We might need to downconvert to fewer components.
+ if (op == OpImageRead)
+ expr = remap_swizzle(result_type, 4, expr);
+
+ return expr;
+}
+
+bool CompilerGLSL::expression_is_constant_null(uint32_t id) const
+{
+ auto *c = maybe_get<SPIRConstant>(id);
+ if (!c)
+ return false;
+ return c->constant_is_null();
+}
+
+bool CompilerGLSL::expression_is_non_value_type_array(uint32_t ptr)
+{
+ auto &type = expression_type(ptr);
+ if (!is_array(get_pointee_type(type)))
+ return false;
+
+ if (!backend.array_is_value_type)
+ return true;
+
+ auto *var = maybe_get_backing_variable(ptr);
+ if (!var)
+ return false;
+
+ auto &backed_type = get<SPIRType>(var->basetype);
+ return !backend.array_is_value_type_in_buffer_blocks && backed_type.basetype == SPIRType::Struct &&
+ has_member_decoration(backed_type.self, 0, DecorationOffset);
+}
+
+// Returns the function name for a texture sampling function for the specified image and sampling characteristics.
+// For some subclasses, the function is a method on the specified image.
+string CompilerGLSL::to_function_name(const TextureFunctionNameArguments &args)
+{
+ if (args.has_min_lod)
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("Sparse residency is not supported in ESSL.");
+ require_extension_internal("GL_ARB_sparse_texture_clamp");
+ }
+
+ string fname;
+ auto &imgtype = *args.base.imgtype;
+ VariableID tex = args.base.img;
+
+ // textureLod on sampler2DArrayShadow and samplerCubeShadow does not exist in GLSL for some reason.
+ // To emulate this, we will have to use textureGrad with a constant gradient of 0.
+ // The workaround will assert that the LOD is in fact constant 0, or we cannot emit correct code.
+ // This happens for HLSL SampleCmpLevelZero on Texture2DArray and TextureCube.
+ bool workaround_lod_array_shadow_as_grad = false;
+ if (((imgtype.image.arrayed && imgtype.image.dim == Dim2D) || imgtype.image.dim == DimCube) &&
+ is_depth_image(imgtype, tex) && args.lod && !args.base.is_fetch)
+ {
+ if (!expression_is_constant_null(args.lod))
+ {
+ SPIRV_CROSS_THROW("textureLod on sampler2DArrayShadow is not constant 0.0. This cannot be "
+ "expressed in GLSL.");
+ }
+ workaround_lod_array_shadow_as_grad = true;
+ }
+
+ if (args.is_sparse_feedback)
+ fname += "sparse";
+
+ if (args.base.is_fetch)
+ fname += args.is_sparse_feedback ? "TexelFetch" : "texelFetch";
+ else
+ {
+ fname += args.is_sparse_feedback ? "Texture" : "texture";
+
+ if (args.base.is_gather)
+ fname += "Gather";
+ if (args.has_array_offsets)
+ fname += "Offsets";
+ if (args.base.is_proj)
+ fname += "Proj";
+ if (args.has_grad || workaround_lod_array_shadow_as_grad)
+ fname += "Grad";
+ if (args.lod != 0 && !workaround_lod_array_shadow_as_grad)
+ fname += "Lod";
+ }
+
+ if (args.has_offset)
+ fname += "Offset";
+
+ if (args.has_min_lod)
+ fname += "Clamp";
+
+ if (args.is_sparse_feedback || args.has_min_lod)
+ fname += "ARB";
+
+ return (is_legacy() && !args.base.is_gather) ? legacy_tex_op(fname, imgtype, tex) : fname;
+}
+
+std::string CompilerGLSL::convert_separate_image_to_expression(uint32_t id)
+{
+ auto *var = maybe_get_backing_variable(id);
+
+ // If we are fetching from a plain OpTypeImage, we must combine with a dummy sampler in GLSL.
+ // In Vulkan GLSL, we can make use of the newer GL_EXT_samplerless_texture_functions.
+ if (var)
+ {
+ auto &type = get<SPIRType>(var->basetype);
+ if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer)
+ {
+ if (options.vulkan_semantics)
+ {
+ if (dummy_sampler_id)
+ {
+ // Don't need to consider Shadow state since the dummy sampler is always non-shadow.
+ auto sampled_type = type;
+ sampled_type.basetype = SPIRType::SampledImage;
+ return join(type_to_glsl(sampled_type), "(", to_non_uniform_aware_expression(id), ", ",
+ to_expression(dummy_sampler_id), ")");
+ }
+ else
+ {
+ // Newer glslang supports this extension to deal with texture2D as argument to texture functions.
+ require_extension_internal("GL_EXT_samplerless_texture_functions");
+ }
+ }
+ else
+ {
+ if (!dummy_sampler_id)
+ SPIRV_CROSS_THROW("Cannot find dummy sampler ID. Was "
+ "build_dummy_sampler_for_combined_images() called?");
+
+ return to_combined_image_sampler(id, dummy_sampler_id);
+ }
+ }
+ }
+
+ return to_non_uniform_aware_expression(id);
+}
+
+// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
+string CompilerGLSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
+{
+ VariableID img = args.base.img;
+ auto &imgtype = *args.base.imgtype;
+
+ string farg_str;
+ if (args.base.is_fetch)
+ farg_str = convert_separate_image_to_expression(img);
+ else
+ farg_str = to_non_uniform_aware_expression(img);
+
+ if (args.nonuniform_expression && farg_str.find_first_of('[') != string::npos)
+ {
+ // Only emit nonuniformEXT() wrapper if the underlying expression is arrayed in some way.
+ farg_str = join(backend.nonuniform_qualifier, "(", farg_str, ")");
+ }
+
+ bool swizz_func = backend.swizzle_is_function;
+ auto swizzle = [swizz_func](uint32_t comps, uint32_t in_comps) -> const char * {
+ if (comps == in_comps)
+ return "";
+
+ switch (comps)
+ {
+ case 1:
+ return ".x";
+ case 2:
+ return swizz_func ? ".xy()" : ".xy";
+ case 3:
+ return swizz_func ? ".xyz()" : ".xyz";
+ default:
+ return "";
+ }
+ };
+
+ bool forward = should_forward(args.coord);
+
+ // The IR can give us more components than we need, so chop them off as needed.
+ auto swizzle_expr = swizzle(args.coord_components, expression_type(args.coord).vecsize);
+ // Only enclose the UV expression if needed.
+ auto coord_expr =
+ (*swizzle_expr == '\0') ? to_expression(args.coord) : (to_enclosed_expression(args.coord) + swizzle_expr);
+
+ // texelFetch only takes int, not uint.
+ auto &coord_type = expression_type(args.coord);
+ if (coord_type.basetype == SPIRType::UInt)
+ {
+ auto expected_type = coord_type;
+ expected_type.vecsize = args.coord_components;
+ expected_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(expected_type, coord_type.basetype, coord_expr);
+ }
+
+ // textureLod on sampler2DArrayShadow and samplerCubeShadow does not exist in GLSL for some reason.
+ // To emulate this, we will have to use textureGrad with a constant gradient of 0.
+ // The workaround will assert that the LOD is in fact constant 0, or we cannot emit correct code.
+ // This happens for HLSL SampleCmpLevelZero on Texture2DArray and TextureCube.
+ bool workaround_lod_array_shadow_as_grad =
+ ((imgtype.image.arrayed && imgtype.image.dim == Dim2D) || imgtype.image.dim == DimCube) &&
+ is_depth_image(imgtype, img) && args.lod != 0 && !args.base.is_fetch;
+
+ if (args.dref)
+ {
+ forward = forward && should_forward(args.dref);
+
+ // SPIR-V splits dref and coordinate.
+ if (args.base.is_gather ||
+ args.coord_components == 4) // GLSL also splits the arguments in two. Same for textureGather.
+ {
+ farg_str += ", ";
+ farg_str += to_expression(args.coord);
+ farg_str += ", ";
+ farg_str += to_expression(args.dref);
+ }
+ else if (args.base.is_proj)
+ {
+ // Have to reshuffle so we get vec4(coord, dref, proj), special case.
+ // Other shading languages splits up the arguments for coord and compare value like SPIR-V.
+ // The coordinate type for textureProj shadow is always vec4 even for sampler1DShadow.
+ farg_str += ", vec4(";
+
+ if (imgtype.image.dim == Dim1D)
+ {
+ // Could reuse coord_expr, but we will mess up the temporary usage checking.
+ farg_str += to_enclosed_expression(args.coord) + ".x";
+ farg_str += ", ";
+ farg_str += "0.0, ";
+ farg_str += to_expression(args.dref);
+ farg_str += ", ";
+ farg_str += to_enclosed_expression(args.coord) + ".y)";
+ }
+ else if (imgtype.image.dim == Dim2D)
+ {
+ // Could reuse coord_expr, but we will mess up the temporary usage checking.
+ farg_str += to_enclosed_expression(args.coord) + (swizz_func ? ".xy()" : ".xy");
+ farg_str += ", ";
+ farg_str += to_expression(args.dref);
+ farg_str += ", ";
+ farg_str += to_enclosed_expression(args.coord) + ".z)";
+ }
+ else
+ SPIRV_CROSS_THROW("Invalid type for textureProj with shadow.");
+ }
+ else
+ {
+ // Create a composite which merges coord/dref into a single vector.
+ auto type = expression_type(args.coord);
+ type.vecsize = args.coord_components + 1;
+ if (imgtype.image.dim == Dim1D && options.es)
+ type.vecsize++;
+ farg_str += ", ";
+ farg_str += type_to_glsl_constructor(type);
+ farg_str += "(";
+
+ if (imgtype.image.dim == Dim1D && options.es)
+ {
+ if (imgtype.image.arrayed)
+ {
+ farg_str += enclose_expression(coord_expr) + ".x";
+ farg_str += ", 0.0, ";
+ farg_str += enclose_expression(coord_expr) + ".y";
+ }
+ else
+ {
+ farg_str += coord_expr;
+ farg_str += ", 0.0";
+ }
+ }
+ else
+ farg_str += coord_expr;
+
+ farg_str += ", ";
+ farg_str += to_expression(args.dref);
+ farg_str += ")";
+ }
+ }
+ else
+ {
+ if (imgtype.image.dim == Dim1D && options.es)
+ {
+ // Have to fake a second coordinate.
+ if (type_is_floating_point(coord_type))
+ {
+ // Cannot mix proj and array.
+ if (imgtype.image.arrayed || args.base.is_proj)
+ {
+ coord_expr = join("vec3(", enclose_expression(coord_expr), ".x, 0.0, ",
+ enclose_expression(coord_expr), ".y)");
+ }
+ else
+ coord_expr = join("vec2(", coord_expr, ", 0.0)");
+ }
+ else
+ {
+ if (imgtype.image.arrayed)
+ {
+ coord_expr = join("ivec3(", enclose_expression(coord_expr),
+ ".x, 0, ",
+ enclose_expression(coord_expr), ".y)");
+ }
+ else
+ coord_expr = join("ivec2(", coord_expr, ", 0)");
+ }
+ }
+
+ farg_str += ", ";
+ farg_str += coord_expr;
+ }
+
+ if (args.grad_x || args.grad_y)
+ {
+ forward = forward && should_forward(args.grad_x);
+ forward = forward && should_forward(args.grad_y);
+ farg_str += ", ";
+ farg_str += to_expression(args.grad_x);
+ farg_str += ", ";
+ farg_str += to_expression(args.grad_y);
+ }
+
+ if (args.lod)
+ {
+ if (workaround_lod_array_shadow_as_grad)
+ {
+ // Implement textureGrad() instead. LOD == 0.0 is implemented as gradient of 0.0.
+ // Implementing this as plain texture() is not safe on some implementations.
+ if (imgtype.image.dim == Dim2D)
+ farg_str += ", vec2(0.0), vec2(0.0)";
+ else if (imgtype.image.dim == DimCube)
+ farg_str += ", vec3(0.0), vec3(0.0)";
+ }
+ else
+ {
+ forward = forward && should_forward(args.lod);
+ farg_str += ", ";
+
+ // Lod expression for TexelFetch in GLSL must be int, and only int.
+ if (args.base.is_fetch && imgtype.image.dim != DimBuffer && !imgtype.image.ms)
+ farg_str += bitcast_expression(SPIRType::Int, args.lod);
+ else
+ farg_str += to_expression(args.lod);
+ }
+ }
+ else if (args.base.is_fetch && imgtype.image.dim != DimBuffer && !imgtype.image.ms)
+ {
+ // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
+ farg_str += ", 0";
+ }
+
+ if (args.offset)
+ {
+ forward = forward && should_forward(args.offset);
+ farg_str += ", ";
+ farg_str += bitcast_expression(SPIRType::Int, args.offset);
+ }
+
+ if (args.sample)
+ {
+ farg_str += ", ";
+ farg_str += bitcast_expression(SPIRType::Int, args.sample);
+ }
+
+ if (args.min_lod)
+ {
+ farg_str += ", ";
+ farg_str += to_expression(args.min_lod);
+ }
+
+ if (args.sparse_texel)
+ {
+ // Sparse texel output parameter comes after everything else, except it's before the optional, component/bias arguments.
+ farg_str += ", ";
+ farg_str += to_expression(args.sparse_texel);
+ }
+
+ if (args.bias)
+ {
+ forward = forward && should_forward(args.bias);
+ farg_str += ", ";
+ farg_str += to_expression(args.bias);
+ }
+
+ if (args.component && !expression_is_constant_null(args.component))
+ {
+ forward = forward && should_forward(args.component);
+ farg_str += ", ";
+ farg_str += bitcast_expression(SPIRType::Int, args.component);
+ }
+
+ *p_forward = forward;
+
+ return farg_str;
+}
+
+Op CompilerGLSL::get_remapped_spirv_op(Op op) const
+{
+ if (options.relax_nan_checks)
+ {
+ switch (op)
+ {
+ case OpFUnordLessThan:
+ op = OpFOrdLessThan;
+ break;
+ case OpFUnordLessThanEqual:
+ op = OpFOrdLessThanEqual;
+ break;
+ case OpFUnordGreaterThan:
+ op = OpFOrdGreaterThan;
+ break;
+ case OpFUnordGreaterThanEqual:
+ op = OpFOrdGreaterThanEqual;
+ break;
+ case OpFUnordEqual:
+ op = OpFOrdEqual;
+ break;
+ case OpFOrdNotEqual:
+ op = OpFUnordNotEqual;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return op;
+}
+
+GLSLstd450 CompilerGLSL::get_remapped_glsl_op(GLSLstd450 std450_op) const
+{
+ // Relax to non-NaN aware opcodes.
+ if (options.relax_nan_checks)
+ {
+ switch (std450_op)
+ {
+ case GLSLstd450NClamp:
+ std450_op = GLSLstd450FClamp;
+ break;
+ case GLSLstd450NMin:
+ std450_op = GLSLstd450FMin;
+ break;
+ case GLSLstd450NMax:
+ std450_op = GLSLstd450FMax;
+ break;
+ default:
+ break;
+ }
+ }
+
+ return std450_op;
+}
+
+void CompilerGLSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t length)
+{
+ auto op = static_cast<GLSLstd450>(eop);
+
+ if (is_legacy() && is_unsigned_glsl_opcode(op))
+ SPIRV_CROSS_THROW("Unsigned integers are not supported on legacy GLSL targets.");
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, length);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ op = get_remapped_glsl_op(op);
+
+ switch (op)
+ {
+ // FP fiddling
+ case GLSLstd450Round:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "round");
+ else
+ {
+ auto op0 = to_enclosed_expression(args[0]);
+ auto &op0_type = expression_type(args[0]);
+ auto expr = join("floor(", op0, " + ", type_to_glsl_constructor(op0_type), "(0.5))");
+ bool forward = should_forward(args[0]);
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+
+ case GLSLstd450RoundEven:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "roundEven");
+ else if (!options.es)
+ {
+ // This extension provides round() with round-to-even semantics.
+ require_extension_internal("GL_EXT_gpu_shader4");
+ emit_unary_func_op(result_type, id, args[0], "round");
+ }
+ else
+ SPIRV_CROSS_THROW("roundEven supported only in ESSL 300.");
+ break;
+
+ case GLSLstd450Trunc:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "trunc");
+ else
+ {
+ // Implement by value-casting to int and back.
+ bool forward = should_forward(args[0]);
+ auto op0 = to_unpacked_expression(args[0]);
+ auto &op0_type = expression_type(args[0]);
+ auto via_type = op0_type;
+ via_type.basetype = SPIRType::Int;
+ auto expr = join(type_to_glsl(op0_type), "(", type_to_glsl(via_type), "(", op0, "))");
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+
+ case GLSLstd450SAbs:
+ emit_unary_func_op_cast(result_type, id, args[0], "abs", int_type, int_type);
+ break;
+ case GLSLstd450FAbs:
+ emit_unary_func_op(result_type, id, args[0], "abs");
+ break;
+ case GLSLstd450SSign:
+ emit_unary_func_op_cast(result_type, id, args[0], "sign", int_type, int_type);
+ break;
+ case GLSLstd450FSign:
+ emit_unary_func_op(result_type, id, args[0], "sign");
+ break;
+ case GLSLstd450Floor:
+ emit_unary_func_op(result_type, id, args[0], "floor");
+ break;
+ case GLSLstd450Ceil:
+ emit_unary_func_op(result_type, id, args[0], "ceil");
+ break;
+ case GLSLstd450Fract:
+ emit_unary_func_op(result_type, id, args[0], "fract");
+ break;
+ case GLSLstd450Radians:
+ emit_unary_func_op(result_type, id, args[0], "radians");
+ break;
+ case GLSLstd450Degrees:
+ emit_unary_func_op(result_type, id, args[0], "degrees");
+ break;
+ case GLSLstd450Fma:
+ if ((!options.es && options.version < 400) || (options.es && options.version < 320))
+ {
+ auto expr = join(to_enclosed_expression(args[0]), " * ", to_enclosed_expression(args[1]), " + ",
+ to_enclosed_expression(args[2]));
+
+ emit_op(result_type, id, expr,
+ should_forward(args[0]) && should_forward(args[1]) && should_forward(args[2]));
+ for (uint32_t i = 0; i < 3; i++)
+ inherit_expression_dependencies(id, args[i]);
+ }
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fma");
+ break;
+
+ case GLSLstd450Modf:
+ register_call_out_argument(args[1]);
+ if (!is_legacy())
+ {
+ forced_temporaries.insert(id);
+ emit_binary_func_op(result_type, id, args[0], args[1], "modf");
+ }
+ else
+ {
+ //NB. legacy GLSL doesn't have trunc() either, so we do a value cast
+ auto &op1_type = expression_type(args[1]);
+ auto via_type = op1_type;
+ via_type.basetype = SPIRType::Int;
+ statement(to_expression(args[1]), " = ",
+ type_to_glsl(op1_type), "(", type_to_glsl(via_type),
+ "(", to_expression(args[0]), "));");
+ emit_binary_op(result_type, id, args[0], args[1], "-");
+ }
+ break;
+
+ case GLSLstd450ModfStruct:
+ {
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, id);
+ if (!is_legacy())
+ {
+ statement(to_expression(id), ".", to_member_name(type, 0), " = ", "modf(", to_expression(args[0]), ", ",
+ to_expression(id), ".", to_member_name(type, 1), ");");
+ }
+ else
+ {
+ //NB. legacy GLSL doesn't have trunc() either, so we do a value cast
+ auto &op0_type = expression_type(args[0]);
+ auto via_type = op0_type;
+ via_type.basetype = SPIRType::Int;
+ statement(to_expression(id), ".", to_member_name(type, 1), " = ", type_to_glsl(op0_type),
+ "(", type_to_glsl(via_type), "(", to_expression(args[0]), "));");
+ statement(to_expression(id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(args[0]), " - ",
+ to_expression(id), ".", to_member_name(type, 1), ";");
+ }
+ break;
+ }
+
+ // Minmax
+ case GLSLstd450UMin:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "min", uint_type, false);
+ break;
+
+ case GLSLstd450SMin:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "min", int_type, false);
+ break;
+
+ case GLSLstd450FMin:
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ break;
+
+ case GLSLstd450FMax:
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ break;
+
+ case GLSLstd450UMax:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "max", uint_type, false);
+ break;
+
+ case GLSLstd450SMax:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "max", int_type, false);
+ break;
+
+ case GLSLstd450FClamp:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ break;
+
+ case GLSLstd450UClamp:
+ emit_trinary_func_op_cast(result_type, id, args[0], args[1], args[2], "clamp", uint_type);
+ break;
+
+ case GLSLstd450SClamp:
+ emit_trinary_func_op_cast(result_type, id, args[0], args[1], args[2], "clamp", int_type);
+ break;
+
+ // Trig
+ case GLSLstd450Sin:
+ emit_unary_func_op(result_type, id, args[0], "sin");
+ break;
+ case GLSLstd450Cos:
+ emit_unary_func_op(result_type, id, args[0], "cos");
+ break;
+ case GLSLstd450Tan:
+ emit_unary_func_op(result_type, id, args[0], "tan");
+ break;
+ case GLSLstd450Asin:
+ emit_unary_func_op(result_type, id, args[0], "asin");
+ break;
+ case GLSLstd450Acos:
+ emit_unary_func_op(result_type, id, args[0], "acos");
+ break;
+ case GLSLstd450Atan:
+ emit_unary_func_op(result_type, id, args[0], "atan");
+ break;
+ case GLSLstd450Sinh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "sinh");
+ else
+ {
+ bool forward = should_forward(args[0]);
+ auto expr = join("(exp(", to_expression(args[0]), ") - exp(-", to_enclosed_expression(args[0]), ")) * 0.5");
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+ case GLSLstd450Cosh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "cosh");
+ else
+ {
+ bool forward = should_forward(args[0]);
+ auto expr = join("(exp(", to_expression(args[0]), ") + exp(-", to_enclosed_expression(args[0]), ")) * 0.5");
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+ case GLSLstd450Tanh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "tanh");
+ else
+ {
+ // Create temporaries to store the result of exp(arg) and exp(-arg).
+ uint32_t &ids = extra_sub_expressions[id];
+ if (!ids)
+ {
+ ids = ir.increase_bound_by(2);
+
+ // Inherit precision qualifier (legacy has no NoContraction).
+ if (has_decoration(id, DecorationRelaxedPrecision))
+ {
+ set_decoration(ids, DecorationRelaxedPrecision);
+ set_decoration(ids + 1, DecorationRelaxedPrecision);
+ }
+ }
+ uint32_t epos_id = ids;
+ uint32_t eneg_id = ids + 1;
+
+ emit_op(result_type, epos_id, join("exp(", to_expression(args[0]), ")"), false);
+ emit_op(result_type, eneg_id, join("exp(-", to_enclosed_expression(args[0]), ")"), false);
+ inherit_expression_dependencies(epos_id, args[0]);
+ inherit_expression_dependencies(eneg_id, args[0]);
+
+ auto expr = join("(", to_enclosed_expression(epos_id), " - ", to_enclosed_expression(eneg_id), ") / "
+ "(", to_enclosed_expression(epos_id), " + ", to_enclosed_expression(eneg_id), ")");
+ emit_op(result_type, id, expr, true);
+ inherit_expression_dependencies(id, epos_id);
+ inherit_expression_dependencies(id, eneg_id);
+ }
+ break;
+ case GLSLstd450Asinh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "asinh");
+ else
+ emit_emulated_ahyper_op(result_type, id, args[0], GLSLstd450Asinh);
+ break;
+ case GLSLstd450Acosh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "acosh");
+ else
+ emit_emulated_ahyper_op(result_type, id, args[0], GLSLstd450Acosh);
+ break;
+ case GLSLstd450Atanh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "atanh");
+ else
+ emit_emulated_ahyper_op(result_type, id, args[0], GLSLstd450Atanh);
+ break;
+ case GLSLstd450Atan2:
+ emit_binary_func_op(result_type, id, args[0], args[1], "atan");
+ break;
+
+ // Exponentials
+ case GLSLstd450Pow:
+ emit_binary_func_op(result_type, id, args[0], args[1], "pow");
+ break;
+ case GLSLstd450Exp:
+ emit_unary_func_op(result_type, id, args[0], "exp");
+ break;
+ case GLSLstd450Log:
+ emit_unary_func_op(result_type, id, args[0], "log");
+ break;
+ case GLSLstd450Exp2:
+ emit_unary_func_op(result_type, id, args[0], "exp2");
+ break;
+ case GLSLstd450Log2:
+ emit_unary_func_op(result_type, id, args[0], "log2");
+ break;
+ case GLSLstd450Sqrt:
+ emit_unary_func_op(result_type, id, args[0], "sqrt");
+ break;
+ case GLSLstd450InverseSqrt:
+ emit_unary_func_op(result_type, id, args[0], "inversesqrt");
+ break;
+
+ // Matrix math
+ case GLSLstd450Determinant:
+ {
+ // No need to transpose - it doesn't affect the determinant
+ auto *e = maybe_get<SPIRExpression>(args[0]);
+ bool old_transpose = e && e->need_transpose;
+ if (old_transpose)
+ e->need_transpose = false;
+
+ if (options.version < 150) // also matches ES 100
+ {
+ auto &type = expression_type(args[0]);
+ assert(type.vecsize >= 2 && type.vecsize <= 4);
+ assert(type.vecsize == type.columns);
+
+ // ARB_gpu_shader_fp64 needs GLSL 150, other types are not valid
+ if (type.basetype != SPIRType::Float)
+ SPIRV_CROSS_THROW("Unsupported type for matrix determinant");
+
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ require_polyfill(static_cast<Polyfill>(PolyfillDeterminant2x2 << (type.vecsize - 2)),
+ relaxed);
+ emit_unary_func_op(result_type, id, args[0],
+ (options.es && relaxed) ? "spvDeterminantMP" : "spvDeterminant");
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "determinant");
+
+ if (old_transpose)
+ e->need_transpose = true;
+ break;
+ }
+
+ case GLSLstd450MatrixInverse:
+ {
+ // The inverse of the transpose is the same as the transpose of
+ // the inverse, so we can just flip need_transpose of the result.
+ auto *a = maybe_get<SPIRExpression>(args[0]);
+ bool old_transpose = a && a->need_transpose;
+ if (old_transpose)
+ a->need_transpose = false;
+
+ const char *func = "inverse";
+ if (options.version < 140) // also matches ES 100
+ {
+ auto &type = get<SPIRType>(result_type);
+ assert(type.vecsize >= 2 && type.vecsize <= 4);
+ assert(type.vecsize == type.columns);
+
+ // ARB_gpu_shader_fp64 needs GLSL 150, other types are invalid
+ if (type.basetype != SPIRType::Float)
+ SPIRV_CROSS_THROW("Unsupported type for matrix inverse");
+
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ require_polyfill(static_cast<Polyfill>(PolyfillMatrixInverse2x2 << (type.vecsize - 2)),
+ relaxed);
+ func = (options.es && relaxed) ? "spvInverseMP" : "spvInverse";
+ }
+
+ bool forward = should_forward(args[0]);
+ auto &e = emit_op(result_type, id, join(func, "(", to_unpacked_expression(args[0]), ")"), forward);
+ inherit_expression_dependencies(id, args[0]);
+
+ if (old_transpose)
+ {
+ e.need_transpose = true;
+ a->need_transpose = true;
+ }
+ break;
+ }
+
+ // Lerping
+ case GLSLstd450FMix:
+ case GLSLstd450IMix:
+ {
+ emit_mix_op(result_type, id, args[0], args[1], args[2]);
+ break;
+ }
+ case GLSLstd450Step:
+ emit_binary_func_op(result_type, id, args[0], args[1], "step");
+ break;
+ case GLSLstd450SmoothStep:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "smoothstep");
+ break;
+
+ // Packing
+ case GLSLstd450Frexp:
+ register_call_out_argument(args[1]);
+ forced_temporaries.insert(id);
+ emit_binary_func_op(result_type, id, args[0], args[1], "frexp");
+ break;
+
+ case GLSLstd450FrexpStruct:
+ {
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, id);
+ statement(to_expression(id), ".", to_member_name(type, 0), " = ", "frexp(", to_expression(args[0]), ", ",
+ to_expression(id), ".", to_member_name(type, 1), ");");
+ break;
+ }
+
+ case GLSLstd450Ldexp:
+ {
+ bool forward = should_forward(args[0]) && should_forward(args[1]);
+
+ auto op0 = to_unpacked_expression(args[0]);
+ auto op1 = to_unpacked_expression(args[1]);
+ auto &op1_type = expression_type(args[1]);
+ if (op1_type.basetype != SPIRType::Int)
+ {
+ // Need a value cast here.
+ auto target_type = op1_type;
+ target_type.basetype = SPIRType::Int;
+ op1 = join(type_to_glsl_constructor(target_type), "(", op1, ")");
+ }
+
+ auto expr = join("ldexp(", op0, ", ", op1, ")");
+
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ inherit_expression_dependencies(id, args[1]);
+ break;
+ }
+
+ case GLSLstd450PackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "packSnorm4x8");
+ break;
+ case GLSLstd450PackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "packUnorm4x8");
+ break;
+ case GLSLstd450PackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "packSnorm2x16");
+ break;
+ case GLSLstd450PackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "packUnorm2x16");
+ break;
+ case GLSLstd450PackHalf2x16:
+ emit_unary_func_op(result_type, id, args[0], "packHalf2x16");
+ break;
+ case GLSLstd450UnpackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpackSnorm4x8");
+ break;
+ case GLSLstd450UnpackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpackUnorm4x8");
+ break;
+ case GLSLstd450UnpackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpackSnorm2x16");
+ break;
+ case GLSLstd450UnpackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpackUnorm2x16");
+ break;
+ case GLSLstd450UnpackHalf2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpackHalf2x16");
+ break;
+
+ case GLSLstd450PackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "packDouble2x32");
+ break;
+ case GLSLstd450UnpackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unpackDouble2x32");
+ break;
+
+ // Vector math
+ case GLSLstd450Length:
+ emit_unary_func_op(result_type, id, args[0], "length");
+ break;
+ case GLSLstd450Distance:
+ emit_binary_func_op(result_type, id, args[0], args[1], "distance");
+ break;
+ case GLSLstd450Cross:
+ emit_binary_func_op(result_type, id, args[0], args[1], "cross");
+ break;
+ case GLSLstd450Normalize:
+ emit_unary_func_op(result_type, id, args[0], "normalize");
+ break;
+ case GLSLstd450FaceForward:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "faceforward");
+ break;
+ case GLSLstd450Reflect:
+ emit_binary_func_op(result_type, id, args[0], args[1], "reflect");
+ break;
+ case GLSLstd450Refract:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "refract");
+ break;
+
+ // Bit-fiddling
+ case GLSLstd450FindILsb:
+ // findLSB always returns int.
+ emit_unary_func_op_cast(result_type, id, args[0], "findLSB", expression_type(args[0]).basetype, int_type);
+ break;
+
+ case GLSLstd450FindSMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "findMSB", int_type, int_type);
+ break;
+
+ case GLSLstd450FindUMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "findMSB", uint_type,
+ int_type); // findMSB always returns int.
+ break;
+
+ // Multisampled varying
+ case GLSLstd450InterpolateAtCentroid:
+ emit_unary_func_op(result_type, id, args[0], "interpolateAtCentroid");
+ break;
+ case GLSLstd450InterpolateAtSample:
+ emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtSample");
+ break;
+ case GLSLstd450InterpolateAtOffset:
+ emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtOffset");
+ break;
+
+ case GLSLstd450NMin:
+ case GLSLstd450NMax:
+ {
+ if (options.vulkan_semantics)
+ {
+ require_extension_internal("GL_EXT_spirv_intrinsics");
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ Polyfill poly = {};
+ switch (get<SPIRType>(result_type).width)
+ {
+ case 16:
+ poly = op == GLSLstd450NMin ? PolyfillNMin16 : PolyfillNMax16;
+ break;
+
+ case 32:
+ poly = op == GLSLstd450NMin ? PolyfillNMin32 : PolyfillNMax32;
+ break;
+
+ case 64:
+ poly = op == GLSLstd450NMin ? PolyfillNMin64 : PolyfillNMax64;
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid bit width for NMin/NMax.");
+ }
+
+ require_polyfill(poly, relaxed);
+
+ // Function return decorations are broken, so need to do double polyfill.
+ if (relaxed)
+ require_polyfill(poly, false);
+
+ const char *op_str;
+ if (relaxed)
+ op_str = op == GLSLstd450NMin ? "spvNMinRelaxed" : "spvNMaxRelaxed";
+ else
+ op_str = op == GLSLstd450NMin ? "spvNMin" : "spvNMax";
+
+ emit_binary_func_op(result_type, id, args[0], args[1], op_str);
+ }
+ else
+ {
+ emit_nminmax_op(result_type, id, args[0], args[1], op);
+ }
+ break;
+ }
+
+ case GLSLstd450NClamp:
+ {
+ if (options.vulkan_semantics)
+ {
+ require_extension_internal("GL_EXT_spirv_intrinsics");
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ Polyfill poly = {};
+ switch (get<SPIRType>(result_type).width)
+ {
+ case 16:
+ poly = PolyfillNClamp16;
+ break;
+
+ case 32:
+ poly = PolyfillNClamp32;
+ break;
+
+ case 64:
+ poly = PolyfillNClamp64;
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid bit width for NMin/NMax.");
+ }
+
+ require_polyfill(poly, relaxed);
+
+ // Function return decorations are broken, so need to do double polyfill.
+ if (relaxed)
+ require_polyfill(poly, false);
+
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], relaxed ? "spvNClampRelaxed" : "spvNClamp");
+ }
+ else
+ {
+ // Make sure we have a unique ID here to avoid aliasing the extra sub-expressions between clamp and NMin sub-op.
+ // IDs cannot exceed 24 bits, so we can make use of the higher bits for some unique flags.
+ uint32_t &max_id = extra_sub_expressions[id | EXTRA_SUB_EXPRESSION_TYPE_AUX];
+ if (!max_id)
+ max_id = ir.increase_bound_by(1);
+
+ // Inherit precision qualifiers.
+ ir.meta[max_id] = ir.meta[id];
+
+ emit_nminmax_op(result_type, max_id, args[0], args[1], GLSLstd450NMax);
+ emit_nminmax_op(result_type, id, max_id, args[2], GLSLstd450NMin);
+ }
+ break;
+ }
+
+ default:
+ statement("// unimplemented GLSL op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_nminmax_op(uint32_t result_type, uint32_t id, uint32_t op0, uint32_t op1, GLSLstd450 op)
+{
+ // Need to emulate this call.
+ uint32_t &ids = extra_sub_expressions[id];
+ if (!ids)
+ {
+ ids = ir.increase_bound_by(5);
+ auto btype = get<SPIRType>(result_type);
+ btype.basetype = SPIRType::Boolean;
+ set<SPIRType>(ids, btype);
+ }
+
+ uint32_t btype_id = ids + 0;
+ uint32_t left_nan_id = ids + 1;
+ uint32_t right_nan_id = ids + 2;
+ uint32_t tmp_id = ids + 3;
+ uint32_t mixed_first_id = ids + 4;
+
+ // Inherit precision qualifiers.
+ ir.meta[tmp_id] = ir.meta[id];
+ ir.meta[mixed_first_id] = ir.meta[id];
+
+ if (!is_legacy())
+ {
+ emit_unary_func_op(btype_id, left_nan_id, op0, "isnan");
+ emit_unary_func_op(btype_id, right_nan_id, op1, "isnan");
+ }
+ else if (expression_type(op0).vecsize > 1)
+ {
+ // If the number doesn't equal itself, it must be NaN
+ emit_binary_func_op(btype_id, left_nan_id, op0, op0, "notEqual");
+ emit_binary_func_op(btype_id, right_nan_id, op1, op1, "notEqual");
+ }
+ else
+ {
+ emit_binary_op(btype_id, left_nan_id, op0, op0, "!=");
+ emit_binary_op(btype_id, right_nan_id, op1, op1, "!=");
+ }
+ emit_binary_func_op(result_type, tmp_id, op0, op1, op == GLSLstd450NMin ? "min" : "max");
+ emit_mix_op(result_type, mixed_first_id, tmp_id, op1, left_nan_id);
+ emit_mix_op(result_type, id, mixed_first_id, op0, right_nan_id);
+}
+
+void CompilerGLSL::emit_emulated_ahyper_op(uint32_t result_type, uint32_t id, uint32_t op0, GLSLstd450 op)
+{
+ const char *one = backend.float_literal_suffix ? "1.0f" : "1.0";
+ std::string expr;
+ bool forward = should_forward(op0);
+
+ switch (op)
+ {
+ case GLSLstd450Asinh:
+ expr = join("log(", to_enclosed_expression(op0), " + sqrt(",
+ to_enclosed_expression(op0), " * ", to_enclosed_expression(op0), " + ", one, "))");
+ emit_op(result_type, id, expr, forward);
+ break;
+
+ case GLSLstd450Acosh:
+ expr = join("log(", to_enclosed_expression(op0), " + sqrt(",
+ to_enclosed_expression(op0), " * ", to_enclosed_expression(op0), " - ", one, "))");
+ break;
+
+ case GLSLstd450Atanh:
+ expr = join("log((", one, " + ", to_enclosed_expression(op0), ") / "
+ "(", one, " - ", to_enclosed_expression(op0), ")) * 0.5",
+ backend.float_literal_suffix ? "f" : "");
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid op.");
+ }
+
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, op0);
+}
+
+void CompilerGLSL::emit_spv_amd_shader_ballot_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args,
+ uint32_t)
+{
+ require_extension_internal("GL_AMD_shader_ballot");
+
+ enum AMDShaderBallot
+ {
+ SwizzleInvocationsAMD = 1,
+ SwizzleInvocationsMaskedAMD = 2,
+ WriteInvocationAMD = 3,
+ MbcntAMD = 4
+ };
+
+ auto op = static_cast<AMDShaderBallot>(eop);
+
+ switch (op)
+ {
+ case SwizzleInvocationsAMD:
+ emit_binary_func_op(result_type, id, args[0], args[1], "swizzleInvocationsAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ case SwizzleInvocationsMaskedAMD:
+ emit_binary_func_op(result_type, id, args[0], args[1], "swizzleInvocationsMaskedAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ case WriteInvocationAMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "writeInvocationAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ case MbcntAMD:
+ emit_unary_func_op(result_type, id, args[0], "mbcntAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ default:
+ statement("// unimplemented SPV AMD shader ballot op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_spv_amd_shader_explicit_vertex_parameter_op(uint32_t result_type, uint32_t id, uint32_t eop,
+ const uint32_t *args, uint32_t)
+{
+ require_extension_internal("GL_AMD_shader_explicit_vertex_parameter");
+
+ enum AMDShaderExplicitVertexParameter
+ {
+ InterpolateAtVertexAMD = 1
+ };
+
+ auto op = static_cast<AMDShaderExplicitVertexParameter>(eop);
+
+ switch (op)
+ {
+ case InterpolateAtVertexAMD:
+ emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtVertexAMD");
+ break;
+
+ default:
+ statement("// unimplemented SPV AMD shader explicit vertex parameter op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
+ const uint32_t *args, uint32_t)
+{
+ require_extension_internal("GL_AMD_shader_trinary_minmax");
+
+ enum AMDShaderTrinaryMinMax
+ {
+ FMin3AMD = 1,
+ UMin3AMD = 2,
+ SMin3AMD = 3,
+ FMax3AMD = 4,
+ UMax3AMD = 5,
+ SMax3AMD = 6,
+ FMid3AMD = 7,
+ UMid3AMD = 8,
+ SMid3AMD = 9
+ };
+
+ auto op = static_cast<AMDShaderTrinaryMinMax>(eop);
+
+ switch (op)
+ {
+ case FMin3AMD:
+ case UMin3AMD:
+ case SMin3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "min3");
+ break;
+
+ case FMax3AMD:
+ case UMax3AMD:
+ case SMax3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "max3");
+ break;
+
+ case FMid3AMD:
+ case UMid3AMD:
+ case SMid3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "mid3");
+ break;
+
+ default:
+ statement("// unimplemented SPV AMD shader trinary minmax op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_spv_amd_gcn_shader_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args,
+ uint32_t)
+{
+ require_extension_internal("GL_AMD_gcn_shader");
+
+ enum AMDGCNShader
+ {
+ CubeFaceIndexAMD = 1,
+ CubeFaceCoordAMD = 2,
+ TimeAMD = 3
+ };
+
+ auto op = static_cast<AMDGCNShader>(eop);
+
+ switch (op)
+ {
+ case CubeFaceIndexAMD:
+ emit_unary_func_op(result_type, id, args[0], "cubeFaceIndexAMD");
+ break;
+ case CubeFaceCoordAMD:
+ emit_unary_func_op(result_type, id, args[0], "cubeFaceCoordAMD");
+ break;
+ case TimeAMD:
+ {
+ string expr = "timeAMD()";
+ emit_op(result_type, id, expr, true);
+ register_control_dependent_expression(id);
+ break;
+ }
+
+ default:
+ statement("// unimplemented SPV AMD gcn shader op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_subgroup_op(const Instruction &i)
+{
+ const uint32_t *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (!options.vulkan_semantics && !is_supported_subgroup_op_in_opengl(op, ops))
+ SPIRV_CROSS_THROW("This subgroup operation is only supported in Vulkan semantics.");
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(i);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupElect);
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ const GroupOperation operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationReduce)
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallotBitCount);
+ else if (operation == GroupOperationInclusiveScan || operation == GroupOperationExclusiveScan)
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupInverseBallot_InclBitCount_ExclBitCout);
+ }
+ break;
+
+ case OpGroupNonUniformBallotBitExtract:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallotBitExtract);
+ break;
+
+ case OpGroupNonUniformInverseBallot:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupInverseBallot_InclBitCount_ExclBitCout);
+ break;
+
+ case OpGroupNonUniformBallot:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallot);
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallotFindLSB_MSB);
+ break;
+
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBroadcast_First);
+ break;
+
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ require_extension_internal("GL_KHR_shader_subgroup_shuffle");
+ break;
+
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ require_extension_internal("GL_KHR_shader_subgroup_shuffle_relative");
+ break;
+
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ {
+ const SPIRType &type = expression_type(ops[3]);
+ if (type.basetype == SPIRType::BaseType::Boolean && type.vecsize == 1u)
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupAll_Any_AllEqualBool);
+ else
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupAllEqualT);
+ }
+ break;
+
+ // clang-format off
+#define GLSL_GROUP_OP(OP)\
+ case OpGroupNonUniform##OP:\
+ {\
+ auto operation = static_cast<GroupOperation>(ops[3]);\
+ if (operation == GroupOperationClusteredReduce)\
+ require_extension_internal("GL_KHR_shader_subgroup_clustered");\
+ else if (operation == GroupOperationReduce)\
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupArithmetic##OP##Reduce);\
+ else if (operation == GroupOperationExclusiveScan)\
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupArithmetic##OP##ExclusiveScan);\
+ else if (operation == GroupOperationInclusiveScan)\
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupArithmetic##OP##InclusiveScan);\
+ else\
+ SPIRV_CROSS_THROW("Invalid group operation.");\
+ break;\
+ }
+
+ GLSL_GROUP_OP(IAdd)
+ GLSL_GROUP_OP(FAdd)
+ GLSL_GROUP_OP(IMul)
+ GLSL_GROUP_OP(FMul)
+
+#undef GLSL_GROUP_OP
+ // clang-format on
+
+ case OpGroupNonUniformFMin:
+ case OpGroupNonUniformFMax:
+ case OpGroupNonUniformSMin:
+ case OpGroupNonUniformSMax:
+ case OpGroupNonUniformUMin:
+ case OpGroupNonUniformUMax:
+ case OpGroupNonUniformBitwiseAnd:
+ case OpGroupNonUniformBitwiseOr:
+ case OpGroupNonUniformBitwiseXor:
+ case OpGroupNonUniformLogicalAnd:
+ case OpGroupNonUniformLogicalOr:
+ case OpGroupNonUniformLogicalXor:
+ {
+ auto operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationClusteredReduce)
+ {
+ require_extension_internal("GL_KHR_shader_subgroup_clustered");
+ }
+ else if (operation == GroupOperationExclusiveScan || operation == GroupOperationInclusiveScan ||
+ operation == GroupOperationReduce)
+ {
+ require_extension_internal("GL_KHR_shader_subgroup_arithmetic");
+ }
+ else
+ SPIRV_CROSS_THROW("Invalid group operation.");
+ break;
+ }
+
+ case OpGroupNonUniformQuadSwap:
+ case OpGroupNonUniformQuadBroadcast:
+ require_extension_internal("GL_KHR_shader_subgroup_quad");
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
+ }
+
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
+ if (scope != ScopeSubgroup)
+ SPIRV_CROSS_THROW("Only subgroup scope is supported.");
+
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ emit_op(result_type, id, "subgroupElect()", true);
+ break;
+
+ case OpGroupNonUniformBroadcast:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupBroadcast");
+ break;
+
+ case OpGroupNonUniformBroadcastFirst:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBroadcastFirst");
+ break;
+
+ case OpGroupNonUniformBallot:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBallot");
+ break;
+
+ case OpGroupNonUniformInverseBallot:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupInverseBallot");
+ break;
+
+ case OpGroupNonUniformBallotBitExtract:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupBallotBitExtract");
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBallotFindLSB");
+ break;
+
+ case OpGroupNonUniformBallotFindMSB:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBallotFindMSB");
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ auto operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationReduce)
+ emit_unary_func_op(result_type, id, ops[4], "subgroupBallotBitCount");
+ else if (operation == GroupOperationInclusiveScan)
+ emit_unary_func_op(result_type, id, ops[4], "subgroupBallotInclusiveBitCount");
+ else if (operation == GroupOperationExclusiveScan)
+ emit_unary_func_op(result_type, id, ops[4], "subgroupBallotExclusiveBitCount");
+ else
+ SPIRV_CROSS_THROW("Invalid BitCount operation.");
+ break;
+ }
+
+ case OpGroupNonUniformShuffle:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffle");
+ break;
+
+ case OpGroupNonUniformShuffleXor:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffleXor");
+ break;
+
+ case OpGroupNonUniformShuffleUp:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffleUp");
+ break;
+
+ case OpGroupNonUniformShuffleDown:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffleDown");
+ break;
+
+ case OpGroupNonUniformAll:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupAll");
+ break;
+
+ case OpGroupNonUniformAny:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupAny");
+ break;
+
+ case OpGroupNonUniformAllEqual:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupAllEqual");
+ break;
+
+ // clang-format off
+#define GLSL_GROUP_OP(op, glsl_op) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[3]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op(result_type, id, ops[4], "subgroup" #glsl_op); \
+ else if (operation == GroupOperationInclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[4], "subgroupInclusive" #glsl_op); \
+ else if (operation == GroupOperationExclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[4], "subgroupExclusive" #glsl_op); \
+ else if (operation == GroupOperationClusteredReduce) \
+ emit_binary_func_op(result_type, id, ops[4], ops[5], "subgroupClustered" #glsl_op); \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+#define GLSL_GROUP_OP_CAST(op, glsl_op, type) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[3]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op_cast(result_type, id, ops[4], "subgroup" #glsl_op, type, type); \
+ else if (operation == GroupOperationInclusiveScan) \
+ emit_unary_func_op_cast(result_type, id, ops[4], "subgroupInclusive" #glsl_op, type, type); \
+ else if (operation == GroupOperationExclusiveScan) \
+ emit_unary_func_op_cast(result_type, id, ops[4], "subgroupExclusive" #glsl_op, type, type); \
+ else if (operation == GroupOperationClusteredReduce) \
+ emit_binary_func_op_cast_clustered(result_type, id, ops[4], ops[5], "subgroupClustered" #glsl_op, type); \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+ GLSL_GROUP_OP(FAdd, Add)
+ GLSL_GROUP_OP(FMul, Mul)
+ GLSL_GROUP_OP(FMin, Min)
+ GLSL_GROUP_OP(FMax, Max)
+ GLSL_GROUP_OP(IAdd, Add)
+ GLSL_GROUP_OP(IMul, Mul)
+ GLSL_GROUP_OP_CAST(SMin, Min, int_type)
+ GLSL_GROUP_OP_CAST(SMax, Max, int_type)
+ GLSL_GROUP_OP_CAST(UMin, Min, uint_type)
+ GLSL_GROUP_OP_CAST(UMax, Max, uint_type)
+ GLSL_GROUP_OP(BitwiseAnd, And)
+ GLSL_GROUP_OP(BitwiseOr, Or)
+ GLSL_GROUP_OP(BitwiseXor, Xor)
+ GLSL_GROUP_OP(LogicalAnd, And)
+ GLSL_GROUP_OP(LogicalOr, Or)
+ GLSL_GROUP_OP(LogicalXor, Xor)
+#undef GLSL_GROUP_OP
+#undef GLSL_GROUP_OP_CAST
+ // clang-format on
+
+ case OpGroupNonUniformQuadSwap:
+ {
+ uint32_t direction = evaluate_constant_u32(ops[4]);
+ if (direction == 0)
+ emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapHorizontal");
+ else if (direction == 1)
+ emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapVertical");
+ else if (direction == 2)
+ emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapDiagonal");
+ else
+ SPIRV_CROSS_THROW("Invalid quad swap direction.");
+ break;
+ }
+
+ case OpGroupNonUniformQuadBroadcast:
+ {
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupQuadBroadcast");
+ break;
+ }
+
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
+ }
+
+ register_control_dependent_expression(id);
+}
+
+string CompilerGLSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
+{
+ // OpBitcast can deal with pointers.
+ if (out_type.pointer || in_type.pointer)
+ {
+ if (out_type.vecsize == 2 || in_type.vecsize == 2)
+ require_extension_internal("GL_EXT_buffer_reference_uvec2");
+ return type_to_glsl(out_type);
+ }
+
+ if (out_type.basetype == in_type.basetype)
+ return "";
+
+ assert(out_type.basetype != SPIRType::Boolean);
+ assert(in_type.basetype != SPIRType::Boolean);
+
+ bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type);
+ bool same_size_cast = out_type.width == in_type.width;
+
+ // Trivial bitcast case, casts between integers.
+ if (integral_cast && same_size_cast)
+ return type_to_glsl(out_type);
+
+ // Catch-all 8-bit arithmetic casts (GL_EXT_shader_explicit_arithmetic_types).
+ if (out_type.width == 8 && in_type.width >= 16 && integral_cast && in_type.vecsize == 1)
+ return "unpack8";
+ else if (in_type.width == 8 && out_type.width == 16 && integral_cast && out_type.vecsize == 1)
+ return "pack16";
+ else if (in_type.width == 8 && out_type.width == 32 && integral_cast && out_type.vecsize == 1)
+ return "pack32";
+
+ // Floating <-> Integer special casts. Just have to enumerate all cases. :(
+ // 16-bit, 32-bit and 64-bit floats.
+ if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Float)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Float -> Uint bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "floatBitsToUint";
+ }
+ else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Float)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Float -> Int bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "floatBitsToInt";
+ }
+ else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::UInt)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Uint -> Float bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "uintBitsToFloat";
+ }
+ else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::Int)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Int -> Float bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "intBitsToFloat";
+ }
+
+ else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Double)
+ return "doubleBitsToInt64";
+ else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Double)
+ return "doubleBitsToUint64";
+ else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::Int64)
+ return "int64BitsToDouble";
+ else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::UInt64)
+ return "uint64BitsToDouble";
+ else if (out_type.basetype == SPIRType::Short && in_type.basetype == SPIRType::Half)
+ return "float16BitsToInt16";
+ else if (out_type.basetype == SPIRType::UShort && in_type.basetype == SPIRType::Half)
+ return "float16BitsToUint16";
+ else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::Short)
+ return "int16BitsToFloat16";
+ else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::UShort)
+ return "uint16BitsToFloat16";
+
+ // And finally, some even more special purpose casts.
+ if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::UInt && in_type.vecsize == 2)
+ return "packUint2x32";
+ else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::UInt64 && out_type.vecsize == 2)
+ return "unpackUint2x32";
+ else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::UInt && in_type.vecsize == 1)
+ return "unpackFloat2x16";
+ else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Half && in_type.vecsize == 2)
+ return "packFloat2x16";
+ else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Short && in_type.vecsize == 2)
+ return "packInt2x16";
+ else if (out_type.basetype == SPIRType::Short && in_type.basetype == SPIRType::Int && in_type.vecsize == 1)
+ return "unpackInt2x16";
+ else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::UShort && in_type.vecsize == 2)
+ return "packUint2x16";
+ else if (out_type.basetype == SPIRType::UShort && in_type.basetype == SPIRType::UInt && in_type.vecsize == 1)
+ return "unpackUint2x16";
+ else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Short && in_type.vecsize == 4)
+ return "packInt4x16";
+ else if (out_type.basetype == SPIRType::Short && in_type.basetype == SPIRType::Int64 && in_type.vecsize == 1)
+ return "unpackInt4x16";
+ else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::UShort && in_type.vecsize == 4)
+ return "packUint4x16";
+ else if (out_type.basetype == SPIRType::UShort && in_type.basetype == SPIRType::UInt64 && in_type.vecsize == 1)
+ return "unpackUint4x16";
+
+ return "";
+}
+
+string CompilerGLSL::bitcast_glsl(const SPIRType &result_type, uint32_t argument)
+{
+ auto op = bitcast_glsl_op(result_type, expression_type(argument));
+ if (op.empty())
+ return to_enclosed_unpacked_expression(argument);
+ else
+ return join(op, "(", to_unpacked_expression(argument), ")");
+}
+
+std::string CompilerGLSL::bitcast_expression(SPIRType::BaseType target_type, uint32_t arg)
+{
+ auto expr = to_expression(arg);
+ auto &src_type = expression_type(arg);
+ if (src_type.basetype != target_type)
+ {
+ auto target = src_type;
+ target.basetype = target_type;
+ expr = join(bitcast_glsl_op(target, src_type), "(", expr, ")");
+ }
+
+ return expr;
+}
+
+std::string CompilerGLSL::bitcast_expression(const SPIRType &target_type, SPIRType::BaseType expr_type,
+ const std::string &expr)
+{
+ if (target_type.basetype == expr_type)
+ return expr;
+
+ auto src_type = target_type;
+ src_type.basetype = expr_type;
+ return join(bitcast_glsl_op(target_type, src_type), "(", expr, ")");
+}
+
+string CompilerGLSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
+{
+ switch (builtin)
+ {
+ case BuiltInPosition:
+ return "gl_Position";
+ case BuiltInPointSize:
+ return "gl_PointSize";
+ case BuiltInClipDistance:
+ {
+ if (options.es)
+ require_extension_internal("GL_EXT_clip_cull_distance");
+ return "gl_ClipDistance";
+ }
+ case BuiltInCullDistance:
+ {
+ if (options.es)
+ require_extension_internal("GL_EXT_clip_cull_distance");
+ return "gl_CullDistance";
+ }
+ case BuiltInVertexId:
+ if (options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Cannot implement gl_VertexID in Vulkan GLSL. This shader was created "
+ "with GL semantics.");
+ return "gl_VertexID";
+ case BuiltInInstanceId:
+ if (options.vulkan_semantics)
+ {
+ auto model = get_entry_point().model;
+ switch (model)
+ {
+ case spv::ExecutionModelIntersectionKHR:
+ case spv::ExecutionModelAnyHitKHR:
+ case spv::ExecutionModelClosestHitKHR:
+ // gl_InstanceID is allowed in these shaders.
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Cannot implement gl_InstanceID in Vulkan GLSL. This shader was "
+ "created with GL semantics.");
+ }
+ }
+ if (!options.es && options.version < 140)
+ {
+ require_extension_internal("GL_ARB_draw_instanced");
+ }
+ return "gl_InstanceID";
+ case BuiltInVertexIndex:
+ if (options.vulkan_semantics)
+ return "gl_VertexIndex";
+ else
+ return "gl_VertexID"; // gl_VertexID already has the base offset applied.
+ case BuiltInInstanceIndex:
+ if (options.vulkan_semantics)
+ return "gl_InstanceIndex";
+
+ if (!options.es && options.version < 140)
+ {
+ require_extension_internal("GL_ARB_draw_instanced");
+ }
+
+ if (options.vertex.support_nonzero_base_instance)
+ {
+ if (!options.vulkan_semantics)
+ {
+ // This is a soft-enable. We will opt-in to using gl_BaseInstanceARB if supported.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ }
+ return "(gl_InstanceID + SPIRV_Cross_BaseInstance)"; // ... but not gl_InstanceID.
+ }
+ else
+ return "gl_InstanceID";
+ case BuiltInPrimitiveId:
+ if (storage == StorageClassInput && get_entry_point().model == ExecutionModelGeometry)
+ return "gl_PrimitiveIDIn";
+ else
+ return "gl_PrimitiveID";
+ case BuiltInInvocationId:
+ return "gl_InvocationID";
+ case BuiltInLayer:
+ return "gl_Layer";
+ case BuiltInViewportIndex:
+ return "gl_ViewportIndex";
+ case BuiltInTessLevelOuter:
+ return "gl_TessLevelOuter";
+ case BuiltInTessLevelInner:
+ return "gl_TessLevelInner";
+ case BuiltInTessCoord:
+ return "gl_TessCoord";
+ case BuiltInPatchVertices:
+ return "gl_PatchVerticesIn";
+ case BuiltInFragCoord:
+ return "gl_FragCoord";
+ case BuiltInPointCoord:
+ return "gl_PointCoord";
+ case BuiltInFrontFacing:
+ return "gl_FrontFacing";
+ case BuiltInFragDepth:
+ return "gl_FragDepth";
+ case BuiltInNumWorkgroups:
+ return "gl_NumWorkGroups";
+ case BuiltInWorkgroupSize:
+ return "gl_WorkGroupSize";
+ case BuiltInWorkgroupId:
+ return "gl_WorkGroupID";
+ case BuiltInLocalInvocationId:
+ return "gl_LocalInvocationID";
+ case BuiltInGlobalInvocationId:
+ return "gl_GlobalInvocationID";
+ case BuiltInLocalInvocationIndex:
+ return "gl_LocalInvocationIndex";
+ case BuiltInHelperInvocation:
+ return "gl_HelperInvocation";
+
+ case BuiltInBaseVertex:
+ if (options.es)
+ SPIRV_CROSS_THROW("BaseVertex not supported in ES profile.");
+
+ if (options.vulkan_semantics)
+ {
+ if (options.version < 460)
+ {
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_BaseVertexARB";
+ }
+ return "gl_BaseVertex";
+ }
+ // On regular GL, this is soft-enabled and we emit ifdefs in code.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "SPIRV_Cross_BaseVertex";
+
+ case BuiltInBaseInstance:
+ if (options.es)
+ SPIRV_CROSS_THROW("BaseInstance not supported in ES profile.");
+
+ if (options.vulkan_semantics)
+ {
+ if (options.version < 460)
+ {
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_BaseInstanceARB";
+ }
+ return "gl_BaseInstance";
+ }
+ // On regular GL, this is soft-enabled and we emit ifdefs in code.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "SPIRV_Cross_BaseInstance";
+
+ case BuiltInDrawIndex:
+ if (options.es)
+ SPIRV_CROSS_THROW("DrawIndex not supported in ES profile.");
+
+ if (options.vulkan_semantics)
+ {
+ if (options.version < 460)
+ {
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_DrawIDARB";
+ }
+ return "gl_DrawID";
+ }
+ // On regular GL, this is soft-enabled and we emit ifdefs in code.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_DrawIDARB";
+
+ case BuiltInSampleId:
+ if (is_legacy())
+ SPIRV_CROSS_THROW("Sample variables not supported in legacy GLSL.");
+ else if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_sample_variables");
+ else if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_sample_shading");
+ return "gl_SampleID";
+
+ case BuiltInSampleMask:
+ if (is_legacy())
+ SPIRV_CROSS_THROW("Sample variables not supported in legacy GLSL.");
+ else if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_sample_variables");
+ else if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_sample_shading");
+
+ if (storage == StorageClassInput)
+ return "gl_SampleMaskIn";
+ else
+ return "gl_SampleMask";
+
+ case BuiltInSamplePosition:
+ if (is_legacy())
+ SPIRV_CROSS_THROW("Sample variables not supported in legacy GLSL.");
+ else if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_sample_variables");
+ else if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_sample_shading");
+ return "gl_SamplePosition";
+
+ case BuiltInViewIndex:
+ if (options.vulkan_semantics)
+ return "gl_ViewIndex";
+ else
+ return "gl_ViewID_OVR";
+
+ case BuiltInNumSubgroups:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::NumSubgroups);
+ return "gl_NumSubgroups";
+
+ case BuiltInSubgroupId:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupID);
+ return "gl_SubgroupID";
+
+ case BuiltInSubgroupSize:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupSize);
+ return "gl_SubgroupSize";
+
+ case BuiltInSubgroupLocalInvocationId:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupInvocationID);
+ return "gl_SubgroupInvocationID";
+
+ case BuiltInSubgroupEqMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupEqMask";
+
+ case BuiltInSubgroupGeMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupGeMask";
+
+ case BuiltInSubgroupGtMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupGtMask";
+
+ case BuiltInSubgroupLeMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupLeMask";
+
+ case BuiltInSubgroupLtMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupLtMask";
+
+ case BuiltInLaunchIdKHR:
+ return ray_tracing_is_khr ? "gl_LaunchIDEXT" : "gl_LaunchIDNV";
+ case BuiltInLaunchSizeKHR:
+ return ray_tracing_is_khr ? "gl_LaunchSizeEXT" : "gl_LaunchSizeNV";
+ case BuiltInWorldRayOriginKHR:
+ return ray_tracing_is_khr ? "gl_WorldRayOriginEXT" : "gl_WorldRayOriginNV";
+ case BuiltInWorldRayDirectionKHR:
+ return ray_tracing_is_khr ? "gl_WorldRayDirectionEXT" : "gl_WorldRayDirectionNV";
+ case BuiltInObjectRayOriginKHR:
+ return ray_tracing_is_khr ? "gl_ObjectRayOriginEXT" : "gl_ObjectRayOriginNV";
+ case BuiltInObjectRayDirectionKHR:
+ return ray_tracing_is_khr ? "gl_ObjectRayDirectionEXT" : "gl_ObjectRayDirectionNV";
+ case BuiltInRayTminKHR:
+ return ray_tracing_is_khr ? "gl_RayTminEXT" : "gl_RayTminNV";
+ case BuiltInRayTmaxKHR:
+ return ray_tracing_is_khr ? "gl_RayTmaxEXT" : "gl_RayTmaxNV";
+ case BuiltInInstanceCustomIndexKHR:
+ return ray_tracing_is_khr ? "gl_InstanceCustomIndexEXT" : "gl_InstanceCustomIndexNV";
+ case BuiltInObjectToWorldKHR:
+ return ray_tracing_is_khr ? "gl_ObjectToWorldEXT" : "gl_ObjectToWorldNV";
+ case BuiltInWorldToObjectKHR:
+ return ray_tracing_is_khr ? "gl_WorldToObjectEXT" : "gl_WorldToObjectNV";
+ case BuiltInHitTNV:
+ // gl_HitTEXT is an alias of RayTMax in KHR.
+ return "gl_HitTNV";
+ case BuiltInHitKindKHR:
+ return ray_tracing_is_khr ? "gl_HitKindEXT" : "gl_HitKindNV";
+ case BuiltInIncomingRayFlagsKHR:
+ return ray_tracing_is_khr ? "gl_IncomingRayFlagsEXT" : "gl_IncomingRayFlagsNV";
+
+ case BuiltInBaryCoordKHR:
+ {
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("gl_BaryCoordEXT requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("gl_BaryCoordEXT requires GLSL 450.");
+
+ if (barycentric_is_nv)
+ {
+ require_extension_internal("GL_NV_fragment_shader_barycentric");
+ return "gl_BaryCoordNV";
+ }
+ else
+ {
+ require_extension_internal("GL_EXT_fragment_shader_barycentric");
+ return "gl_BaryCoordEXT";
+ }
+ }
+
+ case BuiltInBaryCoordNoPerspNV:
+ {
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("gl_BaryCoordNoPerspEXT requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("gl_BaryCoordNoPerspEXT requires GLSL 450.");
+
+ if (barycentric_is_nv)
+ {
+ require_extension_internal("GL_NV_fragment_shader_barycentric");
+ return "gl_BaryCoordNoPerspNV";
+ }
+ else
+ {
+ require_extension_internal("GL_EXT_fragment_shader_barycentric");
+ return "gl_BaryCoordNoPerspEXT";
+ }
+ }
+
+ case BuiltInFragStencilRefEXT:
+ {
+ if (!options.es)
+ {
+ require_extension_internal("GL_ARB_shader_stencil_export");
+ return "gl_FragStencilRefARB";
+ }
+ else
+ SPIRV_CROSS_THROW("Stencil export not supported in GLES.");
+ }
+
+ case BuiltInPrimitiveShadingRateKHR:
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Can only use PrimitiveShadingRateKHR in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_fragment_shading_rate");
+ return "gl_PrimitiveShadingRateEXT";
+ }
+
+ case BuiltInShadingRateKHR:
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Can only use ShadingRateKHR in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_fragment_shading_rate");
+ return "gl_ShadingRateEXT";
+ }
+
+ case BuiltInDeviceIndex:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Need Vulkan semantics for device group support.");
+ require_extension_internal("GL_EXT_device_group");
+ return "gl_DeviceIndex";
+
+ case BuiltInFullyCoveredEXT:
+ if (!options.es)
+ require_extension_internal("GL_NV_conservative_raster_underestimation");
+ else
+ SPIRV_CROSS_THROW("Need desktop GL to use GL_NV_conservative_raster_underestimation.");
+ return "gl_FragFullyCoveredNV";
+
+ case BuiltInPrimitiveTriangleIndicesEXT:
+ return "gl_PrimitiveTriangleIndicesEXT";
+ case BuiltInPrimitiveLineIndicesEXT:
+ return "gl_PrimitiveLineIndicesEXT";
+ case BuiltInPrimitivePointIndicesEXT:
+ return "gl_PrimitivePointIndicesEXT";
+ case BuiltInCullPrimitiveEXT:
+ return "gl_CullPrimitiveEXT";
+
+ default:
+ return join("gl_BuiltIn_", convert_to_string(builtin));
+ }
+}
+
+const char *CompilerGLSL::index_to_swizzle(uint32_t index)
+{
+ switch (index)
+ {
+ case 0:
+ return "x";
+ case 1:
+ return "y";
+ case 2:
+ return "z";
+ case 3:
+ return "w";
+ default:
+ return "x"; // Don't crash, but engage the "undefined behavior" described for out-of-bounds logical addressing in spec.
+ }
+}
+
+void CompilerGLSL::access_chain_internal_append_index(std::string &expr, uint32_t /*base*/, const SPIRType * /*type*/,
+ AccessChainFlags flags, bool &access_chain_is_arrayed,
+ uint32_t index)
+{
+ bool index_is_literal = (flags & ACCESS_CHAIN_INDEX_IS_LITERAL_BIT) != 0;
+ bool ptr_chain = (flags & ACCESS_CHAIN_PTR_CHAIN_BIT) != 0;
+ bool register_expression_read = (flags & ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT) == 0;
+
+ string idx_expr = index_is_literal ? convert_to_string(index) : to_unpacked_expression(index, register_expression_read);
+
+ // For the case where the base of an OpPtrAccessChain already ends in [n],
+ // we need to use the index as an offset to the existing index, otherwise,
+ // we can just use the index directly.
+ if (ptr_chain && access_chain_is_arrayed)
+ {
+ size_t split_pos = expr.find_last_of(']');
+ size_t enclose_split = expr.find_last_of(')');
+
+ // If we have already enclosed the expression, don't try to be clever, it will break.
+ if (split_pos > enclose_split || enclose_split == string::npos)
+ {
+ string expr_front = expr.substr(0, split_pos);
+ string expr_back = expr.substr(split_pos);
+ expr = expr_front + " + " + enclose_expression(idx_expr) + expr_back;
+ return;
+ }
+ }
+
+ expr += "[";
+ expr += idx_expr;
+ expr += "]";
+}
+
+bool CompilerGLSL::access_chain_needs_stage_io_builtin_translation(uint32_t)
+{
+ return true;
+}
+
+string CompilerGLSL::access_chain_internal(uint32_t base, const uint32_t *indices, uint32_t count,
+ AccessChainFlags flags, AccessChainMeta *meta)
+{
+ string expr;
+
+ bool index_is_literal = (flags & ACCESS_CHAIN_INDEX_IS_LITERAL_BIT) != 0;
+ bool msb_is_id = (flags & ACCESS_CHAIN_LITERAL_MSB_FORCE_ID) != 0;
+ bool chain_only = (flags & ACCESS_CHAIN_CHAIN_ONLY_BIT) != 0;
+ bool ptr_chain = (flags & ACCESS_CHAIN_PTR_CHAIN_BIT) != 0;
+ bool register_expression_read = (flags & ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT) == 0;
+ bool flatten_member_reference = (flags & ACCESS_CHAIN_FLATTEN_ALL_MEMBERS_BIT) != 0;
+
+ if (!chain_only)
+ {
+ // We handle transpose explicitly, so don't resolve that here.
+ auto *e = maybe_get<SPIRExpression>(base);
+ bool old_transpose = e && e->need_transpose;
+ if (e)
+ e->need_transpose = false;
+ expr = to_enclosed_expression(base, register_expression_read);
+ if (e)
+ e->need_transpose = old_transpose;
+ }
+
+ // Start traversing type hierarchy at the proper non-pointer types,
+ // but keep type_id referencing the original pointer for use below.
+ uint32_t type_id = expression_type_id(base);
+ const auto *type = &get_pointee_type(type_id);
+
+ if (!backend.native_pointers)
+ {
+ if (ptr_chain)
+ SPIRV_CROSS_THROW("Backend does not support native pointers and does not support OpPtrAccessChain.");
+
+ // Wrapped buffer reference pointer types will need to poke into the internal "value" member before
+ // continuing the access chain.
+ if (should_dereference(base))
+ expr = dereference_expression(get<SPIRType>(type_id), expr);
+ }
+ else if (should_dereference(base) && type->basetype != SPIRType::Struct && !ptr_chain)
+ expr = join("(", dereference_expression(*type, expr), ")");
+
+ bool access_chain_is_arrayed = expr.find_first_of('[') != string::npos;
+ bool row_major_matrix_needs_conversion = is_non_native_row_major_matrix(base);
+ bool is_packed = has_extended_decoration(base, SPIRVCrossDecorationPhysicalTypePacked);
+ uint32_t physical_type = get_extended_decoration(base, SPIRVCrossDecorationPhysicalTypeID);
+ bool is_invariant = has_decoration(base, DecorationInvariant);
+ bool relaxed_precision = has_decoration(base, DecorationRelaxedPrecision);
+ bool pending_array_enclose = false;
+ bool dimension_flatten = false;
+ bool access_meshlet_position_y = false;
+
+ if (auto *base_expr = maybe_get<SPIRExpression>(base))
+ {
+ access_meshlet_position_y = base_expr->access_meshlet_position_y;
+ }
+
+ // If we are translating access to a structured buffer, the first subscript '._m0' must be hidden
+ bool hide_first_subscript = count > 1 && is_user_type_structured(base);
+
+ const auto append_index = [&](uint32_t index, bool is_literal, bool is_ptr_chain = false) {
+ AccessChainFlags mod_flags = flags;
+ if (!is_literal)
+ mod_flags &= ~ACCESS_CHAIN_INDEX_IS_LITERAL_BIT;
+ if (!is_ptr_chain)
+ mod_flags &= ~ACCESS_CHAIN_PTR_CHAIN_BIT;
+ access_chain_internal_append_index(expr, base, type, mod_flags, access_chain_is_arrayed, index);
+ check_physical_type_cast(expr, type, physical_type);
+ };
+
+ for (uint32_t i = 0; i < count; i++)
+ {
+ uint32_t index = indices[i];
+
+ bool is_literal = index_is_literal;
+ if (is_literal && msb_is_id && (index >> 31u) != 0u)
+ {
+ is_literal = false;
+ index &= 0x7fffffffu;
+ }
+
+ bool ptr_chain_array_entry = ptr_chain && i == 0 && is_array(*type);
+
+ if (ptr_chain_array_entry)
+ {
+ // This is highly unusual code, since normally we'd use plain AccessChain, but it's still allowed.
+ // We are considered to have a pointer to array and one element shifts by one array at a time.
+ // If we use normal array indexing, we'll first decay to pointer, and lose the array-ness,
+ // so we have to take pointer to array explicitly.
+ if (!should_dereference(base))
+ expr = enclose_expression(address_of_expression(expr));
+ }
+
+ if (ptr_chain && i == 0)
+ {
+ // Pointer chains
+ // If we are flattening multidimensional arrays, only create opening bracket on first
+ // array index.
+ if (options.flatten_multidimensional_arrays)
+ {
+ dimension_flatten = type->array.size() >= 1;
+ pending_array_enclose = dimension_flatten;
+ if (pending_array_enclose)
+ expr += "[";
+ }
+
+ if (options.flatten_multidimensional_arrays && dimension_flatten)
+ {
+ // If we are flattening multidimensional arrays, do manual stride computation.
+ if (is_literal)
+ expr += convert_to_string(index);
+ else
+ expr += to_enclosed_expression(index, register_expression_read);
+
+ for (auto j = uint32_t(type->array.size()); j; j--)
+ {
+ expr += " * ";
+ expr += enclose_expression(to_array_size(*type, j - 1));
+ }
+
+ if (type->array.empty())
+ pending_array_enclose = false;
+ else
+ expr += " + ";
+
+ if (!pending_array_enclose)
+ expr += "]";
+ }
+ else
+ {
+ if (flags & ACCESS_CHAIN_PTR_CHAIN_POINTER_ARITH_BIT)
+ {
+ SPIRType tmp_type(OpTypeInt);
+ tmp_type.basetype = SPIRType::UInt64;
+ tmp_type.width = 64;
+ tmp_type.vecsize = 1;
+ tmp_type.columns = 1;
+
+ TypeID ptr_type_id = expression_type_id(base);
+ const SPIRType &ptr_type = get<SPIRType>(ptr_type_id);
+ const SPIRType &pointee_type = get_pointee_type(ptr_type);
+
+ // This only runs in native pointer backends.
+ // Can replace reinterpret_cast with a backend string if ever needed.
+ // We expect this to count as a de-reference.
+ // This leaks some MSL details, but feels slightly overkill to
+ // add yet another virtual interface just for this.
+ auto intptr_expr = join("reinterpret_cast<", type_to_glsl(tmp_type), ">(", expr, ")");
+ intptr_expr += join(" + ", to_enclosed_unpacked_expression(index), " * ",
+ get_decoration(ptr_type_id, DecorationArrayStride));
+
+ if (flags & ACCESS_CHAIN_PTR_CHAIN_CAST_TO_SCALAR_BIT)
+ {
+ is_packed = true;
+ expr = join("*reinterpret_cast<device packed_", type_to_glsl(pointee_type),
+ " *>(", intptr_expr, ")");
+ }
+ else
+ {
+ expr = join("*reinterpret_cast<", type_to_glsl(ptr_type), ">(", intptr_expr, ")");
+ }
+ }
+ else
+ append_index(index, is_literal, true);
+ }
+
+ if (type->basetype == SPIRType::ControlPointArray)
+ {
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+ }
+
+ access_chain_is_arrayed = true;
+
+ // Explicitly enclose the expression if this is one of the weird pointer-to-array cases.
+ // We don't want any future indexing to add to this array dereference.
+ // Enclosing the expression blocks that and avoids any shenanigans with operand priority.
+ if (ptr_chain_array_entry)
+ expr = join("(", expr, ")");
+ }
+ // Arrays
+ else if (!type->array.empty())
+ {
+ // If we are flattening multidimensional arrays, only create opening bracket on first
+ // array index.
+ if (options.flatten_multidimensional_arrays && !pending_array_enclose)
+ {
+ dimension_flatten = type->array.size() > 1;
+ pending_array_enclose = dimension_flatten;
+ if (pending_array_enclose)
+ expr += "[";
+ }
+
+ assert(type->parent_type);
+
+ auto *var = maybe_get<SPIRVariable>(base);
+ if (backend.force_gl_in_out_block && i == 0 && var && is_builtin_variable(*var) &&
+ !has_decoration(type->self, DecorationBlock))
+ {
+ // This deals with scenarios for tesc/geom where arrays of gl_Position[] are declared.
+ // Normally, these variables live in blocks when compiled from GLSL,
+ // but HLSL seems to just emit straight arrays here.
+ // We must pretend this access goes through gl_in/gl_out arrays
+ // to be able to access certain builtins as arrays.
+ // Similar concerns apply for mesh shaders where we have to redirect to gl_MeshVerticesEXT or MeshPrimitivesEXT.
+ auto builtin = ir.meta[base].decoration.builtin_type;
+ bool mesh_shader = get_execution_model() == ExecutionModelMeshEXT;
+
+ switch (builtin)
+ {
+ case BuiltInCullDistance:
+ case BuiltInClipDistance:
+ if (type->array.size() == 1) // Red herring. Only consider block IO for two-dimensional arrays here.
+ {
+ append_index(index, is_literal);
+ break;
+ }
+ // fallthrough
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ if (mesh_shader)
+ expr = join("gl_MeshVerticesEXT[", to_expression(index, register_expression_read), "].", expr);
+ else if (var->storage == StorageClassInput)
+ expr = join("gl_in[", to_expression(index, register_expression_read), "].", expr);
+ else if (var->storage == StorageClassOutput)
+ expr = join("gl_out[", to_expression(index, register_expression_read), "].", expr);
+ else
+ append_index(index, is_literal);
+ break;
+
+ case BuiltInPrimitiveId:
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ case BuiltInCullPrimitiveEXT:
+ case BuiltInPrimitiveShadingRateKHR:
+ if (mesh_shader)
+ expr = join("gl_MeshPrimitivesEXT[", to_expression(index, register_expression_read), "].", expr);
+ else
+ append_index(index, is_literal);
+ break;
+
+ default:
+ append_index(index, is_literal);
+ break;
+ }
+ }
+ else if (backend.force_merged_mesh_block && i == 0 && var &&
+ !is_builtin_variable(*var) && var->storage == StorageClassOutput)
+ {
+ if (is_per_primitive_variable(*var))
+ expr = join("gl_MeshPrimitivesEXT[", to_expression(index, register_expression_read), "].", expr);
+ else
+ expr = join("gl_MeshVerticesEXT[", to_expression(index, register_expression_read), "].", expr);
+ }
+ else if (options.flatten_multidimensional_arrays && dimension_flatten)
+ {
+ // If we are flattening multidimensional arrays, do manual stride computation.
+ auto &parent_type = get<SPIRType>(type->parent_type);
+
+ if (is_literal)
+ expr += convert_to_string(index);
+ else
+ expr += to_enclosed_expression(index, register_expression_read);
+
+ for (auto j = uint32_t(parent_type.array.size()); j; j--)
+ {
+ expr += " * ";
+ expr += enclose_expression(to_array_size(parent_type, j - 1));
+ }
+
+ if (parent_type.array.empty())
+ pending_array_enclose = false;
+ else
+ expr += " + ";
+
+ if (!pending_array_enclose)
+ expr += "]";
+ }
+ else if (index_is_literal || !builtin_translates_to_nonarray(BuiltIn(get_decoration(base, DecorationBuiltIn))))
+ {
+ // Some builtins are arrays in SPIR-V but not in other languages, e.g. gl_SampleMask[] is an array in SPIR-V but not in Metal.
+ // By throwing away the index, we imply the index was 0, which it must be for gl_SampleMask.
+ // For literal indices we are working on composites, so we ignore this since we have already converted to proper array.
+ append_index(index, is_literal);
+ }
+
+ if (var && has_decoration(var->self, DecorationBuiltIn) &&
+ get_decoration(var->self, DecorationBuiltIn) == BuiltInPosition &&
+ get_execution_model() == ExecutionModelMeshEXT)
+ {
+ access_meshlet_position_y = true;
+ }
+
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+
+ // If the physical type has an unnatural vecsize,
+ // we must assume it's a faked struct where the .data member
+ // is used for the real payload.
+ if (physical_type && (is_vector(*type) || is_scalar(*type)))
+ {
+ auto &phys = get<SPIRType>(physical_type);
+ if (phys.vecsize > 4)
+ expr += ".data";
+ }
+
+ access_chain_is_arrayed = true;
+ }
+ // For structs, the index refers to a constant, which indexes into the members, possibly through a redirection mapping.
+ // We also check if this member is a builtin, since we then replace the entire expression with the builtin one.
+ else if (type->basetype == SPIRType::Struct)
+ {
+ if (!is_literal)
+ index = evaluate_constant_u32(index);
+
+ if (index < uint32_t(type->member_type_index_redirection.size()))
+ index = type->member_type_index_redirection[index];
+
+ if (index >= type->member_types.size())
+ SPIRV_CROSS_THROW("Member index is out of bounds!");
+
+ if (hide_first_subscript)
+ {
+ // First "._m0" subscript has been hidden, subsequent fields must be emitted even for structured buffers
+ hide_first_subscript = false;
+ }
+ else
+ {
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(*type, index, &builtin) && access_chain_needs_stage_io_builtin_translation(base))
+ {
+ if (access_chain_is_arrayed)
+ {
+ expr += ".";
+ expr += builtin_to_glsl(builtin, type->storage);
+ }
+ else
+ expr = builtin_to_glsl(builtin, type->storage);
+
+ if (builtin == BuiltInPosition && get_execution_model() == ExecutionModelMeshEXT)
+ {
+ access_meshlet_position_y = true;
+ }
+ }
+ else
+ {
+ // If the member has a qualified name, use it as the entire chain
+ string qual_mbr_name = get_member_qualified_name(type_id, index);
+ if (!qual_mbr_name.empty())
+ expr = qual_mbr_name;
+ else if (flatten_member_reference)
+ expr += join("_", to_member_name(*type, index));
+ else
+ {
+ // Any pointer de-refences for values are handled in the first access chain.
+ // For pointer chains, the pointer-ness is resolved through an array access.
+ // The only time this is not true is when accessing array of SSBO/UBO.
+ // This case is explicitly handled.
+ expr += to_member_reference(base, *type, index, ptr_chain || i != 0);
+ }
+ }
+ }
+
+ if (has_member_decoration(type->self, index, DecorationInvariant))
+ is_invariant = true;
+ if (has_member_decoration(type->self, index, DecorationRelaxedPrecision))
+ relaxed_precision = true;
+
+ is_packed = member_is_packed_physical_type(*type, index);
+ if (member_is_remapped_physical_type(*type, index))
+ physical_type = get_extended_member_decoration(type->self, index, SPIRVCrossDecorationPhysicalTypeID);
+ else
+ physical_type = 0;
+
+ row_major_matrix_needs_conversion = member_is_non_native_row_major_matrix(*type, index);
+ type = &get<SPIRType>(type->member_types[index]);
+ }
+ // Matrix -> Vector
+ else if (type->columns > 1)
+ {
+ // If we have a row-major matrix here, we need to defer any transpose in case this access chain
+ // is used to store a column. We can resolve it right here and now if we access a scalar directly,
+ // by flipping indexing order of the matrix.
+
+ expr += "[";
+ if (is_literal)
+ expr += convert_to_string(index);
+ else
+ expr += to_unpacked_expression(index, register_expression_read);
+ expr += "]";
+
+ // If the physical type has an unnatural vecsize,
+ // we must assume it's a faked struct where the .data member
+ // is used for the real payload.
+ if (physical_type)
+ {
+ auto &phys = get<SPIRType>(physical_type);
+ if (phys.vecsize > 4 || phys.columns > 4)
+ expr += ".data";
+ }
+
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+ }
+ // Vector -> Scalar
+ else if (type->vecsize > 1)
+ {
+ string deferred_index;
+ if (row_major_matrix_needs_conversion)
+ {
+ // Flip indexing order.
+ auto column_index = expr.find_last_of('[');
+ if (column_index != string::npos)
+ {
+ deferred_index = expr.substr(column_index);
+
+ auto end_deferred_index = deferred_index.find_last_of(']');
+ if (end_deferred_index != string::npos && end_deferred_index + 1 != deferred_index.size())
+ {
+ // If we have any data member fixups, it must be transposed so that it refers to this index.
+ // E.g. [0].data followed by [1] would be shuffled to [1][0].data which is wrong,
+ // and needs to be [1].data[0] instead.
+ end_deferred_index++;
+ deferred_index = deferred_index.substr(end_deferred_index) +
+ deferred_index.substr(0, end_deferred_index);
+ }
+
+ expr.resize(column_index);
+ }
+ }
+
+ // Internally, access chain implementation can also be used on composites,
+ // ignore scalar access workarounds in this case.
+ StorageClass effective_storage = StorageClassGeneric;
+ bool ignore_potential_sliced_writes = false;
+ if ((flags & ACCESS_CHAIN_FORCE_COMPOSITE_BIT) == 0)
+ {
+ if (expression_type(base).pointer)
+ effective_storage = get_expression_effective_storage_class(base);
+
+ // Special consideration for control points.
+ // Control points can only be written by InvocationID, so there is no need
+ // to consider scalar access chains here.
+ // Cleans up some cases where it's very painful to determine the accurate storage class
+ // since blocks can be partially masked ...
+ auto *var = maybe_get_backing_variable(base);
+ if (var && var->storage == StorageClassOutput &&
+ get_execution_model() == ExecutionModelTessellationControl &&
+ !has_decoration(var->self, DecorationPatch))
+ {
+ ignore_potential_sliced_writes = true;
+ }
+ }
+ else
+ ignore_potential_sliced_writes = true;
+
+ if (!row_major_matrix_needs_conversion && !ignore_potential_sliced_writes)
+ {
+ // On some backends, we might not be able to safely access individual scalars in a vector.
+ // To work around this, we might have to cast the access chain reference to something which can,
+ // like a pointer to scalar, which we can then index into.
+ prepare_access_chain_for_scalar_access(expr, get<SPIRType>(type->parent_type), effective_storage,
+ is_packed);
+ }
+
+ if (is_literal)
+ {
+ bool out_of_bounds = (index >= type->vecsize);
+
+ if (!is_packed && !row_major_matrix_needs_conversion)
+ {
+ expr += ".";
+ expr += index_to_swizzle(out_of_bounds ? 0 : index);
+ }
+ else
+ {
+ // For packed vectors, we can only access them as an array, not by swizzle.
+ expr += join("[", out_of_bounds ? 0 : index, "]");
+ }
+ }
+ else if (ir.ids[index].get_type() == TypeConstant && !is_packed && !row_major_matrix_needs_conversion)
+ {
+ auto &c = get<SPIRConstant>(index);
+ bool out_of_bounds = (c.scalar() >= type->vecsize);
+
+ if (c.specialization)
+ {
+ // If the index is a spec constant, we cannot turn extract into a swizzle.
+ expr += join("[", out_of_bounds ? "0" : to_expression(index), "]");
+ }
+ else
+ {
+ expr += ".";
+ expr += index_to_swizzle(out_of_bounds ? 0 : c.scalar());
+ }
+ }
+ else
+ {
+ expr += "[";
+ expr += to_unpacked_expression(index, register_expression_read);
+ expr += "]";
+ }
+
+ if (row_major_matrix_needs_conversion && !ignore_potential_sliced_writes)
+ {
+ if (prepare_access_chain_for_scalar_access(expr, get<SPIRType>(type->parent_type), effective_storage,
+ is_packed))
+ {
+ // We're in a pointer context now, so just remove any member dereference.
+ auto first_index = deferred_index.find_first_of('[');
+ if (first_index != string::npos && first_index != 0)
+ deferred_index = deferred_index.substr(first_index);
+ }
+ }
+
+ if (access_meshlet_position_y)
+ {
+ if (is_literal)
+ {
+ access_meshlet_position_y = index == 1;
+ }
+ else
+ {
+ const auto *c = maybe_get<SPIRConstant>(index);
+ if (c)
+ access_meshlet_position_y = c->scalar() == 1;
+ else
+ {
+ // We don't know, but we have to assume no.
+ // Flip Y in mesh shaders is an opt-in horrible hack, so we'll have to assume shaders try to behave.
+ access_meshlet_position_y = false;
+ }
+ }
+ }
+
+ expr += deferred_index;
+ row_major_matrix_needs_conversion = false;
+
+ is_packed = false;
+ physical_type = 0;
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+ }
+ else if (!backend.allow_truncated_access_chain)
+ SPIRV_CROSS_THROW("Cannot subdivide a scalar value!");
+ }
+
+ if (pending_array_enclose)
+ {
+ SPIRV_CROSS_THROW("Flattening of multidimensional arrays were enabled, "
+ "but the access chain was terminated in the middle of a multidimensional array. "
+ "This is not supported.");
+ }
+
+ if (meta)
+ {
+ meta->need_transpose = row_major_matrix_needs_conversion;
+ meta->storage_is_packed = is_packed;
+ meta->storage_is_invariant = is_invariant;
+ meta->storage_physical_type = physical_type;
+ meta->relaxed_precision = relaxed_precision;
+ meta->access_meshlet_position_y = access_meshlet_position_y;
+ }
+
+ return expr;
+}
+
+void CompilerGLSL::check_physical_type_cast(std::string &, const SPIRType *, uint32_t)
+{
+}
+
+bool CompilerGLSL::prepare_access_chain_for_scalar_access(std::string &, const SPIRType &, spv::StorageClass, bool &)
+{
+ return false;
+}
+
+string CompilerGLSL::to_flattened_struct_member(const string &basename, const SPIRType &type, uint32_t index)
+{
+ auto ret = join(basename, "_", to_member_name(type, index));
+ ParsedIR::sanitize_underscores(ret);
+ return ret;
+}
+
+uint32_t CompilerGLSL::get_physical_type_stride(const SPIRType &) const
+{
+ SPIRV_CROSS_THROW("Invalid to call get_physical_type_stride on a backend without native pointer support.");
+}
+
+string CompilerGLSL::access_chain(uint32_t base, const uint32_t *indices, uint32_t count, const SPIRType &target_type,
+ AccessChainMeta *meta, bool ptr_chain)
+{
+ if (flattened_buffer_blocks.count(base))
+ {
+ uint32_t matrix_stride = 0;
+ uint32_t array_stride = 0;
+ bool need_transpose = false;
+ flattened_access_chain_offset(expression_type(base), indices, count, 0, 16, &need_transpose, &matrix_stride,
+ &array_stride, ptr_chain);
+
+ if (meta)
+ {
+ meta->need_transpose = target_type.columns > 1 && need_transpose;
+ meta->storage_is_packed = false;
+ }
+
+ return flattened_access_chain(base, indices, count, target_type, 0, matrix_stride, array_stride,
+ need_transpose);
+ }
+ else if (flattened_structs.count(base) && count > 0)
+ {
+ AccessChainFlags flags = ACCESS_CHAIN_CHAIN_ONLY_BIT | ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT;
+ if (ptr_chain)
+ flags |= ACCESS_CHAIN_PTR_CHAIN_BIT;
+
+ if (flattened_structs[base])
+ {
+ flags |= ACCESS_CHAIN_FLATTEN_ALL_MEMBERS_BIT;
+ if (meta)
+ meta->flattened_struct = target_type.basetype == SPIRType::Struct;
+ }
+
+ auto chain = access_chain_internal(base, indices, count, flags, nullptr).substr(1);
+ if (meta)
+ {
+ meta->need_transpose = false;
+ meta->storage_is_packed = false;
+ }
+
+ auto basename = to_flattened_access_chain_expression(base);
+ auto ret = join(basename, "_", chain);
+ ParsedIR::sanitize_underscores(ret);
+ return ret;
+ }
+ else
+ {
+ AccessChainFlags flags = ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT;
+ if (ptr_chain)
+ {
+ flags |= ACCESS_CHAIN_PTR_CHAIN_BIT;
+ // PtrAccessChain could get complicated.
+ TypeID type_id = expression_type_id(base);
+ if (backend.native_pointers && has_decoration(type_id, DecorationArrayStride))
+ {
+ // If there is a mismatch we have to go via 64-bit pointer arithmetic :'(
+ // Using packed hacks only gets us so far, and is not designed to deal with pointer to
+ // random values. It works for structs though.
+ auto &pointee_type = get_pointee_type(get<SPIRType>(type_id));
+ uint32_t physical_stride = get_physical_type_stride(pointee_type);
+ uint32_t requested_stride = get_decoration(type_id, DecorationArrayStride);
+ if (physical_stride != requested_stride)
+ {
+ flags |= ACCESS_CHAIN_PTR_CHAIN_POINTER_ARITH_BIT;
+ if (is_vector(pointee_type))
+ flags |= ACCESS_CHAIN_PTR_CHAIN_CAST_TO_SCALAR_BIT;
+ }
+ }
+ }
+
+ return access_chain_internal(base, indices, count, flags, meta);
+ }
+}
+
+string CompilerGLSL::load_flattened_struct(const string &basename, const SPIRType &type)
+{
+ auto expr = type_to_glsl_constructor(type);
+ expr += '(';
+
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ {
+ if (i)
+ expr += ", ";
+
+ auto &member_type = get<SPIRType>(type.member_types[i]);
+ if (member_type.basetype == SPIRType::Struct)
+ expr += load_flattened_struct(to_flattened_struct_member(basename, type, i), member_type);
+ else
+ expr += to_flattened_struct_member(basename, type, i);
+ }
+ expr += ')';
+ return expr;
+}
+
+std::string CompilerGLSL::to_flattened_access_chain_expression(uint32_t id)
+{
+ // Do not use to_expression as that will unflatten access chains.
+ string basename;
+ if (const auto *var = maybe_get<SPIRVariable>(id))
+ basename = to_name(var->self);
+ else if (const auto *expr = maybe_get<SPIRExpression>(id))
+ basename = expr->expression;
+ else
+ basename = to_expression(id);
+
+ return basename;
+}
+
+void CompilerGLSL::store_flattened_struct(const string &basename, uint32_t rhs_id, const SPIRType &type,
+ const SmallVector<uint32_t> &indices)
+{
+ SmallVector<uint32_t> sub_indices = indices;
+ sub_indices.push_back(0);
+
+ auto *member_type = &type;
+ for (auto &index : indices)
+ member_type = &get<SPIRType>(member_type->member_types[index]);
+
+ for (uint32_t i = 0; i < uint32_t(member_type->member_types.size()); i++)
+ {
+ sub_indices.back() = i;
+ auto lhs = join(basename, "_", to_member_name(*member_type, i));
+ ParsedIR::sanitize_underscores(lhs);
+
+ if (get<SPIRType>(member_type->member_types[i]).basetype == SPIRType::Struct)
+ {
+ store_flattened_struct(lhs, rhs_id, type, sub_indices);
+ }
+ else
+ {
+ auto rhs = to_expression(rhs_id) + to_multi_member_reference(type, sub_indices);
+ statement(lhs, " = ", rhs, ";");
+ }
+ }
+}
+
+void CompilerGLSL::store_flattened_struct(uint32_t lhs_id, uint32_t value)
+{
+ auto &type = expression_type(lhs_id);
+ auto basename = to_flattened_access_chain_expression(lhs_id);
+ store_flattened_struct(basename, value, type, {});
+}
+
+std::string CompilerGLSL::flattened_access_chain(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset, uint32_t matrix_stride,
+ uint32_t /* array_stride */, bool need_transpose)
+{
+ if (!target_type.array.empty())
+ SPIRV_CROSS_THROW("Access chains that result in an array can not be flattened");
+ else if (target_type.basetype == SPIRType::Struct)
+ return flattened_access_chain_struct(base, indices, count, target_type, offset);
+ else if (target_type.columns > 1)
+ return flattened_access_chain_matrix(base, indices, count, target_type, offset, matrix_stride, need_transpose);
+ else
+ return flattened_access_chain_vector(base, indices, count, target_type, offset, matrix_stride, need_transpose);
+}
+
+std::string CompilerGLSL::flattened_access_chain_struct(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset)
+{
+ std::string expr;
+
+ if (backend.can_declare_struct_inline)
+ {
+ expr += type_to_glsl_constructor(target_type);
+ expr += "(";
+ }
+ else
+ expr += "{";
+
+ for (uint32_t i = 0; i < uint32_t(target_type.member_types.size()); ++i)
+ {
+ if (i != 0)
+ expr += ", ";
+
+ const SPIRType &member_type = get<SPIRType>(target_type.member_types[i]);
+ uint32_t member_offset = type_struct_member_offset(target_type, i);
+
+ // The access chain terminates at the struct, so we need to find matrix strides and row-major information
+ // ahead of time.
+ bool need_transpose = false;
+ bool relaxed = false;
+ uint32_t matrix_stride = 0;
+ if (member_type.columns > 1)
+ {
+ auto decorations = combined_decoration_for_member(target_type, i);
+ need_transpose = decorations.get(DecorationRowMajor);
+ relaxed = decorations.get(DecorationRelaxedPrecision);
+ matrix_stride = type_struct_member_matrix_stride(target_type, i);
+ }
+
+ auto tmp = flattened_access_chain(base, indices, count, member_type, offset + member_offset, matrix_stride,
+ 0 /* array_stride */, need_transpose);
+
+ // Cannot forward transpositions, so resolve them here.
+ if (need_transpose)
+ expr += convert_row_major_matrix(tmp, member_type, 0, false, relaxed);
+ else
+ expr += tmp;
+ }
+
+ expr += backend.can_declare_struct_inline ? ")" : "}";
+
+ return expr;
+}
+
+std::string CompilerGLSL::flattened_access_chain_matrix(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset,
+ uint32_t matrix_stride, bool need_transpose)
+{
+ assert(matrix_stride);
+ SPIRType tmp_type = target_type;
+ if (need_transpose)
+ swap(tmp_type.vecsize, tmp_type.columns);
+
+ std::string expr;
+
+ expr += type_to_glsl_constructor(tmp_type);
+ expr += "(";
+
+ for (uint32_t i = 0; i < tmp_type.columns; i++)
+ {
+ if (i != 0)
+ expr += ", ";
+
+ expr += flattened_access_chain_vector(base, indices, count, tmp_type, offset + i * matrix_stride, matrix_stride,
+ /* need_transpose= */ false);
+ }
+
+ expr += ")";
+
+ return expr;
+}
+
+std::string CompilerGLSL::flattened_access_chain_vector(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset,
+ uint32_t matrix_stride, bool need_transpose)
+{
+ auto result = flattened_access_chain_offset(expression_type(base), indices, count, offset, 16);
+
+ auto buffer_name = to_name(expression_type(base).self);
+
+ if (need_transpose)
+ {
+ std::string expr;
+
+ if (target_type.vecsize > 1)
+ {
+ expr += type_to_glsl_constructor(target_type);
+ expr += "(";
+ }
+
+ for (uint32_t i = 0; i < target_type.vecsize; ++i)
+ {
+ if (i != 0)
+ expr += ", ";
+
+ uint32_t component_offset = result.second + i * matrix_stride;
+
+ assert(component_offset % (target_type.width / 8) == 0);
+ uint32_t index = component_offset / (target_type.width / 8);
+
+ expr += buffer_name;
+ expr += "[";
+ expr += result.first; // this is a series of N1 * k1 + N2 * k2 + ... that is either empty or ends with a +
+ expr += convert_to_string(index / 4);
+ expr += "]";
+
+ expr += vector_swizzle(1, index % 4);
+ }
+
+ if (target_type.vecsize > 1)
+ {
+ expr += ")";
+ }
+
+ return expr;
+ }
+ else
+ {
+ assert(result.second % (target_type.width / 8) == 0);
+ uint32_t index = result.second / (target_type.width / 8);
+
+ std::string expr;
+
+ expr += buffer_name;
+ expr += "[";
+ expr += result.first; // this is a series of N1 * k1 + N2 * k2 + ... that is either empty or ends with a +
+ expr += convert_to_string(index / 4);
+ expr += "]";
+
+ expr += vector_swizzle(target_type.vecsize, index % 4);
+
+ return expr;
+ }
+}
+
+std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
+ const SPIRType &basetype, const uint32_t *indices, uint32_t count, uint32_t offset, uint32_t word_stride,
+ bool *need_transpose, uint32_t *out_matrix_stride, uint32_t *out_array_stride, bool ptr_chain)
+{
+ // Start traversing type hierarchy at the proper non-pointer types.
+ const auto *type = &get_pointee_type(basetype);
+
+ std::string expr;
+
+ // Inherit matrix information in case we are access chaining a vector which might have come from a row major layout.
+ bool row_major_matrix_needs_conversion = need_transpose ? *need_transpose : false;
+ uint32_t matrix_stride = out_matrix_stride ? *out_matrix_stride : 0;
+ uint32_t array_stride = out_array_stride ? *out_array_stride : 0;
+
+ for (uint32_t i = 0; i < count; i++)
+ {
+ uint32_t index = indices[i];
+
+ // Pointers
+ if (ptr_chain && i == 0)
+ {
+ // Here, the pointer type will be decorated with an array stride.
+ array_stride = get_decoration(basetype.self, DecorationArrayStride);
+ if (!array_stride)
+ SPIRV_CROSS_THROW("SPIR-V does not define ArrayStride for buffer block.");
+
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ // Constant array access.
+ offset += constant->scalar() * array_stride;
+ }
+ else
+ {
+ // Dynamic array access.
+ if (array_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Array stride for dynamic indexing must be divisible by the size "
+ "of a 4-component vector. "
+ "Likely culprit here is a float or vec2 array inside a push "
+ "constant block which is std430. "
+ "This cannot be flattened. Try using std140 layout instead.");
+ }
+
+ expr += to_enclosed_expression(index);
+ expr += " * ";
+ expr += convert_to_string(array_stride / word_stride);
+ expr += " + ";
+ }
+ }
+ // Arrays
+ else if (!type->array.empty())
+ {
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ // Constant array access.
+ offset += constant->scalar() * array_stride;
+ }
+ else
+ {
+ // Dynamic array access.
+ if (array_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Array stride for dynamic indexing must be divisible by the size "
+ "of a 4-component vector. "
+ "Likely culprit here is a float or vec2 array inside a push "
+ "constant block which is std430. "
+ "This cannot be flattened. Try using std140 layout instead.");
+ }
+
+ expr += to_enclosed_expression(index, false);
+ expr += " * ";
+ expr += convert_to_string(array_stride / word_stride);
+ expr += " + ";
+ }
+
+ uint32_t parent_type = type->parent_type;
+ type = &get<SPIRType>(parent_type);
+
+ if (!type->array.empty())
+ array_stride = get_decoration(parent_type, DecorationArrayStride);
+ }
+ // For structs, the index refers to a constant, which indexes into the members.
+ // We also check if this member is a builtin, since we then replace the entire expression with the builtin one.
+ else if (type->basetype == SPIRType::Struct)
+ {
+ index = evaluate_constant_u32(index);
+
+ if (index >= type->member_types.size())
+ SPIRV_CROSS_THROW("Member index is out of bounds!");
+
+ offset += type_struct_member_offset(*type, index);
+
+ auto &struct_type = *type;
+ type = &get<SPIRType>(type->member_types[index]);
+
+ if (type->columns > 1)
+ {
+ matrix_stride = type_struct_member_matrix_stride(struct_type, index);
+ row_major_matrix_needs_conversion =
+ combined_decoration_for_member(struct_type, index).get(DecorationRowMajor);
+ }
+ else
+ row_major_matrix_needs_conversion = false;
+
+ if (!type->array.empty())
+ array_stride = type_struct_member_array_stride(struct_type, index);
+ }
+ // Matrix -> Vector
+ else if (type->columns > 1)
+ {
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ index = evaluate_constant_u32(index);
+ offset += index * (row_major_matrix_needs_conversion ? (type->width / 8) : matrix_stride);
+ }
+ else
+ {
+ uint32_t indexing_stride = row_major_matrix_needs_conversion ? (type->width / 8) : matrix_stride;
+ // Dynamic array access.
+ if (indexing_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Matrix stride for dynamic indexing must be divisible by the size of a "
+ "4-component vector. "
+ "Likely culprit here is a row-major matrix being accessed dynamically. "
+ "This cannot be flattened. Try using std140 layout instead.");
+ }
+
+ expr += to_enclosed_expression(index, false);
+ expr += " * ";
+ expr += convert_to_string(indexing_stride / word_stride);
+ expr += " + ";
+ }
+
+ type = &get<SPIRType>(type->parent_type);
+ }
+ // Vector -> Scalar
+ else if (type->vecsize > 1)
+ {
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ index = evaluate_constant_u32(index);
+ offset += index * (row_major_matrix_needs_conversion ? matrix_stride : (type->width / 8));
+ }
+ else
+ {
+ uint32_t indexing_stride = row_major_matrix_needs_conversion ? matrix_stride : (type->width / 8);
+
+ // Dynamic array access.
+ if (indexing_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Stride for dynamic vector indexing must be divisible by the "
+ "size of a 4-component vector. "
+ "This cannot be flattened in legacy targets.");
+ }
+
+ expr += to_enclosed_expression(index, false);
+ expr += " * ";
+ expr += convert_to_string(indexing_stride / word_stride);
+ expr += " + ";
+ }
+
+ type = &get<SPIRType>(type->parent_type);
+ }
+ else
+ SPIRV_CROSS_THROW("Cannot subdivide a scalar value!");
+ }
+
+ if (need_transpose)
+ *need_transpose = row_major_matrix_needs_conversion;
+ if (out_matrix_stride)
+ *out_matrix_stride = matrix_stride;
+ if (out_array_stride)
+ *out_array_stride = array_stride;
+
+ return std::make_pair(expr, offset);
+}
+
+bool CompilerGLSL::should_dereference(uint32_t id)
+{
+ const auto &type = expression_type(id);
+ // Non-pointer expressions don't need to be dereferenced.
+ if (!type.pointer)
+ return false;
+
+ // Handles shouldn't be dereferenced either.
+ if (!expression_is_lvalue(id))
+ return false;
+
+ // If id is a variable but not a phi variable, we should not dereference it.
+ if (auto *var = maybe_get<SPIRVariable>(id))
+ return var->phi_variable;
+
+ if (auto *expr = maybe_get<SPIRExpression>(id))
+ {
+ // If id is an access chain, we should not dereference it.
+ if (expr->access_chain)
+ return false;
+
+ // If id is a forwarded copy of a variable pointer, we should not dereference it.
+ SPIRVariable *var = nullptr;
+ while (expr->loaded_from && expression_is_forwarded(expr->self))
+ {
+ auto &src_type = expression_type(expr->loaded_from);
+ // To be a copy, the pointer and its source expression must be the
+ // same type. Can't check type.self, because for some reason that's
+ // usually the base type with pointers stripped off. This check is
+ // complex enough that I've hoisted it out of the while condition.
+ if (src_type.pointer != type.pointer || src_type.pointer_depth != type.pointer_depth ||
+ src_type.parent_type != type.parent_type)
+ break;
+ if ((var = maybe_get<SPIRVariable>(expr->loaded_from)))
+ break;
+ if (!(expr = maybe_get<SPIRExpression>(expr->loaded_from)))
+ break;
+ }
+
+ return !var || var->phi_variable;
+ }
+
+ // Otherwise, we should dereference this pointer expression.
+ return true;
+}
+
+bool CompilerGLSL::should_forward(uint32_t id) const
+{
+ // If id is a variable we will try to forward it regardless of force_temporary check below
+ // This is important because otherwise we'll get local sampler copies (highp sampler2D foo = bar) that are invalid in OpenGL GLSL
+
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var)
+ {
+ // Never forward volatile builtin variables, e.g. SPIR-V 1.6 HelperInvocation.
+ return !(has_decoration(id, DecorationBuiltIn) && has_decoration(id, DecorationVolatile));
+ }
+
+ // For debugging emit temporary variables for all expressions
+ if (options.force_temporary)
+ return false;
+
+ // If an expression carries enough dependencies we need to stop forwarding at some point,
+ // or we explode compilers. There are usually limits to how much we can nest expressions.
+ auto *expr = maybe_get<SPIRExpression>(id);
+ const uint32_t max_expression_dependencies = 64;
+ if (expr && expr->expression_dependencies.size() >= max_expression_dependencies)
+ return false;
+
+ if (expr && expr->loaded_from
+ && has_decoration(expr->loaded_from, DecorationBuiltIn)
+ && has_decoration(expr->loaded_from, DecorationVolatile))
+ {
+ // Never forward volatile builtin variables, e.g. SPIR-V 1.6 HelperInvocation.
+ return false;
+ }
+
+ // Immutable expression can always be forwarded.
+ if (is_immutable(id))
+ return true;
+
+ return false;
+}
+
+bool CompilerGLSL::should_suppress_usage_tracking(uint32_t id) const
+{
+ // Used only by opcodes which don't do any real "work", they just swizzle data in some fashion.
+ return !expression_is_forwarded(id) || expression_suppresses_usage_tracking(id);
+}
+
+void CompilerGLSL::track_expression_read(uint32_t id)
+{
+ switch (ir.ids[id].get_type())
+ {
+ case TypeExpression:
+ {
+ auto &e = get<SPIRExpression>(id);
+ for (auto implied_read : e.implied_read_expressions)
+ track_expression_read(implied_read);
+ break;
+ }
+
+ case TypeAccessChain:
+ {
+ auto &e = get<SPIRAccessChain>(id);
+ for (auto implied_read : e.implied_read_expressions)
+ track_expression_read(implied_read);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ // If we try to read a forwarded temporary more than once we will stamp out possibly complex code twice.
+ // In this case, it's better to just bind the complex expression to the temporary and read that temporary twice.
+ if (expression_is_forwarded(id) && !expression_suppresses_usage_tracking(id))
+ {
+ auto &v = expression_usage_counts[id];
+ v++;
+
+ // If we create an expression outside a loop,
+ // but access it inside a loop, we're implicitly reading it multiple times.
+ // If the expression in question is expensive, we should hoist it out to avoid relying on loop-invariant code motion
+ // working inside the backend compiler.
+ if (expression_read_implies_multiple_reads(id))
+ v++;
+
+ if (v >= 2)
+ {
+ //if (v == 2)
+ // fprintf(stderr, "ID %u was forced to temporary due to more than 1 expression use!\n", id);
+
+ // Force a recompile after this pass to avoid forwarding this variable.
+ force_temporary_and_recompile(id);
+ }
+ }
+}
+
+bool CompilerGLSL::args_will_forward(uint32_t id, const uint32_t *args, uint32_t num_args, bool pure)
+{
+ if (forced_temporaries.find(id) != end(forced_temporaries))
+ return false;
+
+ for (uint32_t i = 0; i < num_args; i++)
+ if (!should_forward(args[i]))
+ return false;
+
+ // We need to forward globals as well.
+ if (!pure)
+ {
+ for (auto global : global_variables)
+ if (!should_forward(global))
+ return false;
+ for (auto aliased : aliased_variables)
+ if (!should_forward(aliased))
+ return false;
+ }
+
+ return true;
+}
+
+void CompilerGLSL::register_impure_function_call()
+{
+ // Impure functions can modify globals and aliased variables, so invalidate them as well.
+ for (auto global : global_variables)
+ flush_dependees(get<SPIRVariable>(global));
+ for (auto aliased : aliased_variables)
+ flush_dependees(get<SPIRVariable>(aliased));
+}
+
+void CompilerGLSL::register_call_out_argument(uint32_t id)
+{
+ register_write(id);
+
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var)
+ flush_variable_declaration(var->self);
+}
+
+string CompilerGLSL::variable_decl_function_local(SPIRVariable &var)
+{
+ // These variables are always function local,
+ // so make sure we emit the variable without storage qualifiers.
+ // Some backends will inject custom variables locally in a function
+ // with a storage qualifier which is not function-local.
+ auto old_storage = var.storage;
+ var.storage = StorageClassFunction;
+ auto expr = variable_decl(var);
+ var.storage = old_storage;
+ return expr;
+}
+
+void CompilerGLSL::emit_variable_temporary_copies(const SPIRVariable &var)
+{
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ if (var.allocate_temporary_copy && !flushed_phi_variables.count(var.self))
+ {
+ auto &type = get<SPIRType>(var.basetype);
+ auto &flags = get_decoration_bitset(var.self);
+ statement(flags_to_qualifiers_glsl(type, flags), variable_decl(type, join("_", var.self, "_copy")), ";");
+ flushed_phi_variables.insert(var.self);
+ }
+}
+
+void CompilerGLSL::flush_variable_declaration(uint32_t id)
+{
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->deferred_declaration)
+ {
+ string initializer;
+ if (options.force_zero_initialized_variables &&
+ (var->storage == StorageClassFunction || var->storage == StorageClassGeneric ||
+ var->storage == StorageClassPrivate) &&
+ !var->initializer && type_can_zero_initialize(get_variable_data_type(*var)))
+ {
+ initializer = join(" = ", to_zero_initialized_expression(get_variable_data_type_id(*var)));
+ }
+
+ statement(variable_decl_function_local(*var), initializer, ";");
+ var->deferred_declaration = false;
+ }
+ if (var)
+ {
+ emit_variable_temporary_copies(*var);
+ }
+}
+
+bool CompilerGLSL::remove_duplicate_swizzle(string &op)
+{
+ auto pos = op.find_last_of('.');
+ if (pos == string::npos || pos == 0)
+ return false;
+
+ string final_swiz = op.substr(pos + 1, string::npos);
+
+ if (backend.swizzle_is_function)
+ {
+ if (final_swiz.size() < 2)
+ return false;
+
+ if (final_swiz.substr(final_swiz.size() - 2, string::npos) == "()")
+ final_swiz.erase(final_swiz.size() - 2, string::npos);
+ else
+ return false;
+ }
+
+ // Check if final swizzle is of form .x, .xy, .xyz, .xyzw or similar.
+ // If so, and previous swizzle is of same length,
+ // we can drop the final swizzle altogether.
+ for (uint32_t i = 0; i < final_swiz.size(); i++)
+ {
+ static const char expected[] = { 'x', 'y', 'z', 'w' };
+ if (i >= 4 || final_swiz[i] != expected[i])
+ return false;
+ }
+
+ auto prevpos = op.find_last_of('.', pos - 1);
+ if (prevpos == string::npos)
+ return false;
+
+ prevpos++;
+
+ // Make sure there are only swizzles here ...
+ for (auto i = prevpos; i < pos; i++)
+ {
+ if (op[i] < 'w' || op[i] > 'z')
+ {
+ // If swizzles are foo.xyz() like in C++ backend for example, check for that.
+ if (backend.swizzle_is_function && i + 2 == pos && op[i] == '(' && op[i + 1] == ')')
+ break;
+ return false;
+ }
+ }
+
+ // If original swizzle is large enough, just carve out the components we need.
+ // E.g. foobar.wyx.xy will turn into foobar.wy.
+ if (pos - prevpos >= final_swiz.size())
+ {
+ op.erase(prevpos + final_swiz.size(), string::npos);
+
+ // Add back the function call ...
+ if (backend.swizzle_is_function)
+ op += "()";
+ }
+ return true;
+}
+
+// Optimizes away vector swizzles where we have something like
+// vec3 foo;
+// foo.xyz <-- swizzle expression does nothing.
+// This is a very common pattern after OpCompositeCombine.
+bool CompilerGLSL::remove_unity_swizzle(uint32_t base, string &op)
+{
+ auto pos = op.find_last_of('.');
+ if (pos == string::npos || pos == 0)
+ return false;
+
+ string final_swiz = op.substr(pos + 1, string::npos);
+
+ if (backend.swizzle_is_function)
+ {
+ if (final_swiz.size() < 2)
+ return false;
+
+ if (final_swiz.substr(final_swiz.size() - 2, string::npos) == "()")
+ final_swiz.erase(final_swiz.size() - 2, string::npos);
+ else
+ return false;
+ }
+
+ // Check if final swizzle is of form .x, .xy, .xyz, .xyzw or similar.
+ // If so, and previous swizzle is of same length,
+ // we can drop the final swizzle altogether.
+ for (uint32_t i = 0; i < final_swiz.size(); i++)
+ {
+ static const char expected[] = { 'x', 'y', 'z', 'w' };
+ if (i >= 4 || final_swiz[i] != expected[i])
+ return false;
+ }
+
+ auto &type = expression_type(base);
+
+ // Sanity checking ...
+ assert(type.columns == 1 && type.array.empty());
+
+ if (type.vecsize == final_swiz.size())
+ op.erase(pos, string::npos);
+ return true;
+}
+
+string CompilerGLSL::build_composite_combiner(uint32_t return_type, const uint32_t *elems, uint32_t length)
+{
+ ID base = 0;
+ string op;
+ string subop;
+
+ // Can only merge swizzles for vectors.
+ auto &type = get<SPIRType>(return_type);
+ bool can_apply_swizzle_opt = type.basetype != SPIRType::Struct && type.array.empty() && type.columns == 1;
+ bool swizzle_optimization = false;
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ auto *e = maybe_get<SPIRExpression>(elems[i]);
+
+ // If we're merging another scalar which belongs to the same base
+ // object, just merge the swizzles to avoid triggering more than 1 expression read as much as possible!
+ if (can_apply_swizzle_opt && e && e->base_expression && e->base_expression == base)
+ {
+ // Only supposed to be used for vector swizzle -> scalar.
+ assert(!e->expression.empty() && e->expression.front() == '.');
+ subop += e->expression.substr(1, string::npos);
+ swizzle_optimization = true;
+ }
+ else
+ {
+ // We'll likely end up with duplicated swizzles, e.g.
+ // foobar.xyz.xyz from patterns like
+ // OpVectorShuffle
+ // OpCompositeExtract x 3
+ // OpCompositeConstruct 3x + other scalar.
+ // Just modify op in-place.
+ if (swizzle_optimization)
+ {
+ if (backend.swizzle_is_function)
+ subop += "()";
+
+ // Don't attempt to remove unity swizzling if we managed to remove duplicate swizzles.
+ // The base "foo" might be vec4, while foo.xyz is vec3 (OpVectorShuffle) and looks like a vec3 due to the .xyz tacked on.
+ // We only want to remove the swizzles if we're certain that the resulting base will be the same vecsize.
+ // Essentially, we can only remove one set of swizzles, since that's what we have control over ...
+ // Case 1:
+ // foo.yxz.xyz: Duplicate swizzle kicks in, giving foo.yxz, we are done.
+ // foo.yxz was the result of OpVectorShuffle and we don't know the type of foo.
+ // Case 2:
+ // foo.xyz: Duplicate swizzle won't kick in.
+ // If foo is vec3, we can remove xyz, giving just foo.
+ if (!remove_duplicate_swizzle(subop))
+ remove_unity_swizzle(base, subop);
+
+ // Strips away redundant parens if we created them during component extraction.
+ strip_enclosed_expression(subop);
+ swizzle_optimization = false;
+ op += subop;
+ }
+ else
+ op += subop;
+
+ if (i)
+ op += ", ";
+
+ bool uses_buffer_offset =
+ type.basetype == SPIRType::Struct && has_member_decoration(type.self, i, DecorationOffset);
+ subop = to_composite_constructor_expression(type, elems[i], uses_buffer_offset);
+ }
+
+ base = e ? e->base_expression : ID(0);
+ }
+
+ if (swizzle_optimization)
+ {
+ if (backend.swizzle_is_function)
+ subop += "()";
+
+ if (!remove_duplicate_swizzle(subop))
+ remove_unity_swizzle(base, subop);
+ // Strips away redundant parens if we created them during component extraction.
+ strip_enclosed_expression(subop);
+ }
+
+ op += subop;
+ return op;
+}
+
+bool CompilerGLSL::skip_argument(uint32_t id) const
+{
+ if (!combined_image_samplers.empty() || !options.vulkan_semantics)
+ {
+ auto &type = expression_type(id);
+ if (type.basetype == SPIRType::Sampler || (type.basetype == SPIRType::Image && type.image.sampled == 1))
+ return true;
+ }
+ return false;
+}
+
+bool CompilerGLSL::optimize_read_modify_write(const SPIRType &type, const string &lhs, const string &rhs)
+{
+ // Do this with strings because we have a very clear pattern we can check for and it avoids
+ // adding lots of special cases to the code emission.
+ if (rhs.size() < lhs.size() + 3)
+ return false;
+
+ // Do not optimize matrices. They are a bit awkward to reason about in general
+ // (in which order does operation happen?), and it does not work on MSL anyways.
+ if (type.vecsize > 1 && type.columns > 1)
+ return false;
+
+ auto index = rhs.find(lhs);
+ if (index != 0)
+ return false;
+
+ // TODO: Shift operators, but it's not important for now.
+ auto op = rhs.find_first_of("+-/*%|&^", lhs.size() + 1);
+ if (op != lhs.size() + 1)
+ return false;
+
+ // Check that the op is followed by space. This excludes && and ||.
+ if (rhs[op + 1] != ' ')
+ return false;
+
+ char bop = rhs[op];
+ auto expr = rhs.substr(lhs.size() + 3);
+
+ // Avoids false positives where we get a = a * b + c.
+ // Normally, these expressions are always enclosed, but unexpected code paths may end up hitting this.
+ if (needs_enclose_expression(expr))
+ return false;
+
+ // Try to find increments and decrements. Makes it look neater as += 1, -= 1 is fairly rare to see in real code.
+ // Find some common patterns which are equivalent.
+ if ((bop == '+' || bop == '-') && (expr == "1" || expr == "uint(1)" || expr == "1u" || expr == "int(1u)"))
+ statement(lhs, bop, bop, ";");
+ else
+ statement(lhs, " ", bop, "= ", expr, ";");
+ return true;
+}
+
+void CompilerGLSL::register_control_dependent_expression(uint32_t expr)
+{
+ if (forwarded_temporaries.find(expr) == end(forwarded_temporaries))
+ return;
+
+ assert(current_emitting_block);
+ current_emitting_block->invalidate_expressions.push_back(expr);
+}
+
+void CompilerGLSL::emit_block_instructions(SPIRBlock &block)
+{
+ current_emitting_block = &block;
+
+ if (backend.requires_relaxed_precision_analysis)
+ {
+ // If PHI variables are consumed in unexpected precision contexts, copy them here.
+ for (size_t i = 0, n = block.phi_variables.size(); i < n; i++)
+ {
+ auto &phi = block.phi_variables[i];
+
+ // Ensure we only copy once. We know a-priori that this array will lay out
+ // the same function variables together.
+ if (i && block.phi_variables[i - 1].function_variable == phi.function_variable)
+ continue;
+
+ auto itr = temporary_to_mirror_precision_alias.find(phi.function_variable);
+ if (itr != temporary_to_mirror_precision_alias.end())
+ {
+ // Explicitly, we don't want to inherit RelaxedPrecision state in this CopyObject,
+ // so it helps to have handle_instruction_precision() on the outside of emit_instruction().
+ EmbeddedInstruction inst;
+ inst.op = OpCopyObject;
+ inst.length = 3;
+ inst.ops.push_back(expression_type_id(itr->first));
+ inst.ops.push_back(itr->second);
+ inst.ops.push_back(itr->first);
+ emit_instruction(inst);
+ }
+ }
+ }
+
+ for (auto &op : block.ops)
+ {
+ auto temporary_copy = handle_instruction_precision(op);
+ emit_instruction(op);
+ if (temporary_copy.dst_id)
+ {
+ // Explicitly, we don't want to inherit RelaxedPrecision state in this CopyObject,
+ // so it helps to have handle_instruction_precision() on the outside of emit_instruction().
+ EmbeddedInstruction inst;
+ inst.op = OpCopyObject;
+ inst.length = 3;
+ inst.ops.push_back(expression_type_id(temporary_copy.src_id));
+ inst.ops.push_back(temporary_copy.dst_id);
+ inst.ops.push_back(temporary_copy.src_id);
+
+ // Never attempt to hoist mirrored temporaries.
+ // They are hoisted in lock-step with their parents.
+ block_temporary_hoisting = true;
+ emit_instruction(inst);
+ block_temporary_hoisting = false;
+ }
+ }
+
+ current_emitting_block = nullptr;
+}
+
+void CompilerGLSL::disallow_forwarding_in_expression_chain(const SPIRExpression &expr)
+{
+ // Allow trivially forwarded expressions like OpLoad or trivial shuffles,
+ // these will be marked as having suppressed usage tracking.
+ // Our only concern is to make sure arithmetic operations are done in similar ways.
+ if (expression_is_forwarded(expr.self) && !expression_suppresses_usage_tracking(expr.self) &&
+ forced_invariant_temporaries.count(expr.self) == 0)
+ {
+ force_temporary_and_recompile(expr.self);
+ forced_invariant_temporaries.insert(expr.self);
+
+ for (auto &dependent : expr.expression_dependencies)
+ disallow_forwarding_in_expression_chain(get<SPIRExpression>(dependent));
+ }
+}
+
+void CompilerGLSL::handle_store_to_invariant_variable(uint32_t store_id, uint32_t value_id)
+{
+ // Variables or access chains marked invariant are complicated. We will need to make sure the code-gen leading up to
+ // this variable is consistent. The failure case for SPIRV-Cross is when an expression is forced to a temporary
+ // in one translation unit, but not another, e.g. due to multiple use of an expression.
+ // This causes variance despite the output variable being marked invariant, so the solution here is to force all dependent
+ // expressions to be temporaries.
+ // It is uncertain if this is enough to support invariant in all possible cases, but it should be good enough
+ // for all reasonable uses of invariant.
+ if (!has_decoration(store_id, DecorationInvariant))
+ return;
+
+ auto *expr = maybe_get<SPIRExpression>(value_id);
+ if (!expr)
+ return;
+
+ disallow_forwarding_in_expression_chain(*expr);
+}
+
+void CompilerGLSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
+{
+ auto rhs = to_pointer_expression(rhs_expression);
+
+ // Statements to OpStore may be empty if it is a struct with zero members. Just forward the store to /dev/null.
+ if (!rhs.empty())
+ {
+ handle_store_to_invariant_variable(lhs_expression, rhs_expression);
+
+ if (!unroll_array_to_complex_store(lhs_expression, rhs_expression))
+ {
+ auto lhs = to_dereferenced_expression(lhs_expression);
+ if (has_decoration(lhs_expression, DecorationNonUniform))
+ convert_non_uniform_expression(lhs, lhs_expression);
+
+ // We might need to cast in order to store to a builtin.
+ cast_to_variable_store(lhs_expression, rhs, expression_type(rhs_expression));
+
+ // Tries to optimize assignments like "<lhs> = <lhs> op expr".
+ // While this is purely cosmetic, this is important for legacy ESSL where loop
+ // variable increments must be in either i++ or i += const-expr.
+ // Without this, we end up with i = i + 1, which is correct GLSL, but not correct GLES 2.0.
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+ register_write(lhs_expression);
+ }
+}
+
+uint32_t CompilerGLSL::get_integer_width_for_instruction(const Instruction &instr) const
+{
+ if (instr.length < 3)
+ return 32;
+
+ auto *ops = stream(instr);
+
+ switch (instr.op)
+ {
+ case OpSConvert:
+ case OpConvertSToF:
+ case OpUConvert:
+ case OpConvertUToF:
+ case OpIEqual:
+ case OpINotEqual:
+ case OpSLessThan:
+ case OpSLessThanEqual:
+ case OpSGreaterThan:
+ case OpSGreaterThanEqual:
+ case OpULessThan:
+ case OpULessThanEqual:
+ case OpUGreaterThan:
+ case OpUGreaterThanEqual:
+ return expression_type(ops[2]).width;
+
+ case OpSMulExtended:
+ case OpUMulExtended:
+ return get<SPIRType>(get<SPIRType>(ops[0]).member_types[0]).width;
+
+ default:
+ {
+ // We can look at result type which is more robust.
+ auto *type = maybe_get<SPIRType>(ops[0]);
+ if (type && type_is_integral(*type))
+ return type->width;
+ else
+ return 32;
+ }
+ }
+}
+
+uint32_t CompilerGLSL::get_integer_width_for_glsl_instruction(GLSLstd450 op, const uint32_t *ops, uint32_t length) const
+{
+ if (length < 1)
+ return 32;
+
+ switch (op)
+ {
+ case GLSLstd450SAbs:
+ case GLSLstd450SSign:
+ case GLSLstd450UMin:
+ case GLSLstd450SMin:
+ case GLSLstd450UMax:
+ case GLSLstd450SMax:
+ case GLSLstd450UClamp:
+ case GLSLstd450SClamp:
+ case GLSLstd450FindSMsb:
+ case GLSLstd450FindUMsb:
+ return expression_type(ops[0]).width;
+
+ default:
+ {
+ // We don't need to care about other opcodes, just return 32.
+ return 32;
+ }
+ }
+}
+
+void CompilerGLSL::forward_relaxed_precision(uint32_t dst_id, const uint32_t *args, uint32_t length)
+{
+ // Only GLSL supports RelaxedPrecision directly.
+ // We cannot implement this in HLSL or MSL because it is tied to the type system.
+ // In SPIR-V, everything must masquerade as 32-bit.
+ if (!backend.requires_relaxed_precision_analysis)
+ return;
+
+ auto input_precision = analyze_expression_precision(args, length);
+
+ // For expressions which are loaded or directly forwarded, we inherit mediump implicitly.
+ // For dst_id to be analyzed properly, it must inherit any relaxed precision decoration from src_id.
+ if (input_precision == Options::Mediump)
+ set_decoration(dst_id, DecorationRelaxedPrecision);
+}
+
+CompilerGLSL::Options::Precision CompilerGLSL::analyze_expression_precision(const uint32_t *args, uint32_t length) const
+{
+ // Now, analyze the precision at which the arguments would run.
+ // GLSL rules are such that the precision used to evaluate an expression is equal to the highest precision
+ // for the inputs. Constants do not have inherent precision and do not contribute to this decision.
+ // If all inputs are constants, they inherit precision from outer expressions, including an l-value.
+ // In this case, we'll have to force a temporary for dst_id so that we can bind the constant expression with
+ // correct precision.
+ bool expression_has_highp = false;
+ bool expression_has_mediump = false;
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ uint32_t arg = args[i];
+
+ auto handle_type = ir.ids[arg].get_type();
+ if (handle_type == TypeConstant || handle_type == TypeConstantOp || handle_type == TypeUndef)
+ continue;
+
+ if (has_decoration(arg, DecorationRelaxedPrecision))
+ expression_has_mediump = true;
+ else
+ expression_has_highp = true;
+ }
+
+ if (expression_has_highp)
+ return Options::Highp;
+ else if (expression_has_mediump)
+ return Options::Mediump;
+ else
+ return Options::DontCare;
+}
+
+void CompilerGLSL::analyze_precision_requirements(uint32_t type_id, uint32_t dst_id, uint32_t *args, uint32_t length)
+{
+ if (!backend.requires_relaxed_precision_analysis)
+ return;
+
+ auto &type = get<SPIRType>(type_id);
+
+ // RelaxedPrecision only applies to 32-bit values.
+ if (type.basetype != SPIRType::Float && type.basetype != SPIRType::Int && type.basetype != SPIRType::UInt)
+ return;
+
+ bool operation_is_highp = !has_decoration(dst_id, DecorationRelaxedPrecision);
+
+ auto input_precision = analyze_expression_precision(args, length);
+ if (input_precision == Options::DontCare)
+ {
+ consume_temporary_in_precision_context(type_id, dst_id, input_precision);
+ return;
+ }
+
+ // In SPIR-V and GLSL, the semantics are flipped for how relaxed precision is determined.
+ // In SPIR-V, the operation itself marks RelaxedPrecision, meaning that inputs can be truncated to 16-bit.
+ // However, if the expression is not, inputs must be expanded to 32-bit first,
+ // since the operation must run at high precision.
+ // This is the awkward part, because if we have mediump inputs, or expressions which derived from mediump,
+ // we might have to forcefully bind the source IDs to highp temporaries. This is done by clearing decorations
+ // and forcing temporaries. Similarly for mediump operations. We bind highp expressions to mediump variables.
+ if ((operation_is_highp && input_precision == Options::Mediump) ||
+ (!operation_is_highp && input_precision == Options::Highp))
+ {
+ auto precision = operation_is_highp ? Options::Highp : Options::Mediump;
+ for (uint32_t i = 0; i < length; i++)
+ {
+ // Rewrites the opcode so that we consume an ID in correct precision context.
+ // This is pretty hacky, but it's the most straight forward way of implementing this without adding
+ // lots of extra passes to rewrite all code blocks.
+ args[i] = consume_temporary_in_precision_context(expression_type_id(args[i]), args[i], precision);
+ }
+ }
+}
+
+// This is probably not exhaustive ...
+static bool opcode_is_precision_sensitive_operation(Op op)
+{
+ switch (op)
+ {
+ case OpFAdd:
+ case OpFSub:
+ case OpFMul:
+ case OpFNegate:
+ case OpIAdd:
+ case OpISub:
+ case OpIMul:
+ case OpSNegate:
+ case OpFMod:
+ case OpFDiv:
+ case OpFRem:
+ case OpSMod:
+ case OpSDiv:
+ case OpSRem:
+ case OpUMod:
+ case OpUDiv:
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ case OpMatrixTimesMatrix:
+ case OpDPdx:
+ case OpDPdy:
+ case OpDPdxCoarse:
+ case OpDPdyCoarse:
+ case OpDPdxFine:
+ case OpDPdyFine:
+ case OpFwidth:
+ case OpFwidthCoarse:
+ case OpFwidthFine:
+ case OpVectorTimesScalar:
+ case OpMatrixTimesScalar:
+ case OpOuterProduct:
+ case OpFConvert:
+ case OpSConvert:
+ case OpUConvert:
+ case OpConvertSToF:
+ case OpConvertUToF:
+ case OpConvertFToU:
+ case OpConvertFToS:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+// Instructions which just load data but don't do any arithmetic operation should just inherit the decoration.
+// SPIR-V doesn't require this, but it's somewhat implied it has to work this way, relaxed precision is only
+// relevant when operating on the IDs, not when shuffling things around.
+static bool opcode_is_precision_forwarding_instruction(Op op, uint32_t &arg_count)
+{
+ switch (op)
+ {
+ case OpLoad:
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpCompositeExtract:
+ case OpVectorExtractDynamic:
+ case OpSampledImage:
+ case OpImage:
+ case OpCopyObject:
+
+ case OpImageRead:
+ case OpImageFetch:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageGather:
+ case OpImageDrefGather:
+ case OpImageSparseRead:
+ case OpImageSparseFetch:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ case OpImageSparseGather:
+ case OpImageSparseDrefGather:
+ arg_count = 1;
+ return true;
+
+ case OpVectorShuffle:
+ arg_count = 2;
+ return true;
+
+ case OpCompositeConstruct:
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+CompilerGLSL::TemporaryCopy CompilerGLSL::handle_instruction_precision(const Instruction &instruction)
+{
+ auto ops = stream_mutable(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+ uint32_t length = instruction.length;
+
+ if (backend.requires_relaxed_precision_analysis)
+ {
+ if (length > 2)
+ {
+ uint32_t forwarding_length = length - 2;
+
+ if (opcode_is_precision_sensitive_operation(opcode))
+ analyze_precision_requirements(ops[0], ops[1], &ops[2], forwarding_length);
+ else if (opcode == OpExtInst && length >= 5 && get<SPIRExtension>(ops[2]).ext == SPIRExtension::GLSL)
+ analyze_precision_requirements(ops[0], ops[1], &ops[4], forwarding_length - 2);
+ else if (opcode_is_precision_forwarding_instruction(opcode, forwarding_length))
+ forward_relaxed_precision(ops[1], &ops[2], forwarding_length);
+ }
+
+ uint32_t result_type = 0, result_id = 0;
+ if (instruction_to_result_type(result_type, result_id, opcode, ops, length))
+ {
+ auto itr = temporary_to_mirror_precision_alias.find(ops[1]);
+ if (itr != temporary_to_mirror_precision_alias.end())
+ return { itr->second, itr->first };
+ }
+ }
+
+ return {};
+}
+
+void CompilerGLSL::emit_instruction(const Instruction &instruction)
+{
+ auto ops = stream(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+ uint32_t length = instruction.length;
+
+#define GLSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define GLSL_BOP_CAST(op, type) \
+ emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, \
+ opcode_is_sign_invariant(opcode), implicit_integer_promotion)
+#define GLSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
+#define GLSL_UOP_CAST(op) emit_unary_op_cast(ops[0], ops[1], ops[2], #op)
+#define GLSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
+#define GLSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
+#define GLSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define GLSL_BFOP_CAST(op, type) \
+ emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
+#define GLSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define GLSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(instruction);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ // Handle C implicit integer promotion rules.
+ // If we get implicit promotion to int, need to make sure we cast by value to intended return type,
+ // otherwise, future sign-dependent operations and bitcasts will break.
+ bool implicit_integer_promotion = integer_width < 32 && backend.implicit_c_integer_promotion_rules &&
+ opcode_can_promote_integer_implicitly(opcode) &&
+ get<SPIRType>(ops[0]).vecsize == 1;
+
+ opcode = get_remapped_spirv_op(opcode);
+
+ switch (opcode)
+ {
+ // Dealing with memory
+ case OpLoad:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+
+ flush_variable_declaration(ptr);
+
+ // If we're loading from memory that cannot be changed by the shader,
+ // just forward the expression directly to avoid needless temporaries.
+ // If an expression is mutable and forwardable, we speculate that it is immutable.
+ bool forward = should_forward(ptr) && forced_temporaries.find(id) == end(forced_temporaries);
+
+ // If loading a non-native row-major matrix, mark the expression as need_transpose.
+ bool need_transpose = false;
+ bool old_need_transpose = false;
+
+ auto *ptr_expression = maybe_get<SPIRExpression>(ptr);
+
+ if (forward)
+ {
+ // If we're forwarding the load, we're also going to forward transpose state, so don't transpose while
+ // taking the expression.
+ if (ptr_expression && ptr_expression->need_transpose)
+ {
+ old_need_transpose = true;
+ ptr_expression->need_transpose = false;
+ need_transpose = true;
+ }
+ else if (is_non_native_row_major_matrix(ptr))
+ need_transpose = true;
+ }
+
+ // If we are forwarding this load,
+ // don't register the read to access chain here, defer that to when we actually use the expression,
+ // using the add_implied_read_expression mechanism.
+ string expr;
+
+ bool is_packed = has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypePacked);
+ bool is_remapped = has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypeID);
+ if (forward || (!is_packed && !is_remapped))
+ {
+ // For the simple case, we do not need to deal with repacking.
+ expr = to_dereferenced_expression(ptr, false);
+ }
+ else
+ {
+ // If we are not forwarding the expression, we need to unpack and resolve any physical type remapping here before
+ // storing the expression to a temporary.
+ expr = to_unpacked_expression(ptr);
+ }
+
+ auto &type = get<SPIRType>(result_type);
+ auto &expr_type = expression_type(ptr);
+
+ // If the expression has more vector components than the result type, insert
+ // a swizzle. This shouldn't happen normally on valid SPIR-V, but it might
+ // happen with e.g. the MSL backend replacing the type of an input variable.
+ if (expr_type.vecsize > type.vecsize)
+ expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0));
+
+ if (forward && ptr_expression)
+ ptr_expression->need_transpose = old_need_transpose;
+
+ // We might need to cast in order to load from a builtin.
+ cast_from_variable_load(ptr, expr, type);
+
+ if (forward && ptr_expression)
+ ptr_expression->need_transpose = false;
+
+ // We might be trying to load a gl_Position[N], where we should be
+ // doing float4[](gl_in[i].gl_Position, ...) instead.
+ // Similar workarounds are required for input arrays in tessellation.
+ // Also, loading from gl_SampleMask array needs special unroll.
+ unroll_array_from_complex_load(id, ptr, expr);
+
+ if (!type_is_opaque_value(type) && has_decoration(ptr, DecorationNonUniform))
+ {
+ // If we're loading something non-opaque, we need to handle non-uniform descriptor access.
+ convert_non_uniform_expression(expr, ptr);
+ }
+
+ if (forward && ptr_expression)
+ ptr_expression->need_transpose = old_need_transpose;
+
+ bool flattened = ptr_expression && flattened_buffer_blocks.count(ptr_expression->loaded_from) != 0;
+
+ if (backend.needs_row_major_load_workaround && !is_non_native_row_major_matrix(ptr) && !flattened)
+ rewrite_load_for_wrapped_row_major(expr, result_type, ptr);
+
+ // By default, suppress usage tracking since using same expression multiple times does not imply any extra work.
+ // However, if we try to load a complex, composite object from a flattened buffer,
+ // we should avoid emitting the same code over and over and lower the result to a temporary.
+ bool usage_tracking = flattened && (type.basetype == SPIRType::Struct || (type.columns > 1));
+
+ SPIRExpression *e = nullptr;
+ if (!forward && expression_is_non_value_type_array(ptr))
+ {
+ // Complicated load case where we need to make a copy of ptr, but we cannot, because
+ // it is an array, and our backend does not support arrays as value types.
+ // Emit the temporary, and copy it explicitly.
+ e = &emit_uninitialized_temporary_expression(result_type, id);
+ emit_array_copy(nullptr, id, ptr, StorageClassFunction, get_expression_effective_storage_class(ptr));
+ }
+ else
+ e = &emit_op(result_type, id, expr, forward, !usage_tracking);
+
+ e->need_transpose = need_transpose;
+ register_read(id, ptr, forward);
+
+ if (forward)
+ {
+ // Pass through whether the result is of a packed type and the physical type ID.
+ if (has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypePacked))
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypeID))
+ {
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID,
+ get_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypeID));
+ }
+ }
+ else
+ {
+ // This might have been set on an earlier compilation iteration, force it to be unset.
+ unset_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ unset_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID);
+ }
+
+ inherit_expression_dependencies(id, ptr);
+ if (forward)
+ add_implied_read_expression(*e, ptr);
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ auto *var = maybe_get<SPIRVariable>(ops[2]);
+ if (var)
+ flush_variable_declaration(var->self);
+
+ // If the base is immutable, the access chain pointer must also be.
+ // If an expression is mutable and forwardable, we speculate that it is immutable.
+ AccessChainMeta meta;
+ bool ptr_chain = opcode == OpPtrAccessChain;
+ auto &target_type = get<SPIRType>(ops[0]);
+ auto e = access_chain(ops[2], &ops[3], length - 3, target_type, &meta, ptr_chain);
+
+ // If the base is flattened UBO of struct type, the expression has to be a composite.
+ // In that case, backends which do not support inline syntax need it to be bound to a temporary.
+ // Otherwise, invalid expressions like ({UBO[0].xyz, UBO[0].w, UBO[1]}).member are emitted.
+ bool requires_temporary = false;
+ if (flattened_buffer_blocks.count(ops[2]) && target_type.basetype == SPIRType::Struct)
+ requires_temporary = !backend.can_declare_struct_inline;
+
+ auto &expr = requires_temporary ?
+ emit_op(ops[0], ops[1], std::move(e), false) :
+ set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2]));
+
+ auto *backing_variable = maybe_get_backing_variable(ops[2]);
+ expr.loaded_from = backing_variable ? backing_variable->self : ID(ops[2]);
+ expr.need_transpose = meta.need_transpose;
+ expr.access_chain = true;
+ expr.access_meshlet_position_y = meta.access_meshlet_position_y;
+
+ // Mark the result as being packed. Some platforms handled packed vectors differently than non-packed.
+ if (meta.storage_is_packed)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked);
+ if (meta.storage_physical_type != 0)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
+ if (meta.storage_is_invariant)
+ set_decoration(ops[1], DecorationInvariant);
+ if (meta.flattened_struct)
+ flattened_structs[ops[1]] = true;
+ if (meta.relaxed_precision && backend.requires_relaxed_precision_analysis)
+ set_decoration(ops[1], DecorationRelaxedPrecision);
+
+ // If we have some expression dependencies in our access chain, this access chain is technically a forwarded
+ // temporary which could be subject to invalidation.
+ // Need to assume we're forwarded while calling inherit_expression_depdendencies.
+ forwarded_temporaries.insert(ops[1]);
+ // The access chain itself is never forced to a temporary, but its dependencies might.
+ suppressed_usage_tracking.insert(ops[1]);
+
+ for (uint32_t i = 2; i < length; i++)
+ {
+ inherit_expression_dependencies(ops[1], ops[i]);
+ add_implied_read_expression(expr, ops[i]);
+ }
+
+ // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
+ // we're not forwarded after all.
+ if (expr.expression_dependencies.empty())
+ forwarded_temporaries.erase(ops[1]);
+
+ break;
+ }
+
+ case OpStore:
+ {
+ auto *var = maybe_get<SPIRVariable>(ops[0]);
+
+ if (var && var->statically_assigned)
+ var->static_expression = ops[1];
+ else if (var && var->loop_variable && !var->loop_variable_enable)
+ var->static_expression = ops[1];
+ else if (var && var->remapped_variable && var->static_expression)
+ {
+ // Skip the write.
+ }
+ else if (flattened_structs.count(ops[0]))
+ {
+ store_flattened_struct(ops[0], ops[1]);
+ register_write(ops[0]);
+ }
+ else
+ {
+ emit_store_statement(ops[0], ops[1]);
+ }
+
+ // Storing a pointer results in a variable pointer, so we must conservatively assume
+ // we can write through it.
+ if (expression_type(ops[1]).pointer)
+ register_write(ops[1]);
+ break;
+ }
+
+ case OpArrayLength:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto e = access_chain_internal(ops[2], &ops[3], length - 3, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ if (has_decoration(ops[2], DecorationNonUniform))
+ convert_non_uniform_expression(e, ops[2]);
+ set<SPIRExpression>(id, join(type_to_glsl(get<SPIRType>(result_type)), "(", e, ".length())"), result_type,
+ true);
+ break;
+ }
+
+ // Function calls
+ case OpFunctionCall:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t func = ops[2];
+ const auto *arg = &ops[3];
+ length -= 3;
+
+ auto &callee = get<SPIRFunction>(func);
+ auto &return_type = get<SPIRType>(callee.return_type);
+ bool pure = function_is_pure(callee);
+ bool control_dependent = function_is_control_dependent(callee);
+
+ bool callee_has_out_variables = false;
+ bool emit_return_value_as_argument = false;
+
+ // Invalidate out variables passed to functions since they can be OpStore'd to.
+ for (uint32_t i = 0; i < length; i++)
+ {
+ if (callee.arguments[i].write_count)
+ {
+ register_call_out_argument(arg[i]);
+ callee_has_out_variables = true;
+ }
+
+ flush_variable_declaration(arg[i]);
+ }
+
+ if (!return_type.array.empty() && !backend.can_return_array)
+ {
+ callee_has_out_variables = true;
+ emit_return_value_as_argument = true;
+ }
+
+ if (!pure)
+ register_impure_function_call();
+
+ string funexpr;
+ SmallVector<string> arglist;
+ funexpr += to_name(func) + "(";
+
+ if (emit_return_value_as_argument)
+ {
+ statement(type_to_glsl(return_type), " ", to_name(id), type_to_array_glsl(return_type, 0), ";");
+ arglist.push_back(to_name(id));
+ }
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ // Do not pass in separate images or samplers if we're remapping
+ // to combined image samplers.
+ if (skip_argument(arg[i]))
+ continue;
+
+ arglist.push_back(to_func_call_arg(callee.arguments[i], arg[i]));
+ }
+
+ for (auto &combined : callee.combined_parameters)
+ {
+ auto image_id = combined.global_image ? combined.image_id : VariableID(arg[combined.image_id]);
+ auto sampler_id = combined.global_sampler ? combined.sampler_id : VariableID(arg[combined.sampler_id]);
+ arglist.push_back(to_combined_image_sampler(image_id, sampler_id));
+ }
+
+ append_global_func_args(callee, length, arglist);
+
+ funexpr += merge(arglist);
+ funexpr += ")";
+
+ // Check for function call constraints.
+ check_function_call_constraints(arg, length);
+
+ if (return_type.basetype != SPIRType::Void)
+ {
+ // If the function actually writes to an out variable,
+ // take the conservative route and do not forward.
+ // The problem is that we might not read the function
+ // result (and emit the function) before an out variable
+ // is read (common case when return value is ignored!
+ // In order to avoid start tracking invalid variables,
+ // just avoid the forwarding problem altogether.
+ bool forward = args_will_forward(id, arg, length, pure) && !callee_has_out_variables && pure &&
+ (forced_temporaries.find(id) == end(forced_temporaries));
+
+ if (emit_return_value_as_argument)
+ {
+ statement(funexpr, ";");
+ set<SPIRExpression>(id, to_name(id), result_type, true);
+ }
+ else
+ emit_op(result_type, id, funexpr, forward);
+
+ // Function calls are implicit loads from all variables in question.
+ // Set dependencies for them.
+ for (uint32_t i = 0; i < length; i++)
+ register_read(id, arg[i], forward);
+
+ // If we're going to forward the temporary result,
+ // put dependencies on every variable that must not change.
+ if (forward)
+ register_global_read_dependencies(callee, id);
+ }
+ else
+ statement(funexpr, ";");
+
+ if (control_dependent)
+ register_control_dependent_expression(id);
+
+ break;
+ }
+
+ // Composite munging
+ case OpCompositeConstruct:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ const auto *const elems = &ops[2];
+ length -= 2;
+
+ bool forward = true;
+ for (uint32_t i = 0; i < length; i++)
+ forward = forward && should_forward(elems[i]);
+
+ auto &out_type = get<SPIRType>(result_type);
+ auto *in_type = length > 0 ? &expression_type(elems[0]) : nullptr;
+
+ // Only splat if we have vector constructors.
+ // Arrays and structs must be initialized properly in full.
+ bool composite = !out_type.array.empty() || out_type.basetype == SPIRType::Struct;
+
+ bool splat = false;
+ bool swizzle_splat = false;
+
+ if (in_type)
+ {
+ splat = in_type->vecsize == 1 && in_type->columns == 1 && !composite && backend.use_constructor_splatting;
+ swizzle_splat = in_type->vecsize == 1 && in_type->columns == 1 && backend.can_swizzle_scalar;
+
+ if (ir.ids[elems[0]].get_type() == TypeConstant && !type_is_floating_point(*in_type))
+ {
+ // Cannot swizzle literal integers as a special case.
+ swizzle_splat = false;
+ }
+ }
+
+ if (splat || swizzle_splat)
+ {
+ uint32_t input = elems[0];
+ for (uint32_t i = 0; i < length; i++)
+ {
+ if (input != elems[i])
+ {
+ splat = false;
+ swizzle_splat = false;
+ }
+ }
+ }
+
+ if (out_type.basetype == SPIRType::Struct && !backend.can_declare_struct_inline)
+ forward = false;
+ if (!out_type.array.empty() && !backend.can_declare_arrays_inline)
+ forward = false;
+ if (type_is_empty(out_type) && !backend.supports_empty_struct)
+ forward = false;
+
+ string constructor_op;
+ if (backend.use_initializer_list && composite)
+ {
+ bool needs_trailing_tracket = false;
+ // Only use this path if we are building composites.
+ // This path cannot be used for arithmetic.
+ if (backend.use_typed_initializer_list && out_type.basetype == SPIRType::Struct && out_type.array.empty())
+ constructor_op += type_to_glsl_constructor(get<SPIRType>(result_type));
+ else if (backend.use_typed_initializer_list && backend.array_is_value_type && !out_type.array.empty())
+ {
+ // MSL path. Array constructor is baked into type here, do not use _constructor variant.
+ constructor_op += type_to_glsl_constructor(get<SPIRType>(result_type)) + "(";
+ needs_trailing_tracket = true;
+ }
+ constructor_op += "{ ";
+
+ if (type_is_empty(out_type) && !backend.supports_empty_struct)
+ constructor_op += "0";
+ else if (splat)
+ constructor_op += to_unpacked_expression(elems[0]);
+ else
+ constructor_op += build_composite_combiner(result_type, elems, length);
+ constructor_op += " }";
+ if (needs_trailing_tracket)
+ constructor_op += ")";
+ }
+ else if (swizzle_splat && !composite)
+ {
+ constructor_op = remap_swizzle(get<SPIRType>(result_type), 1, to_unpacked_expression(elems[0]));
+ }
+ else
+ {
+ constructor_op = type_to_glsl_constructor(get<SPIRType>(result_type)) + "(";
+ if (type_is_empty(out_type) && !backend.supports_empty_struct)
+ constructor_op += "0";
+ else if (splat)
+ constructor_op += to_unpacked_expression(elems[0]);
+ else
+ constructor_op += build_composite_combiner(result_type, elems, length);
+ constructor_op += ")";
+ }
+
+ if (!constructor_op.empty())
+ {
+ emit_op(result_type, id, constructor_op, forward);
+ for (uint32_t i = 0; i < length; i++)
+ inherit_expression_dependencies(id, elems[i]);
+ }
+ break;
+ }
+
+ case OpVectorInsertDynamic:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec = ops[2];
+ uint32_t comp = ops[3];
+ uint32_t index = ops[4];
+
+ flush_variable_declaration(vec);
+
+ // Make a copy, then use access chain to store the variable.
+ statement(declare_temporary(result_type, id), to_expression(vec), ";");
+ set<SPIRExpression>(id, to_name(id), result_type, true);
+ auto chain = access_chain_internal(id, &index, 1, 0, nullptr);
+ statement(chain, " = ", to_unpacked_expression(comp), ";");
+ break;
+ }
+
+ case OpVectorExtractDynamic:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto expr = access_chain_internal(ops[2], &ops[3], 1, 0, nullptr);
+ emit_op(result_type, id, expr, should_forward(ops[2]));
+ inherit_expression_dependencies(id, ops[2]);
+ inherit_expression_dependencies(id, ops[3]);
+ break;
+ }
+
+ case OpCompositeExtract:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ length -= 3;
+
+ auto &type = get<SPIRType>(result_type);
+
+ // We can only split the expression here if our expression is forwarded as a temporary.
+ bool allow_base_expression = forced_temporaries.find(id) == end(forced_temporaries);
+
+ // Do not allow base expression for struct members. We risk doing "swizzle" optimizations in this case.
+ auto &composite_type = expression_type(ops[2]);
+ bool composite_type_is_complex = composite_type.basetype == SPIRType::Struct || !composite_type.array.empty();
+ if (composite_type_is_complex)
+ allow_base_expression = false;
+
+ // Packed expressions or physical ID mapped expressions cannot be split up.
+ if (has_extended_decoration(ops[2], SPIRVCrossDecorationPhysicalTypePacked) ||
+ has_extended_decoration(ops[2], SPIRVCrossDecorationPhysicalTypeID))
+ allow_base_expression = false;
+
+ // Cannot use base expression for row-major matrix row-extraction since we need to interleave access pattern
+ // into the base expression.
+ if (is_non_native_row_major_matrix(ops[2]))
+ allow_base_expression = false;
+
+ AccessChainMeta meta;
+ SPIRExpression *e = nullptr;
+ auto *c = maybe_get<SPIRConstant>(ops[2]);
+
+ if (c && !c->specialization && !composite_type_is_complex)
+ {
+ auto expr = to_extract_constant_composite_expression(result_type, *c, ops + 3, length);
+ e = &emit_op(result_type, id, expr, true, true);
+ }
+ else if (allow_base_expression && should_forward(ops[2]) && type.vecsize == 1 && type.columns == 1 && length == 1)
+ {
+ // Only apply this optimization if result is scalar.
+
+ // We want to split the access chain from the base.
+ // This is so we can later combine different CompositeExtract results
+ // with CompositeConstruct without emitting code like
+ //
+ // vec3 temp = texture(...).xyz
+ // vec4(temp.x, temp.y, temp.z, 1.0).
+ //
+ // when we actually wanted to emit this
+ // vec4(texture(...).xyz, 1.0).
+ //
+ // Including the base will prevent this and would trigger multiple reads
+ // from expression causing it to be forced to an actual temporary in GLSL.
+ auto expr = access_chain_internal(ops[2], &ops[3], length,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_CHAIN_ONLY_BIT |
+ ACCESS_CHAIN_FORCE_COMPOSITE_BIT, &meta);
+ e = &emit_op(result_type, id, expr, true, should_suppress_usage_tracking(ops[2]));
+ inherit_expression_dependencies(id, ops[2]);
+ e->base_expression = ops[2];
+
+ if (meta.relaxed_precision && backend.requires_relaxed_precision_analysis)
+ set_decoration(ops[1], DecorationRelaxedPrecision);
+ }
+ else
+ {
+ auto expr = access_chain_internal(ops[2], &ops[3], length,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_FORCE_COMPOSITE_BIT, &meta);
+ e = &emit_op(result_type, id, expr, should_forward(ops[2]), should_suppress_usage_tracking(ops[2]));
+ inherit_expression_dependencies(id, ops[2]);
+ }
+
+ // Pass through some meta information to the loaded expression.
+ // We can still end up loading a buffer type to a variable, then CompositeExtract from it
+ // instead of loading everything through an access chain.
+ e->need_transpose = meta.need_transpose;
+ if (meta.storage_is_packed)
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (meta.storage_physical_type != 0)
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
+ if (meta.storage_is_invariant)
+ set_decoration(id, DecorationInvariant);
+
+ break;
+ }
+
+ case OpCompositeInsert:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t obj = ops[2];
+ uint32_t composite = ops[3];
+ const auto *elems = &ops[4];
+ length -= 4;
+
+ flush_variable_declaration(composite);
+
+ // CompositeInsert requires a copy + modification, but this is very awkward code in HLL.
+ // Speculate that the input composite is no longer used, and we can modify it in-place.
+ // There are various scenarios where this is not possible to satisfy.
+ bool can_modify_in_place = true;
+ forced_temporaries.insert(id);
+
+ // Cannot safely RMW PHI variables since they have no way to be invalidated,
+ // forcing temporaries is not going to help.
+ // This is similar for Constant and Undef inputs.
+ // The only safe thing to RMW is SPIRExpression.
+ // If the expression has already been used (i.e. used in a continue block), we have to keep using
+ // that loop variable, since we won't be able to override the expression after the fact.
+ // If the composite is hoisted, we might never be able to properly invalidate any usage
+ // of that composite in a subsequent loop iteration.
+ if (invalid_expressions.count(composite) ||
+ block_composite_insert_overwrite.count(composite) ||
+ hoisted_temporaries.count(id) || hoisted_temporaries.count(composite) ||
+ maybe_get<SPIRExpression>(composite) == nullptr)
+ {
+ can_modify_in_place = false;
+ }
+ else if (backend.requires_relaxed_precision_analysis &&
+ has_decoration(composite, DecorationRelaxedPrecision) !=
+ has_decoration(id, DecorationRelaxedPrecision) &&
+ get<SPIRType>(result_type).basetype != SPIRType::Struct)
+ {
+ // Similarly, if precision does not match for input and output,
+ // we cannot alias them. If we write a composite into a relaxed precision
+ // ID, we might get a false truncation.
+ can_modify_in_place = false;
+ }
+
+ if (can_modify_in_place)
+ {
+ // Have to make sure the modified SSA value is bound to a temporary so we can modify it in-place.
+ if (!forced_temporaries.count(composite))
+ force_temporary_and_recompile(composite);
+
+ auto chain = access_chain_internal(composite, elems, length, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ statement(chain, " = ", to_unpacked_expression(obj), ";");
+ set<SPIRExpression>(id, to_expression(composite), result_type, true);
+ invalid_expressions.insert(composite);
+ composite_insert_overwritten.insert(composite);
+ }
+ else
+ {
+ if (maybe_get<SPIRUndef>(composite) != nullptr)
+ {
+ emit_uninitialized_temporary_expression(result_type, id);
+ }
+ else
+ {
+ // Make a copy, then use access chain to store the variable.
+ statement(declare_temporary(result_type, id), to_expression(composite), ";");
+ set<SPIRExpression>(id, to_name(id), result_type, true);
+ }
+
+ auto chain = access_chain_internal(id, elems, length, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ statement(chain, " = ", to_unpacked_expression(obj), ";");
+ }
+
+ break;
+ }
+
+ case OpCopyMemory:
+ {
+ uint32_t lhs = ops[0];
+ uint32_t rhs = ops[1];
+ if (lhs != rhs)
+ {
+ uint32_t &tmp_id = extra_sub_expressions[instruction.offset | EXTRA_SUB_EXPRESSION_TYPE_STREAM_OFFSET];
+ if (!tmp_id)
+ tmp_id = ir.increase_bound_by(1);
+ uint32_t tmp_type_id = expression_type(rhs).parent_type;
+
+ EmbeddedInstruction fake_load, fake_store;
+ fake_load.op = OpLoad;
+ fake_load.length = 3;
+ fake_load.ops.push_back(tmp_type_id);
+ fake_load.ops.push_back(tmp_id);
+ fake_load.ops.push_back(rhs);
+
+ fake_store.op = OpStore;
+ fake_store.length = 2;
+ fake_store.ops.push_back(lhs);
+ fake_store.ops.push_back(tmp_id);
+
+ // Load and Store do a *lot* of workarounds, and we'd like to reuse them as much as possible.
+ // Synthesize a fake Load and Store pair for CopyMemory.
+ emit_instruction(fake_load);
+ emit_instruction(fake_store);
+ }
+ break;
+ }
+
+ case OpCopyLogical:
+ {
+ // This is used for copying object of different types, arrays and structs.
+ // We need to unroll the copy, element-by-element.
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t rhs = ops[2];
+
+ emit_uninitialized_temporary_expression(result_type, id);
+ emit_copy_logical_type(id, result_type, rhs, expression_type_id(rhs), {});
+ break;
+ }
+
+ case OpCopyObject:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t rhs = ops[2];
+ bool pointer = get<SPIRType>(result_type).pointer;
+
+ auto *chain = maybe_get<SPIRAccessChain>(rhs);
+ auto *imgsamp = maybe_get<SPIRCombinedImageSampler>(rhs);
+ if (chain)
+ {
+ // Cannot lower to a SPIRExpression, just copy the object.
+ auto &e = set<SPIRAccessChain>(id, *chain);
+ e.self = id;
+ }
+ else if (imgsamp)
+ {
+ // Cannot lower to a SPIRExpression, just copy the object.
+ // GLSL does not currently use this type and will never get here, but MSL does.
+ // Handled here instead of CompilerMSL for better integration and general handling,
+ // and in case GLSL or other subclasses require it in the future.
+ auto &e = set<SPIRCombinedImageSampler>(id, *imgsamp);
+ e.self = id;
+ }
+ else if (expression_is_lvalue(rhs) && !pointer)
+ {
+ // Need a copy.
+ // For pointer types, we copy the pointer itself.
+ emit_op(result_type, id, to_unpacked_expression(rhs), false);
+ }
+ else
+ {
+ // RHS expression is immutable, so just forward it.
+ // Copying these things really make no sense, but
+ // seems to be allowed anyways.
+ auto &e = emit_op(result_type, id, to_expression(rhs), true, true);
+ if (pointer)
+ {
+ auto *var = maybe_get_backing_variable(rhs);
+ e.loaded_from = var ? var->self : ID(0);
+ }
+
+ // If we're copying an access chain, need to inherit the read expressions.
+ auto *rhs_expr = maybe_get<SPIRExpression>(rhs);
+ if (rhs_expr)
+ {
+ e.implied_read_expressions = rhs_expr->implied_read_expressions;
+ e.expression_dependencies = rhs_expr->expression_dependencies;
+ }
+ }
+ break;
+ }
+
+ case OpVectorShuffle:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec0 = ops[2];
+ uint32_t vec1 = ops[3];
+ const auto *elems = &ops[4];
+ length -= 4;
+
+ auto &type0 = expression_type(vec0);
+
+ // If we have the undefined swizzle index -1, we need to swizzle in undefined data,
+ // or in our case, T(0).
+ bool shuffle = false;
+ for (uint32_t i = 0; i < length; i++)
+ if (elems[i] >= type0.vecsize || elems[i] == 0xffffffffu)
+ shuffle = true;
+
+ // Cannot use swizzles with packed expressions, force shuffle path.
+ if (!shuffle && has_extended_decoration(vec0, SPIRVCrossDecorationPhysicalTypePacked))
+ shuffle = true;
+
+ string expr;
+ bool should_fwd, trivial_forward;
+
+ if (shuffle)
+ {
+ should_fwd = should_forward(vec0) && should_forward(vec1);
+ trivial_forward = should_suppress_usage_tracking(vec0) && should_suppress_usage_tracking(vec1);
+
+ // Constructor style and shuffling from two different vectors.
+ SmallVector<string> args;
+ for (uint32_t i = 0; i < length; i++)
+ {
+ if (elems[i] == 0xffffffffu)
+ {
+ // Use a constant 0 here.
+ // We could use the first component or similar, but then we risk propagating
+ // a value we might not need, and bog down codegen.
+ SPIRConstant c;
+ c.constant_type = type0.parent_type;
+ assert(type0.parent_type != ID(0));
+ args.push_back(constant_expression(c));
+ }
+ else if (elems[i] >= type0.vecsize)
+ args.push_back(to_extract_component_expression(vec1, elems[i] - type0.vecsize));
+ else
+ args.push_back(to_extract_component_expression(vec0, elems[i]));
+ }
+ expr += join(type_to_glsl_constructor(get<SPIRType>(result_type)), "(", merge(args), ")");
+ }
+ else
+ {
+ should_fwd = should_forward(vec0);
+ trivial_forward = should_suppress_usage_tracking(vec0);
+
+ // We only source from first vector, so can use swizzle.
+ // If the vector is packed, unpack it before applying a swizzle (needed for MSL)
+ expr += to_enclosed_unpacked_expression(vec0);
+ expr += ".";
+ for (uint32_t i = 0; i < length; i++)
+ {
+ assert(elems[i] != 0xffffffffu);
+ expr += index_to_swizzle(elems[i]);
+ }
+
+ if (backend.swizzle_is_function && length > 1)
+ expr += "()";
+ }
+
+ // A shuffle is trivial in that it doesn't actually *do* anything.
+ // We inherit the forwardedness from our arguments to avoid flushing out to temporaries when it's not really needed.
+
+ emit_op(result_type, id, expr, should_fwd, trivial_forward);
+
+ inherit_expression_dependencies(id, vec0);
+ if (vec0 != vec1)
+ inherit_expression_dependencies(id, vec1);
+ break;
+ }
+
+ // ALU
+ case OpIsNan:
+ if (!is_legacy())
+ GLSL_UFOP(isnan);
+ else
+ {
+ // Check if the number doesn't equal itself
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.vecsize > 1)
+ emit_binary_func_op(ops[0], ops[1], ops[2], ops[2], "notEqual");
+ else
+ emit_binary_op(ops[0], ops[1], ops[2], ops[2], "!=");
+ }
+ break;
+
+ case OpIsInf:
+ if (!is_legacy())
+ GLSL_UFOP(isinf);
+ else
+ {
+ // inf * 2 == inf by IEEE 754 rules, note this also applies to 0.0
+ // This is more reliable than checking if product with zero is NaN
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t operand = ops[2];
+
+ auto &type = get<SPIRType>(result_type);
+ std::string expr;
+ if (type.vecsize > 1)
+ {
+ expr = type_to_glsl_constructor(type);
+ expr += '(';
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ auto comp = to_extract_component_expression(operand, i);
+ expr += join(comp, " != 0.0 && 2.0 * ", comp, " == ", comp);
+
+ if (i + 1 < type.vecsize)
+ expr += ", ";
+ }
+ expr += ')';
+ }
+ else
+ {
+ // Register an extra read to force writing out a temporary
+ auto oper = to_enclosed_expression(operand);
+ track_expression_read(operand);
+ expr += join(oper, " != 0.0 && 2.0 * ", oper, " == ", oper);
+ }
+ emit_op(result_type, result_id, expr, should_forward(operand));
+
+ inherit_expression_dependencies(result_id, operand);
+ }
+ break;
+
+ case OpSNegate:
+ if (implicit_integer_promotion || expression_type_id(ops[2]) != ops[0])
+ GLSL_UOP_CAST(-);
+ else
+ GLSL_UOP(-);
+ break;
+
+ case OpFNegate:
+ GLSL_UOP(-);
+ break;
+
+ case OpIAdd:
+ {
+ // For simple arith ops, prefer the output type if there's a mismatch to avoid extra bitcasts.
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(+, type);
+ break;
+ }
+
+ case OpFAdd:
+ GLSL_BOP(+);
+ break;
+
+ case OpISub:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(-, type);
+ break;
+ }
+
+ case OpFSub:
+ GLSL_BOP(-);
+ break;
+
+ case OpIMul:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(*, type);
+ break;
+ }
+
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ {
+ // If the matrix needs transpose, just flip the multiply order.
+ auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]);
+ if (e && e->need_transpose)
+ {
+ e->need_transpose = false;
+ string expr;
+
+ if (opcode == OpMatrixTimesVector)
+ expr = join(to_enclosed_unpacked_expression(ops[3]), " * ",
+ enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])));
+ else
+ expr = join(enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), " * ",
+ to_enclosed_unpacked_expression(ops[2]));
+
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ emit_op(ops[0], ops[1], expr, forward);
+ e->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ GLSL_BOP(*);
+ break;
+ }
+
+ case OpMatrixTimesMatrix:
+ {
+ auto *a = maybe_get<SPIRExpression>(ops[2]);
+ auto *b = maybe_get<SPIRExpression>(ops[3]);
+
+ // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
+ // a^T * b^T = (b * a)^T.
+ if (a && b && a->need_transpose && b->need_transpose)
+ {
+ a->need_transpose = false;
+ b->need_transpose = false;
+ auto expr = join(enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), " * ",
+ enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])));
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ auto &e = emit_op(ops[0], ops[1], expr, forward);
+ e.need_transpose = true;
+ a->need_transpose = true;
+ b->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ GLSL_BOP(*);
+
+ break;
+ }
+
+ case OpMatrixTimesScalar:
+ {
+ auto *a = maybe_get<SPIRExpression>(ops[2]);
+
+ // If the matrix need transpose, just mark the result as needing so.
+ if (a && a->need_transpose)
+ {
+ a->need_transpose = false;
+ auto expr = join(enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), " * ",
+ to_enclosed_unpacked_expression(ops[3]));
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ auto &e = emit_op(ops[0], ops[1], expr, forward);
+ e.need_transpose = true;
+ a->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ GLSL_BOP(*);
+ break;
+ }
+
+ case OpFMul:
+ case OpVectorTimesScalar:
+ GLSL_BOP(*);
+ break;
+
+ case OpOuterProduct:
+ if (options.version < 120) // Matches GLSL 1.10 / ESSL 1.00
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2];
+ uint32_t b = ops[3];
+
+ auto &type = get<SPIRType>(result_type);
+ string expr = type_to_glsl_constructor(type);
+ expr += "(";
+ for (uint32_t col = 0; col < type.columns; col++)
+ {
+ expr += to_enclosed_expression(a);
+ expr += " * ";
+ expr += to_extract_component_expression(b, col);
+ if (col + 1 < type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ emit_op(result_type, id, expr, should_forward(a) && should_forward(b));
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ }
+ else
+ GLSL_BFOP(outerProduct);
+ break;
+
+ case OpDot:
+ GLSL_BFOP(dot);
+ break;
+
+ case OpTranspose:
+ if (options.version < 120) // Matches GLSL 1.10 / ESSL 1.00
+ {
+ // transpose() is not available, so instead, flip need_transpose,
+ // which can later be turned into an emulated transpose op by
+ // convert_row_major_matrix(), if necessary.
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t input = ops[2];
+
+ // Force need_transpose to false temporarily to prevent
+ // to_expression() from doing the transpose.
+ bool need_transpose = false;
+ auto *input_e = maybe_get<SPIRExpression>(input);
+ if (input_e)
+ swap(need_transpose, input_e->need_transpose);
+
+ bool forward = should_forward(input);
+ auto &e = emit_op(result_type, result_id, to_expression(input), forward);
+ e.need_transpose = !need_transpose;
+
+ // Restore the old need_transpose flag.
+ if (input_e)
+ input_e->need_transpose = need_transpose;
+ }
+ else
+ GLSL_UFOP(transpose);
+ break;
+
+ case OpSRem:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+
+ // Needs special handling.
+ bool forward = should_forward(op0) && should_forward(op1);
+ auto expr = join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ", "(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), ")");
+
+ if (implicit_integer_promotion)
+ expr = join(type_to_glsl(get<SPIRType>(result_type)), '(', expr, ')');
+
+ emit_op(result_type, result_id, expr, forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ break;
+ }
+
+ case OpSDiv:
+ GLSL_BOP_CAST(/, int_type);
+ break;
+
+ case OpUDiv:
+ GLSL_BOP_CAST(/, uint_type);
+ break;
+
+ case OpIAddCarry:
+ case OpISubBorrow:
+ {
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from ESSL 310.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from GLSL 400.");
+
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ const char *op = opcode == OpIAddCarry ? "uaddCarry" : "usubBorrow";
+
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", op, "(", to_expression(op0), ", ",
+ to_expression(op1), ", ", to_expression(result_id), ".", to_member_name(type, 1), ");");
+ break;
+ }
+
+ case OpUMulExtended:
+ case OpSMulExtended:
+ {
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from ESSL 310.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from GLSL 4000.");
+
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ const char *op = opcode == OpUMulExtended ? "umulExtended" : "imulExtended";
+
+ statement(op, "(", to_expression(op0), ", ", to_expression(op1), ", ", to_expression(result_id), ".",
+ to_member_name(type, 1), ", ", to_expression(result_id), ".", to_member_name(type, 0), ");");
+ break;
+ }
+
+ case OpFDiv:
+ GLSL_BOP(/);
+ break;
+
+ case OpShiftRightLogical:
+ GLSL_BOP_CAST(>>, uint_type);
+ break;
+
+ case OpShiftRightArithmetic:
+ GLSL_BOP_CAST(>>, int_type);
+ break;
+
+ case OpShiftLeftLogical:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(<<, type);
+ break;
+ }
+
+ case OpBitwiseOr:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(|, type);
+ break;
+ }
+
+ case OpBitwiseXor:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(^, type);
+ break;
+ }
+
+ case OpBitwiseAnd:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(&, type);
+ break;
+ }
+
+ case OpNot:
+ if (implicit_integer_promotion || expression_type_id(ops[2]) != ops[0])
+ GLSL_UOP_CAST(~);
+ else
+ GLSL_UOP(~);
+ break;
+
+ case OpUMod:
+ GLSL_BOP_CAST(%, uint_type);
+ break;
+
+ case OpSMod:
+ GLSL_BOP_CAST(%, int_type);
+ break;
+
+ case OpFMod:
+ GLSL_BFOP(mod);
+ break;
+
+ case OpFRem:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+
+ // Needs special handling.
+ bool forward = should_forward(op0) && should_forward(op1);
+ std::string expr;
+ if (!is_legacy())
+ {
+ expr = join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ", "trunc(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), ")");
+ }
+ else
+ {
+ // Legacy GLSL has no trunc, emulate by casting to int and back
+ auto &op0_type = expression_type(op0);
+ auto via_type = op0_type;
+ via_type.basetype = SPIRType::Int;
+ expr = join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ",
+ type_to_glsl(op0_type), "(", type_to_glsl(via_type), "(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), "))");
+ }
+
+ emit_op(result_type, result_id, expr, forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ break;
+ }
+
+ // Relational
+ case OpAny:
+ GLSL_UFOP(any);
+ break;
+
+ case OpAll:
+ GLSL_UFOP(all);
+ break;
+
+ case OpSelect:
+ emit_mix_op(ops[0], ops[1], ops[4], ops[3], ops[2]);
+ break;
+
+ case OpLogicalOr:
+ {
+ // No vector variant in GLSL for logical OR.
+ auto result_type = ops[0];
+ auto id = ops[1];
+ auto &type = get<SPIRType>(result_type);
+
+ if (type.vecsize > 1)
+ emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "||", false, SPIRType::Unknown);
+ else
+ GLSL_BOP(||);
+ break;
+ }
+
+ case OpLogicalAnd:
+ {
+ // No vector variant in GLSL for logical AND.
+ auto result_type = ops[0];
+ auto id = ops[1];
+ auto &type = get<SPIRType>(result_type);
+
+ if (type.vecsize > 1)
+ emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "&&", false, SPIRType::Unknown);
+ else
+ GLSL_BOP(&&);
+ break;
+ }
+
+ case OpLogicalNot:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.vecsize > 1)
+ GLSL_UFOP(not );
+ else
+ GLSL_UOP(!);
+ break;
+ }
+
+ case OpIEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(equal, int_type);
+ else
+ GLSL_BOP_CAST(==, int_type);
+ break;
+ }
+
+ case OpLogicalEqual:
+ case OpFOrdEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(equal);
+ else
+ GLSL_BOP(==);
+ break;
+ }
+
+ case OpINotEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(notEqual, int_type);
+ else
+ GLSL_BOP_CAST(!=, int_type);
+ break;
+ }
+
+ case OpLogicalNotEqual:
+ case OpFOrdNotEqual:
+ case OpFUnordNotEqual:
+ {
+ // GLSL is fuzzy on what to do with ordered vs unordered not equal.
+ // glslang started emitting UnorderedNotEqual some time ago to harmonize with IEEE,
+ // but this means we have no easy way of implementing ordered not equal.
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(notEqual);
+ else
+ GLSL_BOP(!=);
+ break;
+ }
+
+ case OpUGreaterThan:
+ case OpSGreaterThan:
+ {
+ auto type = opcode == OpUGreaterThan ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(greaterThan, type);
+ else
+ GLSL_BOP_CAST(>, type);
+ break;
+ }
+
+ case OpFOrdGreaterThan:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(greaterThan);
+ else
+ GLSL_BOP(>);
+ break;
+ }
+
+ case OpUGreaterThanEqual:
+ case OpSGreaterThanEqual:
+ {
+ auto type = opcode == OpUGreaterThanEqual ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(greaterThanEqual, type);
+ else
+ GLSL_BOP_CAST(>=, type);
+ break;
+ }
+
+ case OpFOrdGreaterThanEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(greaterThanEqual);
+ else
+ GLSL_BOP(>=);
+ break;
+ }
+
+ case OpULessThan:
+ case OpSLessThan:
+ {
+ auto type = opcode == OpULessThan ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(lessThan, type);
+ else
+ GLSL_BOP_CAST(<, type);
+ break;
+ }
+
+ case OpFOrdLessThan:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(lessThan);
+ else
+ GLSL_BOP(<);
+ break;
+ }
+
+ case OpULessThanEqual:
+ case OpSLessThanEqual:
+ {
+ auto type = opcode == OpULessThanEqual ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(lessThanEqual, type);
+ else
+ GLSL_BOP_CAST(<=, type);
+ break;
+ }
+
+ case OpFOrdLessThanEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(lessThanEqual);
+ else
+ GLSL_BOP(<=);
+ break;
+ }
+
+ // Conversion
+ case OpSConvert:
+ case OpConvertSToF:
+ case OpUConvert:
+ case OpConvertUToF:
+ {
+ auto input_type = opcode == OpSConvert || opcode == OpConvertSToF ? int_type : uint_type;
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto &type = get<SPIRType>(result_type);
+ auto &arg_type = expression_type(ops[2]);
+ auto func = type_to_glsl_constructor(type);
+
+ if (arg_type.width < type.width || type_is_floating_point(type))
+ emit_unary_func_op_cast(result_type, id, ops[2], func.c_str(), input_type, type.basetype);
+ else
+ emit_unary_func_op(result_type, id, ops[2], func.c_str());
+ break;
+ }
+
+ case OpConvertFToU:
+ case OpConvertFToS:
+ {
+ // Cast to expected arithmetic type, then potentially bitcast away to desired signedness.
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto &type = get<SPIRType>(result_type);
+ auto expected_type = type;
+ auto &float_type = expression_type(ops[2]);
+ expected_type.basetype =
+ opcode == OpConvertFToS ? to_signed_basetype(type.width) : to_unsigned_basetype(type.width);
+
+ auto func = type_to_glsl_constructor(expected_type);
+ emit_unary_func_op_cast(result_type, id, ops[2], func.c_str(), float_type.basetype, expected_type.basetype);
+ break;
+ }
+
+ case OpFConvert:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto func = type_to_glsl_constructor(get<SPIRType>(result_type));
+ emit_unary_func_op(result_type, id, ops[2], func.c_str());
+ break;
+ }
+
+ case OpBitcast:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+
+ if (!emit_complex_bitcast(result_type, id, arg))
+ {
+ auto op = bitcast_glsl_op(get<SPIRType>(result_type), expression_type(arg));
+ emit_unary_func_op(result_type, id, arg, op.c_str());
+ }
+ break;
+ }
+
+ case OpQuantizeToF16:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+
+ string op;
+ auto &type = get<SPIRType>(result_type);
+
+ switch (type.vecsize)
+ {
+ case 1:
+ op = join("unpackHalf2x16(packHalf2x16(vec2(", to_expression(arg), "))).x");
+ break;
+ case 2:
+ op = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), "))");
+ break;
+ case 3:
+ {
+ auto op0 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".xy))");
+ auto op1 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".zz)).x");
+ op = join("vec3(", op0, ", ", op1, ")");
+ break;
+ }
+ case 4:
+ {
+ auto op0 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".xy))");
+ auto op1 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".zw))");
+ op = join("vec4(", op0, ", ", op1, ")");
+ break;
+ }
+ default:
+ SPIRV_CROSS_THROW("Illegal argument to OpQuantizeToF16.");
+ }
+
+ emit_op(result_type, id, op, should_forward(arg));
+ inherit_expression_dependencies(id, arg);
+ break;
+ }
+
+ // Derivatives
+ case OpDPdx:
+ GLSL_UFOP(dFdx);
+ if (is_legacy_es())
+ require_extension_internal("GL_OES_standard_derivatives");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdy:
+ GLSL_UFOP(dFdy);
+ if (is_legacy_es())
+ require_extension_internal("GL_OES_standard_derivatives");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdxFine:
+ GLSL_UFOP(dFdxFine);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdyFine:
+ GLSL_UFOP(dFdyFine);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdxCoarse:
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ GLSL_UFOP(dFdxCoarse);
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdyCoarse:
+ GLSL_UFOP(dFdyCoarse);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidth:
+ GLSL_UFOP(fwidth);
+ if (is_legacy_es())
+ require_extension_internal("GL_OES_standard_derivatives");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidthCoarse:
+ GLSL_UFOP(fwidthCoarse);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidthFine:
+ GLSL_UFOP(fwidthFine);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ // Bitfield
+ case OpBitFieldInsert:
+ {
+ emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "bitfieldInsert", SPIRType::Int);
+ break;
+ }
+
+ case OpBitFieldSExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "bitfieldExtract", int_type, int_type,
+ SPIRType::Int, SPIRType::Int);
+ break;
+ }
+
+ case OpBitFieldUExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "bitfieldExtract", uint_type, uint_type,
+ SPIRType::Int, SPIRType::Int);
+ break;
+ }
+
+ case OpBitReverse:
+ // BitReverse does not have issues with sign since result type must match input type.
+ GLSL_UFOP(bitfieldReverse);
+ break;
+
+ case OpBitCount:
+ {
+ auto basetype = expression_type(ops[2]).basetype;
+ emit_unary_func_op_cast(ops[0], ops[1], ops[2], "bitCount", basetype, int_type);
+ break;
+ }
+
+ // Atomics
+ case OpAtomicExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ // Ignore semantics for now, probably only relevant to CL.
+ uint32_t val = ops[5];
+ const char *op = check_atomic_image(ptr) ? "imageAtomicExchange" : "atomicExchange";
+
+ emit_atomic_func_op(result_type, id, ptr, val, op);
+ break;
+ }
+
+ case OpAtomicCompareExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t val = ops[6];
+ uint32_t comp = ops[7];
+ const char *op = check_atomic_image(ptr) ? "imageAtomicCompSwap" : "atomicCompSwap";
+
+ emit_atomic_func_op(result_type, id, ptr, comp, val, op);
+ break;
+ }
+
+ case OpAtomicLoad:
+ {
+ // In plain GLSL, we have no atomic loads, so emulate this by fetch adding by 0 and hope compiler figures it out.
+ // Alternatively, we could rely on KHR_memory_model, but that's not very helpful for GL.
+ auto &type = expression_type(ops[2]);
+ forced_temporaries.insert(ops[1]);
+ bool atomic_image = check_atomic_image(ops[2]);
+ bool unsigned_type = (type.basetype == SPIRType::UInt) ||
+ (atomic_image && get<SPIRType>(type.image.type).basetype == SPIRType::UInt);
+ const char *op = atomic_image ? "imageAtomicAdd" : "atomicAdd";
+ const char *increment = unsigned_type ? "0u" : "0";
+ emit_op(ops[0], ops[1],
+ join(op, "(",
+ to_non_uniform_aware_expression(ops[2]), ", ", increment, ")"), false);
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ // In plain GLSL, we have no atomic stores, so emulate this with an atomic exchange where we don't consume the result.
+ // Alternatively, we could rely on KHR_memory_model, but that's not very helpful for GL.
+ uint32_t ptr = ops[0];
+ // Ignore semantics for now, probably only relevant to CL.
+ uint32_t val = ops[3];
+ const char *op = check_atomic_image(ptr) ? "imageAtomicExchange" : "atomicExchange";
+ statement(op, "(", to_non_uniform_aware_expression(ptr), ", ", to_expression(val), ");");
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ {
+ forced_temporaries.insert(ops[1]);
+ auto &type = expression_type(ops[2]);
+ if (type.storage == StorageClassAtomicCounter)
+ {
+ // Legacy GLSL stuff, not sure if this is relevant to support.
+ if (opcode == OpAtomicIIncrement)
+ GLSL_UFOP(atomicCounterIncrement);
+ else
+ GLSL_UFOP(atomicCounterDecrement);
+ }
+ else
+ {
+ bool atomic_image = check_atomic_image(ops[2]);
+ bool unsigned_type = (type.basetype == SPIRType::UInt) ||
+ (atomic_image && get<SPIRType>(type.image.type).basetype == SPIRType::UInt);
+ const char *op = atomic_image ? "imageAtomicAdd" : "atomicAdd";
+
+ const char *increment = nullptr;
+ if (opcode == OpAtomicIIncrement && unsigned_type)
+ increment = "1u";
+ else if (opcode == OpAtomicIIncrement)
+ increment = "1";
+ else if (unsigned_type)
+ increment = "uint(-1)";
+ else
+ increment = "-1";
+
+ emit_op(ops[0], ops[1],
+ join(op, "(", to_non_uniform_aware_expression(ops[2]), ", ", increment, ")"), false);
+ }
+
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicAdd" : "atomicAdd";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicISub:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicAdd" : "atomicAdd";
+ forced_temporaries.insert(ops[1]);
+ auto expr = join(op, "(", to_non_uniform_aware_expression(ops[2]), ", -", to_enclosed_expression(ops[5]), ")");
+ emit_op(ops[0], ops[1], expr, should_forward(ops[2]) && should_forward(ops[5]));
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicMin" : "atomicMin";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicMax" : "atomicMax";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicAnd:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicAnd" : "atomicAnd";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicOr:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicOr" : "atomicOr";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicXor:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicXor" : "atomicXor";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ // Geometry shaders
+ case OpEmitVertex:
+ statement("EmitVertex();");
+ break;
+
+ case OpEndPrimitive:
+ statement("EndPrimitive();");
+ break;
+
+ case OpEmitStreamVertex:
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders not supported in ES.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders only supported in GLSL 400.");
+
+ auto stream_expr = to_expression(ops[0]);
+ if (expression_type(ops[0]).basetype != SPIRType::Int)
+ stream_expr = join("int(", stream_expr, ")");
+ statement("EmitStreamVertex(", stream_expr, ");");
+ break;
+ }
+
+ case OpEndStreamPrimitive:
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders not supported in ES.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders only supported in GLSL 400.");
+
+ auto stream_expr = to_expression(ops[0]);
+ if (expression_type(ops[0]).basetype != SPIRType::Int)
+ stream_expr = join("int(", stream_expr, ")");
+ statement("EndStreamPrimitive(", stream_expr, ");");
+ break;
+ }
+
+ // Textures
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageFetch:
+ case OpImageGather:
+ case OpImageDrefGather:
+ // Gets a bit hairy, so move this to a separate instruction.
+ emit_texture_op(instruction, false);
+ break;
+
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseFetch:
+ case OpImageSparseGather:
+ case OpImageSparseDrefGather:
+ // Gets a bit hairy, so move this to a separate instruction.
+ emit_texture_op(instruction, true);
+ break;
+
+ case OpImageSparseTexelsResident:
+ if (options.es)
+ SPIRV_CROSS_THROW("Sparse feedback is not supported in GLSL.");
+ require_extension_internal("GL_ARB_sparse_texture2");
+ emit_unary_func_op_cast(ops[0], ops[1], ops[2], "sparseTexelsResidentARB", int_type, SPIRType::Boolean);
+ break;
+
+ case OpImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ // Suppress usage tracking.
+ auto &e = emit_op(result_type, id, to_expression(ops[2]), true, true);
+
+ // When using the image, we need to know which variable it is actually loaded from.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ e.loaded_from = var ? var->self : ID(0);
+ break;
+ }
+
+ case OpImageQueryLod:
+ {
+ const char *op = nullptr;
+ if (!options.es && options.version < 400)
+ {
+ require_extension_internal("GL_ARB_texture_query_lod");
+ // For some reason, the ARB spec is all-caps.
+ op = "textureQueryLOD";
+ }
+ else if (options.es)
+ {
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("textureQueryLod not supported in legacy ES");
+ require_extension_internal("GL_EXT_texture_query_lod");
+ op = "textureQueryLOD";
+ }
+ else
+ op = "textureQueryLod";
+
+ auto sampler_expr = to_expression(ops[2]);
+ if (has_decoration(ops[2], DecorationNonUniform))
+ {
+ if (maybe_get_backing_variable(ops[2]))
+ convert_non_uniform_expression(sampler_expr, ops[2]);
+ else if (*backend.nonuniform_qualifier != '\0')
+ sampler_expr = join(backend.nonuniform_qualifier, "(", sampler_expr, ")");
+ }
+
+ bool forward = should_forward(ops[3]);
+ emit_op(ops[0], ops[1],
+ join(op, "(", sampler_expr, ", ", to_unpacked_expression(ops[3]), ")"),
+ forward);
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpImageQueryLevels:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_texture_query_levels");
+ if (options.es)
+ SPIRV_CROSS_THROW("textureQueryLevels not supported in ES profile.");
+
+ auto expr = join("textureQueryLevels(", convert_separate_image_to_expression(ops[2]), ")");
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ break;
+ }
+
+ case OpImageQuerySamples:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (options.es)
+ SPIRV_CROSS_THROW("textureSamples and imageSamples not supported in ES profile.");
+ else if (options.version < 450)
+ require_extension_internal("GL_ARB_texture_query_samples");
+
+ string expr;
+ if (type.image.sampled == 2)
+ expr = join("imageSamples(", to_non_uniform_aware_expression(ops[2]), ")");
+ else
+ expr = join("textureSamples(", convert_separate_image_to_expression(ops[2]), ")");
+
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ break;
+ }
+
+ case OpSampledImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_sampled_image_op(result_type, id, ops[2], ops[3]);
+ inherit_expression_dependencies(id, ops[2]);
+ inherit_expression_dependencies(id, ops[3]);
+ break;
+ }
+
+ case OpImageQuerySizeLod:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t img = ops[2];
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ std::string fname = "textureSize";
+ if (is_legacy_desktop())
+ {
+ fname = legacy_tex_op(fname, imgtype, img);
+ }
+ else if (is_legacy_es())
+ SPIRV_CROSS_THROW("textureSize is not supported in ESSL 100.");
+
+ auto expr = join(fname, "(", convert_separate_image_to_expression(img), ", ",
+ bitcast_expression(SPIRType::Int, ops[3]), ")");
+
+ // ES needs to emulate 1D images as 2D.
+ if (type.image.dim == Dim1D && options.es)
+ expr = join(expr, ".x");
+
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ break;
+ }
+
+ // Image load/store
+ case OpImageRead:
+ case OpImageSparseRead:
+ {
+ // We added Nonreadable speculatively to the OpImage variable due to glslangValidator
+ // not adding the proper qualifiers.
+ // If it turns out we need to read the image after all, remove the qualifier and recompile.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (var)
+ {
+ auto &flags = get_decoration_bitset(var->self);
+ if (flags.get(DecorationNonReadable))
+ {
+ unset_decoration(var->self, DecorationNonReadable);
+ force_recompile();
+ }
+ }
+
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ bool pure;
+ string imgexpr;
+ auto &type = expression_type(ops[2]);
+
+ if (var && var->remapped_variable) // Remapped input, just read as-is without any op-code
+ {
+ if (type.image.ms)
+ SPIRV_CROSS_THROW("Trying to remap multisampled image to variable, this is not possible.");
+
+ auto itr =
+ find_if(begin(pls_inputs), end(pls_inputs), [var](const PlsRemap &pls) { return pls.id == var->self; });
+
+ if (itr == end(pls_inputs))
+ {
+ // For non-PLS inputs, we rely on subpass type remapping information to get it right
+ // since ImageRead always returns 4-component vectors and the backing type is opaque.
+ if (!var->remapped_components)
+ SPIRV_CROSS_THROW("subpassInput was remapped, but remap_components is not set correctly.");
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), var->remapped_components, to_expression(ops[2]));
+ }
+ else
+ {
+ // PLS input could have different number of components than what the SPIR expects, swizzle to
+ // the appropriate vector size.
+ uint32_t components = pls_format_to_components(itr->format);
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), components, to_expression(ops[2]));
+ }
+ pure = true;
+ }
+ else if (type.image.dim == DimSubpassData)
+ {
+ if (var && subpass_input_is_framebuffer_fetch(var->self))
+ {
+ imgexpr = to_expression(var->self);
+ }
+ else if (options.vulkan_semantics)
+ {
+ // With Vulkan semantics, use the proper Vulkan GLSL construct.
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ imgexpr = join("subpassLoad(", to_non_uniform_aware_expression(ops[2]), ", ", to_expression(samples), ")");
+ }
+ else
+ imgexpr = join("subpassLoad(", to_non_uniform_aware_expression(ops[2]), ")");
+ }
+ else
+ {
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ imgexpr = join("texelFetch(", to_non_uniform_aware_expression(ops[2]), ", ivec2(gl_FragCoord.xy), ",
+ to_expression(samples), ")");
+ }
+ else
+ {
+ // Implement subpass loads via texture barrier style sampling.
+ imgexpr = join("texelFetch(", to_non_uniform_aware_expression(ops[2]), ", ivec2(gl_FragCoord.xy), 0)");
+ }
+ }
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), 4, imgexpr);
+ pure = true;
+ }
+ else
+ {
+ bool sparse = opcode == OpImageSparseRead;
+ uint32_t sparse_code_id = 0;
+ uint32_t sparse_texel_id = 0;
+ if (sparse)
+ emit_sparse_feedback_temporaries(ops[0], ops[1], sparse_code_id, sparse_texel_id);
+
+ // imageLoad only accepts int coords, not uint.
+ auto coord_expr = to_expression(ops[3]);
+ auto target_coord_type = expression_type(ops[3]);
+ target_coord_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(target_coord_type, expression_type(ops[3]).basetype, coord_expr);
+
+ // ES needs to emulate 1D images as 2D.
+ if (type.image.dim == Dim1D && options.es)
+ coord_expr = join("ivec2(", coord_expr, ", 0)");
+
+ // Plain image load/store.
+ if (sparse)
+ {
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ statement(to_expression(sparse_code_id), " = sparseImageLoadARB(", to_non_uniform_aware_expression(ops[2]), ", ",
+ coord_expr, ", ", to_expression(samples), ", ", to_expression(sparse_texel_id), ");");
+ }
+ else
+ {
+ statement(to_expression(sparse_code_id), " = sparseImageLoadARB(", to_non_uniform_aware_expression(ops[2]), ", ",
+ coord_expr, ", ", to_expression(sparse_texel_id), ");");
+ }
+ imgexpr = join(type_to_glsl(get<SPIRType>(result_type)), "(", to_expression(sparse_code_id), ", ",
+ to_expression(sparse_texel_id), ")");
+ }
+ else
+ {
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ imgexpr =
+ join("imageLoad(", to_non_uniform_aware_expression(ops[2]), ", ", coord_expr, ", ", to_expression(samples), ")");
+ }
+ else
+ imgexpr = join("imageLoad(", to_non_uniform_aware_expression(ops[2]), ", ", coord_expr, ")");
+ }
+
+ if (!sparse)
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), 4, imgexpr);
+ pure = false;
+ }
+
+ if (var)
+ {
+ bool forward = forced_temporaries.find(id) == end(forced_temporaries);
+ auto &e = emit_op(result_type, id, imgexpr, forward);
+
+ // We only need to track dependencies if we're reading from image load/store.
+ if (!pure)
+ {
+ e.loaded_from = var->self;
+ if (forward)
+ var->dependees.push_back(id);
+ }
+ }
+ else
+ emit_op(result_type, id, imgexpr, false);
+
+ inherit_expression_dependencies(id, ops[2]);
+ if (type.image.ms)
+ inherit_expression_dependencies(id, ops[5]);
+ break;
+ }
+
+ case OpImageTexelPointer:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto coord_expr = to_expression(ops[3]);
+ auto target_coord_type = expression_type(ops[3]);
+ target_coord_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(target_coord_type, expression_type(ops[3]).basetype, coord_expr);
+
+ auto expr = join(to_expression(ops[2]), ", ", coord_expr);
+ auto &e = set<SPIRExpression>(id, expr, result_type, true);
+
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ e.loaded_from = var ? var->self : ID(0);
+ inherit_expression_dependencies(id, ops[3]);
+ break;
+ }
+
+ case OpImageWrite:
+ {
+ // We added Nonwritable speculatively to the OpImage variable due to glslangValidator
+ // not adding the proper qualifiers.
+ // If it turns out we need to write to the image after all, remove the qualifier and recompile.
+ auto *var = maybe_get_backing_variable(ops[0]);
+ if (var)
+ {
+ if (has_decoration(var->self, DecorationNonWritable))
+ {
+ unset_decoration(var->self, DecorationNonWritable);
+ force_recompile();
+ }
+ }
+
+ auto &type = expression_type(ops[0]);
+ auto &value_type = expression_type(ops[2]);
+ auto store_type = value_type;
+ store_type.vecsize = 4;
+
+ // imageStore only accepts int coords, not uint.
+ auto coord_expr = to_expression(ops[1]);
+ auto target_coord_type = expression_type(ops[1]);
+ target_coord_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(target_coord_type, expression_type(ops[1]).basetype, coord_expr);
+
+ // ES needs to emulate 1D images as 2D.
+ if (type.image.dim == Dim1D && options.es)
+ coord_expr = join("ivec2(", coord_expr, ", 0)");
+
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[3];
+ if (operands != ImageOperandsSampleMask || length != 5)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageWrite, but unexpected operand mask was used.");
+ uint32_t samples = ops[4];
+ statement("imageStore(", to_non_uniform_aware_expression(ops[0]), ", ", coord_expr, ", ", to_expression(samples), ", ",
+ remap_swizzle(store_type, value_type.vecsize, to_expression(ops[2])), ");");
+ }
+ else
+ statement("imageStore(", to_non_uniform_aware_expression(ops[0]), ", ", coord_expr, ", ",
+ remap_swizzle(store_type, value_type.vecsize, to_expression(ops[2])), ");");
+
+ if (var && variable_storage_is_aliased(*var))
+ flush_all_aliased_variables();
+ break;
+ }
+
+ case OpImageQuerySize:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (type.basetype == SPIRType::Image)
+ {
+ string expr;
+ if (type.image.sampled == 2)
+ {
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_shader_image_size");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for imageSize.");
+
+ // The size of an image is always constant.
+ expr = join("imageSize(", to_non_uniform_aware_expression(ops[2]), ")");
+ }
+ else
+ {
+ // This path is hit for samplerBuffers and multisampled images which do not have LOD.
+ std::string fname = "textureSize";
+ if (is_legacy())
+ {
+ auto &imgtype = get<SPIRType>(type.self);
+ fname = legacy_tex_op(fname, imgtype, ops[2]);
+ }
+ expr = join(fname, "(", convert_separate_image_to_expression(ops[2]), ")");
+ }
+
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ }
+ else
+ SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
+ break;
+ }
+
+ case OpImageSampleWeightedQCOM:
+ case OpImageBoxFilterQCOM:
+ case OpImageBlockMatchSSDQCOM:
+ case OpImageBlockMatchSADQCOM:
+ {
+ require_extension_internal("GL_QCOM_image_processing");
+ uint32_t result_type_id = ops[0];
+ uint32_t id = ops[1];
+ string expr;
+ switch (opcode)
+ {
+ case OpImageSampleWeightedQCOM:
+ expr = "textureWeightedQCOM";
+ break;
+ case OpImageBoxFilterQCOM:
+ expr = "textureBoxFilterQCOM";
+ break;
+ case OpImageBlockMatchSSDQCOM:
+ expr = "textureBlockMatchSSDQCOM";
+ break;
+ case OpImageBlockMatchSADQCOM:
+ expr = "textureBlockMatchSADQCOM";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for QCOM_image_processing.");
+ }
+ expr += "(";
+
+ bool forward = false;
+ expr += to_expression(ops[2]);
+ expr += ", " + to_expression(ops[3]);
+
+ switch (opcode)
+ {
+ case OpImageSampleWeightedQCOM:
+ expr += ", " + to_non_uniform_aware_expression(ops[4]);
+ break;
+ case OpImageBoxFilterQCOM:
+ expr += ", " + to_expression(ops[4]);
+ break;
+ case OpImageBlockMatchSSDQCOM:
+ case OpImageBlockMatchSADQCOM:
+ expr += ", " + to_non_uniform_aware_expression(ops[4]);
+ expr += ", " + to_expression(ops[5]);
+ expr += ", " + to_expression(ops[6]);
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for QCOM_image_processing.");
+ }
+
+ expr += ")";
+ emit_op(result_type_id, id, expr, forward);
+
+ inherit_expression_dependencies(id, ops[3]);
+ if (opcode == OpImageBlockMatchSSDQCOM || opcode == OpImageBlockMatchSADQCOM)
+ inherit_expression_dependencies(id, ops[5]);
+
+ break;
+ }
+
+ // Compute
+ case OpControlBarrier:
+ case OpMemoryBarrier:
+ {
+ uint32_t execution_scope = 0;
+ uint32_t memory;
+ uint32_t semantics;
+
+ if (opcode == OpMemoryBarrier)
+ {
+ memory = evaluate_constant_u32(ops[0]);
+ semantics = evaluate_constant_u32(ops[1]);
+ }
+ else
+ {
+ execution_scope = evaluate_constant_u32(ops[0]);
+ memory = evaluate_constant_u32(ops[1]);
+ semantics = evaluate_constant_u32(ops[2]);
+ }
+
+ if (execution_scope == ScopeSubgroup || memory == ScopeSubgroup)
+ {
+ // OpControlBarrier with ScopeSubgroup is subgroupBarrier()
+ if (opcode != OpControlBarrier)
+ {
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMemBarrier);
+ }
+ else
+ {
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBarrier);
+ }
+ }
+
+ if (execution_scope != ScopeSubgroup && get_entry_point().model == ExecutionModelTessellationControl)
+ {
+ // Control shaders only have barriers, and it implies memory barriers.
+ if (opcode == OpControlBarrier)
+ statement("barrier();");
+ break;
+ }
+
+ // We only care about these flags, acquire/release and friends are not relevant to GLSL.
+ semantics = mask_relevant_memory_semantics(semantics);
+
+ if (opcode == OpMemoryBarrier)
+ {
+ // If we are a memory barrier, and the next instruction is a control barrier, check if that memory barrier
+ // does what we need, so we avoid redundant barriers.
+ const Instruction *next = get_next_instruction_in_block(instruction);
+ if (next && next->op == OpControlBarrier)
+ {
+ auto *next_ops = stream(*next);
+ uint32_t next_memory = evaluate_constant_u32(next_ops[1]);
+ uint32_t next_semantics = evaluate_constant_u32(next_ops[2]);
+ next_semantics = mask_relevant_memory_semantics(next_semantics);
+
+ bool memory_scope_covered = false;
+ if (next_memory == memory)
+ memory_scope_covered = true;
+ else if (next_semantics == MemorySemanticsWorkgroupMemoryMask)
+ {
+ // If we only care about workgroup memory, either Device or Workgroup scope is fine,
+ // scope does not have to match.
+ if ((next_memory == ScopeDevice || next_memory == ScopeWorkgroup) &&
+ (memory == ScopeDevice || memory == ScopeWorkgroup))
+ {
+ memory_scope_covered = true;
+ }
+ }
+ else if (memory == ScopeWorkgroup && next_memory == ScopeDevice)
+ {
+ // The control barrier has device scope, but the memory barrier just has workgroup scope.
+ memory_scope_covered = true;
+ }
+
+ // If we have the same memory scope, and all memory types are covered, we're good.
+ if (memory_scope_covered && (semantics & next_semantics) == semantics)
+ break;
+ }
+ }
+
+ // We are synchronizing some memory or syncing execution,
+ // so we cannot forward any loads beyond the memory barrier.
+ if (semantics || opcode == OpControlBarrier)
+ {
+ assert(current_emitting_block);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ flush_all_active_variables();
+ }
+
+ if (memory == ScopeWorkgroup) // Only need to consider memory within a group
+ {
+ if (semantics == MemorySemanticsWorkgroupMemoryMask)
+ {
+ // OpControlBarrier implies a memory barrier for shared memory as well.
+ bool implies_shared_barrier = opcode == OpControlBarrier && execution_scope == ScopeWorkgroup;
+ if (!implies_shared_barrier)
+ statement("memoryBarrierShared();");
+ }
+ else if (semantics != 0)
+ statement("groupMemoryBarrier();");
+ }
+ else if (memory == ScopeSubgroup)
+ {
+ const uint32_t all_barriers =
+ MemorySemanticsWorkgroupMemoryMask | MemorySemanticsUniformMemoryMask | MemorySemanticsImageMemoryMask;
+
+ if (semantics & (MemorySemanticsCrossWorkgroupMemoryMask | MemorySemanticsSubgroupMemoryMask))
+ {
+ // These are not relevant for GLSL, but assume it means memoryBarrier().
+ // memoryBarrier() does everything, so no need to test anything else.
+ statement("subgroupMemoryBarrier();");
+ }
+ else if ((semantics & all_barriers) == all_barriers)
+ {
+ // Short-hand instead of emitting 3 barriers.
+ statement("subgroupMemoryBarrier();");
+ }
+ else
+ {
+ // Pick out individual barriers.
+ if (semantics & MemorySemanticsWorkgroupMemoryMask)
+ statement("subgroupMemoryBarrierShared();");
+ if (semantics & MemorySemanticsUniformMemoryMask)
+ statement("subgroupMemoryBarrierBuffer();");
+ if (semantics & MemorySemanticsImageMemoryMask)
+ statement("subgroupMemoryBarrierImage();");
+ }
+ }
+ else
+ {
+ const uint32_t all_barriers =
+ MemorySemanticsWorkgroupMemoryMask | MemorySemanticsUniformMemoryMask | MemorySemanticsImageMemoryMask;
+
+ if (semantics & (MemorySemanticsCrossWorkgroupMemoryMask | MemorySemanticsSubgroupMemoryMask))
+ {
+ // These are not relevant for GLSL, but assume it means memoryBarrier().
+ // memoryBarrier() does everything, so no need to test anything else.
+ statement("memoryBarrier();");
+ }
+ else if ((semantics & all_barriers) == all_barriers)
+ {
+ // Short-hand instead of emitting 4 barriers.
+ statement("memoryBarrier();");
+ }
+ else
+ {
+ // Pick out individual barriers.
+ if (semantics & MemorySemanticsWorkgroupMemoryMask)
+ statement("memoryBarrierShared();");
+ if (semantics & MemorySemanticsUniformMemoryMask)
+ statement("memoryBarrierBuffer();");
+ if (semantics & MemorySemanticsImageMemoryMask)
+ statement("memoryBarrierImage();");
+ }
+ }
+
+ if (opcode == OpControlBarrier)
+ {
+ if (execution_scope == ScopeSubgroup)
+ statement("subgroupBarrier();");
+ else
+ statement("barrier();");
+ }
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = ops[2];
+ auto ext = get<SPIRExtension>(extension_set).ext;
+
+ if (ext == SPIRExtension::GLSL)
+ {
+ emit_glsl_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_shader_ballot)
+ {
+ emit_spv_amd_shader_ballot_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter)
+ {
+ emit_spv_amd_shader_explicit_vertex_parameter_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_shader_trinary_minmax)
+ {
+ emit_spv_amd_shader_trinary_minmax_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_gcn_shader)
+ {
+ emit_spv_amd_gcn_shader_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_debug_info ||
+ ext == SPIRExtension::NonSemanticShaderDebugInfo ||
+ ext == SPIRExtension::NonSemanticGeneric)
+ {
+ break; // Ignore SPIR-V debug information extended instructions.
+ }
+ else if (ext == SPIRExtension::NonSemanticDebugPrintf)
+ {
+ // Operation 1 is printf.
+ if (ops[3] == 1)
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Debug printf is only supported in Vulkan GLSL.\n");
+ require_extension_internal("GL_EXT_debug_printf");
+ auto &format_string = get<SPIRString>(ops[4]).str;
+ string expr = join("debugPrintfEXT(\"", format_string, "\"");
+ for (uint32_t i = 5; i < length; i++)
+ {
+ expr += ", ";
+ expr += to_expression(ops[i]);
+ }
+ statement(expr, ");");
+ }
+ }
+ else
+ {
+ statement("// unimplemented ext op ", instruction.op);
+ break;
+ }
+
+ break;
+ }
+
+ // Legacy sub-group stuff ...
+ case OpSubgroupBallotKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ string expr;
+ expr = join("uvec4(unpackUint2x32(ballotARB(" + to_expression(ops[2]) + ")), 0u, 0u)");
+ emit_op(result_type, id, expr, should_forward(ops[2]));
+
+ require_extension_internal("GL_ARB_shader_ballot");
+ inherit_expression_dependencies(id, ops[2]);
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupFirstInvocationKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "readFirstInvocationARB");
+
+ require_extension_internal("GL_ARB_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupReadInvocationKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_binary_func_op(result_type, id, ops[2], ops[3], "readInvocationARB");
+
+ require_extension_internal("GL_ARB_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupAllKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "allInvocationsARB");
+
+ require_extension_internal("GL_ARB_shader_group_vote");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupAnyKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "anyInvocationARB");
+
+ require_extension_internal("GL_ARB_shader_group_vote");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupAllEqualKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "allInvocationsEqualARB");
+
+ require_extension_internal("GL_ARB_shader_group_vote");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpGroupIAddNonUniformAMD:
+ case OpGroupFAddNonUniformAMD:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[4], "addInvocationsNonUniformAMD");
+
+ require_extension_internal("GL_AMD_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpGroupFMinNonUniformAMD:
+ case OpGroupUMinNonUniformAMD:
+ case OpGroupSMinNonUniformAMD:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[4], "minInvocationsNonUniformAMD");
+
+ require_extension_internal("GL_AMD_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpGroupFMaxNonUniformAMD:
+ case OpGroupUMaxNonUniformAMD:
+ case OpGroupSMaxNonUniformAMD:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[4], "maxInvocationsNonUniformAMD");
+
+ require_extension_internal("GL_AMD_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpFragmentMaskFetchAMD:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (type.image.dim == spv::DimSubpassData)
+ {
+ emit_unary_func_op(result_type, id, ops[2], "fragmentMaskFetchAMD");
+ }
+ else
+ {
+ emit_binary_func_op(result_type, id, ops[2], ops[3], "fragmentMaskFetchAMD");
+ }
+
+ require_extension_internal("GL_AMD_shader_fragment_mask");
+ break;
+ }
+
+ case OpFragmentFetchAMD:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (type.image.dim == spv::DimSubpassData)
+ {
+ emit_binary_func_op(result_type, id, ops[2], ops[4], "fragmentFetchAMD");
+ }
+ else
+ {
+ emit_trinary_func_op(result_type, id, ops[2], ops[3], ops[4], "fragmentFetchAMD");
+ }
+
+ require_extension_internal("GL_AMD_shader_fragment_mask");
+ break;
+ }
+
+ // Vulkan 1.1 sub-group stuff ...
+ case OpGroupNonUniformElect:
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformBallotBitCount:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ case OpGroupNonUniformFAdd:
+ case OpGroupNonUniformIAdd:
+ case OpGroupNonUniformFMul:
+ case OpGroupNonUniformIMul:
+ case OpGroupNonUniformFMin:
+ case OpGroupNonUniformFMax:
+ case OpGroupNonUniformSMin:
+ case OpGroupNonUniformSMax:
+ case OpGroupNonUniformUMin:
+ case OpGroupNonUniformUMax:
+ case OpGroupNonUniformBitwiseAnd:
+ case OpGroupNonUniformBitwiseOr:
+ case OpGroupNonUniformBitwiseXor:
+ case OpGroupNonUniformLogicalAnd:
+ case OpGroupNonUniformLogicalOr:
+ case OpGroupNonUniformLogicalXor:
+ case OpGroupNonUniformQuadSwap:
+ case OpGroupNonUniformQuadBroadcast:
+ emit_subgroup_op(instruction);
+ break;
+
+ case OpFUnordEqual:
+ case OpFUnordLessThan:
+ case OpFUnordGreaterThan:
+ case OpFUnordLessThanEqual:
+ case OpFUnordGreaterThanEqual:
+ {
+ // GLSL doesn't specify if floating point comparisons are ordered or unordered,
+ // but glslang always emits ordered floating point compares for GLSL.
+ // To get unordered compares, we can test the opposite thing and invert the result.
+ // This way, we force true when there is any NaN present.
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+
+ string expr;
+ if (expression_type(op0).vecsize > 1)
+ {
+ const char *comp_op = nullptr;
+ switch (opcode)
+ {
+ case OpFUnordEqual:
+ comp_op = "notEqual";
+ break;
+
+ case OpFUnordLessThan:
+ comp_op = "greaterThanEqual";
+ break;
+
+ case OpFUnordLessThanEqual:
+ comp_op = "greaterThan";
+ break;
+
+ case OpFUnordGreaterThan:
+ comp_op = "lessThanEqual";
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ comp_op = "lessThan";
+ break;
+
+ default:
+ assert(0);
+ break;
+ }
+
+ expr = join("not(", comp_op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "))");
+ }
+ else
+ {
+ const char *comp_op = nullptr;
+ switch (opcode)
+ {
+ case OpFUnordEqual:
+ comp_op = " != ";
+ break;
+
+ case OpFUnordLessThan:
+ comp_op = " >= ";
+ break;
+
+ case OpFUnordLessThanEqual:
+ comp_op = " > ";
+ break;
+
+ case OpFUnordGreaterThan:
+ comp_op = " <= ";
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ comp_op = " < ";
+ break;
+
+ default:
+ assert(0);
+ break;
+ }
+
+ expr = join("!(", to_enclosed_unpacked_expression(op0), comp_op, to_enclosed_unpacked_expression(op1), ")");
+ }
+
+ emit_op(ops[0], ops[1], expr, should_forward(op0) && should_forward(op1));
+ inherit_expression_dependencies(ops[1], op0);
+ inherit_expression_dependencies(ops[1], op1);
+ break;
+ }
+
+ case OpReportIntersectionKHR:
+ // NV is same opcode.
+ forced_temporaries.insert(ops[1]);
+ if (ray_tracing_is_khr)
+ GLSL_BFOP(reportIntersectionEXT);
+ else
+ GLSL_BFOP(reportIntersectionNV);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpIgnoreIntersectionNV:
+ // KHR variant is a terminator.
+ statement("ignoreIntersectionNV();");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpTerminateRayNV:
+ // KHR variant is a terminator.
+ statement("terminateRayNV();");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpTraceNV:
+ statement("traceNV(", to_non_uniform_aware_expression(ops[0]), ", ", to_expression(ops[1]), ", ", to_expression(ops[2]), ", ",
+ to_expression(ops[3]), ", ", to_expression(ops[4]), ", ", to_expression(ops[5]), ", ",
+ to_expression(ops[6]), ", ", to_expression(ops[7]), ", ", to_expression(ops[8]), ", ",
+ to_expression(ops[9]), ", ", to_expression(ops[10]), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpTraceRayKHR:
+ if (!has_decoration(ops[10], DecorationLocation))
+ SPIRV_CROSS_THROW("A memory declaration object must be used in TraceRayKHR.");
+ statement("traceRayEXT(", to_non_uniform_aware_expression(ops[0]), ", ", to_expression(ops[1]), ", ", to_expression(ops[2]), ", ",
+ to_expression(ops[3]), ", ", to_expression(ops[4]), ", ", to_expression(ops[5]), ", ",
+ to_expression(ops[6]), ", ", to_expression(ops[7]), ", ", to_expression(ops[8]), ", ",
+ to_expression(ops[9]), ", ", get_decoration(ops[10], DecorationLocation), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpExecuteCallableNV:
+ statement("executeCallableNV(", to_expression(ops[0]), ", ", to_expression(ops[1]), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpExecuteCallableKHR:
+ if (!has_decoration(ops[1], DecorationLocation))
+ SPIRV_CROSS_THROW("A memory declaration object must be used in ExecuteCallableKHR.");
+ statement("executeCallableEXT(", to_expression(ops[0]), ", ", get_decoration(ops[1], DecorationLocation), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+
+ // Don't bother forwarding temporaries. Avoids having to test expression invalidation with ray query objects.
+ case OpRayQueryInitializeKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryInitializeEXT(",
+ to_expression(ops[0]), ", ", to_expression(ops[1]), ", ",
+ to_expression(ops[2]), ", ", to_expression(ops[3]), ", ",
+ to_expression(ops[4]), ", ", to_expression(ops[5]), ", ",
+ to_expression(ops[6]), ", ", to_expression(ops[7]), ");");
+ break;
+ case OpRayQueryProceedKHR:
+ flush_variable_declaration(ops[0]);
+ emit_op(ops[0], ops[1], join("rayQueryProceedEXT(", to_expression(ops[2]), ")"), false);
+ break;
+ case OpRayQueryTerminateKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryTerminateEXT(", to_expression(ops[0]), ");");
+ break;
+ case OpRayQueryGenerateIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryGenerateIntersectionEXT(", to_expression(ops[0]), ", ", to_expression(ops[1]), ");");
+ break;
+ case OpRayQueryConfirmIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryConfirmIntersectionEXT(", to_expression(ops[0]), ");");
+ break;
+#define GLSL_RAY_QUERY_GET_OP(op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ emit_op(ops[0], ops[1], join("rayQueryGet" #op "EXT(", to_expression(ops[2]), ")"), false); \
+ break
+#define GLSL_RAY_QUERY_GET_OP2(op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ emit_op(ops[0], ops[1], join("rayQueryGet" #op "EXT(", to_expression(ops[2]), ", ", "bool(", to_expression(ops[3]), "))"), false); \
+ break
+ GLSL_RAY_QUERY_GET_OP(RayTMin);
+ GLSL_RAY_QUERY_GET_OP(RayFlags);
+ GLSL_RAY_QUERY_GET_OP(WorldRayOrigin);
+ GLSL_RAY_QUERY_GET_OP(WorldRayDirection);
+ GLSL_RAY_QUERY_GET_OP(IntersectionCandidateAABBOpaque);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionType);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionT);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionInstanceId);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionInstanceShaderBindingTableRecordOffset);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionFrontFace);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject);
+#undef GLSL_RAY_QUERY_GET_OP
+#undef GLSL_RAY_QUERY_GET_OP2
+
+ case OpConvertUToAccelerationStructureKHR:
+ {
+ require_extension_internal("GL_EXT_ray_tracing");
+
+ bool elide_temporary = should_forward(ops[2]) && forced_temporaries.count(ops[1]) == 0 &&
+ !hoisted_temporaries.count(ops[1]);
+
+ if (elide_temporary)
+ {
+ GLSL_UFOP(accelerationStructureEXT);
+ }
+ else
+ {
+ // Force this path in subsequent iterations.
+ forced_temporaries.insert(ops[1]);
+
+ // We cannot declare a temporary acceleration structure in GLSL.
+ // If we get to this point, we'll have to emit a temporary uvec2,
+ // and cast to RTAS on demand.
+ statement(declare_temporary(expression_type_id(ops[2]), ops[1]), to_unpacked_expression(ops[2]), ";");
+ // Use raw SPIRExpression interface to block all usage tracking.
+ set<SPIRExpression>(ops[1], join("accelerationStructureEXT(", to_name(ops[1]), ")"), ops[0], true);
+ }
+ break;
+ }
+
+ case OpConvertUToPtr:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.storage != StorageClassPhysicalStorageBufferEXT)
+ SPIRV_CROSS_THROW("Only StorageClassPhysicalStorageBufferEXT is supported by OpConvertUToPtr.");
+
+ auto &in_type = expression_type(ops[2]);
+ if (in_type.vecsize == 2)
+ require_extension_internal("GL_EXT_buffer_reference_uvec2");
+
+ auto op = type_to_glsl(type);
+ emit_unary_func_op(ops[0], ops[1], ops[2], op.c_str());
+ break;
+ }
+
+ case OpConvertPtrToU:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ auto &ptr_type = expression_type(ops[2]);
+ if (ptr_type.storage != StorageClassPhysicalStorageBufferEXT)
+ SPIRV_CROSS_THROW("Only StorageClassPhysicalStorageBufferEXT is supported by OpConvertPtrToU.");
+
+ if (type.vecsize == 2)
+ require_extension_internal("GL_EXT_buffer_reference_uvec2");
+
+ auto op = type_to_glsl(type);
+ emit_unary_func_op(ops[0], ops[1], ops[2], op.c_str());
+ break;
+ }
+
+ case OpUndef:
+ // Undefined value has been declared.
+ break;
+
+ case OpLine:
+ {
+ emit_line_directive(ops[0], ops[1]);
+ break;
+ }
+
+ case OpNoLine:
+ break;
+
+ case OpDemoteToHelperInvocationEXT:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_demote_to_helper_invocation is only supported in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_demote_to_helper_invocation");
+ statement(backend.demote_literal, ";");
+ break;
+
+ case OpIsHelperInvocationEXT:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_demote_to_helper_invocation is only supported in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_demote_to_helper_invocation");
+ // Helper lane state with demote is volatile by nature.
+ // Do not forward this.
+ emit_op(ops[0], ops[1], "helperInvocationEXT()", false);
+ break;
+
+ case OpBeginInvocationInterlockEXT:
+ // If the interlock is complex, we emit this elsewhere.
+ if (!interlocked_is_complex)
+ {
+ statement("SPIRV_Cross_beginInvocationInterlock();");
+ flush_all_active_variables();
+ // Make sure forwarding doesn't propagate outside interlock region.
+ }
+ break;
+
+ case OpEndInvocationInterlockEXT:
+ // If the interlock is complex, we emit this elsewhere.
+ if (!interlocked_is_complex)
+ {
+ statement("SPIRV_Cross_endInvocationInterlock();");
+ flush_all_active_variables();
+ // Make sure forwarding doesn't propagate outside interlock region.
+ }
+ break;
+
+ case OpSetMeshOutputsEXT:
+ statement("SetMeshOutputsEXT(", to_unpacked_expression(ops[0]), ", ", to_unpacked_expression(ops[1]), ");");
+ break;
+
+ case OpReadClockKHR:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
+ const char *op = nullptr;
+ // Forwarding clock statements leads to a scenario where an SSA value can take on different
+ // values every time it's evaluated. Block any forwarding attempt.
+ // We also might want to invalidate all expressions to function as a sort of optimization
+ // barrier, but might be overkill for now.
+ if (scope == ScopeDevice)
+ {
+ require_extension_internal("GL_EXT_shader_realtime_clock");
+ if (type.basetype == SPIRType::BaseType::UInt64)
+ op = "clockRealtimeEXT()";
+ else if (type.basetype == SPIRType::BaseType::UInt && type.vecsize == 2)
+ op = "clockRealtime2x32EXT()";
+ else
+ SPIRV_CROSS_THROW("Unsupported result type for OpReadClockKHR opcode.");
+ }
+ else if (scope == ScopeSubgroup)
+ {
+ require_extension_internal("GL_ARB_shader_clock");
+ if (type.basetype == SPIRType::BaseType::UInt64)
+ op = "clockARB()";
+ else if (type.basetype == SPIRType::BaseType::UInt && type.vecsize == 2)
+ op = "clock2x32ARB()";
+ else
+ SPIRV_CROSS_THROW("Unsupported result type for OpReadClockKHR opcode.");
+ }
+ else
+ SPIRV_CROSS_THROW("Unsupported scope for OpReadClockKHR opcode.");
+
+ emit_op(ops[0], ops[1], op, false);
+ break;
+ }
+
+ default:
+ statement("// unimplemented op ", instruction.op);
+ break;
+ }
+}
+
+// Appends function arguments, mapped from global variables, beyond the specified arg index.
+// This is used when a function call uses fewer arguments than the function defines.
+// This situation may occur if the function signature has been dynamically modified to
+// extract global variables referenced from within the function, and convert them to
+// function arguments. This is necessary for shader languages that do not support global
+// access to shader input content from within a function (eg. Metal). Each additional
+// function args uses the name of the global variable. Function nesting will modify the
+// functions and function calls all the way up the nesting chain.
+void CompilerGLSL::append_global_func_args(const SPIRFunction &func, uint32_t index, SmallVector<string> &arglist)
+{
+ auto &args = func.arguments;
+ uint32_t arg_cnt = uint32_t(args.size());
+ for (uint32_t arg_idx = index; arg_idx < arg_cnt; arg_idx++)
+ {
+ auto &arg = args[arg_idx];
+ assert(arg.alias_global_variable);
+
+ // If the underlying variable needs to be declared
+ // (ie. a local variable with deferred declaration), do so now.
+ uint32_t var_id = get<SPIRVariable>(arg.id).basevariable;
+ if (var_id)
+ flush_variable_declaration(var_id);
+
+ arglist.push_back(to_func_call_arg(arg, arg.id));
+ }
+}
+
+string CompilerGLSL::to_member_name(const SPIRType &type, uint32_t index)
+{
+ if (type.type_alias != TypeID(0) &&
+ !has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ {
+ return to_member_name(get<SPIRType>(type.type_alias), index);
+ }
+
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size() && !memb[index].alias.empty())
+ return memb[index].alias;
+ else
+ return join("_m", index);
+}
+
+string CompilerGLSL::to_member_reference(uint32_t, const SPIRType &type, uint32_t index, bool)
+{
+ return join(".", to_member_name(type, index));
+}
+
+string CompilerGLSL::to_multi_member_reference(const SPIRType &type, const SmallVector<uint32_t> &indices)
+{
+ string ret;
+ auto *member_type = &type;
+ for (auto &index : indices)
+ {
+ ret += join(".", to_member_name(*member_type, index));
+ member_type = &get<SPIRType>(member_type->member_types[index]);
+ }
+ return ret;
+}
+
+void CompilerGLSL::add_member_name(SPIRType &type, uint32_t index)
+{
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size() && !memb[index].alias.empty())
+ {
+ auto &name = memb[index].alias;
+ if (name.empty())
+ return;
+
+ ParsedIR::sanitize_identifier(name, true, true);
+ update_name_cache(type.member_name_cache, name);
+ }
+}
+
+// Checks whether the ID is a row_major matrix that requires conversion before use
+bool CompilerGLSL::is_non_native_row_major_matrix(uint32_t id)
+{
+ // Natively supported row-major matrices do not need to be converted.
+ // Legacy targets do not support row major.
+ if (backend.native_row_major_matrix && !is_legacy())
+ return false;
+
+ auto *e = maybe_get<SPIRExpression>(id);
+ if (e)
+ return e->need_transpose;
+ else
+ return has_decoration(id, DecorationRowMajor);
+}
+
+// Checks whether the member is a row_major matrix that requires conversion before use
+bool CompilerGLSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
+{
+ // Natively supported row-major matrices do not need to be converted.
+ if (backend.native_row_major_matrix && !is_legacy())
+ return false;
+
+ // Non-matrix or column-major matrix types do not need to be converted.
+ if (!has_member_decoration(type.self, index, DecorationRowMajor))
+ return false;
+
+ // Only square row-major matrices can be converted at this time.
+ // Converting non-square matrices will require defining custom GLSL function that
+ // swaps matrix elements while retaining the original dimensional form of the matrix.
+ const auto mbr_type = get<SPIRType>(type.member_types[index]);
+ if (mbr_type.columns != mbr_type.vecsize)
+ SPIRV_CROSS_THROW("Row-major matrices must be square on this platform.");
+
+ return true;
+}
+
+// Checks if we need to remap physical type IDs when declaring the type in a buffer.
+bool CompilerGLSL::member_is_remapped_physical_type(const SPIRType &type, uint32_t index) const
+{
+ return has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+}
+
+// Checks whether the member is in packed data type, that might need to be unpacked.
+bool CompilerGLSL::member_is_packed_physical_type(const SPIRType &type, uint32_t index) const
+{
+ return has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+}
+
+// Wraps the expression string in a function call that converts the
+// row_major matrix result of the expression to a column_major matrix.
+// Base implementation uses the standard library transpose() function.
+// Subclasses may override to use a different function.
+string CompilerGLSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t /* physical_type_id */,
+ bool /*is_packed*/, bool relaxed)
+{
+ strip_enclosed_expression(exp_str);
+ if (!is_matrix(exp_type))
+ {
+ auto column_index = exp_str.find_last_of('[');
+ if (column_index == string::npos)
+ return exp_str;
+
+ auto column_expr = exp_str.substr(column_index);
+ exp_str.resize(column_index);
+
+ auto end_deferred_index = column_expr.find_last_of(']');
+ if (end_deferred_index != string::npos && end_deferred_index + 1 != column_expr.size())
+ {
+ // If we have any data member fixups, it must be transposed so that it refers to this index.
+ // E.g. [0].data followed by [1] would be shuffled to [1][0].data which is wrong,
+ // and needs to be [1].data[0] instead.
+ end_deferred_index++;
+ column_expr = column_expr.substr(end_deferred_index) +
+ column_expr.substr(0, end_deferred_index);
+ }
+
+ auto transposed_expr = type_to_glsl_constructor(exp_type) + "(";
+
+ // Loading a column from a row-major matrix. Unroll the load.
+ for (uint32_t c = 0; c < exp_type.vecsize; c++)
+ {
+ transposed_expr += join(exp_str, '[', c, ']', column_expr);
+ if (c + 1 < exp_type.vecsize)
+ transposed_expr += ", ";
+ }
+
+ transposed_expr += ")";
+ return transposed_expr;
+ }
+ else if (options.version < 120)
+ {
+ // GLSL 110, ES 100 do not have transpose(), so emulate it. Note that
+ // these GLSL versions do not support non-square matrices.
+ if (exp_type.vecsize == 2 && exp_type.columns == 2)
+ require_polyfill(PolyfillTranspose2x2, relaxed);
+ else if (exp_type.vecsize == 3 && exp_type.columns == 3)
+ require_polyfill(PolyfillTranspose3x3, relaxed);
+ else if (exp_type.vecsize == 4 && exp_type.columns == 4)
+ require_polyfill(PolyfillTranspose4x4, relaxed);
+ else
+ SPIRV_CROSS_THROW("Non-square matrices are not supported in legacy GLSL, cannot transpose.");
+ return join("spvTranspose", (options.es && relaxed) ? "MP" : "", "(", exp_str, ")");
+ }
+ else
+ return join("transpose(", exp_str, ")");
+}
+
+string CompilerGLSL::variable_decl(const SPIRType &type, const string &name, uint32_t id)
+{
+ string type_name = type_to_glsl(type, id);
+ remap_variable_type_name(type, name, type_name);
+ return join(type_name, " ", name, type_to_array_glsl(type, id));
+}
+
+bool CompilerGLSL::variable_decl_is_remapped_storage(const SPIRVariable &var, StorageClass storage) const
+{
+ return var.storage == storage;
+}
+
+// Emit a structure member. Subclasses may override to modify output,
+// or to dynamically add a padding member if needed.
+void CompilerGLSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier, uint32_t)
+{
+ auto &membertype = get<SPIRType>(member_type_id);
+
+ Bitset memberflags;
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size())
+ memberflags = memb[index].decoration_flags;
+
+ string qualifiers;
+ bool is_block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+
+ if (is_block)
+ qualifiers = to_interpolation_qualifiers(memberflags);
+
+ statement(layout_for_member(type, index), qualifiers, qualifier, flags_to_qualifiers_glsl(membertype, memberflags),
+ variable_decl(membertype, to_member_name(type, index)), ";");
+}
+
+void CompilerGLSL::emit_struct_padding_target(const SPIRType &)
+{
+}
+
+string CompilerGLSL::flags_to_qualifiers_glsl(const SPIRType &type, const Bitset &flags)
+{
+ // GL_EXT_buffer_reference variables can be marked as restrict.
+ if (flags.get(DecorationRestrictPointerEXT))
+ return "restrict ";
+
+ string qual;
+
+ if (type_is_floating_point(type) && flags.get(DecorationNoContraction) && backend.support_precise_qualifier)
+ qual = "precise ";
+
+ // Structs do not have precision qualifiers, neither do doubles (desktop only anyways, so no mediump/highp).
+ bool type_supports_precision =
+ type.basetype == SPIRType::Float || type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt ||
+ type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
+ type.basetype == SPIRType::Sampler;
+
+ if (!type_supports_precision)
+ return qual;
+
+ if (options.es)
+ {
+ auto &execution = get_entry_point();
+
+ if (type.basetype == SPIRType::UInt && is_legacy_es())
+ {
+ // HACK: This is a bool. See comment in type_to_glsl().
+ qual += "lowp ";
+ }
+ else if (flags.get(DecorationRelaxedPrecision))
+ {
+ bool implied_fmediump = type.basetype == SPIRType::Float &&
+ options.fragment.default_float_precision == Options::Mediump &&
+ execution.model == ExecutionModelFragment;
+
+ bool implied_imediump = (type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt) &&
+ options.fragment.default_int_precision == Options::Mediump &&
+ execution.model == ExecutionModelFragment;
+
+ qual += (implied_fmediump || implied_imediump) ? "" : "mediump ";
+ }
+ else
+ {
+ bool implied_fhighp =
+ type.basetype == SPIRType::Float && ((options.fragment.default_float_precision == Options::Highp &&
+ execution.model == ExecutionModelFragment) ||
+ (execution.model != ExecutionModelFragment));
+
+ bool implied_ihighp = (type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt) &&
+ ((options.fragment.default_int_precision == Options::Highp &&
+ execution.model == ExecutionModelFragment) ||
+ (execution.model != ExecutionModelFragment));
+
+ qual += (implied_fhighp || implied_ihighp) ? "" : "highp ";
+ }
+ }
+ else if (backend.allow_precision_qualifiers)
+ {
+ // Vulkan GLSL supports precision qualifiers, even in desktop profiles, which is convenient.
+ // The default is highp however, so only emit mediump in the rare case that a shader has these.
+ if (flags.get(DecorationRelaxedPrecision))
+ qual += "mediump ";
+ }
+
+ return qual;
+}
+
+string CompilerGLSL::to_precision_qualifiers_glsl(uint32_t id)
+{
+ auto &type = expression_type(id);
+ bool use_precision_qualifiers = backend.allow_precision_qualifiers;
+ if (use_precision_qualifiers && (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage))
+ {
+ // Force mediump for the sampler type. We cannot declare 16-bit or smaller image types.
+ auto &result_type = get<SPIRType>(type.image.type);
+ if (result_type.width < 32)
+ return "mediump ";
+ }
+ return flags_to_qualifiers_glsl(type, ir.meta[id].decoration.decoration_flags);
+}
+
+void CompilerGLSL::fixup_io_block_patch_primitive_qualifiers(const SPIRVariable &var)
+{
+ // Works around weird behavior in glslangValidator where
+ // a patch out block is translated to just block members getting the decoration.
+ // To make glslang not complain when we compile again, we have to transform this back to a case where
+ // the variable itself has Patch decoration, and not members.
+ // Same for perprimitiveEXT.
+ auto &type = get<SPIRType>(var.basetype);
+ if (has_decoration(type.self, DecorationBlock))
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ Decoration promoted_decoration = {};
+ bool do_promote_decoration = false;
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (has_member_decoration(type.self, i, DecorationPatch))
+ {
+ promoted_decoration = DecorationPatch;
+ do_promote_decoration = true;
+ break;
+ }
+ else if (has_member_decoration(type.self, i, DecorationPerPrimitiveEXT))
+ {
+ promoted_decoration = DecorationPerPrimitiveEXT;
+ do_promote_decoration = true;
+ break;
+ }
+ }
+
+ if (do_promote_decoration)
+ {
+ set_decoration(var.self, promoted_decoration);
+ for (uint32_t i = 0; i < member_count; i++)
+ unset_member_decoration(type.self, i, promoted_decoration);
+ }
+ }
+}
+
+string CompilerGLSL::to_qualifiers_glsl(uint32_t id)
+{
+ auto &flags = get_decoration_bitset(id);
+ string res;
+
+ auto *var = maybe_get<SPIRVariable>(id);
+
+ if (var && var->storage == StorageClassWorkgroup && !backend.shared_is_implied)
+ res += "shared ";
+ else if (var && var->storage == StorageClassTaskPayloadWorkgroupEXT && !backend.shared_is_implied)
+ res += "taskPayloadSharedEXT ";
+
+ res += to_interpolation_qualifiers(flags);
+ if (var)
+ res += to_storage_qualifiers_glsl(*var);
+
+ auto &type = expression_type(id);
+ if (type.image.dim != DimSubpassData && type.image.sampled == 2)
+ {
+ if (flags.get(DecorationCoherent))
+ res += "coherent ";
+ if (flags.get(DecorationRestrict))
+ res += "restrict ";
+
+ if (flags.get(DecorationNonWritable))
+ res += "readonly ";
+
+ bool formatted_load = type.image.format == ImageFormatUnknown;
+ if (flags.get(DecorationNonReadable))
+ {
+ res += "writeonly ";
+ formatted_load = false;
+ }
+
+ if (formatted_load)
+ {
+ if (!options.es)
+ require_extension_internal("GL_EXT_shader_image_load_formatted");
+ else
+ SPIRV_CROSS_THROW("Cannot use GL_EXT_shader_image_load_formatted in ESSL.");
+ }
+ }
+
+ res += to_precision_qualifiers_glsl(id);
+
+ return res;
+}
+
+string CompilerGLSL::argument_decl(const SPIRFunction::Parameter &arg)
+{
+ // glslangValidator seems to make all arguments pointer no matter what which is rather bizarre ...
+ auto &type = expression_type(arg.id);
+ const char *direction = "";
+
+ if (type.pointer)
+ {
+ if (arg.write_count && arg.read_count)
+ direction = "inout ";
+ else if (arg.write_count)
+ direction = "out ";
+ }
+
+ return join(direction, to_qualifiers_glsl(arg.id), variable_decl(type, to_name(arg.id), arg.id));
+}
+
+string CompilerGLSL::to_initializer_expression(const SPIRVariable &var)
+{
+ return to_unpacked_expression(var.initializer);
+}
+
+string CompilerGLSL::to_zero_initialized_expression(uint32_t type_id)
+{
+#ifndef NDEBUG
+ auto &type = get<SPIRType>(type_id);
+ assert(type.storage == StorageClassPrivate || type.storage == StorageClassFunction ||
+ type.storage == StorageClassGeneric);
+#endif
+ uint32_t id = ir.increase_bound_by(1);
+ ir.make_constant_null(id, type_id, false);
+ return constant_expression(get<SPIRConstant>(id));
+}
+
+bool CompilerGLSL::type_can_zero_initialize(const SPIRType &type) const
+{
+ if (type.pointer)
+ return false;
+
+ if (!type.array.empty() && options.flatten_multidimensional_arrays)
+ return false;
+
+ for (auto &literal : type.array_size_literal)
+ if (!literal)
+ return false;
+
+ for (auto &memb : type.member_types)
+ if (!type_can_zero_initialize(get<SPIRType>(memb)))
+ return false;
+
+ return true;
+}
+
+string CompilerGLSL::variable_decl(const SPIRVariable &variable)
+{
+ // Ignore the pointer type since GLSL doesn't have pointers.
+ auto &type = get_variable_data_type(variable);
+
+ if (type.pointer_depth > 1 && !backend.support_pointer_to_pointer)
+ SPIRV_CROSS_THROW("Cannot declare pointer-to-pointer types.");
+
+ auto res = join(to_qualifiers_glsl(variable.self), variable_decl(type, to_name(variable.self), variable.self));
+
+ if (variable.loop_variable && variable.static_expression)
+ {
+ uint32_t expr = variable.static_expression;
+ if (ir.ids[expr].get_type() != TypeUndef)
+ res += join(" = ", to_unpacked_expression(variable.static_expression));
+ else if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ res += join(" = ", to_zero_initialized_expression(get_variable_data_type_id(variable)));
+ }
+ else if (variable.initializer && !variable_decl_is_remapped_storage(variable, StorageClassWorkgroup))
+ {
+ uint32_t expr = variable.initializer;
+ if (ir.ids[expr].get_type() != TypeUndef)
+ res += join(" = ", to_initializer_expression(variable));
+ else if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ res += join(" = ", to_zero_initialized_expression(get_variable_data_type_id(variable)));
+ }
+
+ return res;
+}
+
+const char *CompilerGLSL::to_pls_qualifiers_glsl(const SPIRVariable &variable)
+{
+ auto &flags = get_decoration_bitset(variable.self);
+ if (flags.get(DecorationRelaxedPrecision))
+ return "mediump ";
+ else
+ return "highp ";
+}
+
+string CompilerGLSL::pls_decl(const PlsRemap &var)
+{
+ auto &variable = get<SPIRVariable>(var.id);
+
+ auto op_and_basetype = pls_format_to_basetype(var.format);
+
+ SPIRType type { op_and_basetype.first };
+ type.basetype = op_and_basetype.second;
+ auto vecsize = pls_format_to_components(var.format);
+ if (vecsize > 1)
+ {
+ type.op = OpTypeVector;
+ type.vecsize = vecsize;
+ }
+
+ return join(to_pls_layout(var.format), to_pls_qualifiers_glsl(variable), type_to_glsl(type), " ",
+ to_name(variable.self));
+}
+
+uint32_t CompilerGLSL::to_array_size_literal(const SPIRType &type) const
+{
+ return to_array_size_literal(type, uint32_t(type.array.size() - 1));
+}
+
+uint32_t CompilerGLSL::to_array_size_literal(const SPIRType &type, uint32_t index) const
+{
+ assert(type.array.size() == type.array_size_literal.size());
+
+ if (type.array_size_literal[index])
+ {
+ return type.array[index];
+ }
+ else
+ {
+ // Use the default spec constant value.
+ // This is the best we can do.
+ return evaluate_constant_u32(type.array[index]);
+ }
+}
+
+string CompilerGLSL::to_array_size(const SPIRType &type, uint32_t index)
+{
+ assert(type.array.size() == type.array_size_literal.size());
+
+ auto &size = type.array[index];
+ if (!type.array_size_literal[index])
+ return to_expression(size);
+ else if (size)
+ return convert_to_string(size);
+ else if (!backend.unsized_array_supported)
+ {
+ // For runtime-sized arrays, we can work around
+ // lack of standard support for this by simply having
+ // a single element array.
+ //
+ // Runtime length arrays must always be the last element
+ // in an interface block.
+ return "1";
+ }
+ else
+ return "";
+}
+
+string CompilerGLSL::type_to_array_glsl(const SPIRType &type, uint32_t)
+{
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBufferEXT && type.basetype != SPIRType::Struct)
+ {
+ // We are using a wrapped pointer type, and we should not emit any array declarations here.
+ return "";
+ }
+
+ if (type.array.empty())
+ return "";
+
+ if (options.flatten_multidimensional_arrays)
+ {
+ string res;
+ res += "[";
+ for (auto i = uint32_t(type.array.size()); i; i--)
+ {
+ res += enclose_expression(to_array_size(type, i - 1));
+ if (i > 1)
+ res += " * ";
+ }
+ res += "]";
+ return res;
+ }
+ else
+ {
+ if (type.array.size() > 1)
+ {
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_arrays_of_arrays");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Arrays of arrays not supported before ESSL version 310. "
+ "Try using --flatten-multidimensional-arrays or set "
+ "options.flatten_multidimensional_arrays to true.");
+ }
+
+ string res;
+ for (auto i = uint32_t(type.array.size()); i; i--)
+ {
+ res += "[";
+ res += to_array_size(type, i - 1);
+ res += "]";
+ }
+ return res;
+ }
+}
+
+string CompilerGLSL::image_type_glsl(const SPIRType &type, uint32_t id, bool /*member*/)
+{
+ auto &imagetype = get<SPIRType>(type.image.type);
+ string res;
+
+ switch (imagetype.basetype)
+ {
+ case SPIRType::Int64:
+ res = "i64";
+ require_extension_internal("GL_EXT_shader_image_int64");
+ break;
+ case SPIRType::UInt64:
+ res = "u64";
+ require_extension_internal("GL_EXT_shader_image_int64");
+ break;
+ case SPIRType::Int:
+ case SPIRType::Short:
+ case SPIRType::SByte:
+ res = "i";
+ break;
+ case SPIRType::UInt:
+ case SPIRType::UShort:
+ case SPIRType::UByte:
+ res = "u";
+ break;
+ default:
+ break;
+ }
+
+ // For half image types, we will force mediump for the sampler, and cast to f16 after any sampling operation.
+ // We cannot express a true half texture type in GLSL. Neither for short integer formats for that matter.
+
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && options.vulkan_semantics)
+ return res + "subpassInput" + (type.image.ms ? "MS" : "");
+ else if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
+ subpass_input_is_framebuffer_fetch(id))
+ {
+ SPIRType sampled_type = get<SPIRType>(type.image.type);
+ sampled_type.vecsize = 4;
+ return type_to_glsl(sampled_type);
+ }
+
+ // If we're emulating subpassInput with samplers, force sampler2D
+ // so we don't have to specify format.
+ if (type.basetype == SPIRType::Image && type.image.dim != DimSubpassData)
+ {
+ // Sampler buffers are always declared as samplerBuffer even though they might be separate images in the SPIR-V.
+ if (type.image.dim == DimBuffer && type.image.sampled == 1)
+ res += "sampler";
+ else
+ res += type.image.sampled == 2 ? "image" : "texture";
+ }
+ else
+ res += "sampler";
+
+ switch (type.image.dim)
+ {
+ case Dim1D:
+ // ES doesn't support 1D. Fake it with 2D.
+ res += options.es ? "2D" : "1D";
+ break;
+ case Dim2D:
+ res += "2D";
+ break;
+ case Dim3D:
+ res += "3D";
+ break;
+ case DimCube:
+ res += "Cube";
+ break;
+ case DimRect:
+ if (options.es)
+ SPIRV_CROSS_THROW("Rectangle textures are not supported on OpenGL ES.");
+
+ if (is_legacy_desktop())
+ require_extension_internal("GL_ARB_texture_rectangle");
+
+ res += "2DRect";
+ break;
+
+ case DimBuffer:
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_EXT_texture_buffer");
+ else if (!options.es && options.version < 300)
+ require_extension_internal("GL_EXT_texture_buffer_object");
+ res += "Buffer";
+ break;
+
+ case DimSubpassData:
+ res += "2D";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Only 1D, 2D, 2DRect, 3D, Buffer, InputTarget and Cube textures supported.");
+ }
+
+ if (type.image.ms)
+ res += "MS";
+ if (type.image.arrayed)
+ {
+ if (is_legacy_desktop())
+ require_extension_internal("GL_EXT_texture_array");
+ res += "Array";
+ }
+
+ // "Shadow" state in GLSL only exists for samplers and combined image samplers.
+ if (((type.basetype == SPIRType::SampledImage) || (type.basetype == SPIRType::Sampler)) &&
+ is_depth_image(type, id))
+ {
+ res += "Shadow";
+
+ if (type.image.dim == DimCube && is_legacy())
+ {
+ if (!options.es)
+ require_extension_internal("GL_EXT_gpu_shader4");
+ else
+ {
+ require_extension_internal("GL_NV_shadow_samplers_cube");
+ res += "NV";
+ }
+ }
+ }
+
+ return res;
+}
+
+string CompilerGLSL::type_to_glsl_constructor(const SPIRType &type)
+{
+ if (backend.use_array_constructor && type.array.size() > 1)
+ {
+ if (options.flatten_multidimensional_arrays)
+ SPIRV_CROSS_THROW("Cannot flatten constructors of multidimensional array constructors, "
+ "e.g. float[][]().");
+ else if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_arrays_of_arrays");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Arrays of arrays not supported before ESSL version 310.");
+ }
+
+ auto e = type_to_glsl(type);
+ if (backend.use_array_constructor)
+ {
+ for (uint32_t i = 0; i < type.array.size(); i++)
+ e += "[]";
+ }
+ return e;
+}
+
+// The optional id parameter indicates the object whose type we are trying
+// to find the description for. It is optional. Most type descriptions do not
+// depend on a specific object's use of that type.
+string CompilerGLSL::type_to_glsl(const SPIRType &type, uint32_t id)
+{
+ if (is_physical_pointer(type) && !is_physical_pointer_to_buffer_block(type))
+ {
+ // Need to create a magic type name which compacts the entire type information.
+ auto *parent = &get_pointee_type(type);
+ string name = type_to_glsl(*parent);
+
+ uint32_t array_stride = get_decoration(type.parent_type, DecorationArrayStride);
+
+ // Resolve all array dimensions in one go since once we lose the pointer type,
+ // array information is left to to_array_type_glsl. The base type loses array information.
+ while (is_array(*parent))
+ {
+ if (parent->array_size_literal.back())
+ name += join(type.array.back(), "_");
+ else
+ name += join("id", type.array.back(), "_");
+
+ name += "stride_" + std::to_string(array_stride);
+
+ array_stride = get_decoration(parent->parent_type, DecorationArrayStride);
+ parent = &get<SPIRType>(parent->parent_type);
+ }
+
+ name += "Pointer";
+ return name;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Struct:
+ // Need OpName lookup here to get a "sensible" name for a struct.
+ if (backend.explicit_struct_type)
+ return join("struct ", to_name(type.self));
+ else
+ return to_name(type.self);
+
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ return image_type_glsl(type, id);
+
+ case SPIRType::Sampler:
+ // The depth field is set by calling code based on the variable ID of the sampler, effectively reintroducing
+ // this distinction into the type system.
+ return comparison_ids.count(id) ? "samplerShadow" : "sampler";
+
+ case SPIRType::AccelerationStructure:
+ return ray_tracing_is_khr ? "accelerationStructureEXT" : "accelerationStructureNV";
+
+ case SPIRType::RayQuery:
+ return "rayQueryEXT";
+
+ case SPIRType::Void:
+ return "void";
+
+ default:
+ break;
+ }
+
+ if (type.basetype == SPIRType::UInt && is_legacy())
+ {
+ if (options.es)
+ // HACK: spirv-cross changes bools into uints and generates code which compares them to
+ // zero. Input code will have already been validated as not to have contained any uints,
+ // so any remaining uints must in fact be bools. However, simply returning "bool" here
+ // will result in invalid code. Instead, return an int.
+ return backend.basic_int_type;
+ else
+ require_extension_internal("GL_EXT_gpu_shader4");
+ }
+
+ if (type.basetype == SPIRType::AtomicCounter)
+ {
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for atomic counters.");
+ else if (!options.es && options.version < 420)
+ require_extension_internal("GL_ARB_shader_atomic_counters");
+ }
+
+ if (type.vecsize == 1 && type.columns == 1) // Scalar builtin
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return "bool";
+ case SPIRType::SByte:
+ return backend.basic_int8_type;
+ case SPIRType::UByte:
+ return backend.basic_uint8_type;
+ case SPIRType::Short:
+ return backend.basic_int16_type;
+ case SPIRType::UShort:
+ return backend.basic_uint16_type;
+ case SPIRType::Int:
+ return backend.basic_int_type;
+ case SPIRType::UInt:
+ return backend.basic_uint_type;
+ case SPIRType::AtomicCounter:
+ return "atomic_uint";
+ case SPIRType::Half:
+ return "float16_t";
+ case SPIRType::Float:
+ return "float";
+ case SPIRType::Double:
+ return "double";
+ case SPIRType::Int64:
+ return "int64_t";
+ case SPIRType::UInt64:
+ return "uint64_t";
+ default:
+ return "???";
+ }
+ }
+ else if (type.vecsize > 1 && type.columns == 1) // Vector builtin
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return join("bvec", type.vecsize);
+ case SPIRType::SByte:
+ return join("i8vec", type.vecsize);
+ case SPIRType::UByte:
+ return join("u8vec", type.vecsize);
+ case SPIRType::Short:
+ return join("i16vec", type.vecsize);
+ case SPIRType::UShort:
+ return join("u16vec", type.vecsize);
+ case SPIRType::Int:
+ return join("ivec", type.vecsize);
+ case SPIRType::UInt:
+ return join("uvec", type.vecsize);
+ case SPIRType::Half:
+ return join("f16vec", type.vecsize);
+ case SPIRType::Float:
+ return join("vec", type.vecsize);
+ case SPIRType::Double:
+ return join("dvec", type.vecsize);
+ case SPIRType::Int64:
+ return join("i64vec", type.vecsize);
+ case SPIRType::UInt64:
+ return join("u64vec", type.vecsize);
+ default:
+ return "???";
+ }
+ }
+ else if (type.vecsize == type.columns) // Simple Matrix builtin
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return join("bmat", type.vecsize);
+ case SPIRType::Int:
+ return join("imat", type.vecsize);
+ case SPIRType::UInt:
+ return join("umat", type.vecsize);
+ case SPIRType::Half:
+ return join("f16mat", type.vecsize);
+ case SPIRType::Float:
+ return join("mat", type.vecsize);
+ case SPIRType::Double:
+ return join("dmat", type.vecsize);
+ // Matrix types not supported for int64/uint64.
+ default:
+ return "???";
+ }
+ }
+ else
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return join("bmat", type.columns, "x", type.vecsize);
+ case SPIRType::Int:
+ return join("imat", type.columns, "x", type.vecsize);
+ case SPIRType::UInt:
+ return join("umat", type.columns, "x", type.vecsize);
+ case SPIRType::Half:
+ return join("f16mat", type.columns, "x", type.vecsize);
+ case SPIRType::Float:
+ return join("mat", type.columns, "x", type.vecsize);
+ case SPIRType::Double:
+ return join("dmat", type.columns, "x", type.vecsize);
+ // Matrix types not supported for int64/uint64.
+ default:
+ return "???";
+ }
+ }
+}
+
+void CompilerGLSL::add_variable(unordered_set<string> &variables_primary,
+ const unordered_set<string> &variables_secondary, string &name)
+{
+ if (name.empty())
+ return;
+
+ ParsedIR::sanitize_underscores(name);
+ if (ParsedIR::is_globally_reserved_identifier(name, true))
+ {
+ name.clear();
+ return;
+ }
+
+ update_name_cache(variables_primary, variables_secondary, name);
+}
+
+void CompilerGLSL::add_local_variable_name(uint32_t id)
+{
+ add_variable(local_variable_names, block_names, ir.meta[id].decoration.alias);
+}
+
+void CompilerGLSL::add_resource_name(uint32_t id)
+{
+ add_variable(resource_names, block_names, ir.meta[id].decoration.alias);
+}
+
+void CompilerGLSL::add_header_line(const std::string &line)
+{
+ header_lines.push_back(line);
+}
+
+bool CompilerGLSL::has_extension(const std::string &ext) const
+{
+ auto itr = find(begin(forced_extensions), end(forced_extensions), ext);
+ return itr != end(forced_extensions);
+}
+
+void CompilerGLSL::require_extension(const std::string &ext)
+{
+ if (!has_extension(ext))
+ forced_extensions.push_back(ext);
+}
+
+const SmallVector<std::string> &CompilerGLSL::get_required_extensions() const
+{
+ return forced_extensions;
+}
+
+void CompilerGLSL::require_extension_internal(const string &ext)
+{
+ if (backend.supports_extensions && !has_extension(ext))
+ {
+ forced_extensions.push_back(ext);
+ force_recompile();
+ }
+}
+
+void CompilerGLSL::flatten_buffer_block(VariableID id)
+{
+ auto &var = get<SPIRVariable>(id);
+ auto &type = get<SPIRType>(var.basetype);
+ auto name = to_name(type.self, false);
+ auto &flags = get_decoration_bitset(type.self);
+
+ if (!type.array.empty())
+ SPIRV_CROSS_THROW(name + " is an array of UBOs.");
+ if (type.basetype != SPIRType::Struct)
+ SPIRV_CROSS_THROW(name + " is not a struct.");
+ if (!flags.get(DecorationBlock))
+ SPIRV_CROSS_THROW(name + " is not a block.");
+ if (type.member_types.empty())
+ SPIRV_CROSS_THROW(name + " is an empty struct.");
+
+ flattened_buffer_blocks.insert(id);
+}
+
+bool CompilerGLSL::builtin_translates_to_nonarray(spv::BuiltIn /*builtin*/) const
+{
+ return false; // GLSL itself does not need to translate array builtin types to non-array builtin types
+}
+
+bool CompilerGLSL::is_user_type_structured(uint32_t /*id*/) const
+{
+ return false; // GLSL itself does not have structured user type, but HLSL does with StructuredBuffer and RWStructuredBuffer resources.
+}
+
+bool CompilerGLSL::check_atomic_image(uint32_t id)
+{
+ auto &type = expression_type(id);
+ if (type.storage == StorageClassImage)
+ {
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_shader_image_atomic");
+
+ auto *var = maybe_get_backing_variable(id);
+ if (var)
+ {
+ if (has_decoration(var->self, DecorationNonWritable) || has_decoration(var->self, DecorationNonReadable))
+ {
+ unset_decoration(var->self, DecorationNonWritable);
+ unset_decoration(var->self, DecorationNonReadable);
+ force_recompile();
+ }
+ }
+ return true;
+ }
+ else
+ return false;
+}
+
+void CompilerGLSL::add_function_overload(const SPIRFunction &func)
+{
+ Hasher hasher;
+ for (auto &arg : func.arguments)
+ {
+ // Parameters can vary with pointer type or not,
+ // but that will not change the signature in GLSL/HLSL,
+ // so strip the pointer type before hashing.
+ uint32_t type_id = get_pointee_type_id(arg.type);
+ auto &type = get<SPIRType>(type_id);
+
+ if (!combined_image_samplers.empty())
+ {
+ // If we have combined image samplers, we cannot really trust the image and sampler arguments
+ // we pass down to callees, because they may be shuffled around.
+ // Ignore these arguments, to make sure that functions need to differ in some other way
+ // to be considered different overloads.
+ if (type.basetype == SPIRType::SampledImage ||
+ (type.basetype == SPIRType::Image && type.image.sampled == 1) || type.basetype == SPIRType::Sampler)
+ {
+ continue;
+ }
+ }
+
+ hasher.u32(type_id);
+ }
+ uint64_t types_hash = hasher.get();
+
+ auto function_name = to_name(func.self);
+ auto itr = function_overloads.find(function_name);
+ if (itr != end(function_overloads))
+ {
+ // There exists a function with this name already.
+ auto &overloads = itr->second;
+ if (overloads.count(types_hash) != 0)
+ {
+ // Overload conflict, assign a new name.
+ add_resource_name(func.self);
+ function_overloads[to_name(func.self)].insert(types_hash);
+ }
+ else
+ {
+ // Can reuse the name.
+ overloads.insert(types_hash);
+ }
+ }
+ else
+ {
+ // First time we see this function name.
+ add_resource_name(func.self);
+ function_overloads[to_name(func.self)].insert(types_hash);
+ }
+}
+
+void CompilerGLSL::emit_function_prototype(SPIRFunction &func, const Bitset &return_flags)
+{
+ if (func.self != ir.default_entry_point)
+ add_function_overload(func);
+
+ // Avoid shadow declarations.
+ local_variable_names = resource_names;
+
+ string decl;
+
+ auto &type = get<SPIRType>(func.return_type);
+ decl += flags_to_qualifiers_glsl(type, return_flags);
+ decl += type_to_glsl(type);
+ decl += type_to_array_glsl(type, 0);
+ decl += " ";
+
+ if (func.self == ir.default_entry_point)
+ {
+ // If we need complex fallback in GLSL, we just wrap main() in a function
+ // and interlock the entire shader ...
+ if (interlocked_is_complex)
+ decl += "spvMainInterlockedBody";
+ else
+ decl += "main";
+
+ processing_entry_point = true;
+ }
+ else
+ decl += to_name(func.self);
+
+ decl += "(";
+ SmallVector<string> arglist;
+ for (auto &arg : func.arguments)
+ {
+ // Do not pass in separate images or samplers if we're remapping
+ // to combined image samplers.
+ if (skip_argument(arg.id))
+ continue;
+
+ // Might change the variable name if it already exists in this function.
+ // SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
+ // to use same name for variables.
+ // Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
+ add_local_variable_name(arg.id);
+
+ arglist.push_back(argument_decl(arg));
+
+ // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ var->parameter = &arg;
+ }
+
+ for (auto &arg : func.shadow_arguments)
+ {
+ // Might change the variable name if it already exists in this function.
+ // SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
+ // to use same name for variables.
+ // Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
+ add_local_variable_name(arg.id);
+
+ arglist.push_back(argument_decl(arg));
+
+ // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ var->parameter = &arg;
+ }
+
+ decl += merge(arglist);
+ decl += ")";
+ statement(decl);
+}
+
+void CompilerGLSL::emit_function(SPIRFunction &func, const Bitset &return_flags)
+{
+ // Avoid potential cycles.
+ if (func.active)
+ return;
+ func.active = true;
+
+ // If we depend on a function, emit that function before we emit our own function.
+ for (auto block : func.blocks)
+ {
+ auto &b = get<SPIRBlock>(block);
+ for (auto &i : b.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (op == OpFunctionCall)
+ {
+ // Recursively emit functions which are called.
+ uint32_t id = ops[2];
+ emit_function(get<SPIRFunction>(id), ir.meta[ops[1]].decoration.decoration_flags);
+ }
+ }
+ }
+
+ if (func.entry_line.file_id != 0)
+ emit_line_directive(func.entry_line.file_id, func.entry_line.line_literal);
+ emit_function_prototype(func, return_flags);
+ begin_scope();
+
+ if (func.self == ir.default_entry_point)
+ emit_entry_point_declarations();
+
+ current_function = &func;
+ auto &entry_block = get<SPIRBlock>(func.entry_block);
+
+ sort(begin(func.constant_arrays_needed_on_stack), end(func.constant_arrays_needed_on_stack));
+ for (auto &array : func.constant_arrays_needed_on_stack)
+ {
+ auto &c = get<SPIRConstant>(array);
+ auto &type = get<SPIRType>(c.constant_type);
+ statement(variable_decl(type, join("_", array, "_array_copy")), " = ", constant_expression(c), ";");
+ }
+
+ for (auto &v : func.local_variables)
+ {
+ auto &var = get<SPIRVariable>(v);
+ var.deferred_declaration = false;
+
+ if (variable_decl_is_remapped_storage(var, StorageClassWorkgroup))
+ {
+ // Special variable type which cannot have initializer,
+ // need to be declared as standalone variables.
+ // Comes from MSL which can push global variables as local variables in main function.
+ add_local_variable_name(var.self);
+ statement(variable_decl(var), ";");
+ var.deferred_declaration = false;
+ }
+ else if (var.storage == StorageClassPrivate)
+ {
+ // These variables will not have had their CFG usage analyzed, so move it to the entry block.
+ // Comes from MSL which can push global variables as local variables in main function.
+ // We could just declare them right now, but we would miss out on an important initialization case which is
+ // LUT declaration in MSL.
+ // If we don't declare the variable when it is assigned we're forced to go through a helper function
+ // which copies elements one by one.
+ add_local_variable_name(var.self);
+
+ if (var.initializer)
+ {
+ statement(variable_decl(var), ";");
+ var.deferred_declaration = false;
+ }
+ else
+ {
+ auto &dominated = entry_block.dominated_variables;
+ if (find(begin(dominated), end(dominated), var.self) == end(dominated))
+ entry_block.dominated_variables.push_back(var.self);
+ var.deferred_declaration = true;
+ }
+ }
+ else if (var.storage == StorageClassFunction && var.remapped_variable && var.static_expression)
+ {
+ // No need to declare this variable, it has a static expression.
+ var.deferred_declaration = false;
+ }
+ else if (expression_is_lvalue(v))
+ {
+ add_local_variable_name(var.self);
+
+ // Loop variables should never be declared early, they are explicitly emitted in a loop.
+ if (var.initializer && !var.loop_variable)
+ statement(variable_decl_function_local(var), ";");
+ else
+ {
+ // Don't declare variable until first use to declutter the GLSL output quite a lot.
+ // If we don't touch the variable before first branch,
+ // declare it then since we need variable declaration to be in top scope.
+ var.deferred_declaration = true;
+ }
+ }
+ else
+ {
+ // HACK: SPIR-V in older glslang output likes to use samplers and images as local variables, but GLSL does not allow this.
+ // For these types (non-lvalue), we enforce forwarding through a shadowed variable.
+ // This means that when we OpStore to these variables, we just write in the expression ID directly.
+ // This breaks any kind of branching, since the variable must be statically assigned.
+ // Branching on samplers and images would be pretty much impossible to fake in GLSL.
+ var.statically_assigned = true;
+ }
+
+ var.loop_variable_enable = false;
+
+ // Loop variables are never declared outside their for-loop, so block any implicit declaration.
+ if (var.loop_variable)
+ {
+ var.deferred_declaration = false;
+ // Need to reset the static expression so we can fallback to initializer if need be.
+ var.static_expression = 0;
+ }
+ }
+
+ // Enforce declaration order for regression testing purposes.
+ for (auto &block_id : func.blocks)
+ {
+ auto &block = get<SPIRBlock>(block_id);
+ sort(begin(block.dominated_variables), end(block.dominated_variables));
+ }
+
+ for (auto &line : current_function->fixup_hooks_in)
+ line();
+
+ emit_block_chain(entry_block);
+
+ end_scope();
+ processing_entry_point = false;
+ statement("");
+
+ // Make sure deferred declaration state for local variables is cleared when we are done with function.
+ // We risk declaring Private/Workgroup variables in places we are not supposed to otherwise.
+ for (auto &v : func.local_variables)
+ {
+ auto &var = get<SPIRVariable>(v);
+ var.deferred_declaration = false;
+ }
+}
+
+void CompilerGLSL::emit_fixup()
+{
+ if (is_vertex_like_shader())
+ {
+ if (options.vertex.fixup_clipspace)
+ {
+ const char *suffix = backend.float_literal_suffix ? "f" : "";
+ statement("gl_Position.z = 2.0", suffix, " * gl_Position.z - gl_Position.w;");
+ }
+
+ if (options.vertex.flip_vert_y)
+ statement("gl_Position.y = -gl_Position.y;");
+ }
+}
+
+void CompilerGLSL::flush_phi(BlockID from, BlockID to)
+{
+ auto &child = get<SPIRBlock>(to);
+ if (child.ignore_phi_from_block == from)
+ return;
+
+ unordered_set<uint32_t> temporary_phi_variables;
+
+ for (auto itr = begin(child.phi_variables); itr != end(child.phi_variables); ++itr)
+ {
+ auto &phi = *itr;
+
+ if (phi.parent == from)
+ {
+ auto &var = get<SPIRVariable>(phi.function_variable);
+
+ // A Phi variable might be a loop variable, so flush to static expression.
+ if (var.loop_variable && !var.loop_variable_enable)
+ var.static_expression = phi.local_variable;
+ else
+ {
+ flush_variable_declaration(phi.function_variable);
+
+ // Check if we are going to write to a Phi variable that another statement will read from
+ // as part of another Phi node in our target block.
+ // For this case, we will need to copy phi.function_variable to a temporary, and use that for future reads.
+ // This is judged to be extremely rare, so deal with it here using a simple, but suboptimal algorithm.
+ bool need_saved_temporary =
+ find_if(itr + 1, end(child.phi_variables), [&](const SPIRBlock::Phi &future_phi) -> bool {
+ return future_phi.local_variable == ID(phi.function_variable) && future_phi.parent == from;
+ }) != end(child.phi_variables);
+
+ if (need_saved_temporary)
+ {
+ // Need to make sure we declare the phi variable with a copy at the right scope.
+ // We cannot safely declare a temporary here since we might be inside a continue block.
+ if (!var.allocate_temporary_copy)
+ {
+ var.allocate_temporary_copy = true;
+ force_recompile();
+ }
+ statement("_", phi.function_variable, "_copy", " = ", to_name(phi.function_variable), ";");
+ temporary_phi_variables.insert(phi.function_variable);
+ }
+
+ // This might be called in continue block, so make sure we
+ // use this to emit ESSL 1.0 compliant increments/decrements.
+ auto lhs = to_expression(phi.function_variable);
+
+ string rhs;
+ if (temporary_phi_variables.count(phi.local_variable))
+ rhs = join("_", phi.local_variable, "_copy");
+ else
+ rhs = to_pointer_expression(phi.local_variable);
+
+ if (!optimize_read_modify_write(get<SPIRType>(var.basetype), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+
+ register_write(phi.function_variable);
+ }
+ }
+}
+
+void CompilerGLSL::branch_to_continue(BlockID from, BlockID to)
+{
+ auto &to_block = get<SPIRBlock>(to);
+ if (from == to)
+ return;
+
+ assert(is_continue(to));
+ if (to_block.complex_continue)
+ {
+ // Just emit the whole block chain as is.
+ auto usage_counts = expression_usage_counts;
+
+ emit_block_chain(to_block);
+
+ // Expression usage counts are moot after returning from the continue block.
+ expression_usage_counts = usage_counts;
+ }
+ else
+ {
+ auto &from_block = get<SPIRBlock>(from);
+ bool outside_control_flow = false;
+ uint32_t loop_dominator = 0;
+
+ // FIXME: Refactor this to not use the old loop_dominator tracking.
+ if (from_block.merge_block)
+ {
+ // If we are a loop header, we don't set the loop dominator,
+ // so just use "self" here.
+ loop_dominator = from;
+ }
+ else if (from_block.loop_dominator != BlockID(SPIRBlock::NoDominator))
+ {
+ loop_dominator = from_block.loop_dominator;
+ }
+
+ if (loop_dominator != 0)
+ {
+ auto &cfg = get_cfg_for_current_function();
+
+ // For non-complex continue blocks, we implicitly branch to the continue block
+ // by having the continue block be part of the loop header in for (; ; continue-block).
+ outside_control_flow = cfg.node_terminates_control_flow_in_sub_graph(loop_dominator, from);
+ }
+
+ // Some simplification for for-loops. We always end up with a useless continue;
+ // statement since we branch to a loop block.
+ // Walk the CFG, if we unconditionally execute the block calling continue assuming we're in the loop block,
+ // we can avoid writing out an explicit continue statement.
+ // Similar optimization to return statements if we know we're outside flow control.
+ if (!outside_control_flow)
+ statement("continue;");
+ }
+}
+
+void CompilerGLSL::branch(BlockID from, BlockID to)
+{
+ flush_phi(from, to);
+ flush_control_dependent_expressions(from);
+
+ bool to_is_continue = is_continue(to);
+
+ // This is only a continue if we branch to our loop dominator.
+ if ((ir.block_meta[to] & ParsedIR::BLOCK_META_LOOP_HEADER_BIT) != 0 && get<SPIRBlock>(from).loop_dominator == to)
+ {
+ // This can happen if we had a complex continue block which was emitted.
+ // Once the continue block tries to branch to the loop header, just emit continue;
+ // and end the chain here.
+ statement("continue;");
+ }
+ else if (from != to && is_break(to))
+ {
+ // We cannot break to ourselves, so check explicitly for from != to.
+ // This case can trigger if a loop header is all three of these things:
+ // - Continue block
+ // - Loop header
+ // - Break merge target all at once ...
+
+ // Very dirty workaround.
+ // Switch constructs are able to break, but they cannot break out of a loop at the same time,
+ // yet SPIR-V allows it.
+ // Only sensible solution is to make a ladder variable, which we declare at the top of the switch block,
+ // write to the ladder here, and defer the break.
+ // The loop we're breaking out of must dominate the switch block, or there is no ladder breaking case.
+ if (is_loop_break(to))
+ {
+ for (size_t n = current_emitting_switch_stack.size(); n; n--)
+ {
+ auto *current_emitting_switch = current_emitting_switch_stack[n - 1];
+
+ if (current_emitting_switch &&
+ current_emitting_switch->loop_dominator != BlockID(SPIRBlock::NoDominator) &&
+ get<SPIRBlock>(current_emitting_switch->loop_dominator).merge_block == to)
+ {
+ if (!current_emitting_switch->need_ladder_break)
+ {
+ force_recompile();
+ current_emitting_switch->need_ladder_break = true;
+ }
+
+ statement("_", current_emitting_switch->self, "_ladder_break = true;");
+ }
+ else
+ break;
+ }
+ }
+ statement("break;");
+ }
+ else if (to_is_continue || from == to)
+ {
+ // For from == to case can happen for a do-while loop which branches into itself.
+ // We don't mark these cases as continue blocks, but the only possible way to branch into
+ // ourselves is through means of continue blocks.
+
+ // If we are merging to a continue block, there is no need to emit the block chain for continue here.
+ // We can branch to the continue block after we merge execution.
+
+ // Here we make use of structured control flow rules from spec:
+ // 2.11: - the merge block declared by a header block cannot be a merge block declared by any other header block
+ // - each header block must strictly dominate its merge block, unless the merge block is unreachable in the CFG
+ // If we are branching to a merge block, we must be inside a construct which dominates the merge block.
+ auto &block_meta = ir.block_meta[to];
+ bool branching_to_merge =
+ (block_meta & (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT |
+ ParsedIR::BLOCK_META_LOOP_MERGE_BIT)) != 0;
+ if (!to_is_continue || !branching_to_merge)
+ branch_to_continue(from, to);
+ }
+ else if (!is_conditional(to))
+ emit_block_chain(get<SPIRBlock>(to));
+
+ // It is important that we check for break before continue.
+ // A block might serve two purposes, a break block for the inner scope, and
+ // a continue block in the outer scope.
+ // Inner scope always takes precedence.
+}
+
+void CompilerGLSL::branch(BlockID from, uint32_t cond, BlockID true_block, BlockID false_block)
+{
+ auto &from_block = get<SPIRBlock>(from);
+ BlockID merge_block = from_block.merge == SPIRBlock::MergeSelection ? from_block.next_block : BlockID(0);
+
+ // If we branch directly to our selection merge target, we don't need a code path.
+ bool true_block_needs_code = true_block != merge_block || flush_phi_required(from, true_block);
+ bool false_block_needs_code = false_block != merge_block || flush_phi_required(from, false_block);
+
+ if (!true_block_needs_code && !false_block_needs_code)
+ return;
+
+ // We might have a loop merge here. Only consider selection flattening constructs.
+ // Loop hints are handled explicitly elsewhere.
+ if (from_block.hint == SPIRBlock::HintFlatten || from_block.hint == SPIRBlock::HintDontFlatten)
+ emit_block_hints(from_block);
+
+ if (true_block_needs_code)
+ {
+ statement("if (", to_expression(cond), ")");
+ begin_scope();
+ branch(from, true_block);
+ end_scope();
+
+ if (false_block_needs_code)
+ {
+ statement("else");
+ begin_scope();
+ branch(from, false_block);
+ end_scope();
+ }
+ }
+ else if (false_block_needs_code)
+ {
+ // Only need false path, use negative conditional.
+ statement("if (!", to_enclosed_expression(cond), ")");
+ begin_scope();
+ branch(from, false_block);
+ end_scope();
+ }
+}
+
+// FIXME: This currently cannot handle complex continue blocks
+// as in do-while.
+// This should be seen as a "trivial" continue block.
+string CompilerGLSL::emit_continue_block(uint32_t continue_block, bool follow_true_block, bool follow_false_block)
+{
+ auto *block = &get<SPIRBlock>(continue_block);
+
+ // While emitting the continue block, declare_temporary will check this
+ // if we have to emit temporaries.
+ current_continue_block = block;
+
+ SmallVector<string> statements;
+
+ // Capture all statements into our list.
+ auto *old = redirect_statement;
+ redirect_statement = &statements;
+
+ // Stamp out all blocks one after each other.
+ while ((ir.block_meta[block->self] & ParsedIR::BLOCK_META_LOOP_HEADER_BIT) == 0)
+ {
+ // Write out all instructions we have in this block.
+ emit_block_instructions(*block);
+
+ // For plain branchless for/while continue blocks.
+ if (block->next_block)
+ {
+ flush_phi(continue_block, block->next_block);
+ block = &get<SPIRBlock>(block->next_block);
+ }
+ // For do while blocks. The last block will be a select block.
+ else if (block->true_block && follow_true_block)
+ {
+ flush_phi(continue_block, block->true_block);
+ block = &get<SPIRBlock>(block->true_block);
+ }
+ else if (block->false_block && follow_false_block)
+ {
+ flush_phi(continue_block, block->false_block);
+ block = &get<SPIRBlock>(block->false_block);
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("Invalid continue block detected!");
+ }
+ }
+
+ // Restore old pointer.
+ redirect_statement = old;
+
+ // Somewhat ugly, strip off the last ';' since we use ',' instead.
+ // Ideally, we should select this behavior in statement().
+ for (auto &s : statements)
+ {
+ if (!s.empty() && s.back() == ';')
+ s.erase(s.size() - 1, 1);
+ }
+
+ current_continue_block = nullptr;
+ return merge(statements);
+}
+
+void CompilerGLSL::emit_while_loop_initializers(const SPIRBlock &block)
+{
+ // While loops do not take initializers, so declare all of them outside.
+ for (auto &loop_var : block.loop_variables)
+ {
+ auto &var = get<SPIRVariable>(loop_var);
+ statement(variable_decl(var), ";");
+ }
+}
+
+string CompilerGLSL::emit_for_loop_initializers(const SPIRBlock &block)
+{
+ if (block.loop_variables.empty())
+ return "";
+
+ bool same_types = for_loop_initializers_are_same_type(block);
+ // We can only declare for loop initializers if all variables are of same type.
+ // If we cannot do this, declare individual variables before the loop header.
+
+ // We might have a loop variable candidate which was not assigned to for some reason.
+ uint32_t missing_initializers = 0;
+ for (auto &variable : block.loop_variables)
+ {
+ uint32_t expr = get<SPIRVariable>(variable).static_expression;
+
+ // Sometimes loop variables are initialized with OpUndef, but we can just declare
+ // a plain variable without initializer in this case.
+ if (expr == 0 || ir.ids[expr].get_type() == TypeUndef)
+ missing_initializers++;
+ }
+
+ if (block.loop_variables.size() == 1 && missing_initializers == 0)
+ {
+ return variable_decl(get<SPIRVariable>(block.loop_variables.front()));
+ }
+ else if (!same_types || missing_initializers == uint32_t(block.loop_variables.size()))
+ {
+ for (auto &loop_var : block.loop_variables)
+ statement(variable_decl(get<SPIRVariable>(loop_var)), ";");
+ return "";
+ }
+ else
+ {
+ // We have a mix of loop variables, either ones with a clear initializer, or ones without.
+ // Separate the two streams.
+ string expr;
+
+ for (auto &loop_var : block.loop_variables)
+ {
+ uint32_t static_expr = get<SPIRVariable>(loop_var).static_expression;
+ if (static_expr == 0 || ir.ids[static_expr].get_type() == TypeUndef)
+ {
+ statement(variable_decl(get<SPIRVariable>(loop_var)), ";");
+ }
+ else
+ {
+ auto &var = get<SPIRVariable>(loop_var);
+ auto &type = get_variable_data_type(var);
+ if (expr.empty())
+ {
+ // For loop initializers are of the form <type id = value, id = value, id = value, etc ...
+ expr = join(to_qualifiers_glsl(var.self), type_to_glsl(type), " ");
+ }
+ else
+ {
+ expr += ", ";
+ // In MSL, being based on C++, the asterisk marking a pointer
+ // binds to the identifier, not the type.
+ if (type.pointer)
+ expr += "* ";
+ }
+
+ expr += join(to_name(loop_var), " = ", to_pointer_expression(var.static_expression));
+ }
+ }
+ return expr;
+ }
+}
+
+bool CompilerGLSL::for_loop_initializers_are_same_type(const SPIRBlock &block)
+{
+ if (block.loop_variables.size() <= 1)
+ return true;
+
+ uint32_t expected = 0;
+ Bitset expected_flags;
+ for (auto &var : block.loop_variables)
+ {
+ // Don't care about uninitialized variables as they will not be part of the initializers.
+ uint32_t expr = get<SPIRVariable>(var).static_expression;
+ if (expr == 0 || ir.ids[expr].get_type() == TypeUndef)
+ continue;
+
+ if (expected == 0)
+ {
+ expected = get<SPIRVariable>(var).basetype;
+ expected_flags = get_decoration_bitset(var);
+ }
+ else if (expected != get<SPIRVariable>(var).basetype)
+ return false;
+
+ // Precision flags and things like that must also match.
+ if (expected_flags != get_decoration_bitset(var))
+ return false;
+ }
+
+ return true;
+}
+
+void CompilerGLSL::emit_block_instructions_with_masked_debug(SPIRBlock &block)
+{
+ // Have to block debug instructions such as OpLine here, since it will be treated as a statement otherwise,
+ // which breaks loop optimizations.
+ // Any line directive would be declared outside the loop body, which would just be confusing either way.
+ bool old_block_debug_directives = block_debug_directives;
+ block_debug_directives = true;
+ emit_block_instructions(block);
+ block_debug_directives = old_block_debug_directives;
+}
+
+bool CompilerGLSL::attempt_emit_loop_header(SPIRBlock &block, SPIRBlock::Method method)
+{
+ SPIRBlock::ContinueBlockType continue_type = continue_block_type(get<SPIRBlock>(block.continue_block));
+
+ if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop)
+ {
+ uint32_t current_count = statement_count;
+ // If we're trying to create a true for loop,
+ // we need to make sure that all opcodes before branch statement do not actually emit any code.
+ // We can then take the condition expression and create a for (; cond ; ) { body; } structure instead.
+ emit_block_instructions_with_masked_debug(block);
+
+ bool condition_is_temporary = forced_temporaries.find(block.condition) == end(forced_temporaries);
+
+ bool flushes_phi = flush_phi_required(block.self, block.true_block) ||
+ flush_phi_required(block.self, block.false_block);
+
+ // This can work! We only did trivial things which could be forwarded in block body!
+ if (!flushes_phi && current_count == statement_count && condition_is_temporary)
+ {
+ switch (continue_type)
+ {
+ case SPIRBlock::ForLoop:
+ {
+ // This block may be a dominating block, so make sure we flush undeclared variables before building the for loop header.
+ flush_undeclared_variables(block);
+
+ // Important that we do this in this order because
+ // emitting the continue block can invalidate the condition expression.
+ auto initializer = emit_for_loop_initializers(block);
+ auto condition = to_expression(block.condition);
+
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ condition = join("!", enclose_expression(condition));
+
+ emit_block_hints(block);
+ if (method != SPIRBlock::MergeToSelectContinueForLoop)
+ {
+ auto continue_block = emit_continue_block(block.continue_block, false, false);
+ statement("for (", initializer, "; ", condition, "; ", continue_block, ")");
+ }
+ else
+ statement("for (", initializer, "; ", condition, "; )");
+ break;
+ }
+
+ case SPIRBlock::WhileLoop:
+ {
+ // This block may be a dominating block, so make sure we flush undeclared variables before building the while loop header.
+ flush_undeclared_variables(block);
+ emit_while_loop_initializers(block);
+ emit_block_hints(block);
+
+ auto condition = to_expression(block.condition);
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ condition = join("!", enclose_expression(condition));
+
+ statement("while (", condition, ")");
+ break;
+ }
+
+ default:
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+
+ begin_scope();
+ return true;
+ }
+ else
+ {
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+ }
+ else if (method == SPIRBlock::MergeToDirectForLoop)
+ {
+ auto &child = get<SPIRBlock>(block.next_block);
+
+ // This block may be a dominating block, so make sure we flush undeclared variables before building the for loop header.
+ flush_undeclared_variables(child);
+
+ uint32_t current_count = statement_count;
+
+ // If we're trying to create a true for loop,
+ // we need to make sure that all opcodes before branch statement do not actually emit any code.
+ // We can then take the condition expression and create a for (; cond ; ) { body; } structure instead.
+ emit_block_instructions_with_masked_debug(child);
+
+ bool condition_is_temporary = forced_temporaries.find(child.condition) == end(forced_temporaries);
+
+ bool flushes_phi = flush_phi_required(child.self, child.true_block) ||
+ flush_phi_required(child.self, child.false_block);
+
+ if (!flushes_phi && current_count == statement_count && condition_is_temporary)
+ {
+ uint32_t target_block = child.true_block;
+
+ switch (continue_type)
+ {
+ case SPIRBlock::ForLoop:
+ {
+ // Important that we do this in this order because
+ // emitting the continue block can invalidate the condition expression.
+ auto initializer = emit_for_loop_initializers(block);
+ auto condition = to_expression(child.condition);
+
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(child.true_block), get<SPIRBlock>(block.merge_block)))
+ {
+ condition = join("!", enclose_expression(condition));
+ target_block = child.false_block;
+ }
+
+ auto continue_block = emit_continue_block(block.continue_block, false, false);
+ emit_block_hints(block);
+ statement("for (", initializer, "; ", condition, "; ", continue_block, ")");
+ break;
+ }
+
+ case SPIRBlock::WhileLoop:
+ {
+ emit_while_loop_initializers(block);
+ emit_block_hints(block);
+
+ auto condition = to_expression(child.condition);
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(child.true_block), get<SPIRBlock>(block.merge_block)))
+ {
+ condition = join("!", enclose_expression(condition));
+ target_block = child.false_block;
+ }
+
+ statement("while (", condition, ")");
+ break;
+ }
+
+ default:
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+
+ begin_scope();
+ branch(child.self, target_block);
+ return true;
+ }
+ else
+ {
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+ }
+ else
+ return false;
+}
+
+void CompilerGLSL::flush_undeclared_variables(SPIRBlock &block)
+{
+ for (auto &v : block.dominated_variables)
+ flush_variable_declaration(v);
+}
+
+void CompilerGLSL::emit_hoisted_temporaries(SmallVector<pair<TypeID, ID>> &temporaries)
+{
+ // If we need to force temporaries for certain IDs due to continue blocks, do it before starting loop header.
+ // Need to sort these to ensure that reference output is stable.
+ sort(begin(temporaries), end(temporaries),
+ [](const pair<TypeID, ID> &a, const pair<TypeID, ID> &b) { return a.second < b.second; });
+
+ for (auto &tmp : temporaries)
+ {
+ auto &type = get<SPIRType>(tmp.first);
+
+ // There are some rare scenarios where we are asked to declare pointer types as hoisted temporaries.
+ // This should be ignored unless we're doing actual variable pointers and backend supports it.
+ // Access chains cannot normally be lowered to temporaries in GLSL and HLSL.
+ if (type.pointer && !backend.native_pointers)
+ continue;
+
+ add_local_variable_name(tmp.second);
+ auto &flags = get_decoration_bitset(tmp.second);
+
+ // Not all targets support pointer literals, so don't bother with that case.
+ string initializer;
+ if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ initializer = join(" = ", to_zero_initialized_expression(tmp.first));
+
+ statement(flags_to_qualifiers_glsl(type, flags), variable_decl(type, to_name(tmp.second)), initializer, ";");
+
+ hoisted_temporaries.insert(tmp.second);
+ forced_temporaries.insert(tmp.second);
+
+ // The temporary might be read from before it's assigned, set up the expression now.
+ set<SPIRExpression>(tmp.second, to_name(tmp.second), tmp.first, true);
+
+ // If we have hoisted temporaries in multi-precision contexts, emit that here too ...
+ // We will not be able to analyze hoisted-ness for dependent temporaries that we hallucinate here.
+ auto mirrored_precision_itr = temporary_to_mirror_precision_alias.find(tmp.second);
+ if (mirrored_precision_itr != temporary_to_mirror_precision_alias.end())
+ {
+ uint32_t mirror_id = mirrored_precision_itr->second;
+ auto &mirror_flags = get_decoration_bitset(mirror_id);
+ statement(flags_to_qualifiers_glsl(type, mirror_flags),
+ variable_decl(type, to_name(mirror_id)),
+ initializer, ";");
+ // The temporary might be read from before it's assigned, set up the expression now.
+ set<SPIRExpression>(mirror_id, to_name(mirror_id), tmp.first, true);
+ hoisted_temporaries.insert(mirror_id);
+ }
+ }
+}
+
+void CompilerGLSL::emit_block_chain(SPIRBlock &block)
+{
+ bool select_branch_to_true_block = false;
+ bool select_branch_to_false_block = false;
+ bool skip_direct_branch = false;
+ bool emitted_loop_header_variables = false;
+ bool force_complex_continue_block = false;
+ ValueSaver<uint32_t> loop_level_saver(current_loop_level);
+
+ if (block.merge == SPIRBlock::MergeLoop)
+ add_loop_level();
+
+ // If we're emitting PHI variables with precision aliases, we have to emit them as hoisted temporaries.
+ for (auto var_id : block.dominated_variables)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ if (var.phi_variable)
+ {
+ auto mirrored_precision_itr = temporary_to_mirror_precision_alias.find(var_id);
+ if (mirrored_precision_itr != temporary_to_mirror_precision_alias.end() &&
+ find_if(block.declare_temporary.begin(), block.declare_temporary.end(),
+ [mirrored_precision_itr](const std::pair<TypeID, VariableID> &p) {
+ return p.second == mirrored_precision_itr->second;
+ }) == block.declare_temporary.end())
+ {
+ block.declare_temporary.push_back({ var.basetype, mirrored_precision_itr->second });
+ }
+ }
+ }
+
+ emit_hoisted_temporaries(block.declare_temporary);
+
+ SPIRBlock::ContinueBlockType continue_type = SPIRBlock::ContinueNone;
+ if (block.continue_block)
+ {
+ continue_type = continue_block_type(get<SPIRBlock>(block.continue_block));
+ // If we know we cannot emit a loop, mark the block early as a complex loop so we don't force unnecessary recompiles.
+ if (continue_type == SPIRBlock::ComplexLoop)
+ block.complex_continue = true;
+ }
+
+ // If we have loop variables, stop masking out access to the variable now.
+ for (auto var_id : block.loop_variables)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ var.loop_variable_enable = true;
+ // We're not going to declare the variable directly, so emit a copy here.
+ emit_variable_temporary_copies(var);
+ }
+
+ // Remember deferred declaration state. We will restore it before returning.
+ SmallVector<bool, 64> rearm_dominated_variables(block.dominated_variables.size());
+ for (size_t i = 0; i < block.dominated_variables.size(); i++)
+ {
+ uint32_t var_id = block.dominated_variables[i];
+ auto &var = get<SPIRVariable>(var_id);
+ rearm_dominated_variables[i] = var.deferred_declaration;
+ }
+
+ // This is the method often used by spirv-opt to implement loops.
+ // The loop header goes straight into the continue block.
+ // However, don't attempt this on ESSL 1.0, because if a loop variable is used in a continue block,
+ // it *MUST* be used in the continue block. This loop method will not work.
+ if (!is_legacy_es() && block_is_loop_candidate(block, SPIRBlock::MergeToSelectContinueForLoop))
+ {
+ flush_undeclared_variables(block);
+ if (attempt_emit_loop_header(block, SPIRBlock::MergeToSelectContinueForLoop))
+ {
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ select_branch_to_false_block = true;
+ else
+ select_branch_to_true_block = true;
+
+ emitted_loop_header_variables = true;
+ force_complex_continue_block = true;
+ }
+ }
+ // This is the older loop behavior in glslang which branches to loop body directly from the loop header.
+ else if (block_is_loop_candidate(block, SPIRBlock::MergeToSelectForLoop))
+ {
+ flush_undeclared_variables(block);
+ if (attempt_emit_loop_header(block, SPIRBlock::MergeToSelectForLoop))
+ {
+ // The body of while, is actually just the true (or false) block, so always branch there unconditionally.
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ select_branch_to_false_block = true;
+ else
+ select_branch_to_true_block = true;
+
+ emitted_loop_header_variables = true;
+ }
+ }
+ // This is the newer loop behavior in glslang which branches from Loop header directly to
+ // a new block, which in turn has a OpBranchSelection without a selection merge.
+ else if (block_is_loop_candidate(block, SPIRBlock::MergeToDirectForLoop))
+ {
+ flush_undeclared_variables(block);
+ if (attempt_emit_loop_header(block, SPIRBlock::MergeToDirectForLoop))
+ {
+ skip_direct_branch = true;
+ emitted_loop_header_variables = true;
+ }
+ }
+ else if (continue_type == SPIRBlock::DoWhileLoop)
+ {
+ flush_undeclared_variables(block);
+ emit_while_loop_initializers(block);
+ emitted_loop_header_variables = true;
+ // We have some temporaries where the loop header is the dominator.
+ // We risk a case where we have code like:
+ // for (;;) { create-temporary; break; } consume-temporary;
+ // so force-declare temporaries here.
+ emit_hoisted_temporaries(block.potential_declare_temporary);
+ statement("do");
+ begin_scope();
+
+ emit_block_instructions(block);
+ }
+ else if (block.merge == SPIRBlock::MergeLoop)
+ {
+ flush_undeclared_variables(block);
+ emit_while_loop_initializers(block);
+ emitted_loop_header_variables = true;
+
+ // We have a generic loop without any distinguishable pattern like for, while or do while.
+ get<SPIRBlock>(block.continue_block).complex_continue = true;
+ continue_type = SPIRBlock::ComplexLoop;
+
+ // We have some temporaries where the loop header is the dominator.
+ // We risk a case where we have code like:
+ // for (;;) { create-temporary; break; } consume-temporary;
+ // so force-declare temporaries here.
+ emit_hoisted_temporaries(block.potential_declare_temporary);
+ emit_block_hints(block);
+ statement("for (;;)");
+ begin_scope();
+
+ emit_block_instructions(block);
+ }
+ else
+ {
+ emit_block_instructions(block);
+ }
+
+ // If we didn't successfully emit a loop header and we had loop variable candidates, we have a problem
+ // as writes to said loop variables might have been masked out, we need a recompile.
+ if (!emitted_loop_header_variables && !block.loop_variables.empty())
+ {
+ force_recompile_guarantee_forward_progress();
+ for (auto var : block.loop_variables)
+ get<SPIRVariable>(var).loop_variable = false;
+ block.loop_variables.clear();
+ }
+
+ flush_undeclared_variables(block);
+ bool emit_next_block = true;
+
+ // Handle end of block.
+ switch (block.terminator)
+ {
+ case SPIRBlock::Direct:
+ // True when emitting complex continue block.
+ if (block.loop_dominator == block.next_block)
+ {
+ branch(block.self, block.next_block);
+ emit_next_block = false;
+ }
+ // True if MergeToDirectForLoop succeeded.
+ else if (skip_direct_branch)
+ emit_next_block = false;
+ else if (is_continue(block.next_block) || is_break(block.next_block) || is_conditional(block.next_block))
+ {
+ branch(block.self, block.next_block);
+ emit_next_block = false;
+ }
+ break;
+
+ case SPIRBlock::Select:
+ // True if MergeToSelectForLoop or MergeToSelectContinueForLoop succeeded.
+ if (select_branch_to_true_block)
+ {
+ if (force_complex_continue_block)
+ {
+ assert(block.true_block == block.continue_block);
+
+ // We're going to emit a continue block directly here, so make sure it's marked as complex.
+ auto &complex_continue = get<SPIRBlock>(block.continue_block).complex_continue;
+ bool old_complex = complex_continue;
+ complex_continue = true;
+ branch(block.self, block.true_block);
+ complex_continue = old_complex;
+ }
+ else
+ branch(block.self, block.true_block);
+ }
+ else if (select_branch_to_false_block)
+ {
+ if (force_complex_continue_block)
+ {
+ assert(block.false_block == block.continue_block);
+
+ // We're going to emit a continue block directly here, so make sure it's marked as complex.
+ auto &complex_continue = get<SPIRBlock>(block.continue_block).complex_continue;
+ bool old_complex = complex_continue;
+ complex_continue = true;
+ branch(block.self, block.false_block);
+ complex_continue = old_complex;
+ }
+ else
+ branch(block.self, block.false_block);
+ }
+ else
+ branch(block.self, block.condition, block.true_block, block.false_block);
+ break;
+
+ case SPIRBlock::MultiSelect:
+ {
+ auto &type = expression_type(block.condition);
+ bool unsigned_case = type.basetype == SPIRType::UInt || type.basetype == SPIRType::UShort ||
+ type.basetype == SPIRType::UByte || type.basetype == SPIRType::UInt64;
+
+ if (block.merge == SPIRBlock::MergeNone)
+ SPIRV_CROSS_THROW("Switch statement is not structured");
+
+ if (!backend.support_64bit_switch && (type.basetype == SPIRType::UInt64 || type.basetype == SPIRType::Int64))
+ {
+ // SPIR-V spec suggests this is allowed, but we cannot support it in higher level languages.
+ SPIRV_CROSS_THROW("Cannot use 64-bit switch selectors.");
+ }
+
+ const char *label_suffix = "";
+ if (type.basetype == SPIRType::UInt && backend.uint32_t_literal_suffix)
+ label_suffix = "u";
+ else if (type.basetype == SPIRType::Int64 && backend.support_64bit_switch)
+ label_suffix = "l";
+ else if (type.basetype == SPIRType::UInt64 && backend.support_64bit_switch)
+ label_suffix = "ul";
+ else if (type.basetype == SPIRType::UShort)
+ label_suffix = backend.uint16_t_literal_suffix;
+ else if (type.basetype == SPIRType::Short)
+ label_suffix = backend.int16_t_literal_suffix;
+
+ current_emitting_switch_stack.push_back(&block);
+
+ if (block.need_ladder_break)
+ statement("bool _", block.self, "_ladder_break = false;");
+
+ // Find all unique case constructs.
+ unordered_map<uint32_t, SmallVector<uint64_t>> case_constructs;
+ SmallVector<uint32_t> block_declaration_order;
+ SmallVector<uint64_t> literals_to_merge;
+
+ // If a switch case branches to the default block for some reason, we can just remove that literal from consideration
+ // and let the default: block handle it.
+ // 2.11 in SPIR-V spec states that for fall-through cases, there is a very strict declaration order which we can take advantage of here.
+ // We only need to consider possible fallthrough if order[i] branches to order[i + 1].
+ auto &cases = get_case_list(block);
+ for (auto &c : cases)
+ {
+ if (c.block != block.next_block && c.block != block.default_block)
+ {
+ if (!case_constructs.count(c.block))
+ block_declaration_order.push_back(c.block);
+ case_constructs[c.block].push_back(c.value);
+ }
+ else if (c.block == block.next_block && block.default_block != block.next_block)
+ {
+ // We might have to flush phi inside specific case labels.
+ // If we can piggyback on default:, do so instead.
+ literals_to_merge.push_back(c.value);
+ }
+ }
+
+ // Empty literal array -> default.
+ if (block.default_block != block.next_block)
+ {
+ auto &default_block = get<SPIRBlock>(block.default_block);
+
+ // We need to slide in the default block somewhere in this chain
+ // if there are fall-through scenarios since the default is declared separately in OpSwitch.
+ // Only consider trivial fall-through cases here.
+ size_t num_blocks = block_declaration_order.size();
+ bool injected_block = false;
+
+ for (size_t i = 0; i < num_blocks; i++)
+ {
+ auto &case_block = get<SPIRBlock>(block_declaration_order[i]);
+ if (execution_is_direct_branch(case_block, default_block))
+ {
+ // Fallthrough to default block, we must inject the default block here.
+ block_declaration_order.insert(begin(block_declaration_order) + i + 1, block.default_block);
+ injected_block = true;
+ break;
+ }
+ else if (execution_is_direct_branch(default_block, case_block))
+ {
+ // Default case is falling through to another case label, we must inject the default block here.
+ block_declaration_order.insert(begin(block_declaration_order) + i, block.default_block);
+ injected_block = true;
+ break;
+ }
+ }
+
+ // Order does not matter.
+ if (!injected_block)
+ block_declaration_order.push_back(block.default_block);
+ else if (is_legacy_es())
+ SPIRV_CROSS_THROW("Default case label fallthrough to other case label is not supported in ESSL 1.0.");
+
+ case_constructs[block.default_block] = {};
+ }
+
+ size_t num_blocks = block_declaration_order.size();
+
+ const auto to_case_label = [](uint64_t literal, uint32_t width, bool is_unsigned_case) -> string
+ {
+ if (is_unsigned_case)
+ return convert_to_string(literal);
+
+ // For smaller cases, the literals are compiled as 32 bit wide
+ // literals so we don't need to care for all sizes specifically.
+ if (width <= 32)
+ {
+ return convert_to_string(int64_t(int32_t(literal)));
+ }
+
+ return convert_to_string(int64_t(literal));
+ };
+
+ const auto to_legacy_case_label = [&](uint32_t condition, const SmallVector<uint64_t> &labels,
+ const char *suffix) -> string {
+ string ret;
+ size_t count = labels.size();
+ for (size_t i = 0; i < count; i++)
+ {
+ if (i)
+ ret += " || ";
+ ret += join(count > 1 ? "(" : "", to_enclosed_expression(condition), " == ", labels[i], suffix,
+ count > 1 ? ")" : "");
+ }
+ return ret;
+ };
+
+ // We need to deal with a complex scenario for OpPhi. If we have case-fallthrough and Phi in the picture,
+ // we need to flush phi nodes outside the switch block in a branch,
+ // and skip any Phi handling inside the case label to make fall-through work as expected.
+ // This kind of code-gen is super awkward and it's a last resort. Normally we would want to handle this
+ // inside the case label if at all possible.
+ for (size_t i = 1; backend.support_case_fallthrough && i < num_blocks; i++)
+ {
+ if (flush_phi_required(block.self, block_declaration_order[i]) &&
+ flush_phi_required(block_declaration_order[i - 1], block_declaration_order[i]))
+ {
+ uint32_t target_block = block_declaration_order[i];
+
+ // Make sure we flush Phi, it might have been marked to be ignored earlier.
+ get<SPIRBlock>(target_block).ignore_phi_from_block = 0;
+
+ auto &literals = case_constructs[target_block];
+
+ if (literals.empty())
+ {
+ // Oh boy, gotta make a complete negative test instead! o.o
+ // Find all possible literals that would *not* make us enter the default block.
+ // If none of those literals match, we flush Phi ...
+ SmallVector<string> conditions;
+ for (size_t j = 0; j < num_blocks; j++)
+ {
+ auto &negative_literals = case_constructs[block_declaration_order[j]];
+ for (auto &case_label : negative_literals)
+ conditions.push_back(join(to_enclosed_expression(block.condition),
+ " != ", to_case_label(case_label, type.width, unsigned_case)));
+ }
+
+ statement("if (", merge(conditions, " && "), ")");
+ begin_scope();
+ flush_phi(block.self, target_block);
+ end_scope();
+ }
+ else
+ {
+ SmallVector<string> conditions;
+ conditions.reserve(literals.size());
+ for (auto &case_label : literals)
+ conditions.push_back(join(to_enclosed_expression(block.condition),
+ " == ", to_case_label(case_label, type.width, unsigned_case)));
+ statement("if (", merge(conditions, " || "), ")");
+ begin_scope();
+ flush_phi(block.self, target_block);
+ end_scope();
+ }
+
+ // Mark the block so that we don't flush Phi from header to case label.
+ get<SPIRBlock>(target_block).ignore_phi_from_block = block.self;
+ }
+ }
+
+ // If there is only one default block, and no cases, this is a case where SPIRV-opt decided to emulate
+ // non-structured exits with the help of a switch block.
+ // This is buggy on FXC, so just emit the logical equivalent of a do { } while(false), which is more idiomatic.
+ bool block_like_switch = cases.empty();
+
+ // If this is true, the switch is completely meaningless, and we should just avoid it.
+ bool collapsed_switch = block_like_switch && block.default_block == block.next_block;
+
+ if (!collapsed_switch)
+ {
+ if (block_like_switch || is_legacy_es())
+ {
+ // ESSL 1.0 is not guaranteed to support do/while.
+ if (is_legacy_es())
+ {
+ uint32_t counter = statement_count;
+ statement("for (int spvDummy", counter, " = 0; spvDummy", counter, " < 1; spvDummy", counter,
+ "++)");
+ }
+ else
+ statement("do");
+ }
+ else
+ {
+ emit_block_hints(block);
+ statement("switch (", to_unpacked_expression(block.condition), ")");
+ }
+ begin_scope();
+ }
+
+ for (size_t i = 0; i < num_blocks; i++)
+ {
+ uint32_t target_block = block_declaration_order[i];
+ auto &literals = case_constructs[target_block];
+
+ if (literals.empty())
+ {
+ // Default case.
+ if (!block_like_switch)
+ {
+ if (is_legacy_es())
+ statement("else");
+ else
+ statement("default:");
+ }
+ }
+ else
+ {
+ if (is_legacy_es())
+ {
+ statement((i ? "else " : ""), "if (", to_legacy_case_label(block.condition, literals, label_suffix),
+ ")");
+ }
+ else
+ {
+ for (auto &case_literal : literals)
+ {
+ // The case label value must be sign-extended properly in SPIR-V, so we can assume 32-bit values here.
+ statement("case ", to_case_label(case_literal, type.width, unsigned_case), label_suffix, ":");
+ }
+ }
+ }
+
+ auto &case_block = get<SPIRBlock>(target_block);
+ if (backend.support_case_fallthrough && i + 1 < num_blocks &&
+ execution_is_direct_branch(case_block, get<SPIRBlock>(block_declaration_order[i + 1])))
+ {
+ // We will fall through here, so just terminate the block chain early.
+ // We still need to deal with Phi potentially.
+ // No need for a stack-like thing here since we only do fall-through when there is a
+ // single trivial branch to fall-through target..
+ current_emitting_switch_fallthrough = true;
+ }
+ else
+ current_emitting_switch_fallthrough = false;
+
+ if (!block_like_switch)
+ begin_scope();
+ branch(block.self, target_block);
+ if (!block_like_switch)
+ end_scope();
+
+ current_emitting_switch_fallthrough = false;
+ }
+
+ // Might still have to flush phi variables if we branch from loop header directly to merge target.
+ // This is supposed to emit all cases where we branch from header to merge block directly.
+ // There are two main scenarios where cannot rely on default fallthrough.
+ // - There is an explicit default: label already.
+ // In this case, literals_to_merge need to form their own "default" case, so that we avoid executing that block.
+ // - Header -> Merge requires flushing PHI. In this case, we need to collect all cases and flush PHI there.
+ bool header_merge_requires_phi = flush_phi_required(block.self, block.next_block);
+ bool need_fallthrough_block = block.default_block == block.next_block || !literals_to_merge.empty();
+ if (!collapsed_switch && ((header_merge_requires_phi && need_fallthrough_block) || !literals_to_merge.empty()))
+ {
+ for (auto &case_literal : literals_to_merge)
+ statement("case ", to_case_label(case_literal, type.width, unsigned_case), label_suffix, ":");
+
+ if (block.default_block == block.next_block)
+ {
+ if (is_legacy_es())
+ statement("else");
+ else
+ statement("default:");
+ }
+
+ begin_scope();
+ flush_phi(block.self, block.next_block);
+ statement("break;");
+ end_scope();
+ }
+
+ if (!collapsed_switch)
+ {
+ if (block_like_switch && !is_legacy_es())
+ end_scope_decl("while(false)");
+ else
+ end_scope();
+ }
+ else
+ flush_phi(block.self, block.next_block);
+
+ if (block.need_ladder_break)
+ {
+ statement("if (_", block.self, "_ladder_break)");
+ begin_scope();
+ statement("break;");
+ end_scope();
+ }
+
+ current_emitting_switch_stack.pop_back();
+ break;
+ }
+
+ case SPIRBlock::Return:
+ {
+ for (auto &line : current_function->fixup_hooks_out)
+ line();
+
+ if (processing_entry_point)
+ emit_fixup();
+
+ auto &cfg = get_cfg_for_current_function();
+
+ if (block.return_value)
+ {
+ auto &type = expression_type(block.return_value);
+ if (!type.array.empty() && !backend.can_return_array)
+ {
+ // If we cannot return arrays, we will have a special out argument we can write to instead.
+ // The backend is responsible for setting this up, and redirection the return values as appropriate.
+ if (ir.ids[block.return_value].get_type() != TypeUndef)
+ {
+ emit_array_copy("spvReturnValue", 0, block.return_value, StorageClassFunction,
+ get_expression_effective_storage_class(block.return_value));
+ }
+
+ if (!cfg.node_terminates_control_flow_in_sub_graph(current_function->entry_block, block.self) ||
+ block.loop_dominator != BlockID(SPIRBlock::NoDominator))
+ {
+ statement("return;");
+ }
+ }
+ else
+ {
+ // OpReturnValue can return Undef, so don't emit anything for this case.
+ if (ir.ids[block.return_value].get_type() != TypeUndef)
+ statement("return ", to_unpacked_expression(block.return_value), ";");
+ }
+ }
+ else if (!cfg.node_terminates_control_flow_in_sub_graph(current_function->entry_block, block.self) ||
+ block.loop_dominator != BlockID(SPIRBlock::NoDominator))
+ {
+ // If this block is the very final block and not called from control flow,
+ // we do not need an explicit return which looks out of place. Just end the function here.
+ // In the very weird case of for(;;) { return; } executing return is unconditional,
+ // but we actually need a return here ...
+ statement("return;");
+ }
+ break;
+ }
+
+ // If the Kill is terminating a block with a (probably synthetic) return value, emit a return value statement.
+ case SPIRBlock::Kill:
+ statement(backend.discard_literal, ";");
+ if (block.return_value)
+ statement("return ", to_unpacked_expression(block.return_value), ";");
+ break;
+
+ case SPIRBlock::Unreachable:
+ {
+ // Avoid emitting false fallthrough, which can happen for
+ // if (cond) break; else discard; inside a case label.
+ // Discard is not always implementable as a terminator.
+
+ auto &cfg = get_cfg_for_current_function();
+ bool inner_dominator_is_switch = false;
+ ID id = block.self;
+
+ while (id)
+ {
+ auto &iter_block = get<SPIRBlock>(id);
+ if (iter_block.terminator == SPIRBlock::MultiSelect ||
+ iter_block.merge == SPIRBlock::MergeLoop)
+ {
+ ID next_block = iter_block.merge == SPIRBlock::MergeLoop ?
+ iter_block.merge_block : iter_block.next_block;
+ bool outside_construct = next_block && cfg.find_common_dominator(next_block, block.self) == next_block;
+ if (!outside_construct)
+ {
+ inner_dominator_is_switch = iter_block.terminator == SPIRBlock::MultiSelect;
+ break;
+ }
+ }
+
+ if (cfg.get_preceding_edges(id).empty())
+ break;
+
+ id = cfg.get_immediate_dominator(id);
+ }
+
+ if (inner_dominator_is_switch)
+ statement("break; // unreachable workaround");
+
+ emit_next_block = false;
+ break;
+ }
+
+ case SPIRBlock::IgnoreIntersection:
+ statement("ignoreIntersectionEXT;");
+ break;
+
+ case SPIRBlock::TerminateRay:
+ statement("terminateRayEXT;");
+ break;
+
+ case SPIRBlock::EmitMeshTasks:
+ emit_mesh_tasks(block);
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Unimplemented block terminator.");
+ }
+
+ if (block.next_block && emit_next_block)
+ {
+ // If we hit this case, we're dealing with an unconditional branch, which means we will output
+ // that block after this. If we had selection merge, we already flushed phi variables.
+ if (block.merge != SPIRBlock::MergeSelection)
+ {
+ flush_phi(block.self, block.next_block);
+ // For a direct branch, need to remember to invalidate expressions in the next linear block instead.
+ get<SPIRBlock>(block.next_block).invalidate_expressions = block.invalidate_expressions;
+ }
+
+ // For switch fallthrough cases, we terminate the chain here, but we still need to handle Phi.
+ if (!current_emitting_switch_fallthrough)
+ {
+ // For merge selects we might have ignored the fact that a merge target
+ // could have been a break; or continue;
+ // We will need to deal with it here.
+ if (is_loop_break(block.next_block))
+ {
+ // Cannot check for just break, because switch statements will also use break.
+ assert(block.merge == SPIRBlock::MergeSelection);
+ statement("break;");
+ }
+ else if (is_continue(block.next_block))
+ {
+ assert(block.merge == SPIRBlock::MergeSelection);
+ branch_to_continue(block.self, block.next_block);
+ }
+ else if (BlockID(block.self) != block.next_block)
+ emit_block_chain(get<SPIRBlock>(block.next_block));
+ }
+ }
+
+ if (block.merge == SPIRBlock::MergeLoop)
+ {
+ if (continue_type == SPIRBlock::DoWhileLoop)
+ {
+ // Make sure that we run the continue block to get the expressions set, but this
+ // should become an empty string.
+ // We have no fallbacks if we cannot forward everything to temporaries ...
+ const auto &continue_block = get<SPIRBlock>(block.continue_block);
+ bool positive_test = execution_is_noop(get<SPIRBlock>(continue_block.true_block),
+ get<SPIRBlock>(continue_block.loop_dominator));
+
+ uint32_t current_count = statement_count;
+ auto statements = emit_continue_block(block.continue_block, positive_test, !positive_test);
+ if (statement_count != current_count)
+ {
+ // The DoWhile block has side effects, force ComplexLoop pattern next pass.
+ get<SPIRBlock>(block.continue_block).complex_continue = true;
+ force_recompile();
+ }
+
+ // Might have to invert the do-while test here.
+ auto condition = to_expression(continue_block.condition);
+ if (!positive_test)
+ condition = join("!", enclose_expression(condition));
+
+ end_scope_decl(join("while (", condition, ")"));
+ }
+ else
+ end_scope();
+
+ loop_level_saver.release();
+
+ // We cannot break out of two loops at once, so don't check for break; here.
+ // Using block.self as the "from" block isn't quite right, but it has the same scope
+ // and dominance structure, so it's fine.
+ if (is_continue(block.merge_block))
+ branch_to_continue(block.self, block.merge_block);
+ else
+ emit_block_chain(get<SPIRBlock>(block.merge_block));
+ }
+
+ // Forget about control dependent expressions now.
+ block.invalidate_expressions.clear();
+
+ // After we return, we must be out of scope, so if we somehow have to re-emit this function,
+ // re-declare variables if necessary.
+ assert(rearm_dominated_variables.size() == block.dominated_variables.size());
+ for (size_t i = 0; i < block.dominated_variables.size(); i++)
+ {
+ uint32_t var = block.dominated_variables[i];
+ get<SPIRVariable>(var).deferred_declaration = rearm_dominated_variables[i];
+ }
+
+ // Just like for deferred declaration, we need to forget about loop variable enable
+ // if our block chain is reinstantiated later.
+ for (auto &var_id : block.loop_variables)
+ get<SPIRVariable>(var_id).loop_variable_enable = false;
+}
+
+void CompilerGLSL::begin_scope()
+{
+ statement("{");
+ indent++;
+}
+
+void CompilerGLSL::end_scope()
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("}");
+}
+
+void CompilerGLSL::end_scope(const string &trailer)
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("}", trailer);
+}
+
+void CompilerGLSL::end_scope_decl()
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("};");
+}
+
+void CompilerGLSL::end_scope_decl(const string &decl)
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("} ", decl, ";");
+}
+
+void CompilerGLSL::check_function_call_constraints(const uint32_t *args, uint32_t length)
+{
+ // If our variable is remapped, and we rely on type-remapping information as
+ // well, then we cannot pass the variable as a function parameter.
+ // Fixing this is non-trivial without stamping out variants of the same function,
+ // so for now warn about this and suggest workarounds instead.
+ for (uint32_t i = 0; i < length; i++)
+ {
+ auto *var = maybe_get<SPIRVariable>(args[i]);
+ if (!var || !var->remapped_variable)
+ continue;
+
+ auto &type = get<SPIRType>(var->basetype);
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData)
+ {
+ SPIRV_CROSS_THROW("Tried passing a remapped subpassInput variable to a function. "
+ "This will not work correctly because type-remapping information is lost. "
+ "To workaround, please consider not passing the subpass input as a function parameter, "
+ "or use in/out variables instead which do not need type remapping information.");
+ }
+ }
+}
+
+const Instruction *CompilerGLSL::get_next_instruction_in_block(const Instruction &instr)
+{
+ // FIXME: This is kind of hacky. There should be a cleaner way.
+ auto offset = uint32_t(&instr - current_emitting_block->ops.data());
+ if ((offset + 1) < current_emitting_block->ops.size())
+ return &current_emitting_block->ops[offset + 1];
+ else
+ return nullptr;
+}
+
+uint32_t CompilerGLSL::mask_relevant_memory_semantics(uint32_t semantics)
+{
+ return semantics & (MemorySemanticsAtomicCounterMemoryMask | MemorySemanticsImageMemoryMask |
+ MemorySemanticsWorkgroupMemoryMask | MemorySemanticsUniformMemoryMask |
+ MemorySemanticsCrossWorkgroupMemoryMask | MemorySemanticsSubgroupMemoryMask);
+}
+
+bool CompilerGLSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id, StorageClass, StorageClass)
+{
+ string lhs;
+ if (expr)
+ lhs = expr;
+ else
+ lhs = to_expression(lhs_id);
+
+ statement(lhs, " = ", to_expression(rhs_id), ";");
+ return true;
+}
+
+bool CompilerGLSL::unroll_array_to_complex_store(uint32_t target_id, uint32_t source_id)
+{
+ if (!backend.force_gl_in_out_block)
+ return false;
+ // This path is only relevant for GL backends.
+
+ auto *var = maybe_get<SPIRVariable>(target_id);
+ if (!var || var->storage != StorageClassOutput)
+ return false;
+
+ if (!is_builtin_variable(*var) || BuiltIn(get_decoration(var->self, DecorationBuiltIn)) != BuiltInSampleMask)
+ return false;
+
+ auto &type = expression_type(source_id);
+ string array_expr;
+ if (type.array_size_literal.back())
+ {
+ array_expr = convert_to_string(type.array.back());
+ if (type.array.back() == 0)
+ SPIRV_CROSS_THROW("Cannot unroll an array copy from unsized array.");
+ }
+ else
+ array_expr = to_expression(type.array.back());
+
+ SPIRType target_type { OpTypeInt };
+ target_type.basetype = SPIRType::Int;
+
+ statement("for (int i = 0; i < int(", array_expr, "); i++)");
+ begin_scope();
+ statement(to_expression(target_id), "[i] = ",
+ bitcast_expression(target_type, type.basetype, join(to_expression(source_id), "[i]")),
+ ";");
+ end_scope();
+
+ return true;
+}
+
+void CompilerGLSL::unroll_array_from_complex_load(uint32_t target_id, uint32_t source_id, std::string &expr)
+{
+ if (!backend.force_gl_in_out_block)
+ return;
+ // This path is only relevant for GL backends.
+
+ auto *var = maybe_get<SPIRVariable>(source_id);
+ if (!var)
+ return;
+
+ if (var->storage != StorageClassInput && var->storage != StorageClassOutput)
+ return;
+
+ auto &type = get_variable_data_type(*var);
+ if (type.array.empty())
+ return;
+
+ auto builtin = BuiltIn(get_decoration(var->self, DecorationBuiltIn));
+ bool is_builtin = is_builtin_variable(*var) &&
+ (builtin == BuiltInPointSize ||
+ builtin == BuiltInPosition ||
+ builtin == BuiltInSampleMask);
+ bool is_tess = is_tessellation_shader();
+ bool is_patch = has_decoration(var->self, DecorationPatch);
+ bool is_sample_mask = is_builtin && builtin == BuiltInSampleMask;
+
+ // Tessellation input arrays are special in that they are unsized, so we cannot directly copy from it.
+ // We must unroll the array load.
+ // For builtins, we couldn't catch this case normally,
+ // because this is resolved in the OpAccessChain in most cases.
+ // If we load the entire array, we have no choice but to unroll here.
+ if (!is_patch && (is_builtin || is_tess))
+ {
+ auto new_expr = join("_", target_id, "_unrolled");
+ statement(variable_decl(type, new_expr, target_id), ";");
+ string array_expr;
+ if (type.array_size_literal.back())
+ {
+ array_expr = convert_to_string(type.array.back());
+ if (type.array.back() == 0)
+ SPIRV_CROSS_THROW("Cannot unroll an array copy from unsized array.");
+ }
+ else
+ array_expr = to_expression(type.array.back());
+
+ // The array size might be a specialization constant, so use a for-loop instead.
+ statement("for (int i = 0; i < int(", array_expr, "); i++)");
+ begin_scope();
+ if (is_builtin && !is_sample_mask)
+ statement(new_expr, "[i] = gl_in[i].", expr, ";");
+ else if (is_sample_mask)
+ {
+ SPIRType target_type { OpTypeInt };
+ target_type.basetype = SPIRType::Int;
+ statement(new_expr, "[i] = ", bitcast_expression(target_type, type.basetype, join(expr, "[i]")), ";");
+ }
+ else
+ statement(new_expr, "[i] = ", expr, "[i];");
+ end_scope();
+
+ expr = std::move(new_expr);
+ }
+}
+
+void CompilerGLSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
+{
+ // We will handle array cases elsewhere.
+ if (!expr_type.array.empty())
+ return;
+
+ auto *var = maybe_get_backing_variable(source_id);
+ if (var)
+ source_id = var->self;
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(source_id, DecorationBuiltIn))
+ {
+ // Except for int attributes in legacy GLSL, which are cast from float.
+ if (is_legacy() && expr_type.basetype == SPIRType::Int && var && var->storage == StorageClassInput)
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ return;
+ }
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+
+ // TODO: Fill in for more builtins.
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInPrimitiveId:
+ case BuiltInViewportIndex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInSampleId:
+ case BuiltInBaseVertex:
+ case BuiltInBaseInstance:
+ case BuiltInDrawIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInInstanceCustomIndexNV:
+ case BuiltInSampleMask:
+ case BuiltInPrimitiveShadingRateKHR:
+ case BuiltInShadingRateKHR:
+ expected_type = SPIRType::Int;
+ break;
+
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInLocalInvocationIndex:
+ case BuiltInWorkgroupSize:
+ case BuiltInNumWorkgroups:
+ case BuiltInIncomingRayFlagsNV:
+ case BuiltInLaunchIdNV:
+ case BuiltInLaunchSizeNV:
+ case BuiltInPrimitiveTriangleIndicesEXT:
+ case BuiltInPrimitiveLineIndicesEXT:
+ case BuiltInPrimitivePointIndicesEXT:
+ expected_type = SPIRType::UInt;
+ break;
+
+ default:
+ break;
+ }
+
+ if (expected_type != expr_type.basetype)
+ expr = bitcast_expression(expr_type, expected_type, expr);
+}
+
+SPIRType::BaseType CompilerGLSL::get_builtin_basetype(BuiltIn builtin, SPIRType::BaseType default_type)
+{
+ // TODO: Fill in for more builtins.
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInPrimitiveId:
+ case BuiltInViewportIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInSampleMask:
+ case BuiltInPrimitiveShadingRateKHR:
+ case BuiltInShadingRateKHR:
+ return SPIRType::Int;
+
+ default:
+ return default_type;
+ }
+}
+
+void CompilerGLSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
+{
+ auto *var = maybe_get_backing_variable(target_id);
+ if (var)
+ target_id = var->self;
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(target_id, DecorationBuiltIn))
+ return;
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
+ auto expected_type = get_builtin_basetype(builtin, expr_type.basetype);
+
+ if (expected_type != expr_type.basetype)
+ {
+ auto type = expr_type;
+ type.basetype = expected_type;
+ expr = bitcast_expression(type, expr_type.basetype, expr);
+ }
+}
+
+void CompilerGLSL::convert_non_uniform_expression(string &expr, uint32_t ptr_id)
+{
+ if (*backend.nonuniform_qualifier == '\0')
+ return;
+
+ auto *var = maybe_get_backing_variable(ptr_id);
+ if (!var)
+ return;
+
+ if (var->storage != StorageClassUniformConstant &&
+ var->storage != StorageClassStorageBuffer &&
+ var->storage != StorageClassUniform)
+ return;
+
+ auto &backing_type = get<SPIRType>(var->basetype);
+ if (backing_type.array.empty())
+ return;
+
+ // If we get here, we know we're accessing an arrayed resource which
+ // might require nonuniform qualifier.
+
+ auto start_array_index = expr.find_first_of('[');
+
+ if (start_array_index == string::npos)
+ return;
+
+ // We've opened a bracket, track expressions until we can close the bracket.
+ // This must be our resource index.
+ size_t end_array_index = string::npos;
+ unsigned bracket_count = 1;
+ for (size_t index = start_array_index + 1; index < expr.size(); index++)
+ {
+ if (expr[index] == ']')
+ {
+ if (--bracket_count == 0)
+ {
+ end_array_index = index;
+ break;
+ }
+ }
+ else if (expr[index] == '[')
+ bracket_count++;
+ }
+
+ assert(bracket_count == 0);
+
+ // Doesn't really make sense to declare a non-arrayed image with nonuniformEXT, but there's
+ // nothing we can do here to express that.
+ if (start_array_index == string::npos || end_array_index == string::npos || end_array_index < start_array_index)
+ return;
+
+ start_array_index++;
+
+ expr = join(expr.substr(0, start_array_index), backend.nonuniform_qualifier, "(",
+ expr.substr(start_array_index, end_array_index - start_array_index), ")",
+ expr.substr(end_array_index, string::npos));
+}
+
+void CompilerGLSL::emit_block_hints(const SPIRBlock &block)
+{
+ if ((options.es && options.version < 310) || (!options.es && options.version < 140))
+ return;
+
+ switch (block.hint)
+ {
+ case SPIRBlock::HintFlatten:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_FLATTEN");
+ break;
+ case SPIRBlock::HintDontFlatten:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_BRANCH");
+ break;
+ case SPIRBlock::HintUnroll:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_UNROLL");
+ break;
+ case SPIRBlock::HintDontUnroll:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_LOOP");
+ break;
+ default:
+ break;
+ }
+}
+
+void CompilerGLSL::preserve_alias_on_reset(uint32_t id)
+{
+ preserved_aliases[id] = get_name(id);
+}
+
+void CompilerGLSL::reset_name_caches()
+{
+ for (auto &preserved : preserved_aliases)
+ set_name(preserved.first, preserved.second);
+
+ preserved_aliases.clear();
+ resource_names.clear();
+ block_input_names.clear();
+ block_output_names.clear();
+ block_ubo_names.clear();
+ block_ssbo_names.clear();
+ block_names.clear();
+ function_overloads.clear();
+}
+
+void CompilerGLSL::fixup_anonymous_struct_names(std::unordered_set<uint32_t> &visited, const SPIRType &type)
+{
+ if (visited.count(type.self))
+ return;
+ visited.insert(type.self);
+
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+
+ if (mbr_type.basetype == SPIRType::Struct)
+ {
+ // If there are multiple aliases, the output might be somewhat unpredictable,
+ // but the only real alternative in that case is to do nothing, which isn't any better.
+ // This check should be fine in practice.
+ if (get_name(mbr_type.self).empty() && !get_member_name(type.self, i).empty())
+ {
+ auto anon_name = join("anon_", get_member_name(type.self, i));
+ ParsedIR::sanitize_underscores(anon_name);
+ set_name(mbr_type.self, anon_name);
+ }
+
+ fixup_anonymous_struct_names(visited, mbr_type);
+ }
+ }
+}
+
+void CompilerGLSL::fixup_anonymous_struct_names()
+{
+ // HLSL codegen can often end up emitting anonymous structs inside blocks, which
+ // breaks GL linking since all names must match ...
+ // Try to emit sensible code, so attempt to find such structs and emit anon_$member.
+
+ // Breaks exponential explosion with weird type trees.
+ std::unordered_set<uint32_t> visited;
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
+ if (type.basetype == SPIRType::Struct &&
+ (has_decoration(type.self, DecorationBlock) ||
+ has_decoration(type.self, DecorationBufferBlock)))
+ {
+ fixup_anonymous_struct_names(visited, type);
+ }
+ });
+}
+
+void CompilerGLSL::fixup_type_alias()
+{
+ // Due to how some backends work, the "master" type of type_alias must be a block-like type if it exists.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &type) {
+ if (!type.type_alias)
+ return;
+
+ if (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))
+ {
+ // Top-level block types should never alias anything else.
+ type.type_alias = 0;
+ }
+ else if (type_is_block_like(type) && type.self == ID(self))
+ {
+ // A block-like type is any type which contains Offset decoration, but not top-level blocks,
+ // i.e. blocks which are placed inside buffers.
+ // Become the master.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t other_id, SPIRType &other_type) {
+ if (other_id == self)
+ return;
+
+ if (other_type.type_alias == type.type_alias)
+ other_type.type_alias = self;
+ });
+
+ this->get<SPIRType>(type.type_alias).type_alias = self;
+ type.type_alias = 0;
+ }
+ });
+}
+
+void CompilerGLSL::reorder_type_alias()
+{
+ // Reorder declaration of types so that the master of the type alias is always emitted first.
+ // We need this in case a type B depends on type A (A must come before in the vector), but A is an alias of a type Abuffer, which
+ // means declaration of A doesn't happen (yet), and order would be B, ABuffer and not ABuffer, B. Fix this up here.
+ auto loop_lock = ir.create_loop_hard_lock();
+
+ auto &type_ids = ir.ids_for_type[TypeType];
+ for (auto alias_itr = begin(type_ids); alias_itr != end(type_ids); ++alias_itr)
+ {
+ auto &type = get<SPIRType>(*alias_itr);
+ if (type.type_alias != TypeID(0) &&
+ !has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ {
+ // We will skip declaring this type, so make sure the type_alias type comes before.
+ auto master_itr = find(begin(type_ids), end(type_ids), ID(type.type_alias));
+ assert(master_itr != end(type_ids));
+
+ if (alias_itr < master_itr)
+ {
+ // Must also swap the type order for the constant-type joined array.
+ auto &joined_types = ir.ids_for_constant_undef_or_type;
+ auto alt_alias_itr = find(begin(joined_types), end(joined_types), *alias_itr);
+ auto alt_master_itr = find(begin(joined_types), end(joined_types), *master_itr);
+ assert(alt_alias_itr != end(joined_types));
+ assert(alt_master_itr != end(joined_types));
+
+ swap(*alias_itr, *master_itr);
+ swap(*alt_alias_itr, *alt_master_itr);
+ }
+ }
+ }
+}
+
+void CompilerGLSL::emit_line_directive(uint32_t file_id, uint32_t line_literal)
+{
+ // If we are redirecting statements, ignore the line directive.
+ // Common case here is continue blocks.
+ if (redirect_statement)
+ return;
+
+ // If we're emitting code in a sensitive context such as condition blocks in for loops, don't emit
+ // any line directives, because it's not possible.
+ if (block_debug_directives)
+ return;
+
+ if (options.emit_line_directives)
+ {
+ require_extension_internal("GL_GOOGLE_cpp_style_line_directive");
+ statement_no_indent("#line ", line_literal, " \"", get<SPIRString>(file_id).str, "\"");
+ }
+}
+
+void CompilerGLSL::emit_copy_logical_type(uint32_t lhs_id, uint32_t lhs_type_id, uint32_t rhs_id, uint32_t rhs_type_id,
+ SmallVector<uint32_t> chain)
+{
+ // Fully unroll all member/array indices one by one.
+
+ auto &lhs_type = get<SPIRType>(lhs_type_id);
+ auto &rhs_type = get<SPIRType>(rhs_type_id);
+
+ if (!lhs_type.array.empty())
+ {
+ // Could use a loop here to support specialization constants, but it gets rather complicated with nested array types,
+ // and this is a rather obscure opcode anyways, keep it simple unless we are forced to.
+ uint32_t array_size = to_array_size_literal(lhs_type);
+ chain.push_back(0);
+
+ for (uint32_t i = 0; i < array_size; i++)
+ {
+ chain.back() = i;
+ emit_copy_logical_type(lhs_id, lhs_type.parent_type, rhs_id, rhs_type.parent_type, chain);
+ }
+ }
+ else if (lhs_type.basetype == SPIRType::Struct)
+ {
+ chain.push_back(0);
+ uint32_t member_count = uint32_t(lhs_type.member_types.size());
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ chain.back() = i;
+ emit_copy_logical_type(lhs_id, lhs_type.member_types[i], rhs_id, rhs_type.member_types[i], chain);
+ }
+ }
+ else
+ {
+ // Need to handle unpack/packing fixups since this can differ wildly between the logical types,
+ // particularly in MSL.
+ // To deal with this, we emit access chains and go through emit_store_statement
+ // to deal with all the special cases we can encounter.
+
+ AccessChainMeta lhs_meta, rhs_meta;
+ auto lhs = access_chain_internal(lhs_id, chain.data(), uint32_t(chain.size()),
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &lhs_meta);
+ auto rhs = access_chain_internal(rhs_id, chain.data(), uint32_t(chain.size()),
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &rhs_meta);
+
+ uint32_t id = ir.increase_bound_by(2);
+ lhs_id = id;
+ rhs_id = id + 1;
+
+ {
+ auto &lhs_expr = set<SPIRExpression>(lhs_id, std::move(lhs), lhs_type_id, true);
+ lhs_expr.need_transpose = lhs_meta.need_transpose;
+
+ if (lhs_meta.storage_is_packed)
+ set_extended_decoration(lhs_id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (lhs_meta.storage_physical_type != 0)
+ set_extended_decoration(lhs_id, SPIRVCrossDecorationPhysicalTypeID, lhs_meta.storage_physical_type);
+
+ forwarded_temporaries.insert(lhs_id);
+ suppressed_usage_tracking.insert(lhs_id);
+ }
+
+ {
+ auto &rhs_expr = set<SPIRExpression>(rhs_id, std::move(rhs), rhs_type_id, true);
+ rhs_expr.need_transpose = rhs_meta.need_transpose;
+
+ if (rhs_meta.storage_is_packed)
+ set_extended_decoration(rhs_id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (rhs_meta.storage_physical_type != 0)
+ set_extended_decoration(rhs_id, SPIRVCrossDecorationPhysicalTypeID, rhs_meta.storage_physical_type);
+
+ forwarded_temporaries.insert(rhs_id);
+ suppressed_usage_tracking.insert(rhs_id);
+ }
+
+ emit_store_statement(lhs_id, rhs_id);
+ }
+}
+
+bool CompilerGLSL::subpass_input_is_framebuffer_fetch(uint32_t id) const
+{
+ if (!has_decoration(id, DecorationInputAttachmentIndex))
+ return false;
+
+ uint32_t input_attachment_index = get_decoration(id, DecorationInputAttachmentIndex);
+ for (auto &remap : subpass_to_framebuffer_fetch_attachment)
+ if (remap.first == input_attachment_index)
+ return true;
+
+ return false;
+}
+
+const SPIRVariable *CompilerGLSL::find_subpass_input_by_attachment_index(uint32_t index) const
+{
+ const SPIRVariable *ret = nullptr;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (has_decoration(var.self, DecorationInputAttachmentIndex) &&
+ get_decoration(var.self, DecorationInputAttachmentIndex) == index)
+ {
+ ret = &var;
+ }
+ });
+ return ret;
+}
+
+const SPIRVariable *CompilerGLSL::find_color_output_by_location(uint32_t location) const
+{
+ const SPIRVariable *ret = nullptr;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (var.storage == StorageClassOutput && get_decoration(var.self, DecorationLocation) == location)
+ ret = &var;
+ });
+ return ret;
+}
+
+void CompilerGLSL::emit_inout_fragment_outputs_copy_to_subpass_inputs()
+{
+ for (auto &remap : subpass_to_framebuffer_fetch_attachment)
+ {
+ auto *subpass_var = find_subpass_input_by_attachment_index(remap.first);
+ auto *output_var = find_color_output_by_location(remap.second);
+ if (!subpass_var)
+ continue;
+ if (!output_var)
+ SPIRV_CROSS_THROW("Need to declare the corresponding fragment output variable to be able "
+ "to read from it.");
+ if (is_array(get<SPIRType>(output_var->basetype)))
+ SPIRV_CROSS_THROW("Cannot use GL_EXT_shader_framebuffer_fetch with arrays of color outputs.");
+
+ auto &func = get<SPIRFunction>(get_entry_point().self);
+ func.fixup_hooks_in.push_back([=]() {
+ if (is_legacy())
+ {
+ statement(to_expression(subpass_var->self), " = ", "gl_LastFragData[",
+ get_decoration(output_var->self, DecorationLocation), "];");
+ }
+ else
+ {
+ uint32_t num_rt_components = this->get<SPIRType>(output_var->basetype).vecsize;
+ statement(to_expression(subpass_var->self), vector_swizzle(num_rt_components, 0), " = ",
+ to_expression(output_var->self), ";");
+ }
+ });
+ }
+}
+
+bool CompilerGLSL::variable_is_depth_or_compare(VariableID id) const
+{
+ return is_depth_image(get<SPIRType>(get<SPIRVariable>(id).basetype), id);
+}
+
+const char *CompilerGLSL::ShaderSubgroupSupportHelper::get_extension_name(Candidate c)
+{
+ static const char *const retval[CandidateCount] = { "GL_KHR_shader_subgroup_ballot",
+ "GL_KHR_shader_subgroup_basic",
+ "GL_KHR_shader_subgroup_vote",
+ "GL_KHR_shader_subgroup_arithmetic",
+ "GL_NV_gpu_shader_5",
+ "GL_NV_shader_thread_group",
+ "GL_NV_shader_thread_shuffle",
+ "GL_ARB_shader_ballot",
+ "GL_ARB_shader_group_vote",
+ "GL_AMD_gcn_shader" };
+ return retval[c];
+}
+
+SmallVector<std::string> CompilerGLSL::ShaderSubgroupSupportHelper::get_extra_required_extension_names(Candidate c)
+{
+ switch (c)
+ {
+ case ARB_shader_ballot:
+ return { "GL_ARB_shader_int64" };
+ case AMD_gcn_shader:
+ return { "GL_AMD_gpu_shader_int64", "GL_NV_gpu_shader5" };
+ default:
+ return {};
+ }
+}
+
+const char *CompilerGLSL::ShaderSubgroupSupportHelper::get_extra_required_extension_predicate(Candidate c)
+{
+ switch (c)
+ {
+ case ARB_shader_ballot:
+ return "defined(GL_ARB_shader_int64)";
+ case AMD_gcn_shader:
+ return "(defined(GL_AMD_gpu_shader_int64) || defined(GL_NV_gpu_shader5))";
+ default:
+ return "";
+ }
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::FeatureVector CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_feature_dependencies(Feature feature)
+{
+ switch (feature)
+ {
+ case SubgroupAllEqualT:
+ return { SubgroupBroadcast_First, SubgroupAll_Any_AllEqualBool };
+ case SubgroupElect:
+ return { SubgroupBallotFindLSB_MSB, SubgroupBallot, SubgroupInvocationID };
+ case SubgroupInverseBallot_InclBitCount_ExclBitCout:
+ return { SubgroupMask };
+ case SubgroupBallotBitCount:
+ return { SubgroupBallot };
+ case SubgroupArithmeticIAddReduce:
+ case SubgroupArithmeticIAddInclusiveScan:
+ case SubgroupArithmeticFAddReduce:
+ case SubgroupArithmeticFAddInclusiveScan:
+ case SubgroupArithmeticIMulReduce:
+ case SubgroupArithmeticIMulInclusiveScan:
+ case SubgroupArithmeticFMulReduce:
+ case SubgroupArithmeticFMulInclusiveScan:
+ return { SubgroupSize, SubgroupBallot, SubgroupBallotBitCount, SubgroupMask, SubgroupBallotBitExtract };
+ case SubgroupArithmeticIAddExclusiveScan:
+ case SubgroupArithmeticFAddExclusiveScan:
+ case SubgroupArithmeticIMulExclusiveScan:
+ case SubgroupArithmeticFMulExclusiveScan:
+ return { SubgroupSize, SubgroupBallot, SubgroupBallotBitCount,
+ SubgroupMask, SubgroupElect, SubgroupBallotBitExtract };
+ default:
+ return {};
+ }
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::FeatureMask CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_feature_dependency_mask(Feature feature)
+{
+ return build_mask(get_feature_dependencies(feature));
+}
+
+bool CompilerGLSL::ShaderSubgroupSupportHelper::can_feature_be_implemented_without_extensions(Feature feature)
+{
+ static const bool retval[FeatureCount] = {
+ false, false, false, false, false, false,
+ true, // SubgroupBalloFindLSB_MSB
+ false, false, false, false,
+ true, // SubgroupMemBarrier - replaced with workgroup memory barriers
+ false, false, true, false,
+ false, false, false, false, false, false, // iadd, fadd
+ false, false, false, false, false, false, // imul , fmul
+ };
+
+ return retval[feature];
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::Candidate CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_KHR_extension_for_feature(Feature feature)
+{
+ static const Candidate extensions[FeatureCount] = {
+ KHR_shader_subgroup_ballot, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic,
+ KHR_shader_subgroup_basic, KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot, KHR_shader_subgroup_vote,
+ KHR_shader_subgroup_vote, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic,
+ KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ };
+
+ return extensions[feature];
+}
+
+void CompilerGLSL::ShaderSubgroupSupportHelper::request_feature(Feature feature)
+{
+ feature_mask |= (FeatureMask(1) << feature) | get_feature_dependency_mask(feature);
+}
+
+bool CompilerGLSL::ShaderSubgroupSupportHelper::is_feature_requested(Feature feature) const
+{
+ return (feature_mask & (1u << feature)) != 0;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::Result CompilerGLSL::ShaderSubgroupSupportHelper::resolve() const
+{
+ Result res;
+
+ for (uint32_t i = 0u; i < FeatureCount; ++i)
+ {
+ if (feature_mask & (1u << i))
+ {
+ auto feature = static_cast<Feature>(i);
+ std::unordered_set<uint32_t> unique_candidates;
+
+ auto candidates = get_candidates_for_feature(feature);
+ unique_candidates.insert(candidates.begin(), candidates.end());
+
+ auto deps = get_feature_dependencies(feature);
+ for (Feature d : deps)
+ {
+ candidates = get_candidates_for_feature(d);
+ if (!candidates.empty())
+ unique_candidates.insert(candidates.begin(), candidates.end());
+ }
+
+ for (uint32_t c : unique_candidates)
+ ++res.weights[static_cast<Candidate>(c)];
+ }
+ }
+
+ return res;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::CandidateVector CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_candidates_for_feature(Feature ft, const Result &r)
+{
+ auto c = get_candidates_for_feature(ft);
+ auto cmp = [&r](Candidate a, Candidate b) {
+ if (r.weights[a] == r.weights[b])
+ return a < b; // Prefer candidates with lower enum value
+ return r.weights[a] > r.weights[b];
+ };
+ std::sort(c.begin(), c.end(), cmp);
+ return c;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::CandidateVector CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_candidates_for_feature(Feature feature)
+{
+ switch (feature)
+ {
+ case SubgroupMask:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_group, ARB_shader_ballot };
+ case SubgroupSize:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group, AMD_gcn_shader, ARB_shader_ballot };
+ case SubgroupInvocationID:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group, ARB_shader_ballot };
+ case SubgroupID:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group };
+ case NumSubgroups:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group };
+ case SubgroupBroadcast_First:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_shuffle, ARB_shader_ballot };
+ case SubgroupBallotFindLSB_MSB:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_group };
+ case SubgroupAll_Any_AllEqualBool:
+ return { KHR_shader_subgroup_vote, NV_gpu_shader_5, ARB_shader_group_vote, AMD_gcn_shader };
+ case SubgroupAllEqualT:
+ return {}; // depends on other features only
+ case SubgroupElect:
+ return {}; // depends on other features only
+ case SubgroupBallot:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_group, ARB_shader_ballot };
+ case SubgroupBarrier:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group, ARB_shader_ballot, AMD_gcn_shader };
+ case SubgroupMemBarrier:
+ return { KHR_shader_subgroup_basic };
+ case SubgroupInverseBallot_InclBitCount_ExclBitCout:
+ return {};
+ case SubgroupBallotBitExtract:
+ return { NV_shader_thread_group };
+ case SubgroupBallotBitCount:
+ return {};
+ case SubgroupArithmeticIAddReduce:
+ case SubgroupArithmeticIAddExclusiveScan:
+ case SubgroupArithmeticIAddInclusiveScan:
+ case SubgroupArithmeticFAddReduce:
+ case SubgroupArithmeticFAddExclusiveScan:
+ case SubgroupArithmeticFAddInclusiveScan:
+ case SubgroupArithmeticIMulReduce:
+ case SubgroupArithmeticIMulExclusiveScan:
+ case SubgroupArithmeticIMulInclusiveScan:
+ case SubgroupArithmeticFMulReduce:
+ case SubgroupArithmeticFMulExclusiveScan:
+ case SubgroupArithmeticFMulInclusiveScan:
+ return { KHR_shader_subgroup_arithmetic, NV_shader_thread_shuffle };
+ default:
+ return {};
+ }
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::FeatureMask CompilerGLSL::ShaderSubgroupSupportHelper::build_mask(
+ const SmallVector<Feature> &features)
+{
+ FeatureMask mask = 0;
+ for (Feature f : features)
+ mask |= FeatureMask(1) << f;
+ return mask;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::Result::Result()
+{
+ for (auto &weight : weights)
+ weight = 0;
+
+ // Make sure KHR_shader_subgroup extensions are always prefered.
+ const uint32_t big_num = FeatureCount;
+ weights[KHR_shader_subgroup_ballot] = big_num;
+ weights[KHR_shader_subgroup_basic] = big_num;
+ weights[KHR_shader_subgroup_vote] = big_num;
+ weights[KHR_shader_subgroup_arithmetic] = big_num;
+}
+
+void CompilerGLSL::request_workaround_wrapper_overload(TypeID id)
+{
+ // Must be ordered to maintain deterministic output, so vector is appropriate.
+ if (find(begin(workaround_ubo_load_overload_types), end(workaround_ubo_load_overload_types), id) ==
+ end(workaround_ubo_load_overload_types))
+ {
+ force_recompile();
+ workaround_ubo_load_overload_types.push_back(id);
+ }
+}
+
+void CompilerGLSL::rewrite_load_for_wrapped_row_major(std::string &expr, TypeID loaded_type, ID ptr)
+{
+ // Loading row-major matrices from UBOs on older AMD Windows OpenGL drivers is problematic.
+ // To load these types correctly, we must first wrap them in a dummy function which only purpose is to
+ // ensure row_major decoration is actually respected.
+ auto *var = maybe_get_backing_variable(ptr);
+ if (!var)
+ return;
+
+ auto &backing_type = get<SPIRType>(var->basetype);
+ bool is_ubo = backing_type.basetype == SPIRType::Struct && backing_type.storage == StorageClassUniform &&
+ has_decoration(backing_type.self, DecorationBlock);
+ if (!is_ubo)
+ return;
+
+ auto *type = &get<SPIRType>(loaded_type);
+ bool rewrite = false;
+ bool relaxed = options.es;
+
+ if (is_matrix(*type))
+ {
+ // To avoid adding a lot of unnecessary meta tracking to forward the row_major state,
+ // we will simply look at the base struct itself. It is exceptionally rare to mix and match row-major/col-major state.
+ // If there is any row-major action going on, we apply the workaround.
+ // It is harmless to apply the workaround to column-major matrices, so this is still a valid solution.
+ // If an access chain occurred, the workaround is not required, so loading vectors or scalars don't need workaround.
+ type = &backing_type;
+ }
+ else
+ {
+ // If we're loading a composite, we don't have overloads like these.
+ relaxed = false;
+ }
+
+ if (type->basetype == SPIRType::Struct)
+ {
+ // If we're loading a struct where any member is a row-major matrix, apply the workaround.
+ for (uint32_t i = 0; i < uint32_t(type->member_types.size()); i++)
+ {
+ auto decorations = combined_decoration_for_member(*type, i);
+ if (decorations.get(DecorationRowMajor))
+ rewrite = true;
+
+ // Since we decide on a per-struct basis, only use mediump wrapper if all candidates are mediump.
+ if (!decorations.get(DecorationRelaxedPrecision))
+ relaxed = false;
+ }
+ }
+
+ if (rewrite)
+ {
+ request_workaround_wrapper_overload(loaded_type);
+ expr = join("spvWorkaroundRowMajor", (relaxed ? "MP" : ""), "(", expr, ")");
+ }
+}
+
+void CompilerGLSL::mask_stage_output_by_location(uint32_t location, uint32_t component)
+{
+ masked_output_locations.insert({ location, component });
+}
+
+void CompilerGLSL::mask_stage_output_by_builtin(BuiltIn builtin)
+{
+ masked_output_builtins.insert(builtin);
+}
+
+bool CompilerGLSL::is_stage_output_variable_masked(const SPIRVariable &var) const
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ // Blocks by themselves are never masked. Must be masked per-member.
+ if (is_block)
+ return false;
+
+ bool is_builtin = has_decoration(var.self, DecorationBuiltIn);
+
+ if (is_builtin)
+ {
+ return is_stage_output_builtin_masked(BuiltIn(get_decoration(var.self, DecorationBuiltIn)));
+ }
+ else
+ {
+ if (!has_decoration(var.self, DecorationLocation))
+ return false;
+
+ return is_stage_output_location_masked(
+ get_decoration(var.self, DecorationLocation),
+ get_decoration(var.self, DecorationComponent));
+ }
+}
+
+bool CompilerGLSL::is_stage_output_block_member_masked(const SPIRVariable &var, uint32_t index, bool strip_array) const
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ if (!is_block)
+ return false;
+
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(type, index, &builtin))
+ {
+ return is_stage_output_builtin_masked(builtin);
+ }
+ else
+ {
+ uint32_t location = get_declared_member_location(var, index, strip_array);
+ uint32_t component = get_member_decoration(type.self, index, DecorationComponent);
+ return is_stage_output_location_masked(location, component);
+ }
+}
+
+bool CompilerGLSL::is_per_primitive_variable(const SPIRVariable &var) const
+{
+ if (has_decoration(var.self, DecorationPerPrimitiveEXT))
+ return true;
+
+ auto &type = get<SPIRType>(var.basetype);
+ if (!has_decoration(type.self, DecorationBlock))
+ return false;
+
+ for (uint32_t i = 0, n = uint32_t(type.member_types.size()); i < n; i++)
+ if (!has_member_decoration(type.self, i, DecorationPerPrimitiveEXT))
+ return false;
+
+ return true;
+}
+
+bool CompilerGLSL::is_stage_output_location_masked(uint32_t location, uint32_t component) const
+{
+ return masked_output_locations.count({ location, component }) != 0;
+}
+
+bool CompilerGLSL::is_stage_output_builtin_masked(spv::BuiltIn builtin) const
+{
+ return masked_output_builtins.count(builtin) != 0;
+}
+
+uint32_t CompilerGLSL::get_declared_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array) const
+{
+ auto &block_type = get<SPIRType>(var.basetype);
+ if (has_member_decoration(block_type.self, mbr_idx, DecorationLocation))
+ return get_member_decoration(block_type.self, mbr_idx, DecorationLocation);
+ else
+ return get_accumulated_member_location(var, mbr_idx, strip_array);
+}
+
+uint32_t CompilerGLSL::get_accumulated_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array) const
+{
+ auto &type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ uint32_t location = get_decoration(var.self, DecorationLocation);
+
+ for (uint32_t i = 0; i < mbr_idx; i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+
+ // Start counting from any place we have a new location decoration.
+ if (has_member_decoration(type.self, mbr_idx, DecorationLocation))
+ location = get_member_decoration(type.self, mbr_idx, DecorationLocation);
+
+ uint32_t location_count = type_to_location_count(mbr_type);
+ location += location_count;
+ }
+
+ return location;
+}
+
+StorageClass CompilerGLSL::get_expression_effective_storage_class(uint32_t ptr)
+{
+ auto *var = maybe_get_backing_variable(ptr);
+
+ // If the expression has been lowered to a temporary, we need to use the Generic storage class.
+ // We're looking for the effective storage class of a given expression.
+ // An access chain or forwarded OpLoads from such access chains
+ // will generally have the storage class of the underlying variable, but if the load was not forwarded
+ // we have lost any address space qualifiers.
+ bool forced_temporary = ir.ids[ptr].get_type() == TypeExpression && !get<SPIRExpression>(ptr).access_chain &&
+ (forced_temporaries.count(ptr) != 0 || forwarded_temporaries.count(ptr) == 0);
+
+ if (var && !forced_temporary)
+ {
+ if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))
+ return StorageClassWorkgroup;
+ if (variable_decl_is_remapped_storage(*var, StorageClassStorageBuffer))
+ return StorageClassStorageBuffer;
+
+ // Normalize SSBOs to StorageBuffer here.
+ if (var->storage == StorageClassUniform &&
+ has_decoration(get<SPIRType>(var->basetype).self, DecorationBufferBlock))
+ return StorageClassStorageBuffer;
+ else
+ return var->storage;
+ }
+ else
+ return expression_type(ptr).storage;
+}
+
+uint32_t CompilerGLSL::type_to_location_count(const SPIRType &type) const
+{
+ uint32_t count;
+ if (type.basetype == SPIRType::Struct)
+ {
+ uint32_t mbr_count = uint32_t(type.member_types.size());
+ count = 0;
+ for (uint32_t i = 0; i < mbr_count; i++)
+ count += type_to_location_count(get<SPIRType>(type.member_types[i]));
+ }
+ else
+ {
+ count = type.columns > 1 ? type.columns : 1;
+ }
+
+ uint32_t dim_count = uint32_t(type.array.size());
+ for (uint32_t i = 0; i < dim_count; i++)
+ count *= to_array_size_literal(type, i);
+
+ return count;
+}
+
+std::string CompilerGLSL::format_float(float value) const
+{
+ if (float_formatter)
+ return float_formatter->format_float(value);
+
+ // default behavior
+ return convert_to_string(value, current_locale_radix_character);
+}
+
+std::string CompilerGLSL::format_double(double value) const
+{
+ if (float_formatter)
+ return float_formatter->format_double(value);
+
+ // default behavior
+ return convert_to_string(value, current_locale_radix_character);
+}
+
diff --git a/thirdparty/spirv-cross/spirv_glsl.hpp b/thirdparty/spirv-cross/spirv_glsl.hpp
new file mode 100644
index 0000000000..8a00263234
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_glsl.hpp
@@ -0,0 +1,1074 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_GLSL_HPP
+#define SPIRV_CROSS_GLSL_HPP
+
+#include "GLSL.std.450.h"
+#include "spirv_cross.hpp"
+#include <unordered_map>
+#include <unordered_set>
+#include <utility>
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+enum PlsFormat
+{
+ PlsNone = 0,
+
+ PlsR11FG11FB10F,
+ PlsR32F,
+ PlsRG16F,
+ PlsRGB10A2,
+ PlsRGBA8,
+ PlsRG16,
+
+ PlsRGBA8I,
+ PlsRG16I,
+
+ PlsRGB10A2UI,
+ PlsRGBA8UI,
+ PlsRG16UI,
+ PlsR32UI
+};
+
+struct PlsRemap
+{
+ uint32_t id;
+ PlsFormat format;
+};
+
+enum AccessChainFlagBits
+{
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT = 1 << 0,
+ ACCESS_CHAIN_CHAIN_ONLY_BIT = 1 << 1,
+ ACCESS_CHAIN_PTR_CHAIN_BIT = 1 << 2,
+ ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT = 1 << 3,
+ ACCESS_CHAIN_LITERAL_MSB_FORCE_ID = 1 << 4,
+ ACCESS_CHAIN_FLATTEN_ALL_MEMBERS_BIT = 1 << 5,
+ ACCESS_CHAIN_FORCE_COMPOSITE_BIT = 1 << 6,
+ ACCESS_CHAIN_PTR_CHAIN_POINTER_ARITH_BIT = 1 << 7,
+ ACCESS_CHAIN_PTR_CHAIN_CAST_TO_SCALAR_BIT = 1 << 8
+};
+typedef uint32_t AccessChainFlags;
+
+class CompilerGLSL : public Compiler
+{
+public:
+ struct Options
+ {
+ // The shading language version. Corresponds to #version $VALUE.
+ uint32_t version = 450;
+
+ // Emit the OpenGL ES shading language instead of desktop OpenGL.
+ bool es = false;
+
+ // Debug option to always emit temporary variables for all expressions.
+ bool force_temporary = false;
+ // Debug option, can be increased in an attempt to workaround SPIRV-Cross bugs temporarily.
+ // If this limit has to be increased, it points to an implementation bug.
+ // In certain scenarios, the maximum number of debug iterations may increase beyond this limit
+ // as long as we can prove we're making certain kinds of forward progress.
+ uint32_t force_recompile_max_debug_iterations = 3;
+
+ // If true, Vulkan GLSL features are used instead of GL-compatible features.
+ // Mostly useful for debugging SPIR-V files.
+ bool vulkan_semantics = false;
+
+ // If true, gl_PerVertex is explicitly redeclared in vertex, geometry and tessellation shaders.
+ // The members of gl_PerVertex is determined by which built-ins are declared by the shader.
+ // This option is ignored in ES versions, as redeclaration in ES is not required, and it depends on a different extension
+ // (EXT_shader_io_blocks) which makes things a bit more fuzzy.
+ bool separate_shader_objects = false;
+
+ // Flattens multidimensional arrays, e.g. float foo[a][b][c] into single-dimensional arrays,
+ // e.g. float foo[a * b * c].
+ // This function does not change the actual SPIRType of any object.
+ // Only the generated code, including declarations of interface variables are changed to be single array dimension.
+ bool flatten_multidimensional_arrays = false;
+
+ // For older desktop GLSL targets than version 420, the
+ // GL_ARB_shading_language_420pack extensions is used to be able to support
+ // layout(binding) on UBOs and samplers.
+ // If disabled on older targets, binding decorations will be stripped.
+ bool enable_420pack_extension = true;
+
+ // In non-Vulkan GLSL, emit push constant blocks as UBOs rather than plain uniforms.
+ bool emit_push_constant_as_uniform_buffer = false;
+
+ // Always emit uniform blocks as plain uniforms, regardless of the GLSL version, even when UBOs are supported.
+ // Does not apply to shader storage or push constant blocks.
+ bool emit_uniform_buffer_as_plain_uniforms = false;
+
+ // Emit OpLine directives if present in the module.
+ // May not correspond exactly to original source, but should be a good approximation.
+ bool emit_line_directives = false;
+
+ // In cases where readonly/writeonly decoration are not used at all,
+ // we try to deduce which qualifier(s) we should actually used, since actually emitting
+ // read-write decoration is very rare, and older glslang/HLSL compilers tend to just emit readwrite as a matter of fact.
+ // The default (true) is to enable automatic deduction for these cases, but if you trust the decorations set
+ // by the SPIR-V, it's recommended to set this to false.
+ bool enable_storage_image_qualifier_deduction = true;
+
+ // On some targets (WebGPU), uninitialized variables are banned.
+ // If this is enabled, all variables (temporaries, Private, Function)
+ // which would otherwise be uninitialized will now be initialized to 0 instead.
+ bool force_zero_initialized_variables = false;
+
+ // In GLSL, force use of I/O block flattening, similar to
+ // what happens on legacy GLSL targets for blocks and structs.
+ bool force_flattened_io_blocks = false;
+
+ // For opcodes where we have to perform explicit additional nan checks, very ugly code is generated.
+ // If we opt-in, ignore these requirements.
+ // In opcodes like NClamp/NMin/NMax and FP compare, ignore NaN behavior.
+ // Use FClamp/FMin/FMax semantics for clamps and lets implementation choose ordered or unordered
+ // compares.
+ bool relax_nan_checks = false;
+
+ // Loading row-major matrices from UBOs on older AMD Windows OpenGL drivers is problematic.
+ // To load these types correctly, we must generate a wrapper. them in a dummy function which only purpose is to
+ // ensure row_major decoration is actually respected.
+ // This workaround may cause significant performance degeneration on some Android devices.
+ bool enable_row_major_load_workaround = true;
+
+ // If non-zero, controls layout(num_views = N) in; in GL_OVR_multiview2.
+ uint32_t ovr_multiview_view_count = 0;
+
+ enum Precision
+ {
+ DontCare,
+ Lowp,
+ Mediump,
+ Highp
+ };
+
+ struct VertexOptions
+ {
+ // "Vertex-like shader" here is any shader stage that can write BuiltInPosition.
+
+ // GLSL: In vertex-like shaders, rewrite [0, w] depth (Vulkan/D3D style) to [-w, w] depth (GL style).
+ // MSL: In vertex-like shaders, rewrite [-w, w] depth (GL style) to [0, w] depth.
+ // HLSL: In vertex-like shaders, rewrite [-w, w] depth (GL style) to [0, w] depth.
+ bool fixup_clipspace = false;
+
+ // In vertex-like shaders, inverts gl_Position.y or equivalent.
+ bool flip_vert_y = false;
+
+ // GLSL only, for HLSL version of this option, see CompilerHLSL.
+ // If true, the backend will assume that InstanceIndex will need to apply
+ // a base instance offset. Set to false if you know you will never use base instance
+ // functionality as it might remove some internal uniforms.
+ bool support_nonzero_base_instance = true;
+ } vertex;
+
+ struct FragmentOptions
+ {
+ // Add precision mediump float in ES targets when emitting GLES source.
+ // Add precision highp int in ES targets when emitting GLES source.
+ Precision default_float_precision = Mediump;
+ Precision default_int_precision = Highp;
+ } fragment;
+ };
+
+ void remap_pixel_local_storage(std::vector<PlsRemap> inputs, std::vector<PlsRemap> outputs)
+ {
+ pls_inputs = std::move(inputs);
+ pls_outputs = std::move(outputs);
+ remap_pls_variables();
+ }
+
+ // Redirect a subpassInput reading from input_attachment_index to instead load its value from
+ // the color attachment at location = color_location. Requires ESSL.
+ // If coherent, uses GL_EXT_shader_framebuffer_fetch, if not, uses noncoherent variant.
+ void remap_ext_framebuffer_fetch(uint32_t input_attachment_index, uint32_t color_location, bool coherent);
+
+ explicit CompilerGLSL(std::vector<uint32_t> spirv_)
+ : Compiler(std::move(spirv_))
+ {
+ init();
+ }
+
+ CompilerGLSL(const uint32_t *ir_, size_t word_count)
+ : Compiler(ir_, word_count)
+ {
+ init();
+ }
+
+ explicit CompilerGLSL(const ParsedIR &ir_)
+ : Compiler(ir_)
+ {
+ init();
+ }
+
+ explicit CompilerGLSL(ParsedIR &&ir_)
+ : Compiler(std::move(ir_))
+ {
+ init();
+ }
+
+ const Options &get_common_options() const
+ {
+ return options;
+ }
+
+ void set_common_options(const Options &opts)
+ {
+ options = opts;
+ }
+
+ std::string compile() override;
+
+ // Returns the current string held in the conversion buffer. Useful for
+ // capturing what has been converted so far when compile() throws an error.
+ std::string get_partial_source();
+
+ // Adds a line to be added right after #version in GLSL backend.
+ // This is useful for enabling custom extensions which are outside the scope of SPIRV-Cross.
+ // This can be combined with variable remapping.
+ // A new-line will be added.
+ //
+ // While add_header_line() is a more generic way of adding arbitrary text to the header
+ // of a GLSL file, require_extension() should be used when adding extensions since it will
+ // avoid creating collisions with SPIRV-Cross generated extensions.
+ //
+ // Code added via add_header_line() is typically backend-specific.
+ void add_header_line(const std::string &str);
+
+ // Adds an extension which is required to run this shader, e.g.
+ // require_extension("GL_KHR_my_extension");
+ void require_extension(const std::string &ext);
+
+ // Returns the list of required extensions. After compilation this will contains any other
+ // extensions that the compiler used automatically, in addition to the user specified ones.
+ const SmallVector<std::string> &get_required_extensions() const;
+
+ // Legacy GLSL compatibility method.
+ // Takes a uniform or push constant variable and flattens it into a (i|u)vec4 array[N]; array instead.
+ // For this to work, all types in the block must be the same basic type, e.g. mixing vec2 and vec4 is fine, but
+ // mixing int and float is not.
+ // The name of the uniform array will be the same as the interface block name.
+ void flatten_buffer_block(VariableID id);
+
+ // After compilation, query if a variable ID was used as a depth resource.
+ // This is meaningful for MSL since descriptor types depend on this knowledge.
+ // Cases which return true:
+ // - Images which are declared with depth = 1 image type.
+ // - Samplers which are statically used at least once with Dref opcodes.
+ // - Images which are statically used at least once with Dref opcodes.
+ bool variable_is_depth_or_compare(VariableID id) const;
+
+ // If a shader output is active in this stage, but inactive in a subsequent stage,
+ // this can be signalled here. This can be used to work around certain cross-stage matching problems
+ // which plagues MSL and HLSL in certain scenarios.
+ // An output which matches one of these will not be emitted in stage output interfaces, but rather treated as a private
+ // variable.
+ // This option is only meaningful for MSL and HLSL, since GLSL matches by location directly.
+ // Masking builtins only takes effect if the builtin in question is part of the stage output interface.
+ void mask_stage_output_by_location(uint32_t location, uint32_t component);
+ void mask_stage_output_by_builtin(spv::BuiltIn builtin);
+
+ // Allow to control how to format float literals in the output.
+ // Set to "nullptr" to use the default "convert_to_string" function.
+ // This handle is not owned by SPIRV-Cross and must remain valid until compile() has been called.
+ void set_float_formatter(FloatFormatter *formatter)
+ {
+ float_formatter = formatter;
+ }
+
+protected:
+ struct ShaderSubgroupSupportHelper
+ {
+ // lower enum value = greater priority
+ enum Candidate
+ {
+ KHR_shader_subgroup_ballot,
+ KHR_shader_subgroup_basic,
+ KHR_shader_subgroup_vote,
+ KHR_shader_subgroup_arithmetic,
+ NV_gpu_shader_5,
+ NV_shader_thread_group,
+ NV_shader_thread_shuffle,
+ ARB_shader_ballot,
+ ARB_shader_group_vote,
+ AMD_gcn_shader,
+
+ CandidateCount
+ };
+
+ static const char *get_extension_name(Candidate c);
+ static SmallVector<std::string> get_extra_required_extension_names(Candidate c);
+ static const char *get_extra_required_extension_predicate(Candidate c);
+
+ enum Feature
+ {
+ SubgroupMask = 0,
+ SubgroupSize = 1,
+ SubgroupInvocationID = 2,
+ SubgroupID = 3,
+ NumSubgroups = 4,
+ SubgroupBroadcast_First = 5,
+ SubgroupBallotFindLSB_MSB = 6,
+ SubgroupAll_Any_AllEqualBool = 7,
+ SubgroupAllEqualT = 8,
+ SubgroupElect = 9,
+ SubgroupBarrier = 10,
+ SubgroupMemBarrier = 11,
+ SubgroupBallot = 12,
+ SubgroupInverseBallot_InclBitCount_ExclBitCout = 13,
+ SubgroupBallotBitExtract = 14,
+ SubgroupBallotBitCount = 15,
+ SubgroupArithmeticIAddReduce = 16,
+ SubgroupArithmeticIAddExclusiveScan = 17,
+ SubgroupArithmeticIAddInclusiveScan = 18,
+ SubgroupArithmeticFAddReduce = 19,
+ SubgroupArithmeticFAddExclusiveScan = 20,
+ SubgroupArithmeticFAddInclusiveScan = 21,
+ SubgroupArithmeticIMulReduce = 22,
+ SubgroupArithmeticIMulExclusiveScan = 23,
+ SubgroupArithmeticIMulInclusiveScan = 24,
+ SubgroupArithmeticFMulReduce = 25,
+ SubgroupArithmeticFMulExclusiveScan = 26,
+ SubgroupArithmeticFMulInclusiveScan = 27,
+ FeatureCount
+ };
+
+ using FeatureMask = uint32_t;
+ static_assert(sizeof(FeatureMask) * 8u >= FeatureCount, "Mask type needs more bits.");
+
+ using CandidateVector = SmallVector<Candidate, CandidateCount>;
+ using FeatureVector = SmallVector<Feature>;
+
+ static FeatureVector get_feature_dependencies(Feature feature);
+ static FeatureMask get_feature_dependency_mask(Feature feature);
+ static bool can_feature_be_implemented_without_extensions(Feature feature);
+ static Candidate get_KHR_extension_for_feature(Feature feature);
+
+ struct Result
+ {
+ Result();
+ uint32_t weights[CandidateCount];
+ };
+
+ void request_feature(Feature feature);
+ bool is_feature_requested(Feature feature) const;
+ Result resolve() const;
+
+ static CandidateVector get_candidates_for_feature(Feature ft, const Result &r);
+
+ private:
+ static CandidateVector get_candidates_for_feature(Feature ft);
+ static FeatureMask build_mask(const SmallVector<Feature> &features);
+ FeatureMask feature_mask = 0;
+ };
+
+ // TODO remove this function when all subgroup ops are supported (or make it always return true)
+ static bool is_supported_subgroup_op_in_opengl(spv::Op op, const uint32_t *ops);
+
+ void reset(uint32_t iteration_count);
+ void emit_function(SPIRFunction &func, const Bitset &return_flags);
+
+ bool has_extension(const std::string &ext) const;
+ void require_extension_internal(const std::string &ext);
+
+ // Virtualize methods which need to be overridden by subclass targets like C++ and such.
+ virtual void emit_function_prototype(SPIRFunction &func, const Bitset &return_flags);
+
+ SPIRBlock *current_emitting_block = nullptr;
+ SmallVector<SPIRBlock *> current_emitting_switch_stack;
+ bool current_emitting_switch_fallthrough = false;
+
+ virtual void emit_instruction(const Instruction &instr);
+ struct TemporaryCopy
+ {
+ uint32_t dst_id;
+ uint32_t src_id;
+ };
+ TemporaryCopy handle_instruction_precision(const Instruction &instr);
+ void emit_block_instructions(SPIRBlock &block);
+ void emit_block_instructions_with_masked_debug(SPIRBlock &block);
+
+ // For relax_nan_checks.
+ GLSLstd450 get_remapped_glsl_op(GLSLstd450 std450_op) const;
+ spv::Op get_remapped_spirv_op(spv::Op op) const;
+
+ virtual void emit_glsl_op(uint32_t result_type, uint32_t result_id, uint32_t op, const uint32_t *args,
+ uint32_t count);
+ virtual void emit_spv_amd_shader_ballot_op(uint32_t result_type, uint32_t result_id, uint32_t op,
+ const uint32_t *args, uint32_t count);
+ virtual void emit_spv_amd_shader_explicit_vertex_parameter_op(uint32_t result_type, uint32_t result_id, uint32_t op,
+ const uint32_t *args, uint32_t count);
+ virtual void emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t result_id, uint32_t op,
+ const uint32_t *args, uint32_t count);
+ virtual void emit_spv_amd_gcn_shader_op(uint32_t result_type, uint32_t result_id, uint32_t op, const uint32_t *args,
+ uint32_t count);
+ virtual void emit_header();
+ void emit_line_directive(uint32_t file_id, uint32_t line_literal);
+ void build_workgroup_size(SmallVector<std::string> &arguments, const SpecializationConstant &x,
+ const SpecializationConstant &y, const SpecializationConstant &z);
+
+ void request_subgroup_feature(ShaderSubgroupSupportHelper::Feature feature);
+
+ virtual void emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id);
+ virtual void emit_texture_op(const Instruction &i, bool sparse);
+ virtual std::string to_texture_op(const Instruction &i, bool sparse, bool *forward,
+ SmallVector<uint32_t> &inherited_expressions);
+ virtual void emit_subgroup_op(const Instruction &i);
+ virtual std::string type_to_glsl(const SPIRType &type, uint32_t id = 0);
+ virtual std::string builtin_to_glsl(spv::BuiltIn builtin, spv::StorageClass storage);
+ virtual void emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const std::string &qualifier = "", uint32_t base_offset = 0);
+ virtual void emit_struct_padding_target(const SPIRType &type);
+ virtual std::string image_type_glsl(const SPIRType &type, uint32_t id = 0, bool member = false);
+ std::string constant_expression(const SPIRConstant &c,
+ bool inside_block_like_struct_scope = false,
+ bool inside_struct_scope = false);
+ virtual std::string constant_op_expression(const SPIRConstantOp &cop);
+ virtual std::string constant_expression_vector(const SPIRConstant &c, uint32_t vector);
+ virtual void emit_fixup();
+ virtual std::string variable_decl(const SPIRType &type, const std::string &name, uint32_t id = 0);
+ virtual bool variable_decl_is_remapped_storage(const SPIRVariable &var, spv::StorageClass storage) const;
+ virtual std::string to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id);
+
+ struct TextureFunctionBaseArguments
+ {
+ // GCC 4.8 workarounds, it doesn't understand '{}' constructor here, use explicit default constructor.
+ TextureFunctionBaseArguments() = default;
+ VariableID img = 0;
+ const SPIRType *imgtype = nullptr;
+ bool is_fetch = false, is_gather = false, is_proj = false;
+ };
+
+ struct TextureFunctionNameArguments
+ {
+ // GCC 4.8 workarounds, it doesn't understand '{}' constructor here, use explicit default constructor.
+ TextureFunctionNameArguments() = default;
+ TextureFunctionBaseArguments base;
+ bool has_array_offsets = false, has_offset = false, has_grad = false;
+ bool has_dref = false, is_sparse_feedback = false, has_min_lod = false;
+ uint32_t lod = 0;
+ };
+ virtual std::string to_function_name(const TextureFunctionNameArguments &args);
+
+ struct TextureFunctionArguments
+ {
+ // GCC 4.8 workarounds, it doesn't understand '{}' constructor here, use explicit default constructor.
+ TextureFunctionArguments() = default;
+ TextureFunctionBaseArguments base;
+ uint32_t coord = 0, coord_components = 0, dref = 0;
+ uint32_t grad_x = 0, grad_y = 0, lod = 0, offset = 0;
+ uint32_t bias = 0, component = 0, sample = 0, sparse_texel = 0, min_lod = 0;
+ bool nonuniform_expression = false, has_array_offsets = false;
+ };
+ virtual std::string to_function_args(const TextureFunctionArguments &args, bool *p_forward);
+
+ void emit_sparse_feedback_temporaries(uint32_t result_type_id, uint32_t id, uint32_t &feedback_id,
+ uint32_t &texel_id);
+ uint32_t get_sparse_feedback_texel_id(uint32_t id) const;
+ virtual void emit_buffer_block(const SPIRVariable &type);
+ virtual void emit_push_constant_block(const SPIRVariable &var);
+ virtual void emit_uniform(const SPIRVariable &var);
+ virtual std::string unpack_expression_type(std::string expr_str, const SPIRType &type, uint32_t physical_type_id,
+ bool packed_type, bool row_major);
+
+ virtual bool builtin_translates_to_nonarray(spv::BuiltIn builtin) const;
+
+ virtual bool is_user_type_structured(uint32_t id) const;
+
+ void emit_copy_logical_type(uint32_t lhs_id, uint32_t lhs_type_id, uint32_t rhs_id, uint32_t rhs_type_id,
+ SmallVector<uint32_t> chain);
+
+ StringStream<> buffer;
+
+ template <typename T>
+ inline void statement_inner(T &&t)
+ {
+ buffer << std::forward<T>(t);
+ statement_count++;
+ }
+
+ template <typename T, typename... Ts>
+ inline void statement_inner(T &&t, Ts &&... ts)
+ {
+ buffer << std::forward<T>(t);
+ statement_count++;
+ statement_inner(std::forward<Ts>(ts)...);
+ }
+
+ template <typename... Ts>
+ inline void statement(Ts &&... ts)
+ {
+ if (is_forcing_recompilation())
+ {
+ // Do not bother emitting code while force_recompile is active.
+ // We will compile again.
+ statement_count++;
+ return;
+ }
+
+ if (redirect_statement)
+ {
+ redirect_statement->push_back(join(std::forward<Ts>(ts)...));
+ statement_count++;
+ }
+ else
+ {
+ for (uint32_t i = 0; i < indent; i++)
+ buffer << " ";
+ statement_inner(std::forward<Ts>(ts)...);
+ buffer << '\n';
+ }
+ }
+
+ template <typename... Ts>
+ inline void statement_no_indent(Ts &&... ts)
+ {
+ auto old_indent = indent;
+ indent = 0;
+ statement(std::forward<Ts>(ts)...);
+ indent = old_indent;
+ }
+
+ // Used for implementing continue blocks where
+ // we want to obtain a list of statements we can merge
+ // on a single line separated by comma.
+ SmallVector<std::string> *redirect_statement = nullptr;
+ const SPIRBlock *current_continue_block = nullptr;
+ bool block_temporary_hoisting = false;
+ bool block_debug_directives = false;
+
+ void begin_scope();
+ void end_scope();
+ void end_scope(const std::string &trailer);
+ void end_scope_decl();
+ void end_scope_decl(const std::string &decl);
+
+ Options options;
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ virtual std::string type_to_array_glsl(const SPIRType &type, uint32_t variable_id);
+ std::string to_array_size(const SPIRType &type, uint32_t index);
+ uint32_t to_array_size_literal(const SPIRType &type, uint32_t index) const;
+ uint32_t to_array_size_literal(const SPIRType &type) const;
+ virtual std::string variable_decl(const SPIRVariable &variable); // Threadgroup arrays can't have a wrapper type
+ std::string variable_decl_function_local(SPIRVariable &variable);
+
+ void add_local_variable_name(uint32_t id);
+ void add_resource_name(uint32_t id);
+ void add_member_name(SPIRType &type, uint32_t name);
+ void add_function_overload(const SPIRFunction &func);
+
+ virtual bool is_non_native_row_major_matrix(uint32_t id);
+ virtual bool member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index);
+ bool member_is_remapped_physical_type(const SPIRType &type, uint32_t index) const;
+ bool member_is_packed_physical_type(const SPIRType &type, uint32_t index) const;
+ virtual std::string convert_row_major_matrix(std::string exp_str, const SPIRType &exp_type,
+ uint32_t physical_type_id, bool is_packed,
+ bool relaxed = false);
+
+ std::unordered_set<std::string> local_variable_names;
+ std::unordered_set<std::string> resource_names;
+ std::unordered_set<std::string> block_input_names;
+ std::unordered_set<std::string> block_output_names;
+ std::unordered_set<std::string> block_ubo_names;
+ std::unordered_set<std::string> block_ssbo_names;
+ std::unordered_set<std::string> block_names; // A union of all block_*_names.
+ std::unordered_map<std::string, std::unordered_set<uint64_t>> function_overloads;
+ std::unordered_map<uint32_t, std::string> preserved_aliases;
+ void preserve_alias_on_reset(uint32_t id);
+ void reset_name_caches();
+
+ bool processing_entry_point = false;
+
+ // Can be overriden by subclass backends for trivial things which
+ // shouldn't need polymorphism.
+ struct BackendVariations
+ {
+ std::string discard_literal = "discard";
+ std::string demote_literal = "demote";
+ std::string null_pointer_literal = "";
+ bool float_literal_suffix = false;
+ bool double_literal_suffix = true;
+ bool uint32_t_literal_suffix = true;
+ bool long_long_literal_suffix = false;
+ const char *basic_int_type = "int";
+ const char *basic_uint_type = "uint";
+ const char *basic_int8_type = "int8_t";
+ const char *basic_uint8_type = "uint8_t";
+ const char *basic_int16_type = "int16_t";
+ const char *basic_uint16_type = "uint16_t";
+ const char *int16_t_literal_suffix = "s";
+ const char *uint16_t_literal_suffix = "us";
+ const char *nonuniform_qualifier = "nonuniformEXT";
+ const char *boolean_mix_function = "mix";
+ SPIRType::BaseType boolean_in_struct_remapped_type = SPIRType::Boolean;
+ bool swizzle_is_function = false;
+ bool shared_is_implied = false;
+ bool unsized_array_supported = true;
+ bool explicit_struct_type = false;
+ bool use_initializer_list = false;
+ bool use_typed_initializer_list = false;
+ bool can_declare_struct_inline = true;
+ bool can_declare_arrays_inline = true;
+ bool native_row_major_matrix = true;
+ bool use_constructor_splatting = true;
+ bool allow_precision_qualifiers = false;
+ bool can_swizzle_scalar = false;
+ bool force_gl_in_out_block = false;
+ bool force_merged_mesh_block = false;
+ bool can_return_array = true;
+ bool allow_truncated_access_chain = false;
+ bool supports_extensions = false;
+ bool supports_empty_struct = false;
+ bool array_is_value_type = true;
+ bool array_is_value_type_in_buffer_blocks = true;
+ bool comparison_image_samples_scalar = false;
+ bool native_pointers = false;
+ bool support_small_type_sampling_result = false;
+ bool support_case_fallthrough = true;
+ bool use_array_constructor = false;
+ bool needs_row_major_load_workaround = false;
+ bool support_pointer_to_pointer = false;
+ bool support_precise_qualifier = false;
+ bool support_64bit_switch = false;
+ bool workgroup_size_is_hidden = false;
+ bool requires_relaxed_precision_analysis = false;
+ bool implicit_c_integer_promotion_rules = false;
+ } backend;
+
+ void emit_struct(SPIRType &type);
+ void emit_resources();
+ void emit_extension_workarounds(spv::ExecutionModel model);
+ void emit_subgroup_arithmetic_workaround(const std::string &func, spv::Op op, spv::GroupOperation group_op);
+ void emit_polyfills(uint32_t polyfills, bool relaxed);
+ void emit_buffer_block_native(const SPIRVariable &var);
+ void emit_buffer_reference_block(uint32_t type_id, bool forward_declaration);
+ void emit_buffer_block_legacy(const SPIRVariable &var);
+ void emit_buffer_block_flattened(const SPIRVariable &type);
+ void fixup_implicit_builtin_block_names(spv::ExecutionModel model);
+ void emit_declared_builtin_block(spv::StorageClass storage, spv::ExecutionModel model);
+ bool should_force_emit_builtin_block(spv::StorageClass storage);
+ void emit_push_constant_block_vulkan(const SPIRVariable &var);
+ void emit_push_constant_block_glsl(const SPIRVariable &var);
+ void emit_interface_block(const SPIRVariable &type);
+ void emit_flattened_io_block(const SPIRVariable &var, const char *qual);
+ void emit_flattened_io_block_struct(const std::string &basename, const SPIRType &type, const char *qual,
+ const SmallVector<uint32_t> &indices);
+ void emit_flattened_io_block_member(const std::string &basename, const SPIRType &type, const char *qual,
+ const SmallVector<uint32_t> &indices);
+ void emit_block_chain(SPIRBlock &block);
+ void emit_hoisted_temporaries(SmallVector<std::pair<TypeID, ID>> &temporaries);
+ std::string constant_value_macro_name(uint32_t id);
+ int get_constant_mapping_to_workgroup_component(const SPIRConstant &constant) const;
+ void emit_constant(const SPIRConstant &constant);
+ void emit_specialization_constant_op(const SPIRConstantOp &constant);
+ std::string emit_continue_block(uint32_t continue_block, bool follow_true_block, bool follow_false_block);
+ bool attempt_emit_loop_header(SPIRBlock &block, SPIRBlock::Method method);
+
+ void branch(BlockID from, BlockID to);
+ void branch_to_continue(BlockID from, BlockID to);
+ void branch(BlockID from, uint32_t cond, BlockID true_block, BlockID false_block);
+ void flush_phi(BlockID from, BlockID to);
+ void flush_variable_declaration(uint32_t id);
+ void flush_undeclared_variables(SPIRBlock &block);
+ void emit_variable_temporary_copies(const SPIRVariable &var);
+
+ bool should_dereference(uint32_t id);
+ bool should_forward(uint32_t id) const;
+ bool should_suppress_usage_tracking(uint32_t id) const;
+ void emit_mix_op(uint32_t result_type, uint32_t id, uint32_t left, uint32_t right, uint32_t lerp);
+ void emit_nminmax_op(uint32_t result_type, uint32_t id, uint32_t op0, uint32_t op1, GLSLstd450 op);
+ void emit_emulated_ahyper_op(uint32_t result_type, uint32_t result_id, uint32_t op0, GLSLstd450 op);
+ bool to_trivial_mix_op(const SPIRType &type, std::string &op, uint32_t left, uint32_t right, uint32_t lerp);
+ void emit_quaternary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, uint32_t op2,
+ uint32_t op3, const char *op);
+ void emit_trinary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, uint32_t op2,
+ const char *op);
+ void emit_binary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
+ void emit_atomic_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
+ void emit_atomic_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, uint32_t op2, const char *op);
+
+ void emit_unary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op,
+ SPIRType::BaseType input_type, SPIRType::BaseType expected_result_type);
+ void emit_binary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op,
+ SPIRType::BaseType input_type, bool skip_cast_if_equal_type);
+ void emit_binary_func_op_cast_clustered(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, SPIRType::BaseType input_type);
+ void emit_trinary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, uint32_t op2,
+ const char *op, SPIRType::BaseType input_type);
+ void emit_trinary_func_op_bitextract(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op, SPIRType::BaseType expected_result_type,
+ SPIRType::BaseType input_type0, SPIRType::BaseType input_type1,
+ SPIRType::BaseType input_type2);
+ void emit_bitfield_insert_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, uint32_t op2,
+ uint32_t op3, const char *op, SPIRType::BaseType offset_count_type);
+
+ void emit_unary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op);
+ void emit_unrolled_unary_op(uint32_t result_type, uint32_t result_id, uint32_t operand, const char *op);
+ void emit_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
+ void emit_unrolled_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op,
+ bool negate, SPIRType::BaseType expected_type);
+ void emit_binary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op,
+ SPIRType::BaseType input_type, bool skip_cast_if_equal_type, bool implicit_integer_promotion);
+
+ SPIRType binary_op_bitcast_helper(std::string &cast_op0, std::string &cast_op1, SPIRType::BaseType &input_type,
+ uint32_t op0, uint32_t op1, bool skip_cast_if_equal_type);
+
+ virtual bool emit_complex_bitcast(uint32_t result_type, uint32_t id, uint32_t op0);
+
+ std::string to_ternary_expression(const SPIRType &result_type, uint32_t select, uint32_t true_value,
+ uint32_t false_value);
+
+ void emit_unary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op);
+ void emit_unary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op);
+ virtual void emit_mesh_tasks(SPIRBlock &block);
+ bool expression_is_forwarded(uint32_t id) const;
+ bool expression_suppresses_usage_tracking(uint32_t id) const;
+ bool expression_read_implies_multiple_reads(uint32_t id) const;
+ SPIRExpression &emit_op(uint32_t result_type, uint32_t result_id, const std::string &rhs, bool forward_rhs,
+ bool suppress_usage_tracking = false);
+
+ void access_chain_internal_append_index(std::string &expr, uint32_t base, const SPIRType *type,
+ AccessChainFlags flags, bool &access_chain_is_arrayed, uint32_t index);
+
+ std::string access_chain_internal(uint32_t base, const uint32_t *indices, uint32_t count, AccessChainFlags flags,
+ AccessChainMeta *meta);
+
+ // Only meaningful on backends with physical pointer support ala MSL.
+ // Relevant for PtrAccessChain / BDA.
+ virtual uint32_t get_physical_type_stride(const SPIRType &type) const;
+
+ spv::StorageClass get_expression_effective_storage_class(uint32_t ptr);
+ virtual bool access_chain_needs_stage_io_builtin_translation(uint32_t base);
+
+ virtual void check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type);
+ virtual bool prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type,
+ spv::StorageClass storage, bool &is_packed);
+
+ std::string access_chain(uint32_t base, const uint32_t *indices, uint32_t count, const SPIRType &target_type,
+ AccessChainMeta *meta = nullptr, bool ptr_chain = false);
+
+ std::string flattened_access_chain(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset, uint32_t matrix_stride,
+ uint32_t array_stride, bool need_transpose);
+ std::string flattened_access_chain_struct(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset);
+ std::string flattened_access_chain_matrix(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset, uint32_t matrix_stride,
+ bool need_transpose);
+ std::string flattened_access_chain_vector(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset, uint32_t matrix_stride,
+ bool need_transpose);
+ std::pair<std::string, uint32_t> flattened_access_chain_offset(const SPIRType &basetype, const uint32_t *indices,
+ uint32_t count, uint32_t offset,
+ uint32_t word_stride, bool *need_transpose = nullptr,
+ uint32_t *matrix_stride = nullptr,
+ uint32_t *array_stride = nullptr,
+ bool ptr_chain = false);
+
+ const char *index_to_swizzle(uint32_t index);
+ std::string remap_swizzle(const SPIRType &result_type, uint32_t input_components, const std::string &expr);
+ std::string declare_temporary(uint32_t type, uint32_t id);
+ void emit_uninitialized_temporary(uint32_t type, uint32_t id);
+ SPIRExpression &emit_uninitialized_temporary_expression(uint32_t type, uint32_t id);
+ void append_global_func_args(const SPIRFunction &func, uint32_t index, SmallVector<std::string> &arglist);
+ std::string to_non_uniform_aware_expression(uint32_t id);
+ std::string to_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_composite_constructor_expression(const SPIRType &parent_type, uint32_t id, bool block_like_type);
+ std::string to_rerolled_array_expression(const SPIRType &parent_type, const std::string &expr, const SPIRType &type);
+ std::string to_enclosed_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_unpacked_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_unpacked_row_major_matrix_expression(uint32_t id);
+ std::string to_enclosed_unpacked_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_dereferenced_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_pointer_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_enclosed_pointer_expression(uint32_t id, bool register_expression_read = true);
+ std::string to_extract_component_expression(uint32_t id, uint32_t index);
+ std::string to_extract_constant_composite_expression(uint32_t result_type, const SPIRConstant &c,
+ const uint32_t *chain, uint32_t length);
+ static bool needs_enclose_expression(const std::string &expr);
+ std::string enclose_expression(const std::string &expr);
+ std::string dereference_expression(const SPIRType &expression_type, const std::string &expr);
+ std::string address_of_expression(const std::string &expr);
+ void strip_enclosed_expression(std::string &expr);
+ std::string to_member_name(const SPIRType &type, uint32_t index);
+ virtual std::string to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved);
+ std::string to_multi_member_reference(const SPIRType &type, const SmallVector<uint32_t> &indices);
+ std::string type_to_glsl_constructor(const SPIRType &type);
+ std::string argument_decl(const SPIRFunction::Parameter &arg);
+ virtual std::string to_qualifiers_glsl(uint32_t id);
+ void fixup_io_block_patch_primitive_qualifiers(const SPIRVariable &var);
+ void emit_output_variable_initializer(const SPIRVariable &var);
+ std::string to_precision_qualifiers_glsl(uint32_t id);
+ virtual const char *to_storage_qualifiers_glsl(const SPIRVariable &var);
+ std::string flags_to_qualifiers_glsl(const SPIRType &type, const Bitset &flags);
+ const char *format_to_glsl(spv::ImageFormat format);
+ virtual std::string layout_for_member(const SPIRType &type, uint32_t index);
+ virtual std::string to_interpolation_qualifiers(const Bitset &flags);
+ std::string layout_for_variable(const SPIRVariable &variable);
+ std::string to_combined_image_sampler(VariableID image_id, VariableID samp_id);
+ virtual bool skip_argument(uint32_t id) const;
+ virtual bool emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id,
+ spv::StorageClass lhs_storage, spv::StorageClass rhs_storage);
+ virtual void emit_block_hints(const SPIRBlock &block);
+ virtual std::string to_initializer_expression(const SPIRVariable &var);
+ virtual std::string to_zero_initialized_expression(uint32_t type_id);
+ bool type_can_zero_initialize(const SPIRType &type) const;
+
+ bool buffer_is_packing_standard(const SPIRType &type, BufferPackingStandard packing,
+ uint32_t *failed_index = nullptr, uint32_t start_offset = 0,
+ uint32_t end_offset = ~(0u));
+ std::string buffer_to_packing_standard(const SPIRType &type,
+ bool support_std430_without_scalar_layout,
+ bool support_enhanced_layouts);
+
+ uint32_t type_to_packed_base_size(const SPIRType &type, BufferPackingStandard packing);
+ uint32_t type_to_packed_alignment(const SPIRType &type, const Bitset &flags, BufferPackingStandard packing);
+ uint32_t type_to_packed_array_stride(const SPIRType &type, const Bitset &flags, BufferPackingStandard packing);
+ uint32_t type_to_packed_size(const SPIRType &type, const Bitset &flags, BufferPackingStandard packing);
+ uint32_t type_to_location_count(const SPIRType &type) const;
+
+ std::string bitcast_glsl(const SPIRType &result_type, uint32_t arg);
+ virtual std::string bitcast_glsl_op(const SPIRType &result_type, const SPIRType &argument_type);
+
+ std::string bitcast_expression(SPIRType::BaseType target_type, uint32_t arg);
+ std::string bitcast_expression(const SPIRType &target_type, SPIRType::BaseType expr_type, const std::string &expr);
+
+ std::string build_composite_combiner(uint32_t result_type, const uint32_t *elems, uint32_t length);
+ bool remove_duplicate_swizzle(std::string &op);
+ bool remove_unity_swizzle(uint32_t base, std::string &op);
+
+ // Can modify flags to remote readonly/writeonly if image type
+ // and force recompile.
+ bool check_atomic_image(uint32_t id);
+
+ virtual void replace_illegal_names();
+ void replace_illegal_names(const std::unordered_set<std::string> &keywords);
+ virtual void emit_entry_point_declarations();
+
+ void replace_fragment_output(SPIRVariable &var);
+ void replace_fragment_outputs();
+ std::string legacy_tex_op(const std::string &op, const SPIRType &imgtype, uint32_t id);
+
+ void forward_relaxed_precision(uint32_t dst_id, const uint32_t *args, uint32_t length);
+ void analyze_precision_requirements(uint32_t type_id, uint32_t dst_id, uint32_t *args, uint32_t length);
+ Options::Precision analyze_expression_precision(const uint32_t *args, uint32_t length) const;
+
+ uint32_t indent = 0;
+
+ std::unordered_set<uint32_t> emitted_functions;
+
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ std::unordered_set<uint32_t> flushed_phi_variables;
+
+ std::unordered_set<uint32_t> flattened_buffer_blocks;
+ std::unordered_map<uint32_t, bool> flattened_structs;
+
+ ShaderSubgroupSupportHelper shader_subgroup_supporter;
+
+ std::string load_flattened_struct(const std::string &basename, const SPIRType &type);
+ std::string to_flattened_struct_member(const std::string &basename, const SPIRType &type, uint32_t index);
+ void store_flattened_struct(uint32_t lhs_id, uint32_t value);
+ void store_flattened_struct(const std::string &basename, uint32_t rhs, const SPIRType &type,
+ const SmallVector<uint32_t> &indices);
+ std::string to_flattened_access_chain_expression(uint32_t id);
+
+ // Usage tracking. If a temporary is used more than once, use the temporary instead to
+ // avoid AST explosion when SPIRV is generated with pure SSA and doesn't write stuff to variables.
+ std::unordered_map<uint32_t, uint32_t> expression_usage_counts;
+ void track_expression_read(uint32_t id);
+
+ SmallVector<std::string> forced_extensions;
+ SmallVector<std::string> header_lines;
+
+ // Used when expressions emit extra opcodes with their own unique IDs,
+ // and we need to reuse the IDs across recompilation loops.
+ // Currently used by NMin/Max/Clamp implementations.
+ std::unordered_map<uint32_t, uint32_t> extra_sub_expressions;
+
+ SmallVector<TypeID> workaround_ubo_load_overload_types;
+ void request_workaround_wrapper_overload(TypeID id);
+ void rewrite_load_for_wrapped_row_major(std::string &expr, TypeID loaded_type, ID ptr);
+
+ uint32_t statement_count = 0;
+
+ inline bool is_legacy() const
+ {
+ return (options.es && options.version < 300) || (!options.es && options.version < 130);
+ }
+
+ inline bool is_legacy_es() const
+ {
+ return options.es && options.version < 300;
+ }
+
+ inline bool is_legacy_desktop() const
+ {
+ return !options.es && options.version < 130;
+ }
+
+ enum Polyfill : uint32_t
+ {
+ PolyfillTranspose2x2 = 1 << 0,
+ PolyfillTranspose3x3 = 1 << 1,
+ PolyfillTranspose4x4 = 1 << 2,
+ PolyfillDeterminant2x2 = 1 << 3,
+ PolyfillDeterminant3x3 = 1 << 4,
+ PolyfillDeterminant4x4 = 1 << 5,
+ PolyfillMatrixInverse2x2 = 1 << 6,
+ PolyfillMatrixInverse3x3 = 1 << 7,
+ PolyfillMatrixInverse4x4 = 1 << 8,
+ PolyfillNMin16 = 1 << 9,
+ PolyfillNMin32 = 1 << 10,
+ PolyfillNMin64 = 1 << 11,
+ PolyfillNMax16 = 1 << 12,
+ PolyfillNMax32 = 1 << 13,
+ PolyfillNMax64 = 1 << 14,
+ PolyfillNClamp16 = 1 << 15,
+ PolyfillNClamp32 = 1 << 16,
+ PolyfillNClamp64 = 1 << 17,
+ };
+
+ uint32_t required_polyfills = 0;
+ uint32_t required_polyfills_relaxed = 0;
+ void require_polyfill(Polyfill polyfill, bool relaxed);
+
+ bool ray_tracing_is_khr = false;
+ bool barycentric_is_nv = false;
+ void ray_tracing_khr_fixup_locations();
+
+ bool args_will_forward(uint32_t id, const uint32_t *args, uint32_t num_args, bool pure);
+ void register_call_out_argument(uint32_t id);
+ void register_impure_function_call();
+ void register_control_dependent_expression(uint32_t expr);
+
+ // GL_EXT_shader_pixel_local_storage support.
+ std::vector<PlsRemap> pls_inputs;
+ std::vector<PlsRemap> pls_outputs;
+ std::string pls_decl(const PlsRemap &variable);
+ const char *to_pls_qualifiers_glsl(const SPIRVariable &variable);
+ void emit_pls();
+ void remap_pls_variables();
+
+ // GL_EXT_shader_framebuffer_fetch support.
+ std::vector<std::pair<uint32_t, uint32_t>> subpass_to_framebuffer_fetch_attachment;
+ std::vector<std::pair<uint32_t, bool>> inout_color_attachments;
+ bool location_is_framebuffer_fetch(uint32_t location) const;
+ bool location_is_non_coherent_framebuffer_fetch(uint32_t location) const;
+ bool subpass_input_is_framebuffer_fetch(uint32_t id) const;
+ void emit_inout_fragment_outputs_copy_to_subpass_inputs();
+ const SPIRVariable *find_subpass_input_by_attachment_index(uint32_t index) const;
+ const SPIRVariable *find_color_output_by_location(uint32_t location) const;
+
+ // A variant which takes two sets of name. The secondary is only used to verify there are no collisions,
+ // but the set is not updated when we have found a new name.
+ // Used primarily when adding block interface names.
+ void add_variable(std::unordered_set<std::string> &variables_primary,
+ const std::unordered_set<std::string> &variables_secondary, std::string &name);
+
+ void check_function_call_constraints(const uint32_t *args, uint32_t length);
+ void handle_invalid_expression(uint32_t id);
+ void force_temporary_and_recompile(uint32_t id);
+ void find_static_extensions();
+
+ uint32_t consume_temporary_in_precision_context(uint32_t type_id, uint32_t id, Options::Precision precision);
+ std::unordered_map<uint32_t, uint32_t> temporary_to_mirror_precision_alias;
+ std::unordered_set<uint32_t> composite_insert_overwritten;
+ std::unordered_set<uint32_t> block_composite_insert_overwrite;
+
+ std::string emit_for_loop_initializers(const SPIRBlock &block);
+ void emit_while_loop_initializers(const SPIRBlock &block);
+ bool for_loop_initializers_are_same_type(const SPIRBlock &block);
+ bool optimize_read_modify_write(const SPIRType &type, const std::string &lhs, const std::string &rhs);
+ void fixup_image_load_store_access();
+
+ bool type_is_empty(const SPIRType &type);
+
+ bool can_use_io_location(spv::StorageClass storage, bool block);
+ const Instruction *get_next_instruction_in_block(const Instruction &instr);
+ static uint32_t mask_relevant_memory_semantics(uint32_t semantics);
+
+ std::string convert_half_to_string(const SPIRConstant &value, uint32_t col, uint32_t row);
+ std::string convert_float_to_string(const SPIRConstant &value, uint32_t col, uint32_t row);
+ std::string convert_double_to_string(const SPIRConstant &value, uint32_t col, uint32_t row);
+
+ std::string convert_separate_image_to_expression(uint32_t id);
+
+ // Builtins in GLSL are always specific signedness, but the SPIR-V can declare them
+ // as either unsigned or signed.
+ // Sometimes we will need to automatically perform casts on load and store to make this work.
+ virtual SPIRType::BaseType get_builtin_basetype(spv::BuiltIn builtin, SPIRType::BaseType default_type);
+ virtual void cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type);
+ virtual void cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type);
+ void unroll_array_from_complex_load(uint32_t target_id, uint32_t source_id, std::string &expr);
+ bool unroll_array_to_complex_store(uint32_t target_id, uint32_t source_id);
+ void convert_non_uniform_expression(std::string &expr, uint32_t ptr_id);
+
+ void handle_store_to_invariant_variable(uint32_t store_id, uint32_t value_id);
+ void disallow_forwarding_in_expression_chain(const SPIRExpression &expr);
+
+ bool expression_is_constant_null(uint32_t id) const;
+ bool expression_is_non_value_type_array(uint32_t ptr);
+ virtual void emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression);
+
+ uint32_t get_integer_width_for_instruction(const Instruction &instr) const;
+ uint32_t get_integer_width_for_glsl_instruction(GLSLstd450 op, const uint32_t *arguments, uint32_t length) const;
+
+ bool variable_is_lut(const SPIRVariable &var) const;
+
+ char current_locale_radix_character = '.';
+
+ void fixup_type_alias();
+ void reorder_type_alias();
+ void fixup_anonymous_struct_names();
+ void fixup_anonymous_struct_names(std::unordered_set<uint32_t> &visited, const SPIRType &type);
+
+ static const char *vector_swizzle(int vecsize, int index);
+
+ bool is_stage_output_location_masked(uint32_t location, uint32_t component) const;
+ bool is_stage_output_builtin_masked(spv::BuiltIn builtin) const;
+ bool is_stage_output_variable_masked(const SPIRVariable &var) const;
+ bool is_stage_output_block_member_masked(const SPIRVariable &var, uint32_t index, bool strip_array) const;
+ bool is_per_primitive_variable(const SPIRVariable &var) const;
+ uint32_t get_accumulated_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array) const;
+ uint32_t get_declared_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array) const;
+ std::unordered_set<LocationComponentPair, InternalHasher> masked_output_locations;
+ std::unordered_set<uint32_t> masked_output_builtins;
+
+ FloatFormatter *float_formatter = nullptr;
+ std::string format_float(float value) const;
+ std::string format_double(double value) const;
+
+private:
+ void init();
+
+ SmallVector<ConstantID> get_composite_constant_ids(ConstantID const_id);
+ void fill_composite_constant(SPIRConstant &constant, TypeID type_id, const SmallVector<ConstantID> &initializers);
+ void set_composite_constant(ConstantID const_id, TypeID type_id, const SmallVector<ConstantID> &initializers);
+ TypeID get_composite_member_type(TypeID type_id, uint32_t member_idx);
+ std::unordered_map<uint32_t, SmallVector<ConstantID>> const_composite_insert_ids;
+};
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_msl.cpp b/thirdparty/spirv-cross/spirv_msl.cpp
new file mode 100644
index 0000000000..383ce688e9
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_msl.cpp
@@ -0,0 +1,18810 @@
+/*
+ * Copyright 2016-2021 The Brenwill Workshop Ltd.
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_msl.hpp"
+#include "GLSL.std.450.h"
+
+#include <algorithm>
+#include <assert.h>
+#include <numeric>
+
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+using namespace std;
+
+static const uint32_t k_unknown_location = ~0u;
+static const uint32_t k_unknown_component = ~0u;
+static const char *force_inline = "static inline __attribute__((always_inline))";
+
+CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
+ : CompilerGLSL(std::move(spirv_))
+{
+}
+
+CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
+ : CompilerGLSL(ir_, word_count)
+{
+}
+
+CompilerMSL::CompilerMSL(const ParsedIR &ir_)
+ : CompilerGLSL(ir_)
+{
+}
+
+CompilerMSL::CompilerMSL(ParsedIR &&ir_)
+ : CompilerGLSL(std::move(ir_))
+{
+}
+
+void CompilerMSL::add_msl_shader_input(const MSLShaderInterfaceVariable &si)
+{
+ inputs_by_location[{si.location, si.component}] = si;
+ if (si.builtin != BuiltInMax && !inputs_by_builtin.count(si.builtin))
+ inputs_by_builtin[si.builtin] = si;
+}
+
+void CompilerMSL::add_msl_shader_output(const MSLShaderInterfaceVariable &so)
+{
+ outputs_by_location[{so.location, so.component}] = so;
+ if (so.builtin != BuiltInMax && !outputs_by_builtin.count(so.builtin))
+ outputs_by_builtin[so.builtin] = so;
+}
+
+void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
+{
+ StageSetBinding tuple = { binding.stage, binding.desc_set, binding.binding };
+ resource_bindings[tuple] = { binding, false };
+
+ // If we might need to pad argument buffer members to positionally align
+ // arg buffer indexes, also maintain a lookup by argument buffer index.
+ if (msl_options.pad_argument_buffer_resources)
+ {
+ StageSetBinding arg_idx_tuple = { binding.stage, binding.desc_set, k_unknown_component };
+
+#define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \
+ arg_idx_tuple.binding = binding.msl_##rez; \
+ resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding
+
+ switch (binding.basetype)
+ {
+ case SPIRType::Void:
+ case SPIRType::Boolean:
+ case SPIRType::SByte:
+ case SPIRType::UByte:
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Half:
+ case SPIRType::Float:
+ case SPIRType::Double:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer);
+ break;
+ case SPIRType::Image:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
+ break;
+ case SPIRType::Sampler:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
+ break;
+ case SPIRType::SampledImage:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
+ break;
+ default:
+ SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, "
+ "all descriptor set resources must be supplied with a base type by the app.");
+ }
+#undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP
+ }
+}
+
+void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index)
+{
+ SetBindingPair pair = { desc_set, binding };
+ buffers_requiring_dynamic_offset[pair] = { index, 0 };
+}
+
+void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding)
+{
+ SetBindingPair pair = { desc_set, binding };
+ inline_uniform_blocks.insert(pair);
+}
+
+void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
+{
+ if (desc_set < kMaxArgumentBuffers)
+ argument_buffer_discrete_mask |= 1u << desc_set;
+}
+
+void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage)
+{
+ if (desc_set < kMaxArgumentBuffers)
+ {
+ if (device_storage)
+ argument_buffer_device_storage_mask |= 1u << desc_set;
+ else
+ argument_buffer_device_storage_mask &= ~(1u << desc_set);
+ }
+}
+
+bool CompilerMSL::is_msl_shader_input_used(uint32_t location)
+{
+ // Don't report internal location allocations to app.
+ return location_inputs_in_use.count(location) != 0 &&
+ location_inputs_in_use_fallback.count(location) == 0;
+}
+
+bool CompilerMSL::is_msl_shader_output_used(uint32_t location)
+{
+ // Don't report internal location allocations to app.
+ return location_outputs_in_use.count(location) != 0 &&
+ location_outputs_in_use_fallback.count(location) == 0;
+}
+
+uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const
+{
+ auto itr = builtin_to_automatic_input_location.find(builtin);
+ if (itr == builtin_to_automatic_input_location.end())
+ return k_unknown_location;
+ else
+ return itr->second;
+}
+
+uint32_t CompilerMSL::get_automatic_builtin_output_location(spv::BuiltIn builtin) const
+{
+ auto itr = builtin_to_automatic_output_location.find(builtin);
+ if (itr == builtin_to_automatic_output_location.end())
+ return k_unknown_location;
+ else
+ return itr->second;
+}
+
+bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const
+{
+ StageSetBinding tuple = { model, desc_set, binding };
+ auto itr = resource_bindings.find(tuple);
+ return itr != end(resource_bindings) && itr->second.second;
+}
+
+bool CompilerMSL::is_var_runtime_size_array(const SPIRVariable &var) const
+{
+ auto& type = get_variable_data_type(var);
+ return is_runtime_size_array(type) && get_resource_array_size(type, var.self) == 0;
+}
+
+// Returns the size of the array of resources used by the variable with the specified type and id.
+// The size is first retrieved from the type, but in the case of runtime array sizing,
+// the size is retrieved from the resource binding added using add_msl_resource_binding().
+uint32_t CompilerMSL::get_resource_array_size(const SPIRType &type, uint32_t id) const
+{
+ uint32_t array_size = to_array_size_literal(type);
+
+ // If we have argument buffers, we need to honor the ABI by using the correct array size
+ // from the layout. Only use shader declared size if we're not using argument buffers.
+ uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
+ if (!descriptor_set_is_argument_buffer(desc_set) && array_size)
+ return array_size;
+
+ StageSetBinding tuple = { get_entry_point().model, desc_set,
+ get_decoration(id, DecorationBinding) };
+ auto itr = resource_bindings.find(tuple);
+ return itr != end(resource_bindings) ? itr->second.first.count : array_size;
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexPrimary);
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexSecondary);
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexTertiary);
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexQuaternary);
+}
+
+void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
+{
+ fragment_output_components[location] = components;
+}
+
+bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const
+{
+ return (builtin == BuiltInSampleMask);
+}
+
+void CompilerMSL::build_implicit_builtins()
+{
+ bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
+ bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex &&
+ !msl_options.vertex_for_tessellation;
+ bool need_tesc_params = is_tesc_shader();
+ bool need_tese_params = is_tese_shader() && msl_options.raw_buffer_tese_input;
+ bool need_subgroup_mask =
+ active_input_builtins.get(BuiltInSubgroupEqMask) || active_input_builtins.get(BuiltInSubgroupGeMask) ||
+ active_input_builtins.get(BuiltInSubgroupGtMask) || active_input_builtins.get(BuiltInSubgroupLeMask) ||
+ active_input_builtins.get(BuiltInSubgroupLtMask);
+ bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(BuiltInSubgroupGeMask) ||
+ active_input_builtins.get(BuiltInSubgroupGtMask));
+ bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index &&
+ msl_options.multiview_layered_rendering &&
+ (msl_options.multiview || active_input_builtins.get(BuiltInViewIndex));
+ bool need_dispatch_base =
+ msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute &&
+ (active_input_builtins.get(BuiltInWorkgroupId) || active_input_builtins.get(BuiltInGlobalInvocationId));
+ bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation;
+ bool need_vertex_base_params =
+ need_grid_params &&
+ (active_input_builtins.get(BuiltInVertexId) || active_input_builtins.get(BuiltInVertexIndex) ||
+ active_input_builtins.get(BuiltInBaseVertex) || active_input_builtins.get(BuiltInInstanceId) ||
+ active_input_builtins.get(BuiltInInstanceIndex) || active_input_builtins.get(BuiltInBaseInstance));
+ bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInSubgroupId);
+ bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInNumSubgroups);
+ bool force_frag_depth_passthrough =
+ get_execution_model() == ExecutionModelFragment && !uses_explicit_early_fragment_test() && need_subpass_input &&
+ msl_options.enable_frag_depth_builtin && msl_options.input_attachment_is_ds_attachment;
+
+ if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params ||
+ need_tese_params || need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params ||
+ needs_sample_id || needs_subgroup_invocation_id || needs_subgroup_size || needs_helper_invocation ||
+ has_additional_fixed_sample_mask() || need_local_invocation_index || need_workgroup_size || force_frag_depth_passthrough)
+ {
+ bool has_frag_coord = false;
+ bool has_sample_id = false;
+ bool has_vertex_idx = false;
+ bool has_base_vertex = false;
+ bool has_instance_idx = false;
+ bool has_base_instance = false;
+ bool has_invocation_id = false;
+ bool has_primitive_id = false;
+ bool has_subgroup_invocation_id = false;
+ bool has_subgroup_size = false;
+ bool has_view_idx = false;
+ bool has_layer = false;
+ bool has_helper_invocation = false;
+ bool has_local_invocation_index = false;
+ bool has_workgroup_size = false;
+ bool has_frag_depth = false;
+ uint32_t workgroup_id_type = 0;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
+ return;
+ if (!interface_variable_exists_in_entry_point(var.self))
+ return;
+ if (!has_decoration(var.self, DecorationBuiltIn))
+ return;
+
+ BuiltIn builtin = ir.meta[var.self].decoration.builtin_type;
+
+ if (var.storage == StorageClassOutput)
+ {
+ if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask)
+ {
+ builtin_sample_mask_id = var.self;
+ mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var.self);
+ does_shader_write_sample_mask = true;
+ }
+
+ if (force_frag_depth_passthrough && builtin == BuiltInFragDepth)
+ {
+ builtin_frag_depth_id = var.self;
+ mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var.self);
+ has_frag_depth = true;
+ }
+ }
+
+ if (var.storage != StorageClassInput)
+ return;
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses))
+ {
+ switch (builtin)
+ {
+ case BuiltInFragCoord:
+ mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var.self);
+ builtin_frag_coord_id = var.self;
+ has_frag_coord = true;
+ break;
+ case BuiltInLayer:
+ if (!msl_options.arrayed_subpass_input || msl_options.multiview)
+ break;
+ mark_implicit_builtin(StorageClassInput, BuiltInLayer, var.self);
+ builtin_layer_id = var.self;
+ has_layer = true;
+ break;
+ case BuiltInViewIndex:
+ if (!msl_options.multiview)
+ break;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
+ builtin_view_idx_id = var.self;
+ has_view_idx = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId)
+ {
+ builtin_sample_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var.self);
+ has_sample_id = true;
+ }
+
+ if (need_vertex_params)
+ {
+ switch (builtin)
+ {
+ case BuiltInVertexIndex:
+ builtin_vertex_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var.self);
+ has_vertex_idx = true;
+ break;
+ case BuiltInBaseVertex:
+ builtin_base_vertex_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var.self);
+ has_base_vertex = true;
+ break;
+ case BuiltInInstanceIndex:
+ builtin_instance_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
+ has_instance_idx = true;
+ break;
+ case BuiltInBaseInstance:
+ builtin_base_instance_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
+ has_base_instance = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (need_tesc_params && builtin == BuiltInInvocationId)
+ {
+ builtin_invocation_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var.self);
+ has_invocation_id = true;
+ }
+
+ if ((need_tesc_params || need_tese_params) && builtin == BuiltInPrimitiveId)
+ {
+ builtin_primitive_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var.self);
+ has_primitive_id = true;
+ }
+
+ if (need_tese_params && builtin == BuiltInTessLevelOuter)
+ {
+ tess_level_outer_var_id = var.self;
+ }
+
+ if (need_tese_params && builtin == BuiltInTessLevelInner)
+ {
+ tess_level_inner_var_id = var.self;
+ }
+
+ if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId)
+ {
+ builtin_subgroup_invocation_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var.self);
+ has_subgroup_invocation_id = true;
+ }
+
+ if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize)
+ {
+ builtin_subgroup_size_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var.self);
+ has_subgroup_size = true;
+ }
+
+ if (need_multiview)
+ {
+ switch (builtin)
+ {
+ case BuiltInInstanceIndex:
+ // The view index here is derived from the instance index.
+ builtin_instance_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
+ has_instance_idx = true;
+ break;
+ case BuiltInBaseInstance:
+ // If a non-zero base instance is used, we need to adjust for it when calculating the view index.
+ builtin_base_instance_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
+ has_base_instance = true;
+ break;
+ case BuiltInViewIndex:
+ builtin_view_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
+ has_view_idx = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (needs_helper_invocation && builtin == BuiltInHelperInvocation)
+ {
+ builtin_helper_invocation_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var.self);
+ has_helper_invocation = true;
+ }
+
+ if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex)
+ {
+ builtin_local_invocation_index_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var.self);
+ has_local_invocation_index = true;
+ }
+
+ if (need_workgroup_size && builtin == BuiltInLocalInvocationId)
+ {
+ builtin_workgroup_size_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var.self);
+ has_workgroup_size = true;
+ }
+
+ // The base workgroup needs to have the same type and vector size
+ // as the workgroup or invocation ID, so keep track of the type that
+ // was used.
+ if (need_dispatch_base && workgroup_id_type == 0 &&
+ (builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId))
+ workgroup_id_type = var.basetype;
+ });
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) ||
+ (msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) &&
+ (!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input)
+ {
+ if (!has_frag_coord)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_FragCoord.
+ SPIRType vec4_type { OpTypeVector };
+ vec4_type.basetype = SPIRType::Float;
+ vec4_type.width = 32;
+ vec4_type.vecsize = 4;
+ set<SPIRType>(type_id, vec4_type);
+
+ SPIRType vec4_type_ptr = vec4_type;
+ vec4_type_ptr.op = OpTypePointer;
+ vec4_type_ptr.pointer = true;
+ vec4_type_ptr.pointer_depth++;
+ vec4_type_ptr.parent_type = type_id;
+ vec4_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
+ ptr_type.self = type_id;
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
+ builtin_frag_coord_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var_id);
+ }
+
+ if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_Layer.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
+ builtin_layer_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInLayer, var_id);
+ }
+
+ if (!has_view_idx && msl_options.multiview)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_ViewIndex.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
+ builtin_view_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
+ }
+ }
+
+ if (!has_sample_id && (need_sample_pos || needs_sample_id))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SampleID.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
+ builtin_sample_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var_id);
+ }
+
+ if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) ||
+ (need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx)))
+ {
+ uint32_t type_ptr_id = ir.increase_bound_by(1);
+
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ if (need_vertex_params && !has_vertex_idx)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_VertexIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
+ builtin_vertex_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var_id);
+ }
+
+ if (need_vertex_params && !has_base_vertex)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_BaseVertex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
+ builtin_base_vertex_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var_id);
+ }
+
+ if (!has_instance_idx) // Needed by both multiview and tessellation
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_InstanceIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
+ builtin_instance_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var_id);
+ }
+
+ if (!has_base_instance) // Needed by both multiview and tessellation
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_BaseInstance.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
+ builtin_base_instance_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var_id);
+ }
+
+ if (need_multiview)
+ {
+ // Multiview shaders are not allowed to write to gl_Layer, ostensibly because
+ // it is implicitly written from gl_ViewIndex, but we have to do that explicitly.
+ // Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but
+ // gl_Layer is an output in vertex-pipeline shaders.
+ uint32_t type_ptr_out_id = ir.increase_bound_by(2);
+ SPIRType uint_type_ptr_out = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr_out.pointer = true;
+ uint_type_ptr_out.pointer_depth++;
+ uint_type_ptr_out.parent_type = get_uint_type_id();
+ uint_type_ptr_out.storage = StorageClassOutput;
+ auto &ptr_out_type = set<SPIRType>(type_ptr_out_id, uint_type_ptr_out);
+ ptr_out_type.self = get_uint_type_id();
+ uint32_t var_id = type_ptr_out_id + 1;
+ set<SPIRVariable>(var_id, type_ptr_out_id, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
+ builtin_layer_id = var_id;
+ mark_implicit_builtin(StorageClassOutput, BuiltInLayer, var_id);
+ }
+
+ if (need_multiview && !has_view_idx)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_ViewIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
+ builtin_view_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
+ }
+ }
+
+ if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) ||
+ (need_tese_params && !has_primitive_id) || need_grid_params)
+ {
+ uint32_t type_ptr_id = ir.increase_bound_by(1);
+
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ if ((need_tesc_params && msl_options.multi_patch_workgroup) || need_grid_params)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_GlobalInvocationID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInGlobalInvocationId);
+ builtin_invocation_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInGlobalInvocationId, var_id);
+ }
+ else if (need_tesc_params && !has_invocation_id)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_InvocationID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
+ builtin_invocation_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var_id);
+ }
+
+ if ((need_tesc_params || need_tese_params) && !has_primitive_id)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_PrimitiveID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
+ builtin_primitive_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var_id);
+ }
+
+ if (need_grid_params)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ set<SPIRVariable>(var_id, build_extended_vector_type(get_uint_type_id(), 3), StorageClassInput);
+ set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize);
+ get_entry_point().interface_variables.push_back(var_id);
+ set_name(var_id, "spvStageInputSize");
+ builtin_stage_input_size_id = var_id;
+ }
+ }
+
+ if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SubgroupInvocationID.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupLocalInvocationId);
+ builtin_subgroup_invocation_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var_id);
+ }
+
+ if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SubgroupSize.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupSize);
+ builtin_subgroup_size_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var_id);
+ }
+
+ if (need_dispatch_base || need_vertex_base_params)
+ {
+ if (workgroup_id_type == 0)
+ workgroup_id_type = build_extended_vector_type(get_uint_type_id(), 3);
+ uint32_t var_id;
+ if (msl_options.supports_msl_version(1, 2))
+ {
+ // If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin
+ // to convey this information and save a buffer slot.
+ uint32_t offset = ir.increase_bound_by(1);
+ var_id = offset;
+
+ set<SPIRVariable>(var_id, workgroup_id_type, StorageClassInput);
+ set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase);
+ get_entry_point().interface_variables.push_back(var_id);
+ }
+ else
+ {
+ // Otherwise, we need to fall back to a good ol' fashioned buffer.
+ uint32_t offset = ir.increase_bound_by(2);
+ var_id = offset;
+ uint32_t type_id = offset + 1;
+
+ SPIRType var_type = get<SPIRType>(workgroup_id_type);
+ var_type.storage = StorageClassUniform;
+ set<SPIRType>(type_id, var_type);
+
+ set<SPIRVariable>(var_id, type_id, StorageClassUniform);
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, ~(5u));
+ set_decoration(var_id, DecorationBinding, msl_options.indirect_params_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
+ msl_options.indirect_params_buffer_index);
+ }
+ set_name(var_id, "spvDispatchBase");
+ builtin_dispatch_base_id = var_id;
+ }
+
+ if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SampleMask.
+ SPIRType uint_type_ptr_out = get_uint_type();
+ uint_type_ptr_out.op = OpTypePointer;
+ uint_type_ptr_out.pointer = true;
+ uint_type_ptr_out.pointer_depth++;
+ uint_type_ptr_out.parent_type = get_uint_type_id();
+ uint_type_ptr_out.storage = StorageClassOutput;
+
+ auto &ptr_out_type = set<SPIRType>(offset, uint_type_ptr_out);
+ ptr_out_type.self = get_uint_type_id();
+ set<SPIRVariable>(var_id, offset, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSampleMask);
+ builtin_sample_mask_id = var_id;
+ mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var_id);
+ }
+
+ if (!has_helper_invocation && needs_helper_invocation)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_HelperInvocation.
+ SPIRType bool_type { OpTypeBool };
+ bool_type.basetype = SPIRType::Boolean;
+ bool_type.width = 8;
+ bool_type.vecsize = 1;
+ set<SPIRType>(type_id, bool_type);
+
+ SPIRType bool_type_ptr_in = bool_type;
+ bool_type_ptr_in.op = spv::OpTypePointer;
+ bool_type_ptr_in.pointer = true;
+ bool_type_ptr_in.pointer_depth++;
+ bool_type_ptr_in.parent_type = type_id;
+ bool_type_ptr_in.storage = StorageClassInput;
+
+ auto &ptr_in_type = set<SPIRType>(type_ptr_id, bool_type_ptr_in);
+ ptr_in_type.self = type_id;
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInHelperInvocation);
+ builtin_helper_invocation_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var_id);
+ }
+
+ if (need_local_invocation_index && !has_local_invocation_index)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_LocalInvocationIndex.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInLocalInvocationIndex);
+ builtin_local_invocation_index_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var_id);
+ }
+
+ if (need_workgroup_size && !has_workgroup_size)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_WorkgroupSize.
+ uint32_t type_id = build_extended_vector_type(get_uint_type_id(), 3);
+ SPIRType uint_type_ptr = get<SPIRType>(type_id);
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = type_id;
+ uint_type_ptr.storage = StorageClassInput;
+
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = type_id;
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInWorkgroupSize);
+ builtin_workgroup_size_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var_id);
+ }
+
+ if (!has_frag_depth && force_frag_depth_passthrough)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_FragDepth
+ SPIRType float_type { OpTypeFloat };
+ float_type.basetype = SPIRType::Float;
+ float_type.width = 32;
+ float_type.vecsize = 1;
+ set<SPIRType>(type_id, float_type);
+
+ SPIRType float_type_ptr_in = float_type;
+ float_type_ptr_in.op = spv::OpTypePointer;
+ float_type_ptr_in.pointer = true;
+ float_type_ptr_in.pointer_depth++;
+ float_type_ptr_in.parent_type = type_id;
+ float_type_ptr_in.storage = StorageClassOutput;
+
+ auto &ptr_in_type = set<SPIRType>(type_ptr_id, float_type_ptr_in);
+ ptr_in_type.self = type_id;
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInFragDepth);
+ builtin_frag_depth_id = var_id;
+ mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var_id);
+ active_output_builtins.set(BuiltInFragDepth);
+ }
+ }
+
+ if (needs_swizzle_buffer_def)
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvSwizzleConstants");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, kSwizzleBufferBinding);
+ set_decoration(var_id, DecorationBinding, msl_options.swizzle_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.swizzle_buffer_index);
+ swizzle_buffer_id = var_id;
+ }
+
+ if (needs_buffer_size_buffer())
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvBufferSizeConstants");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, kBufferSizeBufferBinding);
+ set_decoration(var_id, DecorationBinding, msl_options.buffer_size_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.buffer_size_buffer_index);
+ buffer_size_buffer_id = var_id;
+ }
+
+ if (needs_view_mask_buffer())
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvViewMask");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, ~(4u));
+ set_decoration(var_id, DecorationBinding, msl_options.view_mask_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.view_mask_buffer_index);
+ view_mask_buffer_id = var_id;
+ }
+
+ if (!buffers_requiring_dynamic_offset.empty())
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvDynamicOffsets");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, ~(5u));
+ set_decoration(var_id, DecorationBinding, msl_options.dynamic_offsets_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
+ msl_options.dynamic_offsets_buffer_index);
+ dynamic_offsets_buffer_id = var_id;
+ }
+
+ // If we're returning a struct from a vertex-like entry point, we must return a position attribute.
+ bool need_position = (get_execution_model() == ExecutionModelVertex || is_tese_shader()) &&
+ !capture_output_to_buffer && !get_is_rasterization_disabled() &&
+ !active_output_builtins.get(BuiltInPosition);
+
+ if (need_position)
+ {
+ // If we can get away with returning void from entry point, we don't need to care.
+ // If there is at least one other stage output, we need to return [[position]],
+ // so we need to create one if it doesn't appear in the SPIR-V. Before adding the
+ // implicit variable, check if it actually exists already, but just has not been used
+ // or initialized, and if so, mark it as active, and do not create the implicit variable.
+ bool has_output = false;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self))
+ {
+ has_output = true;
+
+ // Check if the var is the Position builtin
+ if (has_decoration(var.self, DecorationBuiltIn) && get_decoration(var.self, DecorationBuiltIn) == BuiltInPosition)
+ active_output_builtins.set(BuiltInPosition);
+
+ // If the var is a struct, check if any members is the Position builtin
+ auto &var_type = get_variable_element_type(var);
+ if (var_type.basetype == SPIRType::Struct)
+ {
+ auto mbr_cnt = var_type.member_types.size();
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ auto builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ if (is_builtin && builtin == BuiltInPosition)
+ active_output_builtins.set(BuiltInPosition);
+ }
+ }
+ }
+ });
+ need_position = has_output && !active_output_builtins.get(BuiltInPosition);
+ }
+
+ if (need_position)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_Position.
+ SPIRType vec4_type { OpTypeVector };
+ vec4_type.basetype = SPIRType::Float;
+ vec4_type.width = 32;
+ vec4_type.vecsize = 4;
+ set<SPIRType>(type_id, vec4_type);
+
+ SPIRType vec4_type_ptr = vec4_type;
+ vec4_type_ptr.op = OpTypePointer;
+ vec4_type_ptr.pointer = true;
+ vec4_type_ptr.pointer_depth++;
+ vec4_type_ptr.parent_type = type_id;
+ vec4_type_ptr.storage = StorageClassOutput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
+ ptr_type.self = type_id;
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInPosition);
+ mark_implicit_builtin(StorageClassOutput, BuiltInPosition, var_id);
+ }
+}
+
+// Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active.
+// If not, it marks it as active and forces a recompilation.
+// This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted).
+void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin)
+{
+ Bitset *active_builtins = nullptr;
+ switch (storage)
+ {
+ case StorageClassInput:
+ active_builtins = &active_input_builtins;
+ break;
+
+ case StorageClassOutput:
+ active_builtins = &active_output_builtins;
+ break;
+
+ default:
+ break;
+ }
+
+ // At this point, the specified builtin variable must have already been declared in the entry point.
+ // If not, mark as active and force recompile.
+ if (active_builtins != nullptr && !active_builtins->get(builtin))
+ {
+ active_builtins->set(builtin);
+ force_recompile();
+ }
+}
+
+void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id)
+{
+ Bitset *active_builtins = nullptr;
+ switch (storage)
+ {
+ case StorageClassInput:
+ active_builtins = &active_input_builtins;
+ break;
+
+ case StorageClassOutput:
+ active_builtins = &active_output_builtins;
+ break;
+
+ default:
+ break;
+ }
+
+ assert(active_builtins != nullptr);
+ active_builtins->set(builtin);
+
+ auto &var = get_entry_point().interface_variables;
+ if (find(begin(var), end(var), VariableID(id)) == end(var))
+ var.push_back(id);
+}
+
+uint32_t CompilerMSL::build_constant_uint_array_pointer()
+{
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_ptr_id = offset;
+ uint32_t type_ptr_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create a buffer to hold extra data, including the swizzle constants.
+ SPIRType uint_type_pointer = get_uint_type();
+ uint_type_pointer.op = OpTypePointer;
+ uint_type_pointer.pointer = true;
+ uint_type_pointer.pointer_depth++;
+ uint_type_pointer.parent_type = get_uint_type_id();
+ uint_type_pointer.storage = StorageClassUniform;
+ set<SPIRType>(type_ptr_id, uint_type_pointer);
+ set_decoration(type_ptr_id, DecorationArrayStride, 4);
+
+ SPIRType uint_type_pointer2 = uint_type_pointer;
+ uint_type_pointer2.pointer_depth++;
+ uint_type_pointer2.parent_type = type_ptr_id;
+ set<SPIRType>(type_ptr_ptr_id, uint_type_pointer2);
+
+ set<SPIRVariable>(var_id, type_ptr_ptr_id, StorageClassUniformConstant);
+ return var_id;
+}
+
+static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
+{
+ switch (addr)
+ {
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
+ return join(prefix, "address::clamp_to_edge");
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
+ return join(prefix, "address::clamp_to_zero");
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
+ return join(prefix, "address::clamp_to_border");
+ case MSL_SAMPLER_ADDRESS_REPEAT:
+ return join(prefix, "address::repeat");
+ case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
+ return join(prefix, "address::mirrored_repeat");
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
+ }
+}
+
+SPIRType &CompilerMSL::get_stage_in_struct_type()
+{
+ auto &si_var = get<SPIRVariable>(stage_in_var_id);
+ return get_variable_data_type(si_var);
+}
+
+SPIRType &CompilerMSL::get_stage_out_struct_type()
+{
+ auto &so_var = get<SPIRVariable>(stage_out_var_id);
+ return get_variable_data_type(so_var);
+}
+
+SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
+{
+ auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
+ return get_variable_data_type(si_var);
+}
+
+SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
+{
+ auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
+ return get_variable_data_type(so_var);
+}
+
+std::string CompilerMSL::get_tess_factor_struct_name()
+{
+ if (is_tessellating_triangles())
+ return "MTLTriangleTessellationFactorsHalf";
+ return "MTLQuadTessellationFactorsHalf";
+}
+
+SPIRType &CompilerMSL::get_uint_type()
+{
+ return get<SPIRType>(get_uint_type_id());
+}
+
+uint32_t CompilerMSL::get_uint_type_id()
+{
+ if (uint_type_id != 0)
+ return uint_type_id;
+
+ uint_type_id = ir.increase_bound_by(1);
+
+ SPIRType type { OpTypeInt };
+ type.basetype = SPIRType::UInt;
+ type.width = 32;
+ set<SPIRType>(uint_type_id, type);
+ return uint_type_id;
+}
+
+void CompilerMSL::emit_entry_point_declarations()
+{
+ // FIXME: Get test coverage here ...
+ // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
+ declare_complex_constant_arrays();
+
+ // Emit constexpr samplers here.
+ for (auto &samp : constexpr_samplers_by_id)
+ {
+ auto &var = get<SPIRVariable>(samp.first);
+ auto &type = get<SPIRType>(var.basetype);
+ if (type.basetype == SPIRType::Sampler)
+ add_resource_name(samp.first);
+
+ SmallVector<string> args;
+ auto &s = samp.second;
+
+ if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
+ args.push_back("coord::pixel");
+
+ if (s.min_filter == s.mag_filter)
+ {
+ if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("filter::linear");
+ }
+ else
+ {
+ if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("min_filter::linear");
+ if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("mag_filter::linear");
+ }
+
+ switch (s.mip_filter)
+ {
+ case MSL_SAMPLER_MIP_FILTER_NONE:
+ // Default
+ break;
+ case MSL_SAMPLER_MIP_FILTER_NEAREST:
+ args.push_back("mip_filter::nearest");
+ break;
+ case MSL_SAMPLER_MIP_FILTER_LINEAR:
+ args.push_back("mip_filter::linear");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid mip filter.");
+ }
+
+ if (s.s_address == s.t_address && s.s_address == s.r_address)
+ {
+ if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("", s.s_address));
+ }
+ else
+ {
+ if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("s_", s.s_address));
+ if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("t_", s.t_address));
+ if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("r_", s.r_address));
+ }
+
+ if (s.compare_enable)
+ {
+ switch (s.compare_func)
+ {
+ case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
+ args.push_back("compare_func::always");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_NEVER:
+ args.push_back("compare_func::never");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
+ args.push_back("compare_func::equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
+ args.push_back("compare_func::not_equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_LESS:
+ args.push_back("compare_func::less");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
+ args.push_back("compare_func::less_equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_GREATER:
+ args.push_back("compare_func::greater");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
+ args.push_back("compare_func::greater_equal");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler compare function.");
+ }
+ }
+
+ if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
+ s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
+ {
+ switch (s.border_color)
+ {
+ case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
+ args.push_back("border_color::opaque_black");
+ break;
+ case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
+ args.push_back("border_color::opaque_white");
+ break;
+ case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
+ args.push_back("border_color::transparent_black");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler border color.");
+ }
+ }
+
+ if (s.anisotropy_enable)
+ args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
+ if (s.lod_clamp_enable)
+ {
+ args.push_back(join("lod_clamp(", format_float(s.lod_clamp_min), ", ", format_float(s.lod_clamp_max), ")"));
+ }
+
+ // If we would emit no arguments, then omit the parentheses entirely. Otherwise,
+ // we'll wind up with a "most vexing parse" situation.
+ if (args.empty())
+ statement("constexpr sampler ",
+ type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
+ ";");
+ else
+ statement("constexpr sampler ",
+ type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
+ "(", merge(args), ");");
+ }
+
+ // Emit dynamic buffers here.
+ for (auto &dynamic_buffer : buffers_requiring_dynamic_offset)
+ {
+ if (!dynamic_buffer.second.second)
+ {
+ // Could happen if no buffer was used at requested binding point.
+ continue;
+ }
+
+ const auto &var = get<SPIRVariable>(dynamic_buffer.second.second);
+ uint32_t var_id = var.self;
+ const auto &type = get_variable_data_type(var);
+ string name = to_name(var.self);
+ uint32_t desc_set = get_decoration(var.self, DecorationDescriptorSet);
+ uint32_t arg_id = argument_buffer_ids[desc_set];
+ uint32_t base_index = dynamic_buffer.second.first;
+
+ if (is_array(type))
+ {
+ is_using_builtin_array = true;
+ statement(get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, true), name,
+ type_to_array_glsl(type, var_id), " =");
+
+ uint32_t array_size = get_resource_array_size(type, var_id);
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Size of runtime array with dynamic offset could not be determined from resource bindings.");
+
+ begin_scope();
+
+ for (uint32_t i = 0; i < array_size; i++)
+ {
+ statement("(", get_argument_address_space(var), " ", type_to_glsl(type), "* ",
+ to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ",
+ to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"),
+ "[", i, "]", " + ", to_name(dynamic_offsets_buffer_id), "[", base_index + i, "]),");
+ }
+
+ end_scope_decl();
+ statement_no_indent("");
+ is_using_builtin_array = false;
+ }
+ else
+ {
+ statement(get_argument_address_space(var), " auto& ", to_restrict(var_id, true), name, " = *(",
+ get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((",
+ get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".",
+ ensure_valid_name(name, "m"), " + ", to_name(dynamic_offsets_buffer_id), "[", base_index, "]);");
+ }
+ }
+
+ bool has_runtime_array_declaration = false;
+ for (SPIRVariable *arg : entry_point_bindings)
+ {
+ const auto &var = *arg;
+ const auto &type = get_variable_data_type(var);
+ const auto &buffer_type = get_variable_element_type(var);
+ const string name = to_name(var.self);
+
+ if (is_var_runtime_size_array(var))
+ {
+ if (msl_options.argument_buffers_tier < Options::ArgumentBuffersTier::Tier2)
+ {
+ SPIRV_CROSS_THROW("Unsized array of descriptors requires argument buffer tier 2");
+ }
+
+ string resource_name;
+ if (descriptor_set_is_argument_buffer(get_decoration(var.self, DecorationDescriptorSet)))
+ resource_name = ir.meta[var.self].decoration.qualified_alias;
+ else
+ resource_name = name + "_";
+
+ switch (type.basetype)
+ {
+ case SPIRType::Image:
+ case SPIRType::Sampler:
+ case SPIRType::AccelerationStructure:
+ statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};");
+ break;
+ case SPIRType::SampledImage:
+ statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};");
+ // Unsupported with argument buffer for now.
+ statement("spvDescriptorArray<sampler> ", name, "Smplr {", name, "Smplr_};");
+ break;
+ case SPIRType::Struct:
+ statement("spvDescriptorArray<", get_argument_address_space(var), " ", type_to_glsl(buffer_type), "*> ",
+ name, " {", resource_name, "};");
+ break;
+ default:
+ break;
+ }
+ has_runtime_array_declaration = true;
+ }
+ else if (!type.array.empty() && type.basetype == SPIRType::Struct)
+ {
+ // Emit only buffer arrays here.
+ statement(get_argument_address_space(var), " ", type_to_glsl(buffer_type), "* ",
+ to_restrict(var.self, true), name, "[] =");
+ begin_scope();
+ uint32_t array_size = get_resource_array_size(type, var.self);
+ for (uint32_t i = 0; i < array_size; ++i)
+ statement(name, "_", i, ",");
+ end_scope_decl();
+ statement_no_indent("");
+ }
+ }
+
+ if (has_runtime_array_declaration)
+ statement_no_indent("");
+
+ // Emit buffer aliases here.
+ for (auto &var_id : buffer_aliases_discrete)
+ {
+ const auto &var = get<SPIRVariable>(var_id);
+ const auto &type = get_variable_data_type(var);
+ auto addr_space = get_argument_address_space(var);
+ auto name = to_name(var_id);
+
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ uint32_t desc_binding = get_decoration(var_id, DecorationBinding);
+ auto alias_name = join("spvBufferAliasSet", desc_set, "Binding", desc_binding);
+
+ statement(addr_space, " auto& ", to_restrict(var_id, true),
+ name,
+ " = *(", addr_space, " ", type_to_glsl(type), "*)", alias_name, ";");
+ }
+ // Discrete descriptors are processed in entry point emission every compiler iteration.
+ buffer_aliases_discrete.clear();
+
+ for (auto &var_pair : buffer_aliases_argument)
+ {
+ uint32_t var_id = var_pair.first;
+ uint32_t alias_id = var_pair.second;
+
+ const auto &var = get<SPIRVariable>(var_id);
+ const auto &type = get_variable_data_type(var);
+ auto addr_space = get_argument_address_space(var);
+
+ if (type.array.empty())
+ {
+ statement(addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
+ type_to_glsl(type), "&)", ir.meta[alias_id].decoration.qualified_alias, ";");
+ }
+ else
+ {
+ const char *desc_addr_space = descriptor_address_space(var_id, var.storage, "thread");
+
+ // Esoteric type cast. Reference to array of pointers.
+ // Auto here defers to UBO or SSBO. The address space of the reference needs to refer to the
+ // address space of the argument buffer itself, which is usually constant, but can be const device for
+ // large argument buffers.
+ is_using_builtin_array = true;
+ statement(desc_addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
+ type_to_glsl(type), "* ", desc_addr_space, " (&)",
+ type_to_array_glsl(type, var_id), ")", ir.meta[alias_id].decoration.qualified_alias, ";");
+ is_using_builtin_array = false;
+ }
+ }
+
+ // Emit disabled fragment outputs.
+ std::sort(disabled_frag_outputs.begin(), disabled_frag_outputs.end());
+ for (uint32_t var_id : disabled_frag_outputs)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ add_local_variable_name(var_id);
+ statement(CompilerGLSL::variable_decl(var), ";");
+ var.deferred_declaration = false;
+ }
+}
+
+string CompilerMSL::compile()
+{
+ replace_illegal_entry_point_names();
+ ir.fixup_reserved_names();
+
+ // Do not deal with GLES-isms like precision, older extensions and such.
+ options.vulkan_semantics = true;
+ options.es = false;
+ options.version = 450;
+ backend.null_pointer_literal = "nullptr";
+ backend.float_literal_suffix = false;
+ backend.uint32_t_literal_suffix = true;
+ backend.int16_t_literal_suffix = "";
+ backend.uint16_t_literal_suffix = "";
+ backend.basic_int_type = "int";
+ backend.basic_uint_type = "uint";
+ backend.basic_int8_type = "char";
+ backend.basic_uint8_type = "uchar";
+ backend.basic_int16_type = "short";
+ backend.basic_uint16_type = "ushort";
+ backend.boolean_mix_function = "select";
+ backend.swizzle_is_function = false;
+ backend.shared_is_implied = false;
+ backend.use_initializer_list = true;
+ backend.use_typed_initializer_list = true;
+ backend.native_row_major_matrix = false;
+ backend.unsized_array_supported = false;
+ backend.can_declare_arrays_inline = false;
+ backend.allow_truncated_access_chain = true;
+ backend.comparison_image_samples_scalar = true;
+ backend.native_pointers = true;
+ backend.nonuniform_qualifier = "";
+ backend.support_small_type_sampling_result = true;
+ backend.supports_empty_struct = true;
+ backend.support_64bit_switch = true;
+ backend.boolean_in_struct_remapped_type = SPIRType::Short;
+
+ // Allow Metal to use the array<T> template unless we force it off.
+ backend.can_return_array = !msl_options.force_native_arrays;
+ backend.array_is_value_type = !msl_options.force_native_arrays;
+ // Arrays which are part of buffer objects are never considered to be value types (just plain C-style).
+ backend.array_is_value_type_in_buffer_blocks = false;
+ backend.support_pointer_to_pointer = true;
+ backend.implicit_c_integer_promotion_rules = true;
+
+ capture_output_to_buffer = msl_options.capture_output_to_buffer;
+ is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
+
+ // Initialize array here rather than constructor, MSVC 2013 workaround.
+ for (auto &id : next_metal_resource_ids)
+ id = 0;
+
+ fixup_anonymous_struct_names();
+ fixup_type_alias();
+ replace_illegal_names();
+ sync_entry_point_aliases_and_names();
+
+ build_function_control_flow_graphs_and_analyze();
+ update_active_builtins();
+ analyze_image_and_sampler_usage();
+ analyze_sampled_image_usage();
+ analyze_interlocked_resource_usage();
+ preprocess_op_codes();
+ build_implicit_builtins();
+
+ if (needs_manual_helper_invocation_updates() &&
+ (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
+ {
+ string builtin_helper_invocation = builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput);
+ string discard_expr = join(builtin_helper_invocation, " = true, discard_fragment()");
+ if (msl_options.force_fragment_with_side_effects_execution)
+ discard_expr = join("!", builtin_helper_invocation, " ? (", discard_expr, ") : (void)0");
+ backend.discard_literal = discard_expr;
+ backend.demote_literal = discard_expr;
+ }
+ else
+ {
+ backend.discard_literal = "discard_fragment()";
+ backend.demote_literal = "discard_fragment()";
+ }
+
+ fixup_image_load_store_access();
+
+ set_enabled_interface_variables(get_active_interface_variables());
+ if (msl_options.force_active_argument_buffer_resources)
+ activate_argument_buffer_resources();
+
+ if (swizzle_buffer_id)
+ add_active_interface_variable(swizzle_buffer_id);
+ if (buffer_size_buffer_id)
+ add_active_interface_variable(buffer_size_buffer_id);
+ if (view_mask_buffer_id)
+ add_active_interface_variable(view_mask_buffer_id);
+ if (dynamic_offsets_buffer_id)
+ add_active_interface_variable(dynamic_offsets_buffer_id);
+ if (builtin_layer_id)
+ add_active_interface_variable(builtin_layer_id);
+ if (builtin_dispatch_base_id && !msl_options.supports_msl_version(1, 2))
+ add_active_interface_variable(builtin_dispatch_base_id);
+ if (builtin_sample_mask_id)
+ add_active_interface_variable(builtin_sample_mask_id);
+ if (builtin_frag_depth_id)
+ add_active_interface_variable(builtin_frag_depth_id);
+
+ // Create structs to hold input, output and uniform variables.
+ // Do output first to ensure out. is declared at top of entry function.
+ qual_pos_var_name = "";
+ stage_out_var_id = add_interface_block(StorageClassOutput);
+ patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
+ stage_in_var_id = add_interface_block(StorageClassInput);
+ if (is_tese_shader())
+ patch_stage_in_var_id = add_interface_block(StorageClassInput, true);
+
+ if (is_tesc_shader())
+ stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
+ if (is_tessellation_shader())
+ stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);
+
+ // Metal vertex functions that define no output must disable rasterization and return void.
+ if (!stage_out_var_id)
+ is_rasterization_disabled = true;
+
+ // Convert the use of global variables to recursively-passed function parameters
+ localize_global_variables();
+ extract_global_variables_from_functions();
+
+ // Mark any non-stage-in structs to be tightly packed.
+ mark_packable_structs();
+ reorder_type_alias();
+
+ // Add fixup hooks required by shader inputs and outputs. This needs to happen before
+ // the loop, so the hooks aren't added multiple times.
+ fix_up_shader_inputs_outputs();
+
+ // If we are using argument buffers, we create argument buffer structures for them here.
+ // These buffers will be used in the entry point, not the individual resources.
+ if (msl_options.argument_buffers)
+ {
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
+ analyze_argument_buffers();
+ }
+
+ uint32_t pass_count = 0;
+ do
+ {
+ reset(pass_count);
+
+ // Start bindings at zero.
+ next_metal_resource_index_buffer = 0;
+ next_metal_resource_index_texture = 0;
+ next_metal_resource_index_sampler = 0;
+ for (auto &id : next_metal_resource_ids)
+ id = 0;
+
+ // Move constructor for this type is broken on GCC 4.9 ...
+ buffer.reset();
+
+ emit_header();
+ emit_custom_templates();
+ emit_custom_functions();
+ emit_specialization_constants_and_structs();
+ emit_resources();
+ emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
+
+ pass_count++;
+ } while (is_forcing_recompilation());
+
+ return buffer.str();
+}
+
+// Register the need to output any custom functions.
+void CompilerMSL::preprocess_op_codes()
+{
+ OpCodePreprocessor preproc(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);
+
+ suppress_missing_prototypes = preproc.suppress_missing_prototypes;
+
+ if (preproc.uses_atomics)
+ {
+ add_header_line("#include <metal_atomic>");
+ add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
+ }
+
+ // Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to
+ // resources must disable rasterization and return void.
+ if ((preproc.uses_buffer_write && !msl_options.supports_msl_version(2, 1)) ||
+ (preproc.uses_image_write && !msl_options.supports_msl_version(2, 2)))
+ is_rasterization_disabled = true;
+
+ // Tessellation control shaders are run as compute functions in Metal, and so
+ // must capture their output to a buffer.
+ if (is_tesc_shader() || (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
+ {
+ is_rasterization_disabled = true;
+ capture_output_to_buffer = true;
+ }
+
+ if (preproc.needs_subgroup_invocation_id)
+ needs_subgroup_invocation_id = true;
+ if (preproc.needs_subgroup_size)
+ needs_subgroup_size = true;
+ // build_implicit_builtins() hasn't run yet, and in fact, this needs to execute
+ // before then so that gl_SampleID will get added; so we also need to check if
+ // that function would add gl_FragCoord.
+ if (preproc.needs_sample_id || msl_options.force_sample_rate_shading ||
+ (is_sample_rate() && (active_input_builtins.get(BuiltInFragCoord) ||
+ (need_subpass_input_ms && !msl_options.use_framebuffer_fetch_subpasses))))
+ needs_sample_id = true;
+ if (preproc.needs_helper_invocation)
+ needs_helper_invocation = true;
+
+ // OpKill is removed by the parser, so we need to identify those by inspecting
+ // blocks.
+ ir.for_each_typed_id<SPIRBlock>([&preproc](uint32_t, SPIRBlock &block) {
+ if (block.terminator == SPIRBlock::Kill)
+ preproc.uses_discard = true;
+ });
+
+ // Fragment shaders that both write to storage resources and discard fragments
+ // need checks on the writes, to work around Metal allowing these writes despite
+ // the fragment being dead. We also require to force Metal to execute fragment
+ // shaders instead of being prematurely discarded.
+ if (preproc.uses_discard && (preproc.uses_buffer_write || preproc.uses_image_write))
+ {
+ bool should_enable = (msl_options.check_discarded_frag_stores || msl_options.force_fragment_with_side_effects_execution);
+ frag_shader_needs_discard_checks |= msl_options.check_discarded_frag_stores;
+ needs_helper_invocation |= should_enable;
+ // Fragment discard store checks imply manual HelperInvocation updates.
+ msl_options.manual_helper_invocation_updates |= should_enable;
+ }
+
+ if (is_intersection_query())
+ {
+ add_header_line("#if __METAL_VERSION__ >= 230");
+ add_header_line("#include <metal_raytracing>");
+ add_header_line("using namespace metal::raytracing;");
+ add_header_line("#endif");
+ }
+}
+
+// Move the Private and Workgroup global variables to the entry function.
+// Non-constant variables cannot have global scope in Metal.
+void CompilerMSL::localize_global_variables()
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto iter = global_variables.begin();
+ while (iter != global_variables.end())
+ {
+ uint32_t v_id = *iter;
+ auto &var = get<SPIRVariable>(v_id);
+ if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
+ {
+ if (!variable_is_lut(var))
+ entry_func.add_local_variable(v_id);
+ iter = global_variables.erase(iter);
+ }
+ else
+ iter++;
+ }
+}
+
+// For any global variable accessed directly by a function,
+// extract that variable and add it as an argument to that function.
+void CompilerMSL::extract_global_variables_from_functions()
+{
+ // Uniforms
+ unordered_set<uint32_t> global_var_ids;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ // Some builtins resolve directly to a function call which does not need any declared variables.
+ // Skip these.
+ if (var.storage == StorageClassInput && has_decoration(var.self, DecorationBuiltIn))
+ {
+ auto bi_type = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ if (bi_type == BuiltInHelperInvocation && !needs_manual_helper_invocation_updates())
+ return;
+ if (bi_type == BuiltInHelperInvocation && needs_manual_helper_invocation_updates())
+ {
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
+ // Make sure this is declared and initialized.
+ // Force this to have the proper name.
+ set_name(var.self, builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput));
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+ entry_func.fixup_hooks_in.push_back([this, &var]()
+ { statement(to_name(var.self), " = simd_is_helper_thread();"); });
+ }
+ }
+
+ if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
+ var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
+ {
+ global_var_ids.insert(var.self);
+ }
+ });
+
+ // Local vars that are declared in the main function and accessed directly by a function
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ for (auto &var : entry_func.local_variables)
+ if (get<SPIRVariable>(var).storage != StorageClassFunction)
+ global_var_ids.insert(var);
+
+ std::set<uint32_t> added_arg_ids;
+ unordered_set<uint32_t> processed_func_ids;
+ extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
+}
+
+// MSL does not support the use of global variables for shader input content.
+// For any global variable accessed directly by the specified function, extract that variable,
+// add it as an argument to that function, and the arg to the added_arg_ids collection.
+void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
+ unordered_set<uint32_t> &global_var_ids,
+ unordered_set<uint32_t> &processed_func_ids)
+{
+ // Avoid processing a function more than once
+ if (processed_func_ids.find(func_id) != processed_func_ids.end())
+ {
+ // Return function global variables
+ added_arg_ids = function_global_vars[func_id];
+ return;
+ }
+
+ processed_func_ids.insert(func_id);
+
+ auto &func = get<SPIRFunction>(func_id);
+
+ // Recursively establish global args added to functions on which we depend.
+ for (auto block : func.blocks)
+ {
+ auto &b = get<SPIRBlock>(block);
+ for (auto &i : b.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ case OpLoad:
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ case OpArrayLength:
+ {
+ uint32_t base_id = ops[2];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
+ (!msl_options.use_framebuffer_fetch_subpasses))
+ {
+ // Implicitly reads gl_FragCoord.
+ assert(builtin_frag_coord_id != 0);
+ added_arg_ids.insert(builtin_frag_coord_id);
+ if (msl_options.multiview)
+ {
+ // Implicitly reads gl_ViewIndex.
+ assert(builtin_view_idx_id != 0);
+ added_arg_ids.insert(builtin_view_idx_id);
+ }
+ else if (msl_options.arrayed_subpass_input)
+ {
+ // Implicitly reads gl_Layer.
+ assert(builtin_layer_id != 0);
+ added_arg_ids.insert(builtin_layer_id);
+ }
+ }
+
+ break;
+ }
+
+ case OpFunctionCall:
+ {
+ // First see if any of the function call args are globals
+ for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
+ {
+ uint32_t arg_id = ops[arg_idx];
+ if (global_var_ids.find(arg_id) != global_var_ids.end())
+ added_arg_ids.insert(arg_id);
+ }
+
+ // Then recurse into the function itself to extract globals used internally in the function
+ uint32_t inner_func_id = ops[2];
+ std::set<uint32_t> inner_func_args;
+ extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
+ processed_func_ids);
+ added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
+ break;
+ }
+
+ case OpStore:
+ {
+ uint32_t base_id = ops[0];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ {
+ added_arg_ids.insert(base_id);
+
+ if (msl_options.input_attachment_is_ds_attachment && base_id == builtin_frag_depth_id)
+ writes_to_depth = true;
+ }
+
+ uint32_t rvalue_id = ops[1];
+ if (global_var_ids.find(rvalue_id) != global_var_ids.end())
+ added_arg_ids.insert(rvalue_id);
+
+ if (needs_frag_discard_checks())
+ added_arg_ids.insert(builtin_helper_invocation_id);
+
+ break;
+ }
+
+ case OpSelect:
+ {
+ uint32_t base_id = ops[3];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ base_id = ops[4];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicStore:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ case OpImageWrite:
+ {
+ if (needs_frag_discard_checks())
+ added_arg_ids.insert(builtin_helper_invocation_id);
+ uint32_t ptr = 0;
+ if (op == OpAtomicStore || op == OpImageWrite)
+ ptr = ops[0];
+ else
+ ptr = ops[2];
+ if (global_var_ids.find(ptr) != global_var_ids.end())
+ added_arg_ids.insert(ptr);
+ break;
+ }
+
+ // Emulate texture2D atomic operations
+ case OpImageTexelPointer:
+ {
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ uint32_t base_id = ops[2];
+ auto *var = maybe_get_backing_variable(base_id);
+ if (var)
+ {
+ if (atomic_image_vars_emulated.count(var->self) &&
+ !get<SPIRType>(var->basetype).array.empty())
+ {
+ SPIRV_CROSS_THROW(
+ "Cannot emulate array of storage images with atomics. Use MSL 3.1 for native support.");
+ }
+
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ }
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = ops[2];
+ if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(ops[3]);
+ switch (op_450)
+ {
+ case GLSLstd450InterpolateAtCentroid:
+ case GLSLstd450InterpolateAtSample:
+ case GLSLstd450InterpolateAtOffset:
+ {
+ // For these, we really need the stage-in block. It is theoretically possible to pass the
+ // interpolant object, but a) doing so would require us to create an entirely new variable
+ // with Interpolant type, and b) if we have a struct or array, handling all the members and
+ // elements could get unwieldy fast.
+ added_arg_ids.insert(stage_in_var_id);
+ break;
+ }
+
+ case GLSLstd450Modf:
+ case GLSLstd450Frexp:
+ {
+ uint32_t base_id = ops[5];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpGroupNonUniformInverseBallot:
+ {
+ added_arg_ids.insert(builtin_subgroup_invocation_id_id);
+ break;
+ }
+
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ {
+ added_arg_ids.insert(builtin_subgroup_size_id);
+ break;
+ }
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ auto operation = static_cast<GroupOperation>(ops[3]);
+ switch (operation)
+ {
+ case GroupOperationReduce:
+ added_arg_ids.insert(builtin_subgroup_size_id);
+ break;
+ case GroupOperationInclusiveScan:
+ case GroupOperationExclusiveScan:
+ added_arg_ids.insert(builtin_subgroup_invocation_id_id);
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ case OpDemoteToHelperInvocation:
+ if (needs_manual_helper_invocation_updates() &&
+ (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
+ added_arg_ids.insert(builtin_helper_invocation_id);
+ break;
+
+ case OpIsHelperInvocationEXT:
+ if (needs_manual_helper_invocation_updates())
+ added_arg_ids.insert(builtin_helper_invocation_id);
+ break;
+
+ case OpRayQueryInitializeKHR:
+ case OpRayQueryProceedKHR:
+ case OpRayQueryTerminateKHR:
+ case OpRayQueryGenerateIntersectionKHR:
+ case OpRayQueryConfirmIntersectionKHR:
+ {
+ // Ray query accesses memory directly, need check pass down object if using Private storage class.
+ uint32_t base_id = ops[0];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ case OpRayQueryGetRayTMinKHR:
+ case OpRayQueryGetRayFlagsKHR:
+ case OpRayQueryGetWorldRayOriginKHR:
+ case OpRayQueryGetWorldRayDirectionKHR:
+ case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
+ case OpRayQueryGetIntersectionTypeKHR:
+ case OpRayQueryGetIntersectionTKHR:
+ case OpRayQueryGetIntersectionInstanceCustomIndexKHR:
+ case OpRayQueryGetIntersectionInstanceIdKHR:
+ case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
+ case OpRayQueryGetIntersectionGeometryIndexKHR:
+ case OpRayQueryGetIntersectionPrimitiveIndexKHR:
+ case OpRayQueryGetIntersectionBarycentricsKHR:
+ case OpRayQueryGetIntersectionFrontFaceKHR:
+ case OpRayQueryGetIntersectionObjectRayDirectionKHR:
+ case OpRayQueryGetIntersectionObjectRayOriginKHR:
+ case OpRayQueryGetIntersectionObjectToWorldKHR:
+ case OpRayQueryGetIntersectionWorldToObjectKHR:
+ {
+ // Ray query accesses memory directly, need check pass down object if using Private storage class.
+ uint32_t base_id = ops[2];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ if (needs_manual_helper_invocation_updates() && b.terminator == SPIRBlock::Kill &&
+ (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
+ added_arg_ids.insert(builtin_helper_invocation_id);
+
+ // TODO: Add all other operations which can affect memory.
+ // We should consider a more unified system here to reduce boiler-plate.
+ // This kind of analysis is done in several places ...
+ }
+ }
+
+ function_global_vars[func_id] = added_arg_ids;
+
+ // Add the global variables as arguments to the function
+ if (func_id != ir.default_entry_point)
+ {
+ bool control_point_added_in = false;
+ bool control_point_added_out = false;
+ bool patch_added_in = false;
+ bool patch_added_out = false;
+
+ for (uint32_t arg_id : added_arg_ids)
+ {
+ auto &var = get<SPIRVariable>(arg_id);
+ uint32_t type_id = var.basetype;
+ auto *p_type = &get<SPIRType>(type_id);
+ BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));
+
+ bool is_patch = has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type);
+ bool is_block = has_decoration(p_type->self, DecorationBlock);
+ bool is_control_point_storage =
+ !is_patch && ((is_tessellation_shader() && var.storage == StorageClassInput) ||
+ (is_tesc_shader() && var.storage == StorageClassOutput));
+ bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput;
+ bool is_builtin = is_builtin_variable(var);
+ bool variable_is_stage_io =
+ !is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
+ p_type->basetype == SPIRType::Struct;
+ bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) &&
+ variable_is_stage_io;
+
+ // If output is masked it is not considered part of the global stage IO interface.
+ if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput)
+ is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var);
+
+ if (is_redirected_to_global_stage_io)
+ {
+ // Tessellation control shaders see inputs and per-point outputs as arrays.
+ // Similarly, tessellation evaluation shaders see per-point inputs as arrays.
+ // We collected them into a structure; we must pass the array of this
+ // structure to the function.
+ std::string name;
+ if (is_patch)
+ name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name;
+ else
+ name = var.storage == StorageClassInput ? "gl_in" : "gl_out";
+
+ if (var.storage == StorageClassOutput && has_decoration(p_type->self, DecorationBlock))
+ {
+ // If we're redirecting a block, we might still need to access the original block
+ // variable if we're masking some members.
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++)
+ {
+ if (is_stage_output_block_member_masked(var, mbr_idx, true))
+ {
+ func.add_parameter(var.basetype, var.self, true);
+ break;
+ }
+ }
+ }
+
+ if (var.storage == StorageClassInput)
+ {
+ auto &added_in = is_patch ? patch_added_in : control_point_added_in;
+ if (added_in)
+ continue;
+ arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id;
+ added_in = true;
+ }
+ else if (var.storage == StorageClassOutput)
+ {
+ auto &added_out = is_patch ? patch_added_out : control_point_added_out;
+ if (added_out)
+ continue;
+ arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id;
+ added_out = true;
+ }
+
+ type_id = get<SPIRVariable>(arg_id).basetype;
+ uint32_t next_id = ir.increase_bound_by(1);
+ func.add_parameter(type_id, next_id, true);
+ set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
+
+ set_name(next_id, name);
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input && var.storage == StorageClassInput)
+ set_decoration(next_id, DecorationNonWritable);
+ }
+ else if (is_builtin && has_decoration(p_type->self, DecorationBlock))
+ {
+ // Get the pointee type
+ type_id = get_pointee_type_id(type_id);
+ p_type = &get<SPIRType>(type_id);
+
+ uint32_t mbr_idx = 0;
+ for (auto &mbr_type_id : p_type->member_types)
+ {
+ BuiltIn builtin = BuiltInMax;
+ is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
+ if (is_builtin && has_active_builtin(builtin, var.storage))
+ {
+ // Add a arg variable with the same type and decorations as the member
+ uint32_t next_ids = ir.increase_bound_by(2);
+ uint32_t ptr_type_id = next_ids + 0;
+ uint32_t var_id = next_ids + 1;
+
+ // Make sure we have an actual pointer type,
+ // so that we will get the appropriate address space when declaring these builtins.
+ auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
+ ptr.self = mbr_type_id;
+ ptr.storage = var.storage;
+ ptr.pointer = true;
+ ptr.pointer_depth++;
+ ptr.parent_type = mbr_type_id;
+
+ func.add_parameter(mbr_type_id, var_id, true);
+ set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
+ ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
+ }
+ mbr_idx++;
+ }
+ }
+ else
+ {
+ uint32_t next_id = ir.increase_bound_by(1);
+ func.add_parameter(type_id, next_id, true);
+ set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
+
+ // Ensure the new variable has all the same meta info
+ ir.meta[next_id] = ir.meta[arg_id];
+ }
+ }
+ }
+}
+
+// For all variables that are some form of non-input-output interface block, mark that all the structs
+// that are recursively contained within the type referenced by that variable should be packed tightly.
+void CompilerMSL::mark_packable_structs()
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage != StorageClassFunction && !is_hidden_variable(var))
+ {
+ auto &type = this->get<SPIRType>(var.basetype);
+ if (type.pointer &&
+ (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
+ type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
+ (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
+ mark_as_packable(type);
+ }
+
+ if (var.storage == StorageClassWorkgroup)
+ {
+ auto *type = &this->get<SPIRType>(var.basetype);
+ if (type->basetype == SPIRType::Struct)
+ mark_as_workgroup_struct(*type);
+ }
+ });
+
+ // Physical storage buffer pointers can appear outside of the context of a variable, if the address
+ // is calculated from a ulong or uvec2 and cast to a pointer, so check if they need to be packed too.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
+ if (type.basetype == SPIRType::Struct && type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ mark_as_packable(type);
+ });
+}
+
+// If the specified type is a struct, it and any nested structs
+// are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration,
+void CompilerMSL::mark_as_packable(SPIRType &type)
+{
+ // If this is not the base type (eg. it's a pointer or array), tunnel down
+ if (type.parent_type)
+ {
+ mark_as_packable(get<SPIRType>(type.parent_type));
+ return;
+ }
+
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked))
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked);
+
+ // Recurse
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ uint32_t mbr_type_id = type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ mark_as_packable(mbr_type);
+ if (mbr_type.type_alias)
+ {
+ auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
+ mark_as_packable(mbr_type_alias);
+ }
+ }
+ }
+}
+
+// If the specified type is a struct, it and any nested structs
+// are marked as used with workgroup storage using the SPIRVCrossDecorationWorkgroupStruct decoration.
+void CompilerMSL::mark_as_workgroup_struct(SPIRType &type)
+{
+ // If this is not the base type (eg. it's a pointer or array), tunnel down
+ if (type.parent_type)
+ {
+ mark_as_workgroup_struct(get<SPIRType>(type.parent_type));
+ return;
+ }
+
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct);
+
+ // Recurse
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ uint32_t mbr_type_id = type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ mark_as_workgroup_struct(mbr_type);
+ if (mbr_type.type_alias)
+ {
+ auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
+ mark_as_workgroup_struct(mbr_type_alias);
+ }
+ }
+ }
+}
+
+// If a shader input exists at the location, it is marked as being used by this shader
+void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
+ StorageClass storage, bool fallback)
+{
+ uint32_t count = type_to_location_count(type);
+ switch (storage)
+ {
+ case StorageClassInput:
+ for (uint32_t i = 0; i < count; i++)
+ {
+ location_inputs_in_use.insert(location + i);
+ if (fallback)
+ location_inputs_in_use_fallback.insert(location + i);
+ }
+ break;
+ case StorageClassOutput:
+ for (uint32_t i = 0; i < count; i++)
+ {
+ location_outputs_in_use.insert(location + i);
+ if (fallback)
+ location_outputs_in_use_fallback.insert(location + i);
+ }
+ break;
+ default:
+ return;
+ }
+}
+
+uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
+{
+ auto itr = fragment_output_components.find(location);
+ if (itr == end(fragment_output_components))
+ return 4;
+ else
+ return itr->second;
+}
+
+uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype)
+{
+ assert(components > 1);
+ uint32_t new_type_id = ir.increase_bound_by(1);
+ const auto *p_old_type = &get<SPIRType>(type_id);
+ const SPIRType *old_ptr_t = nullptr;
+ const SPIRType *old_array_t = nullptr;
+
+ if (is_pointer(*p_old_type))
+ {
+ old_ptr_t = p_old_type;
+ p_old_type = &get_pointee_type(*old_ptr_t);
+ }
+
+ if (is_array(*p_old_type))
+ {
+ old_array_t = p_old_type;
+ p_old_type = &get_type(old_array_t->parent_type);
+ }
+
+ auto *type = &set<SPIRType>(new_type_id, *p_old_type);
+ assert(is_scalar(*type) || is_vector(*type));
+ type->op = OpTypeVector;
+ type->vecsize = components;
+ if (basetype != SPIRType::Unknown)
+ type->basetype = basetype;
+ type->self = new_type_id;
+ // We want parent type to point to the scalar type.
+ type->parent_type = is_scalar(*p_old_type) ? TypeID(p_old_type->self) : p_old_type->parent_type;
+ assert(is_scalar(get<SPIRType>(type->parent_type)));
+ type->array.clear();
+ type->array_size_literal.clear();
+ type->pointer = false;
+
+ if (old_array_t)
+ {
+ uint32_t array_type_id = ir.increase_bound_by(1);
+ type = &set<SPIRType>(array_type_id, *type);
+ type->op = OpTypeArray;
+ type->parent_type = new_type_id;
+ type->array = old_array_t->array;
+ type->array_size_literal = old_array_t->array_size_literal;
+ new_type_id = array_type_id;
+ }
+
+ if (old_ptr_t)
+ {
+ uint32_t ptr_type_id = ir.increase_bound_by(1);
+ type = &set<SPIRType>(ptr_type_id, *type);
+ type->op = OpTypePointer;
+ type->parent_type = new_type_id;
+ type->storage = old_ptr_t->storage;
+ type->pointer = true;
+ type->pointer_depth++;
+ new_type_id = ptr_type_id;
+ }
+
+ return new_type_id;
+}
+
+uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective)
+{
+ uint32_t new_type_id = ir.increase_bound_by(1);
+ SPIRType &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
+ type.basetype = SPIRType::Interpolant;
+ type.parent_type = type_id;
+ // In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself.
+ // Add this decoration so we know which argument to pass to the template.
+ if (is_noperspective)
+ set_decoration(new_type_id, DecorationNoPerspective);
+ return new_type_id;
+}
+
+bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
+ SPIRVariable &var,
+ const SPIRType &type,
+ InterfaceBlockMeta &meta)
+{
+ // Deal with Component decorations.
+ const InterfaceBlockMeta::LocationMeta *location_meta = nullptr;
+ uint32_t location = ~0u;
+ if (has_decoration(var.self, DecorationLocation))
+ {
+ location = get_decoration(var.self, DecorationLocation);
+ auto location_meta_itr = meta.location_meta.find(location);
+ if (location_meta_itr != end(meta.location_meta))
+ location_meta = &location_meta_itr->second;
+ }
+
+ // Check if we need to pad fragment output to match a certain number of components.
+ if (location_meta)
+ {
+ bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
+ msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ uint32_t start_component = get_decoration(var.self, DecorationComponent);
+ uint32_t type_components = type.vecsize;
+ uint32_t num_components = location_meta->num_components;
+
+ if (pad_fragment_output)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ num_components = max<uint32_t>(num_components, get_target_components_for_fragment_location(locn));
+ }
+
+ // We have already declared an IO block member as m_location_N.
+ // Just emit an early-declared variable and fixup as needed.
+ // Arrays need to be unrolled here since each location might need a different number of components.
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+
+ if (var.storage == StorageClassInput)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &type, &var]() {
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
+ {
+ statement(to_name(var.self), "[", loc_off, "]", " = ", ib_var_ref,
+ ".m_location_", location + loc_off,
+ vector_swizzle(type_components, start_component), ";");
+ }
+ }
+ else
+ {
+ statement(to_name(var.self), " = ", ib_var_ref, ".m_location_", location,
+ vector_swizzle(type_components, start_component), ";");
+ }
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_out.push_back([=, &type, &var]() {
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
+ {
+ statement(ib_var_ref, ".m_location_", location + loc_off,
+ vector_swizzle(type_components, start_component), " = ",
+ to_name(var.self), "[", loc_off, "];");
+ }
+ }
+ else
+ {
+ statement(ib_var_ref, ".m_location_", location,
+ vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";");
+ }
+ });
+ }
+ return true;
+ }
+ else
+ return false;
+}
+
+void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta)
+{
+ bool is_builtin = is_builtin_variable(var);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_flat = has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_decoration(var.self, DecorationCentroid);
+ bool is_sample = has_decoration(var.self, DecorationSample);
+
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
+ var.basetype = type_id;
+
+ type_id = get_pointee_type_id(var.basetype);
+ if (meta.strip_array && is_array(get<SPIRType>(type_id)))
+ type_id = get<SPIRType>(type_id).parent_type;
+ auto &type = get<SPIRType>(type_id);
+ uint32_t target_components = 0;
+ uint32_t type_components = type.vecsize;
+
+ bool padded_output = false;
+ bool padded_input = false;
+ uint32_t start_component = 0;
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta))
+ return;
+
+ bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
+ msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
+
+ if (pad_fragment_output)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ target_components = get_target_components_for_fragment_location(locn);
+ if (type_components < target_components)
+ {
+ // Make a new type here.
+ type_id = build_extended_vector_type(type_id, target_components);
+ padded_output = true;
+ }
+ }
+
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(type_id, is_noperspective));
+ else
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(to_expression(var.self), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Update the original variable reference to include the structure reference
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+ // If using pull-model interpolation, need to add a call to the correct interpolation method.
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ {
+ if (is_centroid)
+ qual_var_name += ".interpolate_at_centroid()";
+ else if (is_sample)
+ qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ qual_var_name += ".interpolate_at_center()";
+ }
+
+ if (padded_output || padded_input)
+ {
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+
+ if (padded_output)
+ {
+ entry_func.fixup_hooks_out.push_back([=, &var]() {
+ statement(qual_var_name, vector_swizzle(type_components, start_component), " = ", to_name(var.self),
+ ";");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ statement(to_name(var.self), " = ", qual_var_name, vector_swizzle(type_components, start_component),
+ ";");
+ });
+ }
+ }
+ else if (!meta.strip_array)
+ ir.meta[var.self].decoration.qualified_alias = qual_var_name;
+
+ if (var.storage == StorageClassOutput && var.initializer != ID(0))
+ {
+ if (padded_output || padded_input)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=, &var]() { statement(to_name(var.self), " = ", to_expression(var.initializer), ";"); });
+ }
+ else
+ {
+ if (meta.strip_array)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ uint32_t index = get_extended_decoration(var.self, SPIRVCrossDecorationInterfaceMemberIndex);
+ auto invocation = to_tesc_invocation_id();
+ statement(to_expression(stage_out_ptr_var_id), "[",
+ invocation, "].",
+ to_member_name(ib_type, index), " = ", to_expression(var.initializer), "[",
+ invocation, "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ statement(qual_var_name, " = ", to_expression(var.initializer), ";");
+ });
+ }
+ }
+ }
+
+ // Copy the variable location from the original variable to the member
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ uint32_t comp = get_decoration(var.self, DecorationComponent);
+ if (storage == StorageClassInput)
+ {
+ type_id = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
+ var.basetype = type_id;
+
+ type_id = get_pointee_type_id(type_id);
+ if (meta.strip_array && is_array(get<SPIRType>(type_id)))
+ type_id = get<SPIRType>(type_id).parent_type;
+ if (pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ if (comp)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ mark_location_as_used_by_shader(locn, get<SPIRType>(type_id), storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = inputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, type, storage);
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = outputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, type, storage);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationComponent))
+ {
+ uint32_t component = get_decoration(var.self, DecorationComponent);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, component);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationIndex))
+ {
+ uint32_t index = get_decoration(var.self, DecorationIndex);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
+ }
+
+ // Mark the member as builtin if needed
+ if (is_builtin)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ if (builtin == BuiltInPosition && storage == StorageClassOutput)
+ qual_pos_var_name = qual_var_name;
+ }
+
+ // Copy interpolation decorations if needed
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+}
+
+void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var,
+ InterfaceBlockMeta &meta)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ uint32_t elem_cnt = 0;
+
+ if (add_component_variable_to_interface_block(storage, ib_var_ref, var, var_type, meta))
+ return;
+
+ if (is_matrix(var_type))
+ {
+ if (is_array(var_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ elem_cnt = var_type.columns;
+ }
+ else if (is_array(var_type))
+ {
+ if (var_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ elem_cnt = to_array_size_literal(var_type);
+ }
+
+ bool is_builtin = is_builtin_variable(var);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_flat = has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_decoration(var.self, DecorationCentroid);
+ bool is_sample = has_decoration(var.self, DecorationSample);
+
+ auto *usable_type = &var_type;
+ if (usable_type->pointer)
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+ while (is_array(*usable_type) || is_matrix(*usable_type))
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+
+ // If a builtin, force it to have the proper name.
+ if (is_builtin)
+ set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
+
+ bool flatten_from_ib_var = false;
+ string flatten_from_ib_mbr_name;
+
+ if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
+ {
+ // Also declare [[clip_distance]] attribute here.
+ uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(get_variable_data_type_id(var));
+ set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);
+
+ flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
+ set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);
+
+ // When we flatten, we flatten directly from the "out" struct,
+ // not from a function variable.
+ flatten_from_ib_var = true;
+
+ if (!msl_options.enable_clip_distance_user_varying)
+ return;
+ }
+ else if (!meta.strip_array)
+ {
+ // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
+ entry_func.add_local_variable(var.self);
+ // We need to declare the variable early and at entry-point scope.
+ vars_needing_early_declaration.push_back(var.self);
+ }
+
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ uint32_t target_components = 0;
+ bool padded_output = false;
+ uint32_t type_id = usable_type->self;
+
+ // Check if we need to pad fragment output to match a certain number of components.
+ if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
+ target_components = get_target_components_for_fragment_location(locn);
+ if (usable_type->vecsize < target_components)
+ {
+ // Make a new type here.
+ type_id = build_extended_vector_type(usable_type->self, target_components);
+ padded_output = true;
+ }
+ }
+
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(get_pointee_type_id(type_id), is_noperspective));
+ else
+ ib_type.member_types.push_back(get_pointee_type_id(type_id));
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // There is no qualified alias since we need to flatten the internal array on return.
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
+ uint32_t comp = get_decoration(var.self, DecorationComponent);
+ if (storage == StorageClassInput)
+ {
+ var.basetype = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
+ uint32_t mbr_type_id = ensure_correct_input_type(usable_type->self, locn, comp, 0, meta.strip_array);
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ if (comp)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ mark_location_as_used_by_shader(locn, *usable_type, storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = inputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, *usable_type, storage);
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = outputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, *usable_type, storage);
+ }
+ else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
+ {
+ // Declare the Clip/CullDistance as [[user(clip/cullN)]].
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationIndex))
+ {
+ uint32_t index = get_decoration(var.self, DecorationIndex);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
+ }
+
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+
+ // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
+ if (!meta.strip_array)
+ {
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ if (pull_model_inputs.count(var.self))
+ {
+ string lerp_call;
+ if (is_centroid)
+ lerp_call = ".interpolate_at_centroid()";
+ else if (is_sample)
+ lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ lerp_call = ".interpolate_at_center()";
+ statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
+ }
+ else
+ {
+ statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";");
+ }
+ });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=, &var]() {
+ if (padded_output)
+ {
+ auto &padded_type = this->get<SPIRType>(type_id);
+ statement(
+ ib_var_ref, ".", mbr_name, " = ",
+ remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
+ ";");
+ }
+ else if (flatten_from_ib_var)
+ statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i,
+ "];");
+ else
+ statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+}
+
+void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage,
+ const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, SPIRType &var_type,
+ uint32_t mbr_idx, InterfaceBlockMeta &meta,
+ const string &mbr_name_qual,
+ const string &var_chain_qual,
+ uint32_t &location, uint32_t &var_mbr_idx,
+ const Bitset &interpolation_qual)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ bool is_flat = interpolation_qual.get(DecorationFlat) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationFlat) ||
+ has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = interpolation_qual.get(DecorationNoPerspective) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
+ has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = interpolation_qual.get(DecorationCentroid) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
+ has_decoration(var.self, DecorationCentroid);
+ bool is_sample = interpolation_qual.get(DecorationSample) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationSample) ||
+ has_decoration(var.self, DecorationSample);
+
+ Bitset inherited_qual;
+ if (is_flat)
+ inherited_qual.set(DecorationFlat);
+ if (is_noperspective)
+ inherited_qual.set(DecorationNoPerspective);
+ if (is_centroid)
+ inherited_qual.set(DecorationCentroid);
+ if (is_sample)
+ inherited_qual.set(DecorationSample);
+
+ uint32_t mbr_type_id = var_type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+
+ bool mbr_is_indexable = false;
+ uint32_t elem_cnt = 1;
+ if (is_matrix(mbr_type))
+ {
+ if (is_array(mbr_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ mbr_is_indexable = true;
+ elem_cnt = mbr_type.columns;
+ }
+ else if (is_array(mbr_type))
+ {
+ if (mbr_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ mbr_is_indexable = true;
+ elem_cnt = to_array_size_literal(mbr_type);
+ }
+
+ auto *usable_type = &mbr_type;
+ if (usable_type->pointer)
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+ while (is_array(*usable_type) || is_matrix(*usable_type))
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+
+ bool flatten_from_ib_var = false;
+ string flatten_from_ib_mbr_name;
+
+ if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
+ {
+ // Also declare [[clip_distance]] attribute here.
+ uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(mbr_type_id);
+ set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);
+
+ flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
+ set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);
+
+ // When we flatten, we flatten directly from the "out" struct,
+ // not from a function variable.
+ flatten_from_ib_var = true;
+
+ if (!msl_options.enable_clip_distance_user_varying)
+ return;
+ }
+
+ // Recursively handle nested structures.
+ if (mbr_type.basetype == SPIRType::Struct)
+ {
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ string mbr_name = append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : "");
+ string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
+ uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size());
+ for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++)
+ {
+ add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
+ var, mbr_type, sub_mbr_idx,
+ meta, mbr_name, var_chain,
+ location, var_mbr_idx, inherited_qual);
+ // FIXME: Recursive structs and tessellation breaks here.
+ var_mbr_idx++;
+ }
+ }
+ return;
+ }
+
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(usable_type->self, is_noperspective));
+ else
+ ib_type.member_types.push_back(usable_type->self);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : ""), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Once we determine the location of the first member within nested structures,
+ // from a var of the topmost structure, the remaining flattened members of
+ // the nested structures will have consecutive location values. At this point,
+ // we've recursively tunnelled into structs, arrays, and matrices, and are
+ // down to a single location for each member now.
+ if (!is_builtin && location != UINT32_MAX)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
+ {
+ location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (has_decoration(var.self, DecorationLocation))
+ {
+ location = get_accumulated_member_location(var, mbr_idx, meta.strip_array) + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ location = inputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ location = outputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
+ {
+ // Declare the Clip/CullDistance as [[user(clip/cullN)]].
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
+ }
+
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
+ SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported.");
+
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
+
+ // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
+ if (!meta.strip_array && meta.allow_local_declaration)
+ {
+ string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ string lerp_call;
+ if (pull_model_inputs.count(var.self))
+ {
+ if (is_centroid)
+ lerp_call = ".interpolate_at_centroid()";
+ else if (is_sample)
+ lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ lerp_call = ".interpolate_at_center()";
+ }
+ statement(var_chain, " = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
+ });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=]() {
+ if (flatten_from_ib_var)
+ statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];");
+ else
+ statement(ib_var_ref, ".", mbr_name, " = ", var_chain, ";");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+}
+
+void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage,
+ const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, SPIRType &var_type,
+ uint32_t mbr_idx, InterfaceBlockMeta &meta,
+ const string &mbr_name_qual,
+ const string &var_chain_qual,
+ uint32_t &location, uint32_t &var_mbr_idx)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ bool is_flat =
+ has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
+ has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
+ has_decoration(var.self, DecorationCentroid);
+ bool is_sample =
+ has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
+
+ // Add a reference to the member to the interface struct.
+ uint32_t mbr_type_id = var_type.member_types[mbr_idx];
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(mbr_type_id, is_noperspective));
+ else
+ ib_type.member_types.push_back(mbr_type_id);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Update the original variable reference to include the structure reference
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+ // If using pull-model interpolation, need to add a call to the correct interpolation method.
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ {
+ if (is_centroid)
+ qual_var_name += ".interpolate_at_centroid()";
+ else if (is_sample)
+ qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ qual_var_name += ".interpolate_at_center()";
+ }
+
+ bool flatten_stage_out = false;
+ string var_chain = var_chain_qual + "." + to_member_name(var_type, mbr_idx);
+ if (is_builtin && !meta.strip_array)
+ {
+ // For the builtin gl_PerVertex, we cannot treat it as a block anyways,
+ // so redirect to qualified name.
+ set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
+ }
+ else if (!meta.strip_array && meta.allow_local_declaration)
+ {
+ // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(var_chain, " = ", qual_var_name, ";");
+ });
+ break;
+
+ case StorageClassOutput:
+ flatten_stage_out = true;
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(qual_var_name, " = ", var_chain, ";");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Once we determine the location of the first member within nested structures,
+ // from a var of the topmost structure, the remaining flattened members of
+ // the nested structures will have consecutive location values. At this point,
+ // we've recursively tunnelled into structs, arrays, and matrices, and are
+ // down to a single location for each member now.
+ if (!is_builtin && location != UINT32_MAX)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
+ {
+ location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
+ uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
+ if (storage == StorageClassInput)
+ {
+ mbr_type_id = ensure_correct_input_type(mbr_type_id, location, comp, 0, meta.strip_array);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (has_decoration(var.self, DecorationLocation))
+ {
+ location = get_accumulated_member_location(var, mbr_idx, meta.strip_array);
+ if (storage == StorageClassInput)
+ {
+ mbr_type_id = ensure_correct_input_type(mbr_type_id, location, 0, 0, meta.strip_array);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ location = inputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ location = outputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+
+ // Copy the component location, if present.
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
+ {
+ uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ }
+
+ // Mark the member as builtin if needed
+ if (is_builtin)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ if (builtin == BuiltInPosition && storage == StorageClassOutput)
+ qual_pos_var_name = qual_var_name;
+ }
+
+ const SPIRConstant *c = nullptr;
+ if (!flatten_stage_out && var.storage == StorageClassOutput &&
+ var.initializer != ID(0) && (c = maybe_get<SPIRConstant>(var.initializer)))
+ {
+ if (meta.strip_array)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ auto &type = this->get<SPIRType>(var.basetype);
+ uint32_t index = get_extended_member_decoration(var.self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex);
+
+ auto invocation = to_tesc_invocation_id();
+ auto constant_chain = join(to_expression(var.initializer), "[", invocation, "]");
+ statement(to_expression(stage_out_ptr_var_id), "[",
+ invocation, "].",
+ to_member_name(ib_type, index), " = ",
+ constant_chain, ".", to_member_name(type, mbr_idx), ";");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(qual_var_name, " = ", constant_expression(
+ this->get<SPIRConstant>(c->subconstants[mbr_idx])), ";");
+ });
+ }
+ }
+
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
+}
+
+// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
+// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
+// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
+// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
+// float2 containing the inner levels.
+void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var)
+{
+ auto &var_type = get_variable_element_type(var);
+
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool triangles = is_tessellating_triangles();
+ string mbr_name;
+
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ const auto mark_locations = [&](const SPIRType &new_var_type) {
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
+ }
+ else if (inputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = inputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
+ }
+ };
+
+ if (triangles)
+ {
+ // Triangles are tricky, because we want only one member in the struct.
+ mbr_name = "gl_TessLevel";
+
+ // If we already added the other one, we can skip this step.
+ if (!added_builtin_tess_level)
+ {
+ uint32_t type_id = build_extended_vector_type(var_type.self, 4);
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // We cannot decorate both, but the important part is that
+ // it's marked as builtin so we can get automatic attribute assignment if needed.
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+
+ mark_locations(var_type);
+ added_builtin_tess_level = true;
+ }
+ }
+ else
+ {
+ mbr_name = builtin_to_glsl(builtin, StorageClassFunction);
+
+ uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);
+
+ uint32_t ptr_type_id = ir.increase_bound_by(1);
+ auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
+ new_var_type.pointer = true;
+ new_var_type.pointer_depth++;
+ new_var_type.storage = StorageClassInput;
+ new_var_type.parent_type = type_id;
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+
+ mark_locations(new_var_type);
+ }
+
+ add_tess_level_input(ib_var_ref, mbr_name, var);
+}
+
+void CompilerMSL::add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+
+ // Force the variable to have the proper name.
+ string var_name = builtin_to_glsl(builtin, StorageClassFunction);
+ set_name(var.self, var_name);
+
+ // We need to declare the variable early and at entry-point scope.
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+ bool triangles = is_tessellating_triangles();
+
+ if (builtin == BuiltInTessLevelOuter)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
+ statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
+ statement(var_name, "[2] = ", base_ref, ".", mbr_name, "[2];");
+ if (!triangles)
+ statement(var_name, "[3] = ", base_ref, ".", mbr_name, "[3];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (triangles)
+ {
+ if (msl_options.raw_buffer_tese_input)
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, ";");
+ else
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[3];");
+ }
+ else
+ {
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
+ statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
+ }
+ });
+ }
+}
+
+bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const
+{
+ if (storage == StorageClassOutput)
+ return !capture_output_to_buffer;
+ else if (storage == StorageClassInput)
+ return !(is_tesc_shader() && msl_options.multi_patch_workgroup) &&
+ !(is_tese_shader() && msl_options.raw_buffer_tese_input);
+ else
+ return false;
+}
+
+string CompilerMSL::to_tesc_invocation_id()
+{
+ if (msl_options.multi_patch_workgroup)
+ {
+ // n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
+ // not the TC invocation ID.
+ return join(to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices);
+ }
+ else
+ return builtin_to_glsl(BuiltInInvocationId, StorageClassInput);
+}
+
+void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ bool threadgroup_storage = variable_decl_is_remapped_storage(masked_var, StorageClassWorkgroup);
+
+ if (threadgroup_storage && msl_options.multi_patch_workgroup)
+ {
+ // We need one threadgroup block per patch, so fake this.
+ entry_func.fixup_hooks_in.push_back([this, &masked_var]() {
+ auto &type = get_variable_data_type(masked_var);
+ add_local_variable_name(masked_var.self);
+
+ const uint32_t max_control_points_per_patch = 32u;
+ uint32_t max_num_instances =
+ (max_control_points_per_patch + get_entry_point().output_vertices - 1u) /
+ get_entry_point().output_vertices;
+ statement("threadgroup ", type_to_glsl(type), " ",
+ "spvStorage", to_name(masked_var.self), "[", max_num_instances, "]",
+ type_to_array_glsl(type, 0), ";");
+
+ // Assign a threadgroup slice to each PrimitiveID.
+ // We assume here that workgroup size is rounded to 32,
+ // since that's the maximum number of control points per patch.
+ // We cannot size the array based on fixed dispatch parameters,
+ // since Metal does not allow that. :(
+ // FIXME: We will likely need an option to support passing down target workgroup size,
+ // so we can emit appropriate size here.
+ statement("threadgroup auto ",
+ "&", to_name(masked_var.self),
+ " = spvStorage", to_name(masked_var.self), "[",
+ "(", to_expression(builtin_invocation_id_id), ".x / ",
+ get_entry_point().output_vertices, ") % ",
+ max_num_instances, "];");
+ });
+ }
+ else
+ {
+ entry_func.add_local_variable(masked_var.self);
+ }
+
+ if (!threadgroup_storage)
+ {
+ vars_needing_early_declaration.push_back(masked_var.self);
+ }
+ else if (masked_var.initializer)
+ {
+ // Cannot directly initialize threadgroup variables. Need fixup hooks.
+ ID initializer = masked_var.initializer;
+ if (strip_array)
+ {
+ entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
+ auto invocation = to_tesc_invocation_id();
+ statement(to_expression(masked_var.self), "[",
+ invocation, "] = ",
+ to_expression(initializer), "[",
+ invocation, "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
+ statement(to_expression(masked_var.self), " = ", to_expression(initializer), ";");
+ });
+ }
+ }
+}
+
+void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, InterfaceBlockMeta &meta)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ // Tessellation control I/O variables and tessellation evaluation per-point inputs are
+ // usually declared as arrays. In these cases, we want to add the element type to the
+ // interface block, since in Metal it's the interface block itself which is arrayed.
+ auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ bool is_builtin = is_builtin_variable(var);
+ auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_block = has_decoration(var_type.self, DecorationBlock);
+
+ // If stage variables are masked out, emit them as plain variables instead.
+ // For builtins, we query them one by one later.
+ // IO blocks are not masked here, we need to mask them per-member instead.
+ if (storage == StorageClassOutput && is_stage_output_variable_masked(var))
+ {
+ // If we ignore an output, we must still emit it, since it might be used by app.
+ // Instead, just emit it as early declaration.
+ emit_local_masked_variable(var, meta.strip_array);
+ return;
+ }
+
+ if (storage == StorageClassInput && has_decoration(var.self, DecorationPerVertexKHR))
+ SPIRV_CROSS_THROW("PerVertexKHR decoration is not supported in MSL.");
+
+ // If variable names alias, they will end up with wrong names in the interface struct, because
+ // there might be aliases in the member name cache and there would be a mismatch in fixup_in code.
+ // Make sure to register the variables as unique resource names ahead of time.
+ // This would normally conflict with the name cache when emitting local variables,
+ // but this happens in the setup stage, before we hit compilation loops.
+ // The name cache is cleared before we actually emit code, so this is safe.
+ add_resource_name(var.self);
+
+ if (var_type.basetype == SPIRType::Struct)
+ {
+ bool block_requires_flattening =
+ variable_storage_requires_stage_io(storage) || (is_block && var_type.array.empty());
+ bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration;
+
+ if (needs_local_declaration)
+ {
+ // For I/O blocks or structs, we will need to pass the block itself around
+ // to functions if they are used globally in leaf functions.
+ // Rather than passing down member by member,
+ // we unflatten I/O blocks while running the shader,
+ // and pass the actual struct type down to leaf functions.
+ // We then unflatten inputs, and flatten outputs in the "fixup" stages.
+ emit_local_masked_variable(var, meta.strip_array);
+ }
+
+ if (!block_requires_flattening)
+ {
+ // In Metal tessellation shaders, the interface block itself is arrayed. This makes things
+ // very complicated, since stage-in structures in MSL don't support nested structures.
+ // Luckily, for stage-out when capturing output, we can avoid this and just add
+ // composite members directly, because the stage-out structure is stored to a buffer,
+ // not returned.
+ add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
+ }
+ else
+ {
+ bool masked_block = false;
+ uint32_t location = UINT32_MAX;
+ uint32_t var_mbr_idx = 0;
+ uint32_t elem_cnt = 1;
+ if (is_matrix(var_type))
+ {
+ if (is_array(var_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ elem_cnt = var_type.columns;
+ }
+ else if (is_array(var_type))
+ {
+ if (var_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ elem_cnt = to_array_size_literal(var_type);
+ }
+
+ for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++)
+ {
+ // Flatten the struct members into the interface struct
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
+ {
+ builtin = BuiltInMax;
+ is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);
+
+ if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, mbr_idx, meta.strip_array))
+ {
+ location = UINT32_MAX; // Skip this member and resolve location again on next var member
+
+ if (is_block)
+ masked_block = true;
+
+ // Non-builtin block output variables are just ignored, since they will still access
+ // the block variable as-is. They're just not flattened.
+ if (is_builtin && !meta.strip_array)
+ {
+ // Emit a fake variable instead.
+ uint32_t ids = ir.increase_bound_by(2);
+ uint32_t ptr_type_id = ids + 0;
+ uint32_t var_id = ids + 1;
+
+ auto ptr_type = mbr_type;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.parent_type = var_type.member_types[mbr_idx];
+ ptr_type.storage = StorageClassOutput;
+
+ uint32_t initializer = 0;
+ if (var.initializer)
+ if (auto *c = maybe_get<SPIRConstant>(var.initializer))
+ initializer = c->subconstants[mbr_idx];
+
+ set<SPIRType>(ptr_type_id, ptr_type);
+ set<SPIRVariable>(var_id, ptr_type_id, StorageClassOutput, initializer);
+ entry_func.add_local_variable(var_id);
+ vars_needing_early_declaration.push_back(var_id);
+ set_name(var_id, builtin_to_glsl(builtin, StorageClassOutput));
+ set_decoration(var_id, DecorationBuiltIn, builtin);
+ }
+ }
+ else if (!is_builtin || has_active_builtin(builtin, storage))
+ {
+ bool is_composite_type = is_matrix(mbr_type) || is_array(mbr_type) || mbr_type.basetype == SPIRType::Struct;
+ bool attribute_load_store =
+ storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
+ bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
+
+ // Clip/CullDistance always need to be declared as user attributes.
+ if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
+ is_builtin = false;
+
+ const string var_name = to_name(var.self);
+ string mbr_name_qual = var_name;
+ string var_chain_qual = var_name;
+ if (elem_cnt > 1)
+ {
+ mbr_name_qual += join("_", elem_idx);
+ var_chain_qual += join("[", elem_idx, "]");
+ }
+
+ if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
+ {
+ add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
+ var, var_type, mbr_idx, meta,
+ mbr_name_qual, var_chain_qual,
+ location, var_mbr_idx, {});
+ }
+ else
+ {
+ add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
+ var, var_type, mbr_idx, meta,
+ mbr_name_qual, var_chain_qual,
+ location, var_mbr_idx);
+ }
+ }
+ var_mbr_idx++;
+ }
+ }
+
+ // If we're redirecting a block, we might still need to access the original block
+ // variable if we're masking some members.
+ if (masked_block && !needs_local_declaration && (!is_builtin_variable(var) || is_tesc_shader()))
+ {
+ if (is_builtin_variable(var))
+ {
+ // Ensure correct names for the block members if we're actually going to
+ // declare gl_PerVertex.
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
+ {
+ set_member_name(var_type.self, mbr_idx, builtin_to_glsl(
+ BuiltIn(get_member_decoration(var_type.self, mbr_idx, DecorationBuiltIn)),
+ StorageClassOutput));
+ }
+
+ set_name(var_type.self, "gl_PerVertex");
+ set_name(var.self, "gl_out_masked");
+ stage_out_masked_builtin_type_id = var_type.self;
+ }
+ emit_local_masked_variable(var, meta.strip_array);
+ }
+ }
+ }
+ else if (is_tese_shader() && storage == StorageClassInput && !meta.strip_array && is_builtin &&
+ (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
+ {
+ add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
+ }
+ else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
+ type_is_integral(var_type) || type_is_floating_point(var_type))
+ {
+ if (!is_builtin || has_active_builtin(builtin, storage))
+ {
+ bool is_composite_type = is_matrix(var_type) || is_array(var_type);
+ bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
+ bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
+
+ // Clip/CullDistance always needs to be declared as user attributes.
+ if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
+ is_builtin = false;
+
+ // MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
+ if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
+ {
+ add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
+ }
+ else
+ {
+ add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
+ }
+ }
+ }
+}
+
+// Fix up the mapping of variables to interface member indices, which is used to compile access chains
+// for per-vertex variables in a tessellation control shader.
+void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
+{
+ // Only needed for tessellation shaders and pull-model interpolants.
+ // Need to redirect interface indices back to variables themselves.
+ // For structs, each member of the struct need a separate instance.
+ if (!is_tesc_shader() && !(is_tese_shader() && storage == StorageClassInput) &&
+ !(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput &&
+ !pull_model_inputs.empty()))
+ return;
+
+ auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size());
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ uint32_t var_id = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceOrigID);
+ if (!var_id)
+ continue;
+ auto &var = get<SPIRVariable>(var_id);
+
+ auto &type = get_variable_element_type(var);
+
+ bool flatten_composites = variable_storage_requires_stage_io(var.storage);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+
+ uint32_t mbr_idx = uint32_t(-1);
+ if (type.basetype == SPIRType::Struct && (flatten_composites || is_block))
+ mbr_idx = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);
+
+ if (mbr_idx != uint32_t(-1))
+ {
+ // Only set the lowest InterfaceMemberIndex for each variable member.
+ // IB struct members will be emitted in-order w.r.t. interface member index.
+ if (!has_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex))
+ set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ else
+ {
+ // Only set the lowest InterfaceMemberIndex for each variable.
+ // IB struct members will be emitted in-order w.r.t. interface member index.
+ if (!has_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex))
+ set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ }
+}
+
+// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
+// Returns the ID of the newly added variable, or zero if no variable was added.
+uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
+{
+ // Accumulate the variables that should appear in the interface struct.
+ SmallVector<SPIRVariable *> vars;
+ bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader();
+ bool has_seen_barycentric = false;
+
+ InterfaceBlockMeta meta;
+
+ // Varying interfaces between stages which use "user()" attribute can be dealt with
+ // without explicit packing and unpacking of components. For any variables which link against the runtime
+ // in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow.
+ bool pack_components =
+ (storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) ||
+ (storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) ||
+ (storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer);
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ if (var.storage != storage)
+ return;
+
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ bool is_builtin = is_builtin_variable(var);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+
+ auto bi_type = BuiltInMax;
+ bool builtin_is_gl_in_out = false;
+ if (is_builtin && !is_block)
+ {
+ bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
+ builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
+ }
+
+ if (is_builtin && is_block)
+ builtin_is_gl_in_out = true;
+
+ uint32_t location = get_decoration(var_id, DecorationLocation);
+
+ bool builtin_is_stage_in_out = builtin_is_gl_in_out ||
+ bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex ||
+ bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR ||
+ bi_type == BuiltInFragDepth ||
+ bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask;
+
+ // These builtins are part of the stage in/out structs.
+ bool is_interface_block_builtin =
+ builtin_is_stage_in_out || (is_tese_shader() && !msl_options.raw_buffer_tese_input &&
+ (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner));
+
+ bool is_active = interface_variable_exists_in_entry_point(var.self);
+ if (is_builtin && is_active)
+ {
+ // Only emit the builtin if it's active in this entry point. Interface variable list might lie.
+ if (is_block)
+ {
+ // If any builtin is active, the block is active.
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; !is_active && i < mbr_cnt; i++)
+ is_active = has_active_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)), storage);
+ }
+ else
+ {
+ is_active = has_active_builtin(bi_type, storage);
+ }
+ }
+
+ bool filter_patch_decoration = (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch;
+
+ bool hidden = is_hidden_variable(var, incl_builtins);
+
+ // ClipDistance is never hidden, we need to emulate it when used as an input.
+ if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance)
+ hidden = false;
+
+ // It's not enough to simply avoid marking fragment outputs if the pipeline won't
+ // accept them. We can't put them in the struct at all, or otherwise the compiler
+ // complains that the outputs weren't explicitly marked.
+ // Frag depth and stencil outputs are incompatible with explicit early fragment tests.
+ // In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required.
+ // In Metal, it's a compilation error, so we need to exclude them from the output struct.
+ if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch &&
+ ((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) ||
+ (bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) ||
+ (!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location)))))
+ {
+ hidden = true;
+ disabled_frag_outputs.push_back(var_id);
+ // If a builtin, force it to have the proper name, and mark it as not part of the output struct.
+ if (is_builtin)
+ {
+ set_name(var_id, builtin_to_glsl(bi_type, StorageClassFunction));
+ mask_stage_output_by_builtin(bi_type);
+ }
+ }
+
+ // Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments.
+ if (is_active && (bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR))
+ {
+ if (has_seen_barycentric)
+ SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL.");
+ has_seen_barycentric = true;
+ hidden = false;
+ }
+
+ if (is_active && !hidden && type.pointer && filter_patch_decoration &&
+ (!is_builtin || is_interface_block_builtin))
+ {
+ vars.push_back(&var);
+
+ if (!is_builtin)
+ {
+ // Need to deal specially with DecorationComponent.
+ // Multiple variables can alias the same Location, and try to make sure each location is declared only once.
+ // We will swizzle data in and out to make this work.
+ // This is only relevant for vertex inputs and fragment outputs.
+ // Technically tessellation as well, but it is too complicated to support.
+ uint32_t component = get_decoration(var_id, DecorationComponent);
+ if (component != 0)
+ {
+ if (is_tessellation_shader())
+ SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders.");
+ else if (pack_components)
+ {
+ uint32_t array_size = 1;
+ if (!type.array.empty())
+ array_size = to_array_size_literal(type);
+
+ for (uint32_t location_offset = 0; location_offset < array_size; location_offset++)
+ {
+ auto &location_meta = meta.location_meta[location + location_offset];
+ location_meta.num_components = max<uint32_t>(location_meta.num_components, component + type.vecsize);
+
+ // For variables sharing location, decorations and base type must match.
+ location_meta.base_type_id = type.self;
+ location_meta.flat = has_decoration(var.self, DecorationFlat);
+ location_meta.noperspective = has_decoration(var.self, DecorationNoPerspective);
+ location_meta.centroid = has_decoration(var.self, DecorationCentroid);
+ location_meta.sample = has_decoration(var.self, DecorationSample);
+ }
+ }
+ }
+ }
+ }
+
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input && patch && storage == StorageClassInput &&
+ (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))
+ {
+ // In this case, we won't add the builtin to the interface struct,
+ // but we still need the hook to run to populate the arrays.
+ string base_ref = join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "]");
+ const char *mbr_name =
+ bi_type == BuiltInTessLevelOuter ? "edgeTessellationFactor" : "insideTessellationFactor";
+ add_tess_level_input(base_ref, mbr_name, var);
+ if (inputs_by_builtin.count(bi_type))
+ {
+ uint32_t locn = inputs_by_builtin[bi_type].location;
+ mark_location_as_used_by_shader(locn, type, StorageClassInput);
+ }
+ }
+ });
+
+ // If no variables qualify, leave.
+ // For patch input in a tessellation evaluation shader, the per-vertex stage inputs
+ // are included in a special patch control point array.
+ if (vars.empty() &&
+ !(!msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch && stage_in_var_id))
+ return 0;
+
+ // Add a new typed variable for this interface structure.
+ // The initializer expression is allocated here, but populated when the function
+ // declaraion is emitted, because it is cleared after each compilation pass.
+ uint32_t next_id = ir.increase_bound_by(3);
+ uint32_t ib_type_id = next_id++;
+ auto &ib_type = set<SPIRType>(ib_type_id, OpTypeStruct);
+ ib_type.basetype = SPIRType::Struct;
+ ib_type.storage = storage;
+ set_decoration(ib_type_id, DecorationBlock);
+
+ uint32_t ib_var_id = next_id++;
+ auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
+ var.initializer = next_id++;
+
+ string ib_var_ref;
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ switch (storage)
+ {
+ case StorageClassInput:
+ ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
+ switch (get_execution_model())
+ {
+ case ExecutionModelTessellationControl:
+ // Add a hook to populate the shared workgroup memory containing the gl_in array.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet.
+ if (msl_options.multi_patch_workgroup)
+ {
+ // n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
+ // not the TC invocation ID.
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
+ input_buffer_var_name, "[min(", to_expression(builtin_invocation_id_id), ".x / ",
+ get_entry_point().output_vertices,
+ ", spvIndirectParams[1] - 1) * spvIndirectParams[0]];");
+ }
+ else
+ {
+ // It's safe to use InvocationId here because it's directly mapped to a
+ // Metal builtin, and therefore doesn't need a hook.
+ statement("if (", to_expression(builtin_invocation_id_id), " < spvIndirectParams[0])");
+ statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id),
+ "] = ", ib_var_ref, ";");
+ statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
+ statement("if (", to_expression(builtin_invocation_id_id),
+ " >= ", get_entry_point().output_vertices, ")");
+ statement(" return;");
+ }
+ });
+ break;
+ case ExecutionModelTessellationEvaluation:
+ if (!msl_options.raw_buffer_tese_input)
+ break;
+ if (patch)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", patch_input_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
+ input_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
+ get_entry_point().output_vertices, "];");
+ });
+ }
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case StorageClassOutput:
+ {
+ ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
+
+ // Add the output interface struct as a local variable to the entry function.
+ // If the entry point should return the output struct, set the entry function
+ // to return the output interface struct, otherwise to return nothing.
+ // Watch out for the rare case where the terminator of the last entry point block is a
+ // Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that
+ // any block that has a Kill will also have a terminating Return, except the last block.
+ // Indicate the output var requires early initialization.
+ bool ep_should_return_output = !get_is_rasterization_disabled();
+ uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
+ if (!capture_output_to_buffer)
+ {
+ entry_func.add_local_variable(ib_var_id);
+ for (auto &blk_id : entry_func.blocks)
+ {
+ auto &blk = get<SPIRBlock>(blk_id);
+ if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back()))
+ blk.return_value = rtn_id;
+ }
+ vars_needing_early_declaration.push_back(ib_var_id);
+ }
+ else
+ {
+ switch (get_execution_model())
+ {
+ case ExecutionModelVertex:
+ case ExecutionModelTessellationEvaluation:
+ // Instead of declaring a struct variable to hold the output and then
+ // copying that to the output buffer, we'll declare the output variable
+ // as a reference to the final output element in the buffer. Then we can
+ // avoid the extra copy.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (stage_out_var_id)
+ {
+ // The first member of the indirect buffer is always the number of vertices
+ // to draw.
+ // We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice
+ if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
+ {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
+ ".y * ", to_expression(builtin_stage_input_size_id), ".x + ",
+ to_expression(builtin_invocation_id_id), ".x];");
+ }
+ else if (msl_options.enable_base_index_zero)
+ {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", output_buffer_var_name, "[", to_expression(builtin_instance_idx_id),
+ " * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), "];");
+ }
+ else
+ {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id),
+ " - ", to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
+ to_expression(builtin_vertex_idx_id), " - ",
+ to_expression(builtin_base_vertex_id), "];");
+ }
+ }
+ });
+ break;
+ case ExecutionModelTessellationControl:
+ if (msl_options.multi_patch_workgroup)
+ {
+ // We cannot use PrimitiveId here, because the hook may not have run yet.
+ if (patch)
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", patch_output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
+ ".x / ", get_entry_point().output_vertices, "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
+ output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x - ",
+ to_expression(builtin_invocation_id_id), ".x % ",
+ get_entry_point().output_vertices, "];");
+ });
+ }
+ }
+ else
+ {
+ if (patch)
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
+ output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
+ get_entry_point().output_vertices, "];");
+ });
+ }
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
+ set_name(ib_var_id, ib_var_ref);
+
+ for (auto *p_var : vars)
+ {
+ bool strip_array = (is_tesc_shader() || (is_tese_shader() && storage == StorageClassInput)) && !patch;
+
+ // Fixing up flattened stores in TESC is impossible since the memory is group shared either via
+ // device (not masked) or threadgroup (masked) storage classes and it's race condition city.
+ meta.strip_array = strip_array;
+ meta.allow_local_declaration = !strip_array && !(is_tesc_shader() && storage == StorageClassOutput);
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, meta);
+ }
+
+ if (((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
+ (is_tese_shader() && msl_options.raw_buffer_tese_input)) &&
+ storage == StorageClassInput)
+ {
+ // For tessellation inputs, add all outputs from the previous stage to ensure
+ // the struct containing them is the correct size and layout.
+ for (auto &input : inputs_by_location)
+ {
+ if (location_inputs_in_use.count(input.first.location) != 0)
+ continue;
+
+ if (patch != (input.second.rate == MSL_SHADER_VARIABLE_RATE_PER_PATCH))
+ continue;
+
+ // Tessellation levels have their own struct, so there's no need to add them here.
+ if (input.second.builtin == BuiltInTessLevelOuter || input.second.builtin == BuiltInTessLevelInner)
+ continue;
+
+ // Create a fake variable to put at the location.
+ uint32_t offset = ir.increase_bound_by(5);
+ uint32_t type_id = offset;
+ uint32_t vec_type_id = offset + 1;
+ uint32_t array_type_id = offset + 2;
+ uint32_t ptr_type_id = offset + 3;
+ uint32_t var_id = offset + 4;
+
+ SPIRType type { OpTypeInt };
+ switch (input.second.format)
+ {
+ case MSL_SHADER_VARIABLE_FORMAT_UINT16:
+ case MSL_SHADER_VARIABLE_FORMAT_ANY16:
+ type.basetype = SPIRType::UShort;
+ type.width = 16;
+ break;
+ case MSL_SHADER_VARIABLE_FORMAT_ANY32:
+ default:
+ type.basetype = SPIRType::UInt;
+ type.width = 32;
+ break;
+ }
+ set<SPIRType>(type_id, type);
+ if (input.second.vecsize > 1)
+ {
+ type.op = OpTypeVector;
+ type.vecsize = input.second.vecsize;
+ set<SPIRType>(vec_type_id, type);
+ type_id = vec_type_id;
+ }
+
+ type.op = OpTypeArray;
+ type.array.push_back(0);
+ type.array_size_literal.push_back(true);
+ type.parent_type = type_id;
+ set<SPIRType>(array_type_id, type);
+ type.self = type_id;
+
+ type.op = OpTypePointer;
+ type.pointer = true;
+ type.pointer_depth++;
+ type.parent_type = array_type_id;
+ type.storage = storage;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, type);
+ ptr_type.self = array_type_id;
+
+ auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
+ set_decoration(var_id, DecorationLocation, input.first.location);
+ if (input.first.component)
+ set_decoration(var_id, DecorationComponent, input.first.component);
+
+ meta.strip_array = true;
+ meta.allow_local_declaration = false;
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
+ }
+ }
+
+ if (capture_output_to_buffer && storage == StorageClassOutput)
+ {
+ // For captured output, add all inputs from the next stage to ensure
+ // the struct containing them is the correct size and layout. This is
+ // necessary for certain implicit builtins that may nonetheless be read,
+ // even when they aren't written.
+ for (auto &output : outputs_by_location)
+ {
+ if (location_outputs_in_use.count(output.first.location) != 0)
+ continue;
+
+ // Create a fake variable to put at the location.
+ uint32_t offset = ir.increase_bound_by(5);
+ uint32_t type_id = offset;
+ uint32_t vec_type_id = offset + 1;
+ uint32_t array_type_id = offset + 2;
+ uint32_t ptr_type_id = offset + 3;
+ uint32_t var_id = offset + 4;
+
+ SPIRType type { OpTypeInt };
+ switch (output.second.format)
+ {
+ case MSL_SHADER_VARIABLE_FORMAT_UINT16:
+ case MSL_SHADER_VARIABLE_FORMAT_ANY16:
+ type.basetype = SPIRType::UShort;
+ type.width = 16;
+ break;
+ case MSL_SHADER_VARIABLE_FORMAT_ANY32:
+ default:
+ type.basetype = SPIRType::UInt;
+ type.width = 32;
+ break;
+ }
+ set<SPIRType>(type_id, type);
+ if (output.second.vecsize > 1)
+ {
+ type.op = OpTypeVector;
+ type.vecsize = output.second.vecsize;
+ set<SPIRType>(vec_type_id, type);
+ type_id = vec_type_id;
+ }
+
+ if (is_tesc_shader())
+ {
+ type.op = OpTypeArray;
+ type.array.push_back(0);
+ type.array_size_literal.push_back(true);
+ type.parent_type = type_id;
+ set<SPIRType>(array_type_id, type);
+ }
+
+ type.op = OpTypePointer;
+ type.pointer = true;
+ type.pointer_depth++;
+ type.parent_type = is_tesc_shader() ? array_type_id : type_id;
+ type.storage = storage;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, type);
+ ptr_type.self = type.parent_type;
+
+ auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
+ set_decoration(var_id, DecorationLocation, output.first.location);
+ if (output.first.component)
+ set_decoration(var_id, DecorationComponent, output.first.component);
+
+ meta.strip_array = true;
+ meta.allow_local_declaration = false;
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
+ }
+ }
+
+ // When multiple variables need to access same location,
+ // unroll locations one by one and we will flatten output or input as necessary.
+ for (auto &loc : meta.location_meta)
+ {
+ uint32_t location = loc.first;
+ auto &location_meta = loc.second;
+
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ uint32_t type_id = build_extended_vector_type(location_meta.base_type_id, location_meta.num_components);
+ ib_type.member_types.push_back(type_id);
+
+ set_member_name(ib_type.self, ib_mbr_idx, join("m_location_", location));
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(type_id), storage);
+
+ if (location_meta.flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (location_meta.noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (location_meta.centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (location_meta.sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ // Sort the members of the structure by their locations.
+ MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType);
+ member_sorter.sort();
+
+ // The member indices were saved to the original variables, but after the members
+ // were sorted, those indices are now likely incorrect. Fix those up now.
+ fix_up_interface_member_indices(storage, ib_type_id);
+
+ // For patch inputs, add one more member, holding the array of control point data.
+ if (is_tese_shader() && !msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch &&
+ stage_in_var_id)
+ {
+ uint32_t pcp_type_id = ir.increase_bound_by(1);
+ auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
+ pcp_type.basetype = SPIRType::ControlPointArray;
+ pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
+ pcp_type.storage = storage;
+ ir.meta[pcp_type_id] = ir.meta[ib_type.self];
+ uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(pcp_type_id);
+ set_member_name(ib_type.self, mbr_idx, "gl_in");
+ }
+
+ if (storage == StorageClassInput)
+ set_decoration(ib_var_id, DecorationNonWritable);
+
+ return ib_var_id;
+}
+
+uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
+{
+ if (!ib_var_id)
+ return 0;
+
+ uint32_t ib_ptr_var_id;
+ uint32_t next_id = ir.increase_bound_by(3);
+ auto &ib_type = expression_type(ib_var_id);
+ if (is_tesc_shader() || (is_tese_shader() && msl_options.raw_buffer_tese_input))
+ {
+ // Tessellation control per-vertex I/O is presented as an array, so we must
+ // do the same with our struct here.
+ uint32_t ib_ptr_type_id = next_id++;
+ auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
+ ib_ptr_type.op = OpTypePointer;
+ ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
+ ib_ptr_type.pointer = true;
+ ib_ptr_type.pointer_depth++;
+ ib_ptr_type.storage = storage == StorageClassInput ?
+ ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
+ (is_tese_shader() && msl_options.raw_buffer_tese_input) ?
+ StorageClassStorageBuffer :
+ StorageClassWorkgroup) :
+ StorageClassStorageBuffer;
+ ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
+ // To ensure that get_variable_data_type() doesn't strip off the pointer,
+ // which we need, use another pointer.
+ uint32_t ib_ptr_ptr_type_id = next_id++;
+ auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
+ ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
+ ib_ptr_ptr_type.type_alias = ib_type.self;
+ ib_ptr_ptr_type.storage = StorageClassFunction;
+ ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
+
+ ib_ptr_var_id = next_id;
+ set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
+ set_name(ib_ptr_var_id, storage == StorageClassInput ? "gl_in" : "gl_out");
+ if (storage == StorageClassInput)
+ set_decoration(ib_ptr_var_id, DecorationNonWritable);
+ }
+ else
+ {
+ // Tessellation evaluation per-vertex inputs are also presented as arrays.
+ // But, in Metal, this array uses a very special type, 'patch_control_point<T>',
+ // which is a container that can be used to access the control point data.
+ // To represent this, a special 'ControlPointArray' type has been added to the
+ // SPIRV-Cross type system. It should only be generated by and seen in the MSL
+ // backend (i.e. this one).
+ uint32_t pcp_type_id = next_id++;
+ auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
+ pcp_type.basetype = SPIRType::ControlPointArray;
+ pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
+ pcp_type.storage = storage;
+ ir.meta[pcp_type_id] = ir.meta[ib_type.self];
+
+ ib_ptr_var_id = next_id;
+ set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
+ set_name(ib_ptr_var_id, "gl_in");
+ ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
+ }
+ return ib_ptr_var_id;
+}
+
+// Ensure that the type is compatible with the builtin.
+// If it is, simply return the given type ID.
+// Otherwise, create a new type, and return it's ID.
+uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
+{
+ auto &type = get<SPIRType>(type_id);
+ auto &pointee_type = get_pointee_type(type);
+
+ if ((builtin == BuiltInSampleMask && is_array(pointee_type)) ||
+ ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) &&
+ pointee_type.basetype != SPIRType::UInt))
+ {
+ uint32_t next_id = ir.increase_bound_by(is_pointer(type) ? 2 : 1);
+ uint32_t base_type_id = next_id++;
+ auto &base_type = set<SPIRType>(base_type_id, OpTypeInt);
+ base_type.basetype = SPIRType::UInt;
+ base_type.width = 32;
+
+ if (!is_pointer(type))
+ return base_type_id;
+
+ uint32_t ptr_type_id = next_id++;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, base_type);
+ ptr_type.op = spv::OpTypePointer;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.storage = type.storage;
+ ptr_type.parent_type = base_type_id;
+ return ptr_type_id;
+ }
+
+ return type_id;
+}
+
+// Ensure that the type is compatible with the shader input.
+// If it is, simply return the given type ID.
+// Otherwise, create a new type, and return its ID.
+uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array)
+{
+ auto &type = get<SPIRType>(type_id);
+
+ uint32_t max_array_dimensions = strip_array ? 1 : 0;
+
+ // Struct and array types must match exactly.
+ if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions)
+ return type_id;
+
+ auto p_va = inputs_by_location.find({location, component});
+ if (p_va == end(inputs_by_location))
+ {
+ if (num_components > type.vecsize)
+ return build_extended_vector_type(type_id, num_components);
+ else
+ return type_id;
+ }
+
+ if (num_components == 0)
+ num_components = p_va->second.vecsize;
+
+ switch (p_va->second.format)
+ {
+ case MSL_SHADER_VARIABLE_FORMAT_UINT8:
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::UByte:
+ case SPIRType::UShort:
+ case SPIRType::UInt:
+ if (num_components > type.vecsize)
+ return build_extended_vector_type(type_id, num_components);
+ else
+ return type_id;
+
+ case SPIRType::Short:
+ return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
+ SPIRType::UShort);
+ case SPIRType::Int:
+ return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
+ SPIRType::UInt);
+
+ default:
+ SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
+ }
+ }
+
+ case MSL_SHADER_VARIABLE_FORMAT_UINT16:
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::UShort:
+ case SPIRType::UInt:
+ if (num_components > type.vecsize)
+ return build_extended_vector_type(type_id, num_components);
+ else
+ return type_id;
+
+ case SPIRType::Int:
+ return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
+ SPIRType::UInt);
+
+ default:
+ SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
+ }
+ }
+
+ default:
+ if (num_components > type.vecsize)
+ type_id = build_extended_vector_type(type_id, num_components);
+ break;
+ }
+
+ return type_id;
+}
+
+void CompilerMSL::mark_struct_members_packed(const SPIRType &type)
+{
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ if (has_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked))
+ return;
+
+ set_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked);
+
+ // Problem case! Struct needs to be placed at an awkward alignment.
+ // Mark every member of the child struct as packed.
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+ if (mbr_type.basetype == SPIRType::Struct)
+ {
+ // Recursively mark structs as packed.
+ auto *struct_type = &mbr_type;
+ while (!struct_type->array.empty())
+ struct_type = &get<SPIRType>(struct_type->parent_type);
+ mark_struct_members_packed(*struct_type);
+ }
+ else if (!is_scalar(mbr_type))
+ set_extended_member_decoration(type.self, i, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+}
+
+void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type)
+{
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+ if (mbr_type.basetype == SPIRType::Struct && !(mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer))
+ {
+ auto *struct_type = &mbr_type;
+ while (!struct_type->array.empty())
+ struct_type = &get<SPIRType>(struct_type->parent_type);
+
+ if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPhysicalTypePacked))
+ continue;
+
+ uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, i);
+ uint32_t msl_size = get_declared_struct_member_size_msl(type, i);
+ uint32_t spirv_offset = type_struct_member_offset(type, i);
+ uint32_t spirv_offset_next;
+ if (i + 1 < mbr_cnt)
+ spirv_offset_next = type_struct_member_offset(type, i + 1);
+ else
+ spirv_offset_next = spirv_offset + msl_size;
+
+ // Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes,
+ // and the next member will be placed at offset 12.
+ bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0;
+ bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next;
+ uint32_t array_stride = 0;
+ bool struct_needs_explicit_padding = false;
+
+ // Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct.
+ if (!mbr_type.array.empty())
+ {
+ array_stride = type_struct_member_array_stride(type, i);
+ uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
+ for (uint32_t dim = 0; dim < dimensions; dim++)
+ {
+ uint32_t array_size = to_array_size_literal(mbr_type, dim);
+ array_stride /= max<uint32_t>(array_size, 1u);
+ }
+
+ // Set expected struct size based on ArrayStride.
+ struct_needs_explicit_padding = true;
+
+ // If struct size is larger than array stride, we might be able to fit, if we tightly pack.
+ if (get_declared_struct_size_msl(*struct_type) > array_stride)
+ struct_is_too_large = true;
+ }
+
+ if (struct_is_misaligned || struct_is_too_large)
+ mark_struct_members_packed(*struct_type);
+ mark_scalar_layout_structs(*struct_type);
+
+ if (struct_needs_explicit_padding)
+ {
+ msl_size = get_declared_struct_size_msl(*struct_type, true, true);
+ if (array_stride < msl_size)
+ {
+ SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type.");
+ }
+ else
+ {
+ if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
+ {
+ if (array_stride !=
+ get_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
+ SPIRV_CROSS_THROW(
+ "A struct is used with different array strides. Cannot express this in MSL.");
+ }
+ else
+ set_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget, array_stride);
+ }
+ }
+ }
+ }
+}
+
+// Sort the members of the struct type by offset, and pack and then pad members where needed
+// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
+// occurs first, followed by padding, because packing a member reduces both its size and its
+// natural alignment, possibly requiring a padding member to be added ahead of it.
+void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set<uint32_t> &aligned_structs)
+{
+ // We align structs recursively, so stop any redundant work.
+ ID &ib_type_id = ib_type.self;
+ if (aligned_structs.count(ib_type_id))
+ return;
+ aligned_structs.insert(ib_type_id);
+
+ // Sort the members of the interface structure by their offset.
+ // They should already be sorted per SPIR-V spec anyway.
+ MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
+ member_sorter.sort();
+
+ auto mbr_cnt = uint32_t(ib_type.member_types.size());
+
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ // Pack any dependent struct types before we pack a parent struct.
+ auto &mbr_type = get<SPIRType>(ib_type.member_types[mbr_idx]);
+ if (mbr_type.basetype == SPIRType::Struct)
+ align_struct(mbr_type, aligned_structs);
+ }
+
+ // Test the alignment of each member, and if a member should be closer to the previous
+ // member than the default spacing expects, it is likely that the previous member is in
+ // a packed format. If so, and the previous member is packable, pack it.
+ // For example ... this applies to any 3-element vector that is followed by a scalar.
+ uint32_t msl_offset = 0;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ // This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V
+ // offsets, array strides and matrix strides.
+ ensure_member_packing_rules_msl(ib_type, mbr_idx);
+
+ // Align current offset to the current member's default alignment. If the member was packed, it will observe
+ // the updated alignment here.
+ uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(ib_type, mbr_idx) - 1;
+ uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
+
+ // Fetch the member offset as declared in the SPIRV.
+ uint32_t spirv_mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
+ if (spirv_mbr_offset > aligned_msl_offset)
+ {
+ // Since MSL and SPIR-V have slightly different struct member alignment and
+ // size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther
+ // away than C-packing, expects, add an inert padding member before the the member.
+ uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset;
+ set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPaddingTarget, padding_bytes);
+
+ // Re-align as a sanity check that aligning post-padding matches up.
+ msl_offset += padding_bytes;
+ aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
+ }
+ else if (spirv_mbr_offset < aligned_msl_offset)
+ {
+ // This should not happen, but deal with unexpected scenarios.
+ // It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V.
+ SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL.");
+ }
+
+ assert(aligned_msl_offset == spirv_mbr_offset);
+
+ // Increment the current offset to be positioned immediately after the current member.
+ // Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
+ if (mbr_idx + 1 < mbr_cnt)
+ msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(ib_type, mbr_idx);
+ }
+}
+
+bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const
+{
+ auto &mbr_type = get<SPIRType>(type.member_types[index]);
+ uint32_t spirv_offset = get_member_decoration(type.self, index, DecorationOffset);
+
+ if (index + 1 < type.member_types.size())
+ {
+ // First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member,
+ // we *must* perform some kind of remapping, no way getting around it.
+ // We can always pad after this member if necessary, so that case is fine.
+ uint32_t spirv_offset_next = get_member_decoration(type.self, index + 1, DecorationOffset);
+ assert(spirv_offset_next >= spirv_offset);
+ uint32_t maximum_size = spirv_offset_next - spirv_offset;
+ uint32_t msl_mbr_size = get_declared_struct_member_size_msl(type, index);
+ if (msl_mbr_size > maximum_size)
+ return false;
+ }
+
+ if (is_array(mbr_type))
+ {
+ // If we have an array type, array stride must match exactly with SPIR-V.
+
+ // An exception to this requirement is if we have one array element.
+ // This comes from DX scalar layout workaround.
+ // If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do.
+ // In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification.
+ bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back();
+
+ if (!relax_array_stride)
+ {
+ uint32_t spirv_array_stride = type_struct_member_array_stride(type, index);
+ uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(type, index);
+ if (spirv_array_stride != msl_array_stride)
+ return false;
+ }
+ }
+
+ if (is_matrix(mbr_type))
+ {
+ // Need to check MatrixStride as well.
+ uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index);
+ uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(type, index);
+ if (spirv_matrix_stride != msl_matrix_stride)
+ return false;
+ }
+
+ // Now, we check alignment.
+ uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, index);
+ if ((spirv_offset % msl_alignment) != 0)
+ return false;
+
+ // We're in the clear.
+ return true;
+}
+
+// Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions.
+// If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types.
+// In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides.
+void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index)
+{
+ if (validate_member_packing_rules_msl(ib_type, index))
+ return;
+
+ // We failed validation.
+ // This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite
+ // match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule
+ // that struct alignment == max alignment of all members and struct size depends on this alignment.
+ // Can't repack structs, but can repack pointers to structs.
+ auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
+ bool is_buff_ptr = mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer;
+ if (mbr_type.basetype == SPIRType::Struct && !is_buff_ptr)
+ SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct.");
+
+ // Perform remapping here.
+ // There is nothing to be gained by using packed scalars, so don't attempt it.
+ if (!is_scalar(ib_type))
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+
+ // Try validating again, now with packed.
+ if (validate_member_packing_rules_msl(ib_type, index))
+ return;
+
+ // We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect.
+ // A lot of work goes here ...
+ // We will need remapping on Load and Store to translate the types between Logical and Physical.
+
+ // First, we check if we have small vector std140 array.
+ // We detect this if we have an array of vectors, and array stride is greater than number of elements.
+ if (!mbr_type.array.empty() && !is_matrix(mbr_type))
+ {
+ uint32_t array_stride = type_struct_member_array_stride(ib_type, index);
+
+ // Hack off array-of-arrays until we find the array stride per element we must have to make it work.
+ uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
+ for (uint32_t dim = 0; dim < dimensions; dim++)
+ array_stride /= max<uint32_t>(to_array_size_literal(mbr_type, dim), 1u);
+
+ // Pointers are 8 bytes
+ uint32_t mbr_width_in_bytes = is_buff_ptr ? 8 : (mbr_type.width / 8);
+ uint32_t elems_per_stride = array_stride / mbr_width_in_bytes;
+
+ if (elems_per_stride == 3)
+ SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
+ else if (elems_per_stride > 4 && elems_per_stride != 8)
+ SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
+
+ if (elems_per_stride == 8)
+ {
+ if (mbr_type.width == 16)
+ add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
+ else
+ SPIRV_CROSS_THROW("Unexpected type in std140 wide array resolve.");
+ }
+
+ auto physical_type = mbr_type;
+ physical_type.vecsize = elems_per_stride;
+ physical_type.parent_type = 0;
+
+ // If this is a physical buffer pointer, replace type with a ulongn vector.
+ if (is_buff_ptr)
+ {
+ physical_type.width = 64;
+ physical_type.basetype = to_unsigned_basetype(physical_type.width);
+ physical_type.pointer = false;
+ physical_type.pointer_depth = false;
+ physical_type.forward_pointer = false;
+ }
+
+ uint32_t type_id = ir.increase_bound_by(1);
+ set<SPIRType>(type_id, physical_type);
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
+ set_decoration(type_id, DecorationArrayStride, array_stride);
+
+ // Remove packed_ for vectors of size 1, 2 and 4.
+ unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+ else if (is_matrix(mbr_type))
+ {
+ // MatrixStride might be std140-esque.
+ uint32_t matrix_stride = type_struct_member_matrix_stride(ib_type, index);
+
+ uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8);
+
+ if (elems_per_stride == 3)
+ SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
+ else if (elems_per_stride > 4 && elems_per_stride != 8)
+ SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
+
+ if (elems_per_stride == 8)
+ {
+ if (mbr_type.basetype != SPIRType::Half)
+ SPIRV_CROSS_THROW("Unexpected type in std140 wide matrix stride resolve.");
+ add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
+ }
+
+ bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
+ auto physical_type = mbr_type;
+ physical_type.parent_type = 0;
+
+ if (row_major)
+ physical_type.columns = elems_per_stride;
+ else
+ physical_type.vecsize = elems_per_stride;
+ uint32_t type_id = ir.increase_bound_by(1);
+ set<SPIRType>(type_id, physical_type);
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
+
+ // Remove packed_ for vectors of size 1, 2 and 4.
+ unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+ else
+ SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
+
+ // Try validating again, now with physical type remapping.
+ if (validate_member_packing_rules_msl(ib_type, index))
+ return;
+
+ // We might have a particular odd scalar layout case where the last element of an array
+ // does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers.
+ // The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[],
+ // so we hack around it by declaring the offending array or matrix with one less array size/col/row,
+ // and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region,
+ // but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways.
+
+ // E.g. we might observe a physical layout of:
+ // { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ...
+ uint32_t type_id = get_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+ auto &type = get<SPIRType>(type_id);
+
+ // Modify the physical type in-place. This is safe since each physical type workaround is a copy.
+ if (is_array(type))
+ {
+ if (type.array.back() > 1)
+ {
+ if (!type.array_size_literal.back())
+ SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size.");
+ type.array.back() -= 1;
+ }
+ else
+ {
+ // We have an array of size 1, so we cannot decrement that. Our only option now is to
+ // force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now.
+ unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+ }
+ else if (is_matrix(type))
+ {
+ bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
+ if (!row_major)
+ {
+ // Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead.
+ if (type.columns > 2)
+ {
+ type.columns--;
+ }
+ else if (type.columns == 2)
+ {
+ type.columns = 1;
+ assert(type.array.empty());
+ type.op = OpTypeArray;
+ type.array.push_back(1);
+ type.array_size_literal.push_back(true);
+ }
+ }
+ else
+ {
+ // Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead.
+ if (type.vecsize > 2)
+ {
+ type.vecsize--;
+ }
+ else if (type.vecsize == 2)
+ {
+ type.vecsize = type.columns;
+ type.columns = 1;
+ assert(type.array.empty());
+ type.op = OpTypeArray;
+ type.array.push_back(1);
+ type.array_size_literal.push_back(true);
+ }
+ }
+ }
+
+ // This better validate now, or we must fail gracefully.
+ if (!validate_member_packing_rules_msl(ib_type, index))
+ SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
+}
+
+void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
+{
+ auto &type = expression_type(rhs_expression);
+
+ bool lhs_remapped_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID);
+ bool lhs_packed_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypePacked);
+ auto *lhs_e = maybe_get<SPIRExpression>(lhs_expression);
+ auto *rhs_e = maybe_get<SPIRExpression>(rhs_expression);
+
+ bool transpose = lhs_e && lhs_e->need_transpose;
+
+ if (has_decoration(lhs_expression, DecorationBuiltIn) &&
+ BuiltIn(get_decoration(lhs_expression, DecorationBuiltIn)) == BuiltInSampleMask &&
+ is_array(type))
+ {
+ // Storing an array to SampleMask, have to remove the array-ness before storing.
+ statement(to_expression(lhs_expression), " = ", to_enclosed_unpacked_expression(rhs_expression), "[0];");
+ register_write(lhs_expression);
+ }
+ else if (!lhs_remapped_type && !lhs_packed_type)
+ {
+ // No physical type remapping, and no packed type, so can just emit a store directly.
+
+ // We might not be dealing with remapped physical types or packed types,
+ // but we might be doing a clean store to a row-major matrix.
+ // In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any.
+ if (is_matrix(type) && lhs_e && lhs_e->need_transpose)
+ {
+ lhs_e->need_transpose = false;
+
+ if (rhs_e && rhs_e->need_transpose)
+ {
+ // Direct copy, but might need to unpack RHS.
+ // Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T.
+ rhs_e->need_transpose = false;
+ statement(to_expression(lhs_expression), " = ", to_unpacked_row_major_matrix_expression(rhs_expression),
+ ";");
+ rhs_e->need_transpose = true;
+ }
+ else
+ statement(to_expression(lhs_expression), " = transpose(", to_unpacked_expression(rhs_expression), ");");
+
+ lhs_e->need_transpose = true;
+ register_write(lhs_expression);
+ }
+ else if (lhs_e && lhs_e->need_transpose)
+ {
+ lhs_e->need_transpose = false;
+
+ // Storing a column to a row-major matrix. Unroll the write.
+ for (uint32_t c = 0; c < type.vecsize; c++)
+ {
+ auto lhs_expr = to_dereferenced_expression(lhs_expression);
+ auto column_index = lhs_expr.find_last_of('[');
+ if (column_index != string::npos)
+ {
+ statement(lhs_expr.insert(column_index, join('[', c, ']')), " = ",
+ to_extract_component_expression(rhs_expression, c), ";");
+ }
+ }
+ lhs_e->need_transpose = true;
+ register_write(lhs_expression);
+ }
+ else
+ CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
+ }
+ else if (!lhs_remapped_type && !is_matrix(type) && !transpose)
+ {
+ // Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly,
+ // since they are declared as array of vectors instead, and we need the fallback path below.
+ CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
+ }
+ else
+ {
+ // Special handling when storing to a remapped physical type.
+ // This is mostly to deal with std140 padded matrices or vectors.
+
+ TypeID physical_type_id = lhs_remapped_type ?
+ ID(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID)) :
+ type.self;
+
+ auto &physical_type = get<SPIRType>(physical_type_id);
+
+ string cast_addr_space = "thread";
+ auto *p_var_lhs = maybe_get_backing_variable(lhs_expression);
+ if (p_var_lhs)
+ cast_addr_space = get_type_address_space(get<SPIRType>(p_var_lhs->basetype), lhs_expression);
+
+ if (is_matrix(type))
+ {
+ const char *packed_pfx = lhs_packed_type ? "packed_" : "";
+
+ // Packed matrices are stored as arrays of packed vectors, so we need
+ // to assign the vectors one at a time.
+ // For row-major matrices, we need to transpose the *right-hand* side,
+ // not the left-hand side.
+
+ // Lots of cases to cover here ...
+
+ bool rhs_transpose = rhs_e && rhs_e->need_transpose;
+ SPIRType write_type = type;
+ string cast_expr;
+
+ // We're dealing with transpose manually.
+ if (rhs_transpose)
+ rhs_e->need_transpose = false;
+
+ if (transpose)
+ {
+ // We're dealing with transpose manually.
+ lhs_e->need_transpose = false;
+ write_type.vecsize = type.columns;
+ write_type.columns = 1;
+
+ if (physical_type.columns != type.columns)
+ cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");
+
+ if (rhs_transpose)
+ {
+ // If RHS is also transposed, we can just copy row by row.
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
+ to_unpacked_row_major_matrix_expression(rhs_expression), "[", i, "];");
+ }
+ }
+ else
+ {
+ auto vector_type = expression_type(rhs_expression);
+ vector_type.vecsize = vector_type.columns;
+ vector_type.columns = 1;
+
+ // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
+ // so pick out individual components instead.
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ string rhs_row = type_to_glsl_constructor(vector_type) + "(";
+ for (uint32_t j = 0; j < vector_type.vecsize; j++)
+ {
+ rhs_row += join(to_enclosed_unpacked_expression(rhs_expression), "[", j, "][", i, "]");
+ if (j + 1 < vector_type.vecsize)
+ rhs_row += ", ";
+ }
+ rhs_row += ")";
+
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
+ }
+ }
+
+ // We're dealing with transpose manually.
+ lhs_e->need_transpose = true;
+ }
+ else
+ {
+ write_type.columns = 1;
+
+ if (physical_type.vecsize != type.vecsize)
+ cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");
+
+ if (rhs_transpose)
+ {
+ auto vector_type = expression_type(rhs_expression);
+ vector_type.columns = 1;
+
+ // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
+ // so pick out individual components instead.
+ for (uint32_t i = 0; i < type.columns; i++)
+ {
+ string rhs_row = type_to_glsl_constructor(vector_type) + "(";
+ for (uint32_t j = 0; j < vector_type.vecsize; j++)
+ {
+ // Need to explicitly unpack expression since we've mucked with transpose state.
+ auto unpacked_expr = to_unpacked_row_major_matrix_expression(rhs_expression);
+ rhs_row += join(unpacked_expr, "[", j, "][", i, "]");
+ if (j + 1 < vector_type.vecsize)
+ rhs_row += ", ";
+ }
+ rhs_row += ")";
+
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
+ }
+ }
+ else
+ {
+ // Copy column-by-column.
+ for (uint32_t i = 0; i < type.columns; i++)
+ {
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
+ to_enclosed_unpacked_expression(rhs_expression), "[", i, "];");
+ }
+ }
+ }
+
+ // We're dealing with transpose manually.
+ if (rhs_transpose)
+ rhs_e->need_transpose = true;
+ }
+ else if (transpose)
+ {
+ lhs_e->need_transpose = false;
+
+ SPIRType write_type = type;
+ write_type.vecsize = 1;
+ write_type.columns = 1;
+
+ // Storing a column to a row-major matrix. Unroll the write.
+ for (uint32_t c = 0; c < type.vecsize; c++)
+ {
+ auto lhs_expr = to_enclosed_expression(lhs_expression);
+ auto column_index = lhs_expr.find_last_of('[');
+
+ // Get rid of any ".data" half8 handling here, we're casting to scalar anyway.
+ auto end_column_index = lhs_expr.find_last_of(']');
+ auto end_dot_index = lhs_expr.find_last_of('.');
+ if (end_dot_index != string::npos && end_dot_index > end_column_index)
+ lhs_expr.resize(end_dot_index);
+
+ if (column_index != string::npos)
+ {
+ statement("((", cast_addr_space, " ", type_to_glsl(write_type), "*)&",
+ lhs_expr.insert(column_index, join('[', c, ']', ")")), " = ",
+ to_extract_component_expression(rhs_expression, c), ";");
+ }
+ }
+
+ lhs_e->need_transpose = true;
+ }
+ else if ((is_matrix(physical_type) || is_array(physical_type)) &&
+ physical_type.vecsize <= 4 &&
+ physical_type.vecsize > type.vecsize)
+ {
+ assert(type.vecsize >= 1 && type.vecsize <= 3);
+
+ // If we have packed types, we cannot use swizzled stores.
+ // We could technically unroll the store for each element if needed.
+ // When remapping to a std140 physical type, we always get float4,
+ // and the packed decoration should always be removed.
+ assert(!lhs_packed_type);
+
+ string lhs = to_dereferenced_expression(lhs_expression);
+ string rhs = to_pointer_expression(rhs_expression);
+
+ // Unpack the expression so we can store to it with a float or float2.
+ // It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
+ lhs = join("(", cast_addr_space, " ", type_to_glsl(type), "&)", enclose_expression(lhs));
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+ else if (!is_matrix(type))
+ {
+ string lhs = to_dereferenced_expression(lhs_expression);
+ string rhs = to_pointer_expression(rhs_expression);
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+
+ register_write(lhs_expression);
+ }
+}
+
+static bool expression_ends_with(const string &expr_str, const std::string &ending)
+{
+ if (expr_str.length() >= ending.length())
+ return (expr_str.compare(expr_str.length() - ending.length(), ending.length(), ending) == 0);
+ else
+ return false;
+}
+
+// Converts the format of the current expression from packed to unpacked,
+// by wrapping the expression in a constructor of the appropriate type.
+// Also, handle special physical ID remapping scenarios, similar to emit_store_statement().
+string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id,
+ bool packed, bool row_major)
+{
+ // Trivial case, nothing to do.
+ if (physical_type_id == 0 && !packed)
+ return expr_str;
+
+ const SPIRType *physical_type = nullptr;
+ if (physical_type_id)
+ physical_type = &get<SPIRType>(physical_type_id);
+
+ static const char *swizzle_lut[] = {
+ ".x",
+ ".xy",
+ ".xyz",
+ "",
+ };
+
+ // TODO: Move everything to the template wrapper?
+ bool uses_std140_wrapper = physical_type && physical_type->vecsize > 4;
+
+ if (physical_type && is_vector(*physical_type) && is_array(*physical_type) &&
+ !uses_std140_wrapper &&
+ physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, swizzle_lut[type.vecsize - 1]))
+ {
+ // std140 array cases for vectors.
+ assert(type.vecsize >= 1 && type.vecsize <= 3);
+ return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
+ }
+ else if (physical_type && is_matrix(*physical_type) && is_vector(type) &&
+ !uses_std140_wrapper &&
+ physical_type->vecsize > type.vecsize)
+ {
+ // Extract column from padded matrix.
+ assert(type.vecsize >= 1 && type.vecsize <= 4);
+ return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
+ }
+ else if (is_matrix(type))
+ {
+ // Packed matrices are stored as arrays of packed vectors. Unfortunately,
+ // we can't just pass the array straight to the matrix constructor. We have to
+ // pass each vector individually, so that they can be unpacked to normal vectors.
+ if (!physical_type)
+ physical_type = &type;
+
+ uint32_t vecsize = type.vecsize;
+ uint32_t columns = type.columns;
+ if (row_major)
+ swap(vecsize, columns);
+
+ uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize;
+
+ const char *base_type = type.width == 16 ? "half" : "float";
+ string unpack_expr = join(base_type, columns, "x", vecsize, "(");
+
+ const char *load_swiz = "";
+ const char *data_swiz = physical_vecsize > 4 ? ".data" : "";
+
+ if (physical_vecsize != vecsize)
+ load_swiz = swizzle_lut[vecsize - 1];
+
+ for (uint32_t i = 0; i < columns; i++)
+ {
+ if (i > 0)
+ unpack_expr += ", ";
+
+ if (packed)
+ unpack_expr += join(base_type, physical_vecsize, "(", expr_str, "[", i, "]", ")", load_swiz);
+ else
+ unpack_expr += join(expr_str, "[", i, "]", data_swiz, load_swiz);
+ }
+
+ unpack_expr += ")";
+ return unpack_expr;
+ }
+ else
+ {
+ return join(type_to_glsl(type), "(", expr_str, ")");
+ }
+}
+
+// Emits the file header info
+void CompilerMSL::emit_header()
+{
+ // This particular line can be overridden during compilation, so make it a flag and not a pragma line.
+ if (suppress_missing_prototypes)
+ statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
+ if (suppress_incompatible_pointer_types_discard_qualifiers)
+ statement("#pragma clang diagnostic ignored \"-Wincompatible-pointer-types-discards-qualifiers\"");
+
+ // Disable warning about missing braces for array<T> template to make arrays a value type
+ if (spv_function_implementations.count(SPVFuncImplUnsafeArray) != 0)
+ statement("#pragma clang diagnostic ignored \"-Wmissing-braces\"");
+
+ for (auto &pragma : pragma_lines)
+ statement(pragma);
+
+ if (!pragma_lines.empty() || suppress_missing_prototypes)
+ statement("");
+
+ statement("#include <metal_stdlib>");
+ statement("#include <simd/simd.h>");
+
+ for (auto &header : header_lines)
+ statement(header);
+
+ statement("");
+ statement("using namespace metal;");
+ statement("");
+
+ for (auto &td : typedef_lines)
+ statement(td);
+
+ if (!typedef_lines.empty())
+ statement("");
+}
+
+void CompilerMSL::add_pragma_line(const string &line)
+{
+ auto rslt = pragma_lines.insert(line);
+ if (rslt.second)
+ force_recompile();
+}
+
+void CompilerMSL::add_typedef_line(const string &line)
+{
+ auto rslt = typedef_lines.insert(line);
+ if (rslt.second)
+ force_recompile();
+}
+
+// Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared
+void CompilerMSL::emit_custom_templates()
+{
+ static const char * const address_spaces[] = {
+ "thread", "constant", "device", "threadgroup", "threadgroup_imageblock", "ray_data", "object_data"
+ };
+
+ for (const auto &spv_func : spv_function_implementations)
+ {
+ switch (spv_func)
+ {
+ case SPVFuncImplUnsafeArray:
+ statement("template<typename T, size_t Num>");
+ statement("struct spvUnsafeArray");
+ begin_scope();
+ statement("T elements[Num ? Num : 1];");
+ statement("");
+ statement("thread T& operator [] (size_t pos) thread");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("constexpr const thread T& operator [] (size_t pos) const thread");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("");
+ statement("device T& operator [] (size_t pos) device");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("constexpr const device T& operator [] (size_t pos) const device");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("");
+ statement("constexpr const constant T& operator [] (size_t pos) const constant");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("");
+ statement("threadgroup T& operator [] (size_t pos) threadgroup");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("constexpr const threadgroup T& operator [] (size_t pos) const threadgroup");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplStorageMatrix:
+ statement("template<typename T, int Cols, int Rows=Cols>");
+ statement("struct spvStorageMatrix");
+ begin_scope();
+ statement("vec<T, Rows> columns[Cols];");
+ statement("");
+ for (size_t method_idx = 0; method_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++method_idx)
+ {
+ // Some address spaces require particular features.
+ if (method_idx == 4) // threadgroup_imageblock
+ statement("#ifdef __HAVE_IMAGEBLOCKS__");
+ else if (method_idx == 5) // ray_data
+ statement("#ifdef __HAVE_RAYTRACING__");
+ else if (method_idx == 6) // object_data
+ statement("#ifdef __HAVE_MESH__");
+ const string &method_as = address_spaces[method_idx];
+ statement("spvStorageMatrix() ", method_as, " = default;");
+ if (method_idx != 1) // constant
+ {
+ statement(method_as, " spvStorageMatrix& operator=(initializer_list<vec<T, Rows>> cols) ",
+ method_as);
+ begin_scope();
+ statement("size_t i;");
+ statement("thread vec<T, Rows>* col;");
+ statement("for (i = 0, col = cols.begin(); i < Cols; ++i, ++col)");
+ statement(" columns[i] = *col;");
+ statement("return *this;");
+ end_scope();
+ }
+ statement("");
+ for (size_t param_idx = 0; param_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++param_idx)
+ {
+ if (param_idx != method_idx)
+ {
+ if (param_idx == 4) // threadgroup_imageblock
+ statement("#ifdef __HAVE_IMAGEBLOCKS__");
+ else if (param_idx == 5) // ray_data
+ statement("#ifdef __HAVE_RAYTRACING__");
+ else if (param_idx == 6) // object_data
+ statement("#ifdef __HAVE_MESH__");
+ }
+ const string &param_as = address_spaces[param_idx];
+ statement("spvStorageMatrix(const ", param_as, " matrix<T, Cols, Rows>& m) ", method_as);
+ begin_scope();
+ statement("for (size_t i = 0; i < Cols; ++i)");
+ statement(" columns[i] = m.columns[i];");
+ end_scope();
+ statement("spvStorageMatrix(const ", param_as, " spvStorageMatrix& m) ", method_as, " = default;");
+ if (method_idx != 1) // constant
+ {
+ statement(method_as, " spvStorageMatrix& operator=(const ", param_as,
+ " matrix<T, Cols, Rows>& m) ", method_as);
+ begin_scope();
+ statement("for (size_t i = 0; i < Cols; ++i)");
+ statement(" columns[i] = m.columns[i];");
+ statement("return *this;");
+ end_scope();
+ statement(method_as, " spvStorageMatrix& operator=(const ", param_as, " spvStorageMatrix& m) ",
+ method_as, " = default;");
+ }
+ if (param_idx != method_idx && param_idx >= 4)
+ statement("#endif");
+ statement("");
+ }
+ statement("operator matrix<T, Cols, Rows>() const ", method_as);
+ begin_scope();
+ statement("matrix<T, Cols, Rows> m;");
+ statement("for (int i = 0; i < Cols; ++i)");
+ statement(" m.columns[i] = columns[i];");
+ statement("return m;");
+ end_scope();
+ statement("");
+ statement("vec<T, Rows> operator[](size_t idx) const ", method_as);
+ begin_scope();
+ statement("return columns[idx];");
+ end_scope();
+ if (method_idx != 1) // constant
+ {
+ statement(method_as, " vec<T, Rows>& operator[](size_t idx) ", method_as);
+ begin_scope();
+ statement("return columns[idx];");
+ end_scope();
+ }
+ if (method_idx >= 4)
+ statement("#endif");
+ statement("");
+ }
+ end_scope_decl();
+ statement("");
+ statement("template<typename T, int Cols, int Rows>");
+ statement("matrix<T, Rows, Cols> transpose(spvStorageMatrix<T, Cols, Rows> m)");
+ begin_scope();
+ statement("return transpose(matrix<T, Cols, Rows>(m));");
+ end_scope();
+ statement("");
+ statement("typedef spvStorageMatrix<half, 2, 2> spvStorage_half2x2;");
+ statement("typedef spvStorageMatrix<half, 2, 3> spvStorage_half2x3;");
+ statement("typedef spvStorageMatrix<half, 2, 4> spvStorage_half2x4;");
+ statement("typedef spvStorageMatrix<half, 3, 2> spvStorage_half3x2;");
+ statement("typedef spvStorageMatrix<half, 3, 3> spvStorage_half3x3;");
+ statement("typedef spvStorageMatrix<half, 3, 4> spvStorage_half3x4;");
+ statement("typedef spvStorageMatrix<half, 4, 2> spvStorage_half4x2;");
+ statement("typedef spvStorageMatrix<half, 4, 3> spvStorage_half4x3;");
+ statement("typedef spvStorageMatrix<half, 4, 4> spvStorage_half4x4;");
+ statement("typedef spvStorageMatrix<float, 2, 2> spvStorage_float2x2;");
+ statement("typedef spvStorageMatrix<float, 2, 3> spvStorage_float2x3;");
+ statement("typedef spvStorageMatrix<float, 2, 4> spvStorage_float2x4;");
+ statement("typedef spvStorageMatrix<float, 3, 2> spvStorage_float3x2;");
+ statement("typedef spvStorageMatrix<float, 3, 3> spvStorage_float3x3;");
+ statement("typedef spvStorageMatrix<float, 3, 4> spvStorage_float3x4;");
+ statement("typedef spvStorageMatrix<float, 4, 2> spvStorage_float4x2;");
+ statement("typedef spvStorageMatrix<float, 4, 3> spvStorage_float4x3;");
+ statement("typedef spvStorageMatrix<float, 4, 4> spvStorage_float4x4;");
+ statement("");
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+// Emits any needed custom function bodies.
+// Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline))
+// otherwise they will cause problems when linked together in a single Metallib.
+void CompilerMSL::emit_custom_functions()
+{
+ // Use when outputting overloaded functions to cover different address spaces.
+ static const char *texture_addr_spaces[] = { "device", "constant", "thread" };
+ static uint32_t texture_addr_space_count = sizeof(texture_addr_spaces) / sizeof(char*);
+
+ if (spv_function_implementations.count(SPVFuncImplArrayCopyMultidim))
+ spv_function_implementations.insert(SPVFuncImplArrayCopy);
+
+ if (spv_function_implementations.count(SPVFuncImplDynamicImageSampler))
+ {
+ // Unfortunately, this one needs a lot of the other functions to compile OK.
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW(
+ "spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0.");
+ spv_function_implementations.insert(SPVFuncImplForwardArgs);
+ spv_function_implementations.insert(SPVFuncImplTextureSwizzle);
+ if (msl_options.swizzle_texture_samples)
+ spv_function_implementations.insert(SPVFuncImplGatherSwizzle);
+ for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
+ i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
+ spv_function_implementations.insert(static_cast<SPVFuncImpl>(i));
+ spv_function_implementations.insert(SPVFuncImplExpandITUFullRange);
+ spv_function_implementations.insert(SPVFuncImplExpandITUNarrowRange);
+ spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT709);
+ spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT601);
+ spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT2020);
+ }
+
+ for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
+ i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
+ if (spv_function_implementations.count(static_cast<SPVFuncImpl>(i)))
+ spv_function_implementations.insert(SPVFuncImplForwardArgs);
+
+ if (spv_function_implementations.count(SPVFuncImplTextureSwizzle) ||
+ spv_function_implementations.count(SPVFuncImplGatherSwizzle) ||
+ spv_function_implementations.count(SPVFuncImplGatherCompareSwizzle))
+ {
+ spv_function_implementations.insert(SPVFuncImplForwardArgs);
+ spv_function_implementations.insert(SPVFuncImplGetSwizzle);
+ }
+
+ for (const auto &spv_func : spv_function_implementations)
+ {
+ switch (spv_func)
+ {
+ case SPVFuncImplMod:
+ statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
+ statement("template<typename Tx, typename Ty>");
+ statement("inline Tx mod(Tx x, Ty y)");
+ begin_scope();
+ statement("return x - y * floor(x / y);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRadians:
+ statement("// Implementation of the GLSL radians() function");
+ statement("template<typename T>");
+ statement("inline T radians(T d)");
+ begin_scope();
+ statement("return d * T(0.01745329251);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplDegrees:
+ statement("// Implementation of the GLSL degrees() function");
+ statement("template<typename T>");
+ statement("inline T degrees(T r)");
+ begin_scope();
+ statement("return r * T(57.2957795131);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindILsb:
+ statement("// Implementation of the GLSL findLSB() function");
+ statement("template<typename T>");
+ statement("inline T spvFindLSB(T x)");
+ begin_scope();
+ statement("return select(ctz(x), T(-1), x == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindUMsb:
+ statement("// Implementation of the unsigned GLSL findMSB() function");
+ statement("template<typename T>");
+ statement("inline T spvFindUMSB(T x)");
+ begin_scope();
+ statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindSMsb:
+ statement("// Implementation of the signed GLSL findMSB() function");
+ statement("template<typename T>");
+ statement("inline T spvFindSMSB(T x)");
+ begin_scope();
+ statement("T v = select(x, T(-1) - x, x < T(0));");
+ statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSSign:
+ statement("// Implementation of the GLSL sign() function for integer types");
+ statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
+ statement("inline T sign(T x)");
+ begin_scope();
+ statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplArrayCopy:
+ case SPVFuncImplArrayCopyMultidim:
+ {
+ // Unfortunately we cannot template on the address space, so combinatorial explosion it is.
+ static const char *function_name_tags[] = {
+ "FromConstantToStack", "FromConstantToThreadGroup", "FromStackToStack",
+ "FromStackToThreadGroup", "FromThreadGroupToStack", "FromThreadGroupToThreadGroup",
+ "FromDeviceToDevice", "FromConstantToDevice", "FromStackToDevice",
+ "FromThreadGroupToDevice", "FromDeviceToStack", "FromDeviceToThreadGroup",
+ };
+
+ static const char *src_address_space[] = {
+ "constant", "constant", "thread const", "thread const",
+ "threadgroup const", "threadgroup const", "device const", "constant",
+ "thread const", "threadgroup const", "device const", "device const",
+ };
+
+ static const char *dst_address_space[] = {
+ "thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup",
+ "device", "device", "device", "device", "thread", "threadgroup",
+ };
+
+ for (uint32_t variant = 0; variant < 12; variant++)
+ {
+ bool is_multidim = spv_func == SPVFuncImplArrayCopyMultidim;
+ const char* dim = is_multidim ? "[N][M]" : "[N]";
+ statement("template<typename T, uint N", is_multidim ? ", uint M>" : ">");
+ statement("inline void spvArrayCopy", function_name_tags[variant], "(",
+ dst_address_space[variant], " T (&dst)", dim, ", ",
+ src_address_space[variant], " T (&src)", dim, ")");
+ begin_scope();
+ statement("for (uint i = 0; i < N; i++)");
+ begin_scope();
+ if (is_multidim)
+ statement("spvArrayCopy", function_name_tags[variant], "(dst[i], src[i]);");
+ else
+ statement("dst[i] = src[i];");
+ end_scope();
+ end_scope();
+ statement("");
+ }
+ break;
+ }
+
+ // Support for Metal 2.1's new texture_buffer type.
+ case SPVFuncImplTexelBufferCoords:
+ {
+ if (msl_options.texel_buffer_texture_width > 0)
+ {
+ string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
+ statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
+ statement(force_inline);
+ statement("uint2 spvTexelBufferCoord(uint tc)");
+ begin_scope();
+ statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
+ end_scope();
+ statement("");
+ }
+ else
+ {
+ statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
+ statement(
+ "#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())");
+ statement("");
+ }
+ break;
+ }
+
+ // Emulate texture2D atomic operations
+ case SPVFuncImplImage2DAtomicCoords:
+ {
+ if (msl_options.supports_msl_version(1, 2))
+ {
+ statement("// The required alignment of a linear texture of R32Uint format.");
+ statement("constant uint spvLinearTextureAlignmentOverride [[function_constant(",
+ msl_options.r32ui_alignment_constant_id, ")]];");
+ statement("constant uint spvLinearTextureAlignment = ",
+ "is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ",
+ "spvLinearTextureAlignmentOverride : ", msl_options.r32ui_linear_texture_alignment, ";");
+ }
+ else
+ {
+ statement("// The required alignment of a linear texture of R32Uint format.");
+ statement("constant uint spvLinearTextureAlignment = ", msl_options.r32ui_linear_texture_alignment,
+ ";");
+ }
+ statement("// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics");
+ statement("#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ",
+ " spvLinearTextureAlignment / 4 - 1) & ~(",
+ " spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)");
+ statement("");
+ break;
+ }
+
+ // Fix up gradient vectors when sampling a cube texture for Apple Silicon.
+ // h/t Alexey Knyazev (https://github.com/KhronosGroup/MoltenVK/issues/2068#issuecomment-1817799067) for the code.
+ case SPVFuncImplGradientCube:
+ statement("static inline gradientcube spvGradientCube(float3 P, float3 dPdx, float3 dPdy)");
+ begin_scope();
+ statement("// Major axis selection");
+ statement("float3 absP = abs(P);");
+ statement("bool xMajor = absP.x >= max(absP.y, absP.z);");
+ statement("bool yMajor = absP.y >= absP.z;");
+ statement("float3 Q = xMajor ? P.yzx : (yMajor ? P.xzy : P);");
+ statement("float3 dQdx = xMajor ? dPdx.yzx : (yMajor ? dPdx.xzy : dPdx);");
+ statement("float3 dQdy = xMajor ? dPdy.yzx : (yMajor ? dPdy.xzy : dPdy);");
+ statement_no_indent("");
+ statement("// Skip a couple of operations compared to usual projection");
+ statement("float4 d = float4(dQdx.xy, dQdy.xy) - (Q.xy / Q.z).xyxy * float4(dQdx.zz, dQdy.zz);");
+ statement_no_indent("");
+ statement("// Final swizzle to put the intermediate values into non-ignored components");
+ statement("// X major: X and Z");
+ statement("// Y major: X and Y");
+ statement("// Z major: Y and Z");
+ statement("return gradientcube(xMajor ? d.xxy : d.xyx, xMajor ? d.zzw : d.zwz);");
+ end_scope();
+ statement("");
+ break;
+
+ // "fadd" intrinsic support
+ case SPVFuncImplFAdd:
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvFAdd(T l, T r)");
+ begin_scope();
+ statement("return fma(T(1), l, r);");
+ end_scope();
+ statement("");
+ break;
+
+ // "fsub" intrinsic support
+ case SPVFuncImplFSub:
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvFSub(T l, T r)");
+ begin_scope();
+ statement("return fma(T(-1), r, l);");
+ end_scope();
+ statement("");
+ break;
+
+ // "fmul' intrinsic support
+ case SPVFuncImplFMul:
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvFMul(T l, T r)");
+ begin_scope();
+ statement("return fma(l, r, T(0));");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, int Cols, int Rows>");
+ statement("[[clang::optnone]] vec<T, Cols> spvFMulVectorMatrix(vec<T, Rows> v, matrix<T, Cols, Rows> m)");
+ begin_scope();
+ statement("vec<T, Cols> res = vec<T, Cols>(0);");
+ statement("for (uint i = Rows; i > 0; --i)");
+ begin_scope();
+ statement("vec<T, Cols> tmp(0);");
+ statement("for (uint j = 0; j < Cols; ++j)");
+ begin_scope();
+ statement("tmp[j] = m[j][i - 1];");
+ end_scope();
+ statement("res = fma(tmp, vec<T, Cols>(v[i - 1]), res);");
+ end_scope();
+ statement("return res;");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, int Cols, int Rows>");
+ statement("[[clang::optnone]] vec<T, Rows> spvFMulMatrixVector(matrix<T, Cols, Rows> m, vec<T, Cols> v)");
+ begin_scope();
+ statement("vec<T, Rows> res = vec<T, Rows>(0);");
+ statement("for (uint i = Cols; i > 0; --i)");
+ begin_scope();
+ statement("res = fma(m[i - 1], vec<T, Rows>(v[i - 1]), res);");
+ end_scope();
+ statement("return res;");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, int LCols, int LRows, int RCols, int RRows>");
+ statement("[[clang::optnone]] matrix<T, RCols, LRows> spvFMulMatrixMatrix(matrix<T, LCols, LRows> l, matrix<T, RCols, RRows> r)");
+ begin_scope();
+ statement("matrix<T, RCols, LRows> res;");
+ statement("for (uint i = 0; i < RCols; i++)");
+ begin_scope();
+ statement("vec<T, RCols> tmp(0);");
+ statement("for (uint j = 0; j < LCols; j++)");
+ begin_scope();
+ statement("tmp = fma(vec<T, RCols>(r[i][j]), l[j], tmp);");
+ end_scope();
+ statement("res[i] = tmp;");
+ end_scope();
+ statement("return res;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplQuantizeToF16:
+ // Ensure fast-math is disabled to match Vulkan results.
+ // SpvHalfTypeSelector is used to match the half* template type to the float* template type.
+ // Depending on GPU, MSL does not always flush converted subnormal halfs to zero,
+ // as required by OpQuantizeToF16, so check for subnormals and flush them to zero.
+ statement("template <typename F> struct SpvHalfTypeSelector;");
+ statement("template <> struct SpvHalfTypeSelector<float> { public: using H = half; };");
+ statement("template<uint N> struct SpvHalfTypeSelector<vec<float, N>> { using H = vec<half, N>; };");
+ statement("template<typename F, typename H = typename SpvHalfTypeSelector<F>::H>");
+ statement("[[clang::optnone]] F spvQuantizeToF16(F fval)");
+ begin_scope();
+ statement("H hval = H(fval);");
+ statement("hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));");
+ statement("return F(hval);");
+ end_scope();
+ statement("");
+ break;
+
+ // Emulate texturecube_array with texture2d_array for iOS where this type is not available
+ case SPVFuncImplCubemapTo2DArrayFace:
+ statement(force_inline);
+ statement("float3 spvCubemapTo2DArrayFace(float3 P)");
+ begin_scope();
+ statement("float3 Coords = abs(P.xyz);");
+ statement("float CubeFace = 0;");
+ statement("float ProjectionAxis = 0;");
+ statement("float u = 0;");
+ statement("float v = 0;");
+ statement("if (Coords.x >= Coords.y && Coords.x >= Coords.z)");
+ begin_scope();
+ statement("CubeFace = P.x >= 0 ? 0 : 1;");
+ statement("ProjectionAxis = Coords.x;");
+ statement("u = P.x >= 0 ? -P.z : P.z;");
+ statement("v = -P.y;");
+ end_scope();
+ statement("else if (Coords.y >= Coords.x && Coords.y >= Coords.z)");
+ begin_scope();
+ statement("CubeFace = P.y >= 0 ? 2 : 3;");
+ statement("ProjectionAxis = Coords.y;");
+ statement("u = P.x;");
+ statement("v = P.y >= 0 ? P.z : -P.z;");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("CubeFace = P.z >= 0 ? 4 : 5;");
+ statement("ProjectionAxis = Coords.z;");
+ statement("u = P.z >= 0 ? P.x : -P.x;");
+ statement("v = -P.y;");
+ end_scope();
+ statement("u = 0.5 * (u/ProjectionAxis + 1);");
+ statement("v = 0.5 * (v/ProjectionAxis + 1);");
+ statement("return float3(u, v, CubeFace);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse4x4:
+ statement("// Returns the determinant of a 2x2 matrix.");
+ statement(force_inline);
+ statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
+ begin_scope();
+ statement("return a1 * b2 - b1 * a2;");
+ end_scope();
+ statement("");
+
+ statement("// Returns the determinant of a 3x3 matrix.");
+ statement(force_inline);
+ statement("float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
+ "float c2, float c3)");
+ begin_scope();
+ statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
+ "b2, b3);");
+ end_scope();
+ statement("");
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement(force_inline);
+ statement("float4x4 spvInverse4x4(float4x4 m)");
+ begin_scope();
+ statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
+ "m[2][2]);");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
+ "* m[3][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse3x3:
+ if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
+ {
+ statement("// Returns the determinant of a 2x2 matrix.");
+ statement(force_inline);
+ statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
+ begin_scope();
+ statement("return a1 * b2 - b1 * a2;");
+ end_scope();
+ statement("");
+ }
+
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement(force_inline);
+ statement("float3x3 spvInverse3x3(float3x3 m)");
+ begin_scope();
+ statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
+ statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
+ statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
+ statement_no_indent("");
+ statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
+ statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
+ statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
+ statement_no_indent("");
+ statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
+ statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
+ statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse2x2:
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement(force_inline);
+ statement("float2x2 spvInverse2x2(float2x2 m)");
+ begin_scope();
+ statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = m[1][1];");
+ statement("adj[0][1] = -m[0][1];");
+ statement_no_indent("");
+ statement("adj[1][0] = -m[1][0];");
+ statement("adj[1][1] = m[0][0];");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplForwardArgs:
+ statement("template<typename T> struct spvRemoveReference { typedef T type; };");
+ statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
+ statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
+ statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
+ "spvRemoveReference<T>::type& x)");
+ begin_scope();
+ statement("return static_cast<thread T&&>(x);");
+ end_scope();
+ statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
+ "spvRemoveReference<T>::type&& x)");
+ begin_scope();
+ statement("return static_cast<thread T&&>(x);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGetSwizzle:
+ statement("enum class spvSwizzle : uint");
+ begin_scope();
+ statement("none = 0,");
+ statement("zero,");
+ statement("one,");
+ statement("red,");
+ statement("green,");
+ statement("blue,");
+ statement("alpha");
+ end_scope_decl();
+ statement("");
+ statement("template<typename T>");
+ statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
+ begin_scope();
+ statement("switch (s)");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement(" return c;");
+ statement("case spvSwizzle::zero:");
+ statement(" return 0;");
+ statement("case spvSwizzle::one:");
+ statement(" return 1;");
+ statement("case spvSwizzle::red:");
+ statement(" return x.r;");
+ statement("case spvSwizzle::green:");
+ statement(" return x.g;");
+ statement("case spvSwizzle::blue:");
+ statement(" return x.b;");
+ statement("case spvSwizzle::alpha:");
+ statement(" return x.a;");
+ end_scope();
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplTextureSwizzle:
+ statement("// Wrapper function that swizzles texture samples and fetches.");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
+ begin_scope();
+ statement("if (!s)");
+ statement(" return x;");
+ statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
+ "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
+ "& 0xFF)), "
+ "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
+ end_scope();
+ statement("");
+ statement("template<typename T>");
+ statement("inline T spvTextureSwizzle(T x, uint s)");
+ begin_scope();
+ statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGatherSwizzle:
+ statement("// Wrapper function that swizzles texture gathers.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename... Ts>");
+ statement("inline vec<T, 4> spvGatherSwizzle(const thread Tex<T>& t, sampler s, "
+ "uint sw, component c, Ts... params) METAL_CONST_ARG(c)");
+ begin_scope();
+ statement("if (sw)");
+ begin_scope();
+ statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement(" break;");
+ statement("case spvSwizzle::zero:");
+ statement(" return vec<T, 4>(0, 0, 0, 0);");
+ statement("case spvSwizzle::one:");
+ statement(" return vec<T, 4>(1, 1, 1, 1);");
+ statement("case spvSwizzle::red:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
+ statement("case spvSwizzle::green:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
+ statement("case spvSwizzle::blue:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
+ statement("case spvSwizzle::alpha:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
+ end_scope();
+ end_scope();
+ // texture::gather insists on its component parameter being a constant
+ // expression, so we need this silly workaround just to compile the shader.
+ statement("switch (c)");
+ begin_scope();
+ statement("case component::x:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
+ statement("case component::y:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
+ statement("case component::z:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
+ statement("case component::w:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
+ end_scope();
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGatherCompareSwizzle:
+ statement("// Wrapper function that swizzles depth texture gathers.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename... Ts>");
+ statement("inline vec<T, 4> spvGatherCompareSwizzle(const thread Tex<T>& t, sampler "
+ "s, uint sw, Ts... params) ");
+ begin_scope();
+ statement("if (sw)");
+ begin_scope();
+ statement("switch (spvSwizzle(sw & 0xFF))");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement("case spvSwizzle::red:");
+ statement(" break;");
+ statement("case spvSwizzle::zero:");
+ statement("case spvSwizzle::green:");
+ statement("case spvSwizzle::blue:");
+ statement("case spvSwizzle::alpha:");
+ statement(" return vec<T, 4>(0, 0, 0, 0);");
+ statement("case spvSwizzle::one:");
+ statement(" return vec<T, 4>(1, 1, 1, 1);");
+ end_scope();
+ end_scope();
+ statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGatherConstOffsets:
+ // Because we are passing a texture reference, we have to output an overloaded version of this function for each address space.
+ for (uint32_t i = 0; i < texture_addr_space_count; i++)
+ {
+ statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename Toff, typename... Tp>");
+ statement("inline vec<T, 4> spvGatherConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, "
+ "Toff coffsets, component c, Tp... params) METAL_CONST_ARG(c)");
+ begin_scope();
+ statement("vec<T, 4> rslts[4];");
+ statement("for (uint i = 0; i < 4; i++)");
+ begin_scope();
+ statement("switch (c)");
+ begin_scope();
+ // Work around texture::gather() requiring its component parameter to be a constant expression
+ statement("case component::x:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::x);");
+ statement(" break;");
+ statement("case component::y:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::y);");
+ statement(" break;");
+ statement("case component::z:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::z);");
+ statement(" break;");
+ statement("case component::w:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::w);");
+ statement(" break;");
+ end_scope();
+ end_scope();
+ // Pull all values from the i0j0 component of each gather footprint
+ statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);");
+ end_scope();
+ statement("");
+ }
+ break;
+
+ case SPVFuncImplGatherCompareConstOffsets:
+ // Because we are passing a texture reference, we have to output an overloaded version of this function for each address space.
+ for (uint32_t i = 0; i < texture_addr_space_count; i++)
+ {
+ statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename Toff, typename... Tp>");
+ statement("inline vec<T, 4> spvGatherCompareConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, "
+ "Toff coffsets, Tp... params)");
+ begin_scope();
+ statement("vec<T, 4> rslts[4];");
+ statement("for (uint i = 0; i < 4; i++)");
+ begin_scope();
+ statement(" rslts[i] = t.gather_compare(s, spvForward<Tp>(params)..., coffsets[i]);");
+ end_scope();
+ // Pull all values from the i0j0 component of each gather footprint
+ statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);");
+ end_scope();
+ statement("");
+ }
+ break;
+
+ case SPVFuncImplSubgroupBroadcast:
+ // Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting
+ // them as integers.
+ statement("template<typename T>");
+ statement("inline T spvSubgroupBroadcast(T value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_broadcast(value, lane);");
+ else
+ statement("return simd_broadcast(value, lane);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupBroadcast(bool value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_broadcast((ushort)value, lane);");
+ else
+ statement("return !!simd_broadcast((ushort)value, lane);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupBroadcast(vec<bool, N> value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
+ else
+ statement("return (vec<bool, N>)simd_broadcast((vec<ushort, N>)value, lane);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBroadcastFirst:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupBroadcastFirst(T value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_broadcast_first(value);");
+ else
+ statement("return simd_broadcast_first(value);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupBroadcastFirst(bool value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_broadcast_first((ushort)value);");
+ else
+ statement("return !!simd_broadcast_first((ushort)value);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupBroadcastFirst(vec<bool, N> value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value);");
+ else
+ statement("return (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallot:
+ statement("inline uint4 spvSubgroupBallot(bool value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ {
+ statement("return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);");
+ }
+ else if (msl_options.is_ios())
+ {
+ // The current simd_vote on iOS uses a 32-bit integer-like object.
+ statement("return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);");
+ }
+ else
+ {
+ statement("simd_vote vote = simd_ballot(value);");
+ statement("// simd_ballot() returns a 64-bit integer-like object, but");
+ statement("// SPIR-V callers expect a uint4. We must convert.");
+ statement("// FIXME: This won't include higher bits if Apple ever supports");
+ statement("// 128 lanes in an SIMD-group.");
+ statement("return uint4(as_type<uint2>((simd_vote::vote_t)vote), 0, 0);");
+ }
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotBitExtract:
+ statement("inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)");
+ begin_scope();
+ statement("return !!extract_bits(ballot[bit / 32], bit % 32, 1);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotFindLSB:
+ statement("inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
+ }
+ statement("ballot &= mask;");
+ statement("return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + "
+ "ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotFindMSB:
+ statement("inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
+ }
+ statement("ballot &= mask;");
+ statement("return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - "
+ "(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), "
+ "ballot.z == 0), ballot.w == 0);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotBitCount:
+ statement("inline uint spvPopCount4(uint4 ballot)");
+ begin_scope();
+ statement("return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);");
+ end_scope();
+ statement("");
+ statement("inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
+ }
+ statement("return spvPopCount4(ballot & mask);");
+ end_scope();
+ statement("");
+ statement("inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), "
+ "uint2(0));");
+ }
+ statement("return spvPopCount4(ballot & mask);");
+ end_scope();
+ statement("");
+ statement("inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));");
+ }
+ statement("return spvPopCount4(ballot & mask);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupAllEqual:
+ // Metal doesn't provide a function to evaluate this directly. But, we can
+ // implement this by comparing every thread's value to one thread's value
+ // (in this case, the value of the first active thread). Then, by the transitive
+ // property of equality, if all comparisons return true, then they are all equal.
+ statement("template<typename T>");
+ statement("inline bool spvSubgroupAllEqual(T value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_all(all(value == quad_broadcast_first(value)));");
+ else
+ statement("return simd_all(all(value == simd_broadcast_first(value)));");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupAllEqual(bool value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_all(value) || !quad_any(value);");
+ else
+ statement("return simd_all(value) || !simd_any(value);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline bool spvSubgroupAllEqual(vec<bool, N> value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_all(all(value == (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value)));");
+ else
+ statement("return simd_all(all(value == (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value)));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffle:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffle(T value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle(value, lane);");
+ else
+ statement("return simd_shuffle(value, lane);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffle(bool value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle((ushort)value, lane);");
+ else
+ statement("return !!simd_shuffle((ushort)value, lane);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffle(vec<bool, N> value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle((vec<ushort, N>)value, lane);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle((vec<ushort, N>)value, lane);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffleXor:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffleXor(T value, ushort mask)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle_xor(value, mask);");
+ else
+ statement("return simd_shuffle_xor(value, mask);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffleXor(bool value, ushort mask)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle_xor((ushort)value, mask);");
+ else
+ statement("return !!simd_shuffle_xor((ushort)value, mask);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffleXor(vec<bool, N> value, ushort mask)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, mask);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle_xor((vec<ushort, N>)value, mask);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffleUp:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffleUp(T value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle_up(value, delta);");
+ else
+ statement("return simd_shuffle_up(value, delta);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffleUp(bool value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle_up((ushort)value, delta);");
+ else
+ statement("return !!simd_shuffle_up((ushort)value, delta);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffleUp(vec<bool, N> value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle_up((vec<ushort, N>)value, delta);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle_up((vec<ushort, N>)value, delta);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffleDown:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffleDown(T value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle_down(value, delta);");
+ else
+ statement("return simd_shuffle_down(value, delta);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffleDown(bool value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle_down((ushort)value, delta);");
+ else
+ statement("return !!simd_shuffle_down((ushort)value, delta);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffleDown(vec<bool, N> value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle_down((vec<ushort, N>)value, delta);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle_down((vec<ushort, N>)value, delta);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplQuadBroadcast:
+ statement("template<typename T>");
+ statement("inline T spvQuadBroadcast(T value, uint lane)");
+ begin_scope();
+ statement("return quad_broadcast(value, lane);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvQuadBroadcast(bool value, uint lane)");
+ begin_scope();
+ statement("return !!quad_broadcast((ushort)value, lane);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvQuadBroadcast(vec<bool, N> value, uint lane)");
+ begin_scope();
+ statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplQuadSwap:
+ // We can implement this easily based on the following table giving
+ // the target lane ID from the direction and current lane ID:
+ // Direction
+ // | 0 | 1 | 2 |
+ // ---+---+---+---+
+ // L 0 | 1 2 3
+ // a 1 | 0 3 2
+ // n 2 | 3 0 1
+ // e 3 | 2 1 0
+ // Notice that target = source ^ (direction + 1).
+ statement("template<typename T>");
+ statement("inline T spvQuadSwap(T value, uint dir)");
+ begin_scope();
+ statement("return quad_shuffle_xor(value, dir + 1);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvQuadSwap(bool value, uint dir)");
+ begin_scope();
+ statement("return !!quad_shuffle_xor((ushort)value, dir + 1);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvQuadSwap(vec<bool, N> value, uint dir)");
+ begin_scope();
+ statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, dir + 1);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplReflectScalar:
+ // Metal does not support scalar versions of these functions.
+ // Ensure fast-math is disabled to match Vulkan results.
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvReflect(T i, T n)");
+ begin_scope();
+ statement("return i - T(2) * i * n * n;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRefractScalar:
+ // Metal does not support scalar versions of these functions.
+ statement("template<typename T>");
+ statement("inline T spvRefract(T i, T n, T eta)");
+ begin_scope();
+ statement("T NoI = n * i;");
+ statement("T NoI2 = NoI * NoI;");
+ statement("T k = T(1) - eta * eta * (T(1) - NoI2);");
+ statement("if (k < T(0))");
+ begin_scope();
+ statement("return T(0);");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("return eta * i - (eta * NoI + sqrt(k)) * n;");
+ end_scope();
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFaceForwardScalar:
+ // Metal does not support scalar versions of these functions.
+ statement("template<typename T>");
+ statement("inline T spvFaceForward(T n, T i, T nref)");
+ begin_scope();
+ statement("return i * nref < T(0) ? n : -n;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructNearest2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, sampler "
+ "samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructNearest3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, "
+ "texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422CositedEven2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
+ "plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
+ begin_scope();
+ statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).rg);");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
+ end_scope();
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422CositedEven3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
+ "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
+ begin_scope();
+ statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
+ statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ end_scope();
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422Midpoint2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
+ "plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
+ statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422Midpoint3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
+ "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
+ statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
+ statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0)) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0)) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplExpandITUFullRange:
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvExpandITUFullRange(vec<T, 4> ycbcr, int n)");
+ begin_scope();
+ statement("ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplExpandITUNarrowRange:
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvExpandITUNarrowRange(vec<T, 4> ycbcr, int n)");
+ begin_scope();
+ statement("ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);");
+ statement("ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplConvertYCbCrBT709:
+ statement("// cf. Khronos Data Format Specification, section 15.1.1");
+ statement("constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, "
+ "-0.33480248/0.7152, 0}};");
+ statement("");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvConvertYCbCrBT709(vec<T, 4> ycbcr)");
+ begin_scope();
+ statement("vec<T, 4> rgba;");
+ statement("rgba.rgb = vec<T, 3>(spvBT709Factors * ycbcr.gbr);");
+ statement("rgba.a = ycbcr.a;");
+ statement("return rgba;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplConvertYCbCrBT601:
+ statement("// cf. Khronos Data Format Specification, section 15.1.2");
+ statement("constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, "
+ "-0.419198/0.587, 0}};");
+ statement("");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvConvertYCbCrBT601(vec<T, 4> ycbcr)");
+ begin_scope();
+ statement("vec<T, 4> rgba;");
+ statement("rgba.rgb = vec<T, 3>(spvBT601Factors * ycbcr.gbr);");
+ statement("rgba.a = ycbcr.a;");
+ statement("return rgba;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplConvertYCbCrBT2020:
+ statement("// cf. Khronos Data Format Specification, section 15.1.3");
+ statement("constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, "
+ "-0.38737742/0.6780, 0}};");
+ statement("");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvConvertYCbCrBT2020(vec<T, 4> ycbcr)");
+ begin_scope();
+ statement("vec<T, 4> rgba;");
+ statement("rgba.rgb = vec<T, 3>(spvBT2020Factors * ycbcr.gbr);");
+ statement("rgba.a = ycbcr.a;");
+ statement("return rgba;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplDynamicImageSampler:
+ statement("enum class spvFormatResolution");
+ begin_scope();
+ statement("_444 = 0,");
+ statement("_422,");
+ statement("_420");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvChromaFilter");
+ begin_scope();
+ statement("nearest = 0,");
+ statement("linear");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvXChromaLocation");
+ begin_scope();
+ statement("cosited_even = 0,");
+ statement("midpoint");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvYChromaLocation");
+ begin_scope();
+ statement("cosited_even = 0,");
+ statement("midpoint");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvYCbCrModelConversion");
+ begin_scope();
+ statement("rgb_identity = 0,");
+ statement("ycbcr_identity,");
+ statement("ycbcr_bt_709,");
+ statement("ycbcr_bt_601,");
+ statement("ycbcr_bt_2020");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvYCbCrRange");
+ begin_scope();
+ statement("itu_full = 0,");
+ statement("itu_narrow");
+ end_scope_decl();
+ statement("");
+ statement("struct spvComponentBits");
+ begin_scope();
+ statement("constexpr explicit spvComponentBits(int v) thread : value(v) {}");
+ statement("uchar value : 6;");
+ end_scope_decl();
+ statement("// A class corresponding to metal::sampler which holds sampler");
+ statement("// Y'CbCr conversion info.");
+ statement("struct spvYCbCrSampler");
+ begin_scope();
+ statement("constexpr spvYCbCrSampler() thread : val(build()) {}");
+ statement("template<typename... Ts>");
+ statement("constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}");
+ statement("constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;");
+ statement("");
+ statement("spvFormatResolution get_resolution() const thread");
+ begin_scope();
+ statement("return spvFormatResolution((val & resolution_mask) >> resolution_base);");
+ end_scope();
+ statement("spvChromaFilter get_chroma_filter() const thread");
+ begin_scope();
+ statement("return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);");
+ end_scope();
+ statement("spvXChromaLocation get_x_chroma_offset() const thread");
+ begin_scope();
+ statement("return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);");
+ end_scope();
+ statement("spvYChromaLocation get_y_chroma_offset() const thread");
+ begin_scope();
+ statement("return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);");
+ end_scope();
+ statement("spvYCbCrModelConversion get_ycbcr_model() const thread");
+ begin_scope();
+ statement("return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);");
+ end_scope();
+ statement("spvYCbCrRange get_ycbcr_range() const thread");
+ begin_scope();
+ statement("return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);");
+ end_scope();
+ statement("int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }");
+ statement("");
+ statement("private:");
+ statement("ushort val;");
+ statement("");
+ statement("constexpr static constant ushort resolution_bits = 2;");
+ statement("constexpr static constant ushort chroma_filter_bits = 2;");
+ statement("constexpr static constant ushort x_chroma_off_bit = 1;");
+ statement("constexpr static constant ushort y_chroma_off_bit = 1;");
+ statement("constexpr static constant ushort ycbcr_model_bits = 3;");
+ statement("constexpr static constant ushort ycbcr_range_bit = 1;");
+ statement("constexpr static constant ushort bpc_bits = 6;");
+ statement("");
+ statement("constexpr static constant ushort resolution_base = 0;");
+ statement("constexpr static constant ushort chroma_filter_base = 2;");
+ statement("constexpr static constant ushort x_chroma_off_base = 4;");
+ statement("constexpr static constant ushort y_chroma_off_base = 5;");
+ statement("constexpr static constant ushort ycbcr_model_base = 6;");
+ statement("constexpr static constant ushort ycbcr_range_base = 9;");
+ statement("constexpr static constant ushort bpc_base = 10;");
+ statement("");
+ statement(
+ "constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;");
+ statement("constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << "
+ "chroma_filter_base;");
+ statement("constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << "
+ "x_chroma_off_base;");
+ statement("constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << "
+ "y_chroma_off_base;");
+ statement("constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << "
+ "ycbcr_model_base;");
+ statement("constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << "
+ "ycbcr_range_base;");
+ statement("constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;");
+ statement("");
+ statement("static constexpr ushort build()");
+ begin_scope();
+ statement("return 0;");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvFormatResolution res, Ts... t)");
+ begin_scope();
+ statement("return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvChromaFilter filt, Ts... t)");
+ begin_scope();
+ statement("return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvXChromaLocation loc, Ts... t)");
+ begin_scope();
+ statement("return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvYChromaLocation loc, Ts... t)");
+ begin_scope();
+ statement("return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)");
+ begin_scope();
+ statement("return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvYCbCrRange range, Ts... t)");
+ begin_scope();
+ statement("return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvComponentBits bpc, Ts... t)");
+ begin_scope();
+ statement("return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ statement("// A class which can hold up to three textures and a sampler, including");
+ statement("// Y'CbCr conversion info, used to pass combined image-samplers");
+ statement("// dynamically to functions.");
+ statement("template<typename T>");
+ statement("struct spvDynamicImageSampler");
+ begin_scope();
+ statement("texture2d<T> plane0;");
+ statement("texture2d<T> plane1;");
+ statement("texture2d<T> plane2;");
+ statement("sampler samp;");
+ statement("spvYCbCrSampler ycbcr_samp;");
+ statement("uint swizzle = 0;");
+ statement("");
+ if (msl_options.swizzle_texture_samples)
+ {
+ statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, uint sw) thread :");
+ statement(" plane0(tex), samp(samp), swizzle(sw) {}");
+ }
+ else
+ {
+ statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp) thread :");
+ statement(" plane0(tex), samp(samp) {}");
+ }
+ statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, spvYCbCrSampler ycbcr_samp, "
+ "uint sw) thread :");
+ statement(" plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
+ statement("constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1,");
+ statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
+ statement(" plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
+ statement(
+ "constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1, texture2d<T> plane2,");
+ statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
+ statement(" plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), "
+ "swizzle(sw) {}");
+ statement("");
+ // XXX This is really hard to follow... I've left comments to make it a bit easier.
+ statement("template<typename... LodOptions>");
+ statement("vec<T, 4> do_sample(float2 coord, LodOptions... options) const thread");
+ begin_scope();
+ statement("if (!is_null_texture(plane1))");
+ begin_scope();
+ statement("if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||");
+ statement(" ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)");
+ begin_scope();
+ statement("if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement(
+ "return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward<LodOptions>(options)...);");
+ end_scope(); // if (resolution == 422 || chroma_filter == nearest)
+ statement("switch (ycbcr_samp.get_resolution())");
+ begin_scope();
+ statement("case spvFormatResolution::_444: break;");
+ statement("case spvFormatResolution::_422:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_x_chroma_offset())");
+ begin_scope();
+ statement("case spvXChromaLocation::cosited_even:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear422CositedEven(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear422CositedEven(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement("case spvXChromaLocation::midpoint:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear422Midpoint(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear422Midpoint(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ end_scope(); // switch (x_chroma_offset)
+ end_scope(); // case 422:
+ statement("case spvFormatResolution::_420:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_x_chroma_offset())");
+ begin_scope();
+ statement("case spvXChromaLocation::cosited_even:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_y_chroma_offset())");
+ begin_scope();
+ statement("case spvYChromaLocation::cosited_even:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement("case spvYChromaLocation::midpoint:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ end_scope(); // switch (y_chroma_offset)
+ end_scope(); // case x::cosited_even:
+ statement("case spvXChromaLocation::midpoint:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_y_chroma_offset())");
+ begin_scope();
+ statement("case spvYChromaLocation::cosited_even:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XMidpointYCositedEven(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XMidpointYCositedEven(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement("case spvYChromaLocation::midpoint:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XMidpointYMidpoint(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XMidpointYMidpoint(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ end_scope(); // switch (y_chroma_offset)
+ end_scope(); // case x::midpoint
+ end_scope(); // switch (x_chroma_offset)
+ end_scope(); // case 420:
+ end_scope(); // switch (resolution)
+ end_scope(); // if (multiplanar)
+ statement("return plane0.sample(samp, coord, spvForward<LodOptions>(options)...);");
+ end_scope(); // do_sample()
+ statement("template <typename... LodOptions>");
+ statement("vec<T, 4> sample(float2 coord, LodOptions... options) const thread");
+ begin_scope();
+ statement(
+ "vec<T, 4> s = spvTextureSwizzle(do_sample(coord, spvForward<LodOptions>(options)...), swizzle);");
+ statement("if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)");
+ statement(" return s;");
+ statement("");
+ statement("switch (ycbcr_samp.get_ycbcr_range())");
+ begin_scope();
+ statement("case spvYCbCrRange::itu_full:");
+ statement(" s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());");
+ statement(" break;");
+ statement("case spvYCbCrRange::itu_narrow:");
+ statement(" s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());");
+ statement(" break;");
+ end_scope();
+ statement("");
+ statement("switch (ycbcr_samp.get_ycbcr_model())");
+ begin_scope();
+ statement("case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning
+ statement("case spvYCbCrModelConversion::ycbcr_identity:");
+ statement(" return s;");
+ statement("case spvYCbCrModelConversion::ycbcr_bt_709:");
+ statement(" return spvConvertYCbCrBT709(s);");
+ statement("case spvYCbCrModelConversion::ycbcr_bt_601:");
+ statement(" return spvConvertYCbCrBT601(s);");
+ statement("case spvYCbCrModelConversion::ycbcr_bt_2020:");
+ statement(" return spvConvertYCbCrBT2020(s);");
+ end_scope();
+ end_scope();
+ statement("");
+ // Sampler Y'CbCr conversion forbids offsets.
+ statement("vec<T, 4> sample(float2 coord, int2 offset) const thread");
+ begin_scope();
+ if (msl_options.swizzle_texture_samples)
+ statement("return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);");
+ else
+ statement("return plane0.sample(samp, coord, offset);");
+ end_scope();
+ statement("template<typename lod_options>");
+ statement("vec<T, 4> sample(float2 coord, lod_options options, int2 offset) const thread");
+ begin_scope();
+ if (msl_options.swizzle_texture_samples)
+ statement("return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);");
+ else
+ statement("return plane0.sample(samp, coord, options, offset);");
+ end_scope();
+ statement("#if __HAVE_MIN_LOD_CLAMP__");
+ statement("vec<T, 4> sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread");
+ begin_scope();
+ statement("return plane0.sample(samp, coord, b, min_lod, offset);");
+ end_scope();
+ statement(
+ "vec<T, 4> sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread");
+ begin_scope();
+ statement("return plane0.sample(samp, coord, grad, min_lod, offset);");
+ end_scope();
+ statement("#endif");
+ statement("");
+ // Y'CbCr conversion forbids all operations but sampling.
+ statement("vec<T, 4> read(uint2 coord, uint lod = 0) const thread");
+ begin_scope();
+ statement("return plane0.read(coord, lod);");
+ end_scope();
+ statement("");
+ statement("vec<T, 4> gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread");
+ begin_scope();
+ if (msl_options.swizzle_texture_samples)
+ statement("return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);");
+ else
+ statement("return plane0.gather(samp, coord, offset, c);");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplRayQueryIntersectionParams:
+ statement("intersection_params spvMakeIntersectionParams(uint flags)");
+ begin_scope();
+ statement("intersection_params ip;");
+ statement("if ((flags & ", RayFlagsOpaqueKHRMask, ") != 0)");
+ statement(" ip.force_opacity(forced_opacity::opaque);");
+ statement("if ((flags & ", RayFlagsNoOpaqueKHRMask, ") != 0)");
+ statement(" ip.force_opacity(forced_opacity::non_opaque);");
+ statement("if ((flags & ", RayFlagsTerminateOnFirstHitKHRMask, ") != 0)");
+ statement(" ip.accept_any_intersection(true);");
+ // RayFlagsSkipClosestHitShaderKHRMask is not available in MSL
+ statement("if ((flags & ", RayFlagsCullBackFacingTrianglesKHRMask, ") != 0)");
+ statement(" ip.set_triangle_cull_mode(triangle_cull_mode::back);");
+ statement("if ((flags & ", RayFlagsCullFrontFacingTrianglesKHRMask, ") != 0)");
+ statement(" ip.set_triangle_cull_mode(triangle_cull_mode::front);");
+ statement("if ((flags & ", RayFlagsCullOpaqueKHRMask, ") != 0)");
+ statement(" ip.set_opacity_cull_mode(opacity_cull_mode::opaque);");
+ statement("if ((flags & ", RayFlagsCullNoOpaqueKHRMask, ") != 0)");
+ statement(" ip.set_opacity_cull_mode(opacity_cull_mode::non_opaque);");
+ statement("if ((flags & ", RayFlagsSkipTrianglesKHRMask, ") != 0)");
+ statement(" ip.set_geometry_cull_mode(geometry_cull_mode::triangle);");
+ statement("if ((flags & ", RayFlagsSkipAABBsKHRMask, ") != 0)");
+ statement(" ip.set_geometry_cull_mode(geometry_cull_mode::bounding_box);");
+ statement("return ip;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplVariableDescriptor:
+ statement("template<typename T>");
+ statement("struct spvDescriptor");
+ begin_scope();
+ statement("T value;");
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplVariableSizedDescriptor:
+ statement("template<typename T>");
+ statement("struct spvBufferDescriptor");
+ begin_scope();
+ statement("T value;");
+ statement("int length;");
+ statement("const device T& operator -> () const device");
+ begin_scope();
+ statement("return value;");
+ end_scope();
+ statement("const device T& operator * () const device");
+ begin_scope();
+ statement("return value;");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplVariableDescriptorArray:
+ if (spv_function_implementations.count(SPVFuncImplVariableDescriptor) != 0)
+ {
+ statement("template<typename T>");
+ statement("struct spvDescriptorArray");
+ begin_scope();
+ statement("spvDescriptorArray(const device spvDescriptor<T>* ptr) : ptr(&ptr->value)");
+ begin_scope();
+ end_scope();
+ statement("const device T& operator [] (size_t i) const");
+ begin_scope();
+ statement("return ptr[i];");
+ end_scope();
+ statement("const device T* ptr;");
+ end_scope_decl();
+ statement("");
+ }
+ else
+ {
+ statement("template<typename T>");
+ statement("struct spvDescriptorArray;");
+ statement("");
+ }
+
+ if (msl_options.runtime_array_rich_descriptor &&
+ spv_function_implementations.count(SPVFuncImplVariableSizedDescriptor) != 0)
+ {
+ statement("template<typename T>");
+ statement("struct spvDescriptorArray<device T*>");
+ begin_scope();
+ statement("spvDescriptorArray(const device spvBufferDescriptor<device T*>* ptr) : ptr(ptr)");
+ begin_scope();
+ end_scope();
+ statement("const device T* operator [] (size_t i) const");
+ begin_scope();
+ statement("return ptr[i].value;");
+ end_scope();
+ statement("const int length(int i) const");
+ begin_scope();
+ statement("return ptr[i].length;");
+ end_scope();
+ statement("const device spvBufferDescriptor<device T*>* ptr;");
+ end_scope_decl();
+ statement("");
+ }
+ break;
+
+ case SPVFuncImplPaddedStd140:
+ // .data is used in access chain.
+ statement("template <typename T>");
+ statement("struct spvPaddedStd140 { alignas(16) T data; };");
+ statement("template <typename T, int n>");
+ statement("using spvPaddedStd140Matrix = spvPaddedStd140<T>[n];");
+ statement("");
+ break;
+
+ case SPVFuncImplReduceAdd:
+ // Metal doesn't support __builtin_reduce_add or simd_reduce_add, so we need this.
+ // Metal also doesn't support the other vector builtins, which would have been useful to make this a single template.
+
+ statement("template <typename T>");
+ statement("T reduce_add(vec<T, 2> v) { return v.x + v.y; }");
+
+ statement("template <typename T>");
+ statement("T reduce_add(vec<T, 3> v) { return v.x + v.y + v.z; }");
+
+ statement("template <typename T>");
+ statement("T reduce_add(vec<T, 4> v) { return v.x + v.y + v.z + v.w; }");
+
+ statement("");
+ break;
+
+ case SPVFuncImplImageFence:
+ statement("template <typename ImageT>");
+ statement("void spvImageFence(ImageT img) { img.fence(); }");
+ statement("");
+ break;
+
+ case SPVFuncImplTextureCast:
+ statement("template <typename T, typename U>");
+ statement("T spvTextureCast(U img)");
+ begin_scope();
+ // MSL complains if you try to cast the texture itself, but casting the reference type is ... ok? *shrug*
+ // Gotta go what you gotta do I suppose.
+ statement("return reinterpret_cast<thread const T &>(img);");
+ end_scope();
+ statement("");
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier)
+{
+ // Easier to do this through text munging since the qualifier does not exist in the type system at all,
+ // and plumbing in all that information is not very helpful.
+ size_t last_reference = expr.find_last_of('&');
+ size_t last_pointer = expr.find_last_of('*');
+ size_t last_significant = string::npos;
+
+ if (last_reference == string::npos)
+ last_significant = last_pointer;
+ else if (last_pointer == string::npos)
+ last_significant = last_reference;
+ else
+ last_significant = max<size_t>(last_reference, last_pointer);
+
+ if (last_significant == string::npos)
+ return join(qualifier, " ", expr);
+ else
+ {
+ return join(expr.substr(0, last_significant + 1), " ",
+ qualifier, expr.substr(last_significant + 1, string::npos));
+ }
+}
+
+void CompilerMSL::declare_constant_arrays()
+{
+ bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
+
+ // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
+ // global constants directly, so we are able to use constants as variable expressions.
+ bool emitted = false;
+
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ if (c.specialization)
+ return;
+
+ auto &type = this->get<SPIRType>(c.constant_type);
+ // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries.
+ // FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there.
+ // If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to
+ // link into Metal libraries. This is hacky.
+ if (is_array(type) && (!fully_inlined || is_scalar(type) || is_vector(type)))
+ {
+ add_resource_name(c.self);
+ auto name = to_name(c.self);
+ statement(inject_top_level_storage_qualifier(variable_decl(type, name), "constant"),
+ " = ", constant_expression(c), ";");
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+}
+
+// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
+void CompilerMSL::declare_complex_constant_arrays()
+{
+ // If we do not have a fully inlined module, we did not opt in to
+ // declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays().
+ bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
+ if (!fully_inlined)
+ return;
+
+ // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
+ // global constants directly, so we are able to use constants as variable expressions.
+ bool emitted = false;
+
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ if (c.specialization)
+ return;
+
+ auto &type = this->get<SPIRType>(c.constant_type);
+ if (is_array(type) && !(is_scalar(type) || is_vector(type)))
+ {
+ add_resource_name(c.self);
+ auto name = to_name(c.self);
+ statement("", variable_decl(type, name), " = ", constant_expression(c), ";");
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::emit_resources()
+{
+ declare_constant_arrays();
+
+ // Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
+ emit_interface_block(stage_out_var_id);
+ emit_interface_block(patch_stage_out_var_id);
+ emit_interface_block(stage_in_var_id);
+ emit_interface_block(patch_stage_in_var_id);
+}
+
+// Emit declarations for the specialization Metal function constants
+void CompilerMSL::emit_specialization_constants_and_structs()
+{
+ SpecializationConstant wg_x, wg_y, wg_z;
+ ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+ bool emitted = false;
+
+ unordered_set<uint32_t> declared_structs;
+ unordered_set<uint32_t> aligned_structs;
+
+ // First, we need to deal with scalar block layout.
+ // It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself.
+ // In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types.
+ // This makes the struct alignment as small as physically possible.
+ // When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t type_id, const SPIRType &type) {
+ if (type.basetype == SPIRType::Struct &&
+ has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
+ mark_scalar_layout_structs(type);
+ });
+
+ bool builtin_block_type_is_required = false;
+ // Very special case. If gl_PerVertex is initialized as an array (tessellation)
+ // we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT.
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ auto &type = this->get<SPIRType>(c.constant_type);
+ if (is_array(type) && has_decoration(type.self, DecorationBlock) && is_builtin_type(type))
+ builtin_block_type_is_required = true;
+ });
+
+ // Very particular use of the soft loop lock.
+ // align_struct may need to create custom types on the fly, but we don't care about
+ // these types for purpose of iterating over them in ir.ids_for_type and friends.
+ auto loop_lock = ir.create_loop_soft_lock();
+
+ // Physical storage buffer pointers can have cyclical references,
+ // so emit forward declarations of them before other structs.
+ // Ignore type_id because we want the underlying struct type from the pointer.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t /* type_id */, const SPIRType &type) {
+ if (type.basetype == SPIRType::Struct &&
+ type.pointer && type.storage == StorageClassPhysicalStorageBuffer &&
+ declared_structs.count(type.self) == 0)
+ {
+ statement("struct ", to_name(type.self), ";");
+ declared_structs.insert(type.self);
+ emitted = true;
+ }
+ });
+ if (emitted)
+ statement("");
+
+ emitted = false;
+ declared_structs.clear();
+
+ // It is possible to have multiple spec constants that use the same spec constant ID.
+ // The most common cause of this is defining spec constants in GLSL while also declaring
+ // the workgroup size to use those spec constants. But, Metal forbids declaring more than
+ // one variable with the same function constant ID.
+ // In this case, we must only declare one variable with the [[function_constant(id)]]
+ // attribute, and use its initializer to initialize all the spec constants with
+ // that ID.
+ std::unordered_map<uint32_t, ConstantID> unique_func_constants;
+
+ for (auto &id_ : ir.ids_for_constant_undef_or_type)
+ {
+ auto &id = ir.ids[id_];
+
+ if (id.get_type() == TypeConstant)
+ {
+ auto &c = id.get<SPIRConstant>();
+
+ if (c.self == workgroup_size_id)
+ {
+ // TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
+ // the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
+ // The work group size may be a specialization constant.
+ statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup),
+ " [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
+ emitted = true;
+ }
+ else if (c.specialization)
+ {
+ auto &type = get<SPIRType>(c.constant_type);
+ string sc_type_name = type_to_glsl(type);
+ add_resource_name(c.self);
+ string sc_name = to_name(c.self);
+
+ // Function constants are only supported in MSL 1.2 and later.
+ // If we don't support it just declare the "default" directly.
+ // This "default" value can be overridden to the true specialization constant by the API user.
+ // Specialization constants which are used as array length expressions cannot be function constants in MSL,
+ // so just fall back to macros.
+ if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
+ !c.is_used_as_array_length)
+ {
+ // Only scalar, non-composite values can be function constants.
+ uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
+ if (!unique_func_constants.count(constant_id))
+ unique_func_constants.insert(make_pair(constant_id, c.self));
+ SPIRType::BaseType sc_tmp_type = expression_type(unique_func_constants[constant_id]).basetype;
+ string sc_tmp_name = to_name(unique_func_constants[constant_id]) + "_tmp";
+ if (unique_func_constants[constant_id] == c.self)
+ statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
+ ")]];");
+ statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
+ ") ? ", bitcast_expression(type, sc_tmp_type, sc_tmp_name), " : ", constant_expression(c),
+ ";");
+ }
+ else if (has_decoration(c.self, DecorationSpecId))
+ {
+ // Fallback to macro overrides.
+ c.specialization_constant_macro_name =
+ constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
+
+ statement("#ifndef ", c.specialization_constant_macro_name);
+ statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
+ statement("#endif");
+ statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
+ ";");
+ }
+ else
+ {
+ // Composite specialization constants must be built from other specialization constants.
+ statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
+ }
+ emitted = true;
+ }
+ }
+ else if (id.get_type() == TypeConstantOp)
+ {
+ auto &c = id.get<SPIRConstantOp>();
+ auto &type = get<SPIRType>(c.basetype);
+ add_resource_name(c.self);
+ auto name = to_name(c.self);
+ statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
+ emitted = true;
+ }
+ else if (id.get_type() == TypeType)
+ {
+ // Output non-builtin interface structs. These include local function structs
+ // and structs nested within uniform and read-write buffers.
+ auto &type = id.get<SPIRType>();
+ TypeID type_id = type.self;
+
+ bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer;
+ bool is_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ bool is_builtin_block = is_block && is_builtin_type(type);
+ bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required);
+
+ // We'll declare this later.
+ if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
+ is_declarable_struct = false;
+
+ // Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it.
+ if (stage_out_masked_builtin_type_id == type_id)
+ is_declarable_struct = true;
+
+ // Align and emit declarable structs...but avoid declaring each more than once.
+ if (is_declarable_struct && declared_structs.count(type_id) == 0)
+ {
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ declared_structs.insert(type_id);
+
+ if (has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
+ align_struct(type, aligned_structs);
+
+ // Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
+ emit_struct(get<SPIRType>(type_id));
+ }
+ }
+ else if (id.get_type() == TypeUndef)
+ {
+ auto &undef = id.get<SPIRUndef>();
+ auto &type = get<SPIRType>(undef.basetype);
+ // OpUndef can be void for some reason ...
+ if (type.basetype == SPIRType::Void)
+ return;
+
+ // Undefined global memory is not allowed in MSL.
+ // Declare constant and init to zeros. Use {}, as global constructors can break Metal.
+ statement(
+ inject_top_level_storage_qualifier(variable_decl(type, to_name(undef.self), undef.self), "constant"),
+ " = {};");
+ emitted = true;
+ }
+ }
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1);
+ emit_op(result_type, result_id, join(to_ptr_expression(op0), " ", op, " ", to_ptr_expression(op1)), forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+string CompilerMSL::to_ptr_expression(uint32_t id, bool register_expression_read)
+{
+ auto *e = maybe_get<SPIRExpression>(id);
+ auto expr = enclose_expression(e && e->need_transpose ? e->expression : to_expression(id, register_expression_read));
+ if (!should_dereference(id))
+ expr = address_of_expression(expr);
+ return expr;
+}
+
+void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1);
+ emit_op(result_type, result_id,
+ join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
+ ") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
+ ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr)
+{
+ auto &ptr_type = expression_type(ptr);
+ auto &result_type = get<SPIRType>(result_type_id);
+ if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput)
+ return false;
+ if (ptr_type.storage == StorageClassOutput && is_tese_shader())
+ return false;
+
+ if (has_decoration(ptr, DecorationPatch))
+ return false;
+ bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable;
+
+ bool flattened_io = variable_storage_requires_stage_io(ptr_type.storage);
+
+ bool flat_data_type = flattened_io &&
+ (is_matrix(result_type) || is_array(result_type) || result_type.basetype == SPIRType::Struct);
+
+ // Edge case, even with multi-patch workgroups, we still need to unroll load
+ // if we're loading control points directly.
+ if (ptr_is_io_variable && is_array(result_type))
+ flat_data_type = true;
+
+ if (!flat_data_type)
+ return false;
+
+ // Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out.
+ // Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup
+ // unless we're forced to do this when the code is emitting inoptimal OpLoads.
+ string expr;
+
+ uint32_t interface_index = get_extended_decoration(ptr, SPIRVCrossDecorationInterfaceMemberIndex);
+ auto *var = maybe_get_backing_variable(ptr);
+ auto &expr_type = get_pointee_type(ptr_type.self);
+
+ const auto &iface_type = expression_type(stage_in_ptr_var_id);
+
+ if (!flattened_io)
+ {
+ // Simplest case for multi-patch workgroups, just unroll array as-is.
+ if (interface_index == uint32_t(-1))
+ return false;
+
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t num_control_points = to_array_size_literal(result_type, uint32_t(result_type.array.size()) - 1);
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else if (result_type.array.size() > 2)
+ {
+ SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions.");
+ }
+ else if (result_type.array.size() == 2)
+ {
+ if (!ptr_is_io_variable)
+ SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable.");
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+ if (result_type.basetype == SPIRType::Struct || is_matrix(result_type))
+ SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO.");
+
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t num_control_points = to_array_size_literal(result_type, 1);
+ uint32_t base_interface_index = interface_index;
+
+ auto &sub_type = get<SPIRType>(result_type.parent_type);
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ expr += type_to_glsl(sub_type) + "({ ";
+ interface_index = base_interface_index;
+ uint32_t array_size = to_array_size_literal(result_type, 0);
+ for (uint32_t j = 0; j < array_size; j++, interface_index++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (!is_matrix(sub_type) && sub_type.basetype != SPIRType::Struct &&
+ expr_type.vecsize > sub_type.vecsize)
+ expr += vector_swizzle(sub_type.vecsize, 0);
+
+ if (j + 1 < array_size)
+ expr += ", ";
+ }
+ expr += " })";
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else if (result_type.basetype == SPIRType::Struct)
+ {
+ bool is_array_of_struct = is_array(result_type);
+ if (is_array_of_struct && !ptr_is_io_variable)
+ SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable.");
+
+ uint32_t num_control_points = 1;
+ if (is_array_of_struct)
+ {
+ num_control_points = to_array_size_literal(result_type, 0);
+ expr += type_to_glsl(result_type) + "({ ";
+ }
+
+ auto &struct_type = is_array_of_struct ? get<SPIRType>(result_type.parent_type) : result_type;
+ assert(struct_type.array.empty());
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ expr += type_to_glsl(struct_type) + "{ ";
+ for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++)
+ {
+ // The base interface index is stored per variable for structs.
+ if (var)
+ {
+ interface_index =
+ get_extended_member_decoration(var->self, j, SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ const auto &mbr_type = get<SPIRType>(struct_type.member_types[j]);
+ const auto &expr_mbr_type = get<SPIRType>(expr_type.member_types[j]);
+ if (is_matrix(mbr_type) && ptr_type.storage == StorageClassInput)
+ {
+ expr += type_to_glsl(mbr_type) + "(";
+ for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++)
+ {
+ if (is_array_of_struct)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(
+ stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ }
+ else
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_mbr_type.vecsize > mbr_type.vecsize)
+ expr += vector_swizzle(mbr_type.vecsize, 0);
+
+ if (k + 1 < mbr_type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+ else if (is_array(mbr_type))
+ {
+ expr += type_to_glsl(mbr_type) + "({ ";
+ uint32_t array_size = to_array_size_literal(mbr_type, 0);
+ for (uint32_t k = 0; k < array_size; k++, interface_index++)
+ {
+ if (is_array_of_struct)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(
+ stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ }
+ else
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_mbr_type.vecsize > mbr_type.vecsize)
+ expr += vector_swizzle(mbr_type.vecsize, 0);
+
+ if (k + 1 < array_size)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else
+ {
+ if (is_array_of_struct)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT,
+ &meta);
+ }
+ else
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_mbr_type.vecsize > mbr_type.vecsize)
+ expr += vector_swizzle(mbr_type.vecsize, 0);
+ }
+
+ if (j + 1 < struct_type.member_types.size())
+ expr += ", ";
+ }
+ expr += " }";
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ if (is_array_of_struct)
+ expr += " })";
+ }
+ else if (is_matrix(result_type))
+ {
+ bool is_array_of_matrix = is_array(result_type);
+ if (is_array_of_matrix && !ptr_is_io_variable)
+ SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable.");
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ if (is_array_of_matrix)
+ {
+ // Loading a matrix from each control point.
+ uint32_t base_interface_index = interface_index;
+ uint32_t num_control_points = to_array_size_literal(result_type, 0);
+ expr += type_to_glsl(result_type) + "({ ";
+
+ auto &matrix_type = get_variable_element_type(get<SPIRVariable>(ptr));
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ interface_index = base_interface_index;
+ expr += type_to_glsl(matrix_type) + "(";
+ for (uint32_t j = 0; j < result_type.columns; j++, interface_index++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+ if (j + 1 < result_type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+
+ expr += " })";
+ }
+ else
+ {
+ expr += type_to_glsl(result_type) + "(";
+ for (uint32_t i = 0; i < result_type.columns; i++, interface_index++)
+ {
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+ if (i + 1 < result_type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+ }
+ else if (ptr_is_io_variable)
+ {
+ assert(is_array(result_type));
+ assert(result_type.array.size() == 1);
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ // We're loading an array directly from a global variable.
+ // This means we're loading one member from each control point.
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t num_control_points = to_array_size_literal(result_type, 0);
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else
+ {
+ // We're loading an array from a concrete control point.
+ assert(is_array(result_type));
+ assert(result_type.array.size() == 1);
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t array_size = to_array_size_literal(result_type, 0);
+ for (uint32_t i = 0; i < array_size; i++, interface_index++)
+ {
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+ if (i + 1 < array_size)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+
+ emit_op(result_type_id, id, expr, false);
+ register_read(id, ptr, false);
+ return true;
+}
+
+bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
+{
+ // If this is a per-vertex output, remap it to the I/O array buffer.
+
+ // Any object which did not go through IO flattening shenanigans will go there instead.
+ // We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays.
+
+ auto *var = maybe_get_backing_variable(ops[2]);
+ bool patch = false;
+ bool flat_data = false;
+ bool ptr_is_chain = false;
+ bool flatten_composites = false;
+
+ bool is_block = false;
+ bool is_arrayed = false;
+
+ if (var)
+ {
+ auto &type = get_variable_data_type(*var);
+ is_block = has_decoration(type.self, DecorationBlock);
+ is_arrayed = !type.array.empty();
+
+ flatten_composites = variable_storage_requires_stage_io(var->storage);
+ patch = has_decoration(ops[2], DecorationPatch) || is_patch_block(type);
+
+ // Should match strip_array in add_interface_block.
+ flat_data = var->storage == StorageClassInput || (var->storage == StorageClassOutput && is_tesc_shader());
+
+ // Patch inputs are treated as normal block IO variables, so they don't deal with this path at all.
+ if (patch && (!is_block || is_arrayed || var->storage == StorageClassInput))
+ flat_data = false;
+
+ // We might have a chained access chain, where
+ // we first take the access chain to the control point, and then we chain into a member or something similar.
+ // In this case, we need to skip gl_in/gl_out remapping.
+ // Also, skip ptr chain for patches.
+ ptr_is_chain = var->self != ID(ops[2]);
+ }
+
+ bool builtin_variable = false;
+ bool variable_is_flat = false;
+
+ if (var && flat_data)
+ {
+ builtin_variable = is_builtin_variable(*var);
+
+ BuiltIn bi_type = BuiltInMax;
+ if (builtin_variable && !is_block)
+ bi_type = BuiltIn(get_decoration(var->self, DecorationBuiltIn));
+
+ variable_is_flat = !builtin_variable || is_block ||
+ bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
+ }
+
+ if (variable_is_flat)
+ {
+ // If output is masked, it is emitted as a "normal" variable, just go through normal code paths.
+ // Only check this for the first level of access chain.
+ // Dealing with this for partial access chains should be possible, but awkward.
+ if (var->storage == StorageClassOutput && !ptr_is_chain)
+ {
+ bool masked = false;
+ if (is_block)
+ {
+ uint32_t relevant_member_index = patch ? 3 : 4;
+ // FIXME: This won't work properly if the application first access chains into gl_out element,
+ // then access chains into the member. Super weird, but theoretically possible ...
+ if (length > relevant_member_index)
+ {
+ uint32_t mbr_idx = get<SPIRConstant>(ops[relevant_member_index]).scalar();
+ masked = is_stage_output_block_member_masked(*var, mbr_idx, true);
+ }
+ }
+ else if (var)
+ masked = is_stage_output_variable_masked(*var);
+
+ if (masked)
+ return false;
+ }
+
+ AccessChainMeta meta;
+ SmallVector<uint32_t> indices;
+ uint32_t next_id = ir.increase_bound_by(1);
+
+ indices.reserve(length - 3 + 1);
+
+ uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0);
+
+ VariableID stage_var_id;
+ if (patch)
+ stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id;
+ else
+ stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
+
+ VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id;
+ if (!ptr_is_chain && !patch)
+ {
+ // Index into gl_in/gl_out with first array index.
+ indices.push_back(ops[first_non_array_index - 1]);
+ }
+
+ auto &result_ptr_type = get<SPIRType>(ops[0]);
+
+ uint32_t const_mbr_id = next_id++;
+ uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
+
+ // If we have a pointer chain expression, and we are no longer pointing to a composite
+ // object, we are in the clear. There is no longer a need to flatten anything.
+ bool further_access_chain_is_trivial = false;
+ if (ptr_is_chain && flatten_composites)
+ {
+ auto &ptr_type = expression_type(ptr);
+ if (!is_array(ptr_type) && !is_matrix(ptr_type) && ptr_type.basetype != SPIRType::Struct)
+ further_access_chain_is_trivial = true;
+ }
+
+ if (!further_access_chain_is_trivial && (flatten_composites || is_block))
+ {
+ uint32_t i = first_non_array_index;
+ auto *type = &get_variable_element_type(*var);
+ if (index == uint32_t(-1) && length >= (first_non_array_index + 1))
+ {
+ // Maybe this is a struct type in the input class, in which case
+ // we put it as a decoration on the corresponding member.
+ uint32_t mbr_idx = get_constant(ops[first_non_array_index]).scalar();
+ index = get_extended_member_decoration(var->self, mbr_idx,
+ SPIRVCrossDecorationInterfaceMemberIndex);
+ assert(index != uint32_t(-1));
+ i++;
+ type = &get<SPIRType>(type->member_types[mbr_idx]);
+ }
+
+ // In this case, we're poking into flattened structures and arrays, so now we have to
+ // combine the following indices. If we encounter a non-constant index,
+ // we're hosed.
+ for (; flatten_composites && i < length; ++i)
+ {
+ if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
+ break;
+
+ auto *c = maybe_get<SPIRConstant>(ops[i]);
+ if (!c || c->specialization)
+ SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. "
+ "This is currently unsupported.");
+
+ // We're in flattened space, so just increment the member index into IO block.
+ // We can only do this once in the current implementation, so either:
+ // Struct, Matrix or 1-dimensional array for a control point.
+ if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput)
+ {
+ // Need to consider holes, since individual block members might be masked away.
+ uint32_t mbr_idx = c->scalar();
+ for (uint32_t j = 0; j < mbr_idx; j++)
+ if (!is_stage_output_block_member_masked(*var, j, true))
+ index++;
+ }
+ else
+ index += c->scalar();
+
+ if (type->parent_type)
+ type = &get<SPIRType>(type->parent_type);
+ else if (type->basetype == SPIRType::Struct)
+ type = &get<SPIRType>(type->member_types[c->scalar()]);
+ }
+
+ // We're not going to emit the actual member name, we let any further OpLoad take care of that.
+ // Tag the access chain with the member index we're referencing.
+ auto &result_pointee_type = get_pointee_type(result_ptr_type);
+ bool defer_access_chain = flatten_composites && (is_matrix(result_pointee_type) || is_array(result_pointee_type) ||
+ result_pointee_type.basetype == SPIRType::Struct);
+
+ if (!defer_access_chain)
+ {
+ // Access the appropriate member of gl_in/gl_out.
+ set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
+ indices.push_back(const_mbr_id);
+
+ // Member index is now irrelevant.
+ index = uint32_t(-1);
+
+ // Append any straggling access chain indices.
+ if (i < length)
+ indices.insert(indices.end(), ops + i, ops + length);
+ }
+ else
+ {
+ // We must have consumed the entire access chain if we're deferring it.
+ assert(i == length);
+ }
+
+ if (index != uint32_t(-1))
+ set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, index);
+ else
+ unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+ else
+ {
+ if (index != uint32_t(-1))
+ {
+ set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
+ indices.push_back(const_mbr_id);
+ }
+
+ // Member index is now irrelevant.
+ index = uint32_t(-1);
+ unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
+
+ indices.insert(indices.end(), ops + first_non_array_index, ops + length);
+ }
+
+ // We use the pointer to the base of the input/output array here,
+ // so this is always a pointer chain.
+ string e;
+
+ if (!ptr_is_chain)
+ {
+ // This is the start of an access chain, use ptr_chain to index into control point array.
+ e = access_chain(ptr, indices.data(), uint32_t(indices.size()), result_ptr_type, &meta, !patch);
+ }
+ else
+ {
+ // If we're accessing a struct, we need to use member indices which are based on the IO block,
+ // not actual struct type, so we have to use a split access chain here where
+ // first path resolves the control point index, i.e. gl_in[index], and second half deals with
+ // looking up flattened member name.
+
+ // However, it is possible that we partially accessed a struct,
+ // by taking pointer to member inside the control-point array.
+ // For this case, we fall back to a natural access chain since we have already dealt with remapping struct members.
+ // One way to check this here is if we have 2 implied read expressions.
+ // First one is the gl_in/gl_out struct itself, then an index into that array.
+ // If we have traversed further, we use a normal access chain formulation.
+ auto *ptr_expr = maybe_get<SPIRExpression>(ptr);
+ bool split_access_chain_formulation = flatten_composites && ptr_expr &&
+ ptr_expr->implied_read_expressions.size() == 2 &&
+ !further_access_chain_is_trivial;
+
+ if (split_access_chain_formulation)
+ {
+ e = join(to_expression(ptr),
+ access_chain_internal(stage_var_id, indices.data(), uint32_t(indices.size()),
+ ACCESS_CHAIN_CHAIN_ONLY_BIT, &meta));
+ }
+ else
+ {
+ e = access_chain_internal(ptr, indices.data(), uint32_t(indices.size()), 0, &meta);
+ }
+ }
+
+ // Get the actual type of the object that was accessed. If it's a vector type and we changed it,
+ // then we'll need to add a swizzle.
+ // For this, we can't necessarily rely on the type of the base expression, because it might be
+ // another access chain, and it will therefore already have the "correct" type.
+ auto *expr_type = &get_variable_data_type(*var);
+ if (has_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID))
+ expr_type = &get<SPIRType>(get_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID));
+ for (uint32_t i = 3; i < length; i++)
+ {
+ if (!is_array(*expr_type) && expr_type->basetype == SPIRType::Struct)
+ expr_type = &get<SPIRType>(expr_type->member_types[get<SPIRConstant>(ops[i]).scalar()]);
+ else
+ expr_type = &get<SPIRType>(expr_type->parent_type);
+ }
+ if (!is_array(*expr_type) && !is_matrix(*expr_type) && expr_type->basetype != SPIRType::Struct &&
+ expr_type->vecsize > result_ptr_type.vecsize)
+ e += vector_swizzle(result_ptr_type.vecsize, 0);
+
+ auto &expr = set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2]));
+ expr.loaded_from = var->self;
+ expr.need_transpose = meta.need_transpose;
+ expr.access_chain = true;
+
+ // Mark the result as being packed if necessary.
+ if (meta.storage_is_packed)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked);
+ if (meta.storage_physical_type != 0)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
+ if (meta.storage_is_invariant)
+ set_decoration(ops[1], DecorationInvariant);
+ // Save the type we found in case the result is used in another access chain.
+ set_extended_decoration(ops[1], SPIRVCrossDecorationTessIOOriginalInputTypeID, expr_type->self);
+
+ // If we have some expression dependencies in our access chain, this access chain is technically a forwarded
+ // temporary which could be subject to invalidation.
+ // Need to assume we're forwarded while calling inherit_expression_depdendencies.
+ forwarded_temporaries.insert(ops[1]);
+ // The access chain itself is never forced to a temporary, but its dependencies might.
+ suppressed_usage_tracking.insert(ops[1]);
+
+ for (uint32_t i = 2; i < length; i++)
+ {
+ inherit_expression_dependencies(ops[1], ops[i]);
+ add_implied_read_expression(expr, ops[i]);
+ }
+
+ // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
+ // we're not forwarded after all.
+ if (expr.expression_dependencies.empty())
+ forwarded_temporaries.erase(ops[1]);
+
+ return true;
+ }
+
+ // If this is the inner tessellation level, and we're tessellating triangles,
+ // drop the last index. It isn't an array in this case, so we can't have an
+ // array reference here. We need to make this ID a variable instead of an
+ // expression so we don't try to dereference it as a variable pointer.
+ // Don't do this if the index is a constant 1, though. We need to drop stores
+ // to that one.
+ auto *m = ir.find_meta(var ? var->self : ID(0));
+ if (is_tesc_shader() && var && m && m->decoration.builtin_type == BuiltInTessLevelInner &&
+ is_tessellating_triangles())
+ {
+ auto *c = maybe_get<SPIRConstant>(ops[3]);
+ if (c && c->scalar() == 1)
+ return false;
+ auto &dest_var = set<SPIRVariable>(ops[1], *var);
+ dest_var.basetype = ops[0];
+ ir.meta[ops[1]] = ir.meta[ops[2]];
+ inherit_expression_dependencies(ops[1], ops[2]);
+ return true;
+ }
+
+ return false;
+}
+
+bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
+{
+ if (!is_tessellating_triangles())
+ return false;
+
+ // In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
+ // four. This is true even if we are tessellating triangles. This allows clients
+ // to use a single tessellation control shader with multiple tessellation evaluation
+ // shaders.
+ // In Metal, however, only the first element of TessLevelInner and the first three
+ // of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
+ // levels must be stored to a dedicated buffer in a particular format that depends
+ // on the patch type. Therefore, in Triangles mode, any store to the second
+ // inner level or the fourth outer level must be dropped.
+ const auto *e = maybe_get<SPIRExpression>(id_lhs);
+ if (!e || !e->access_chain)
+ return false;
+ BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
+ if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
+ return false;
+ auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
+ if (!c)
+ return false;
+ return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
+ (builtin == BuiltInTessLevelOuter && c->scalar() == 3);
+}
+
+bool CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type,
+ spv::StorageClass storage, bool &is_packed)
+{
+ // If there is any risk of writes happening with the access chain in question,
+ // and there is a risk of concurrent write access to other components,
+ // we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect.
+ // The MSL compiler refuses to allow component-level access for any non-packed vector types.
+ if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup))
+ {
+ const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device";
+ expr = join("((", addr_space, " ", type_to_glsl(type), "*)&", enclose_expression(expr), ")");
+
+ // Further indexing should happen with packed rules (array index, not swizzle).
+ is_packed = true;
+ return true;
+ }
+ else
+ return false;
+}
+
+bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base)
+{
+ auto *var = maybe_get_backing_variable(base);
+ if (!var || !is_tessellation_shader())
+ return true;
+
+ // We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N.
+ // Avoid overriding it back to just gl_ClipDistance.
+ // This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case
+ // where this triggers is evaluation shader inputs.
+ bool redirect_builtin = is_tese_shader() ? var->storage == StorageClassOutput : false;
+ return redirect_builtin;
+}
+
+// Sets the interface member index for an access chain to a pull-model interpolant.
+void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length)
+{
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (!var || !pull_model_inputs.count(var->self))
+ return;
+ // Get the base index.
+ uint32_t interface_index;
+ auto &var_type = get_variable_data_type(*var);
+ auto &result_type = get<SPIRType>(ops[0]);
+ auto *type = &var_type;
+ if (has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex))
+ {
+ interface_index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+ else
+ {
+ // Assume an access chain into a struct variable.
+ assert(var_type.basetype == SPIRType::Struct);
+ auto &c = get<SPIRConstant>(ops[3 + var_type.array.size()]);
+ interface_index =
+ get_extended_member_decoration(var->self, c.scalar(), SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+ // Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted
+ // for that getting the base index.
+ for (uint32_t i = 3; i < length; ++i)
+ {
+ if (is_vector(*type) && !is_array(*type) && is_scalar(result_type))
+ {
+ // We don't want to combine the next index. Actually, we need to save it
+ // so we know to apply a swizzle to the result of the interpolation.
+ set_extended_decoration(ops[1], SPIRVCrossDecorationInterpolantComponentExpr, ops[i]);
+ break;
+ }
+
+ auto *c = maybe_get<SPIRConstant>(ops[i]);
+ if (!c || c->specialization)
+ SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model "
+ "interpolation. This is currently unsupported.");
+
+ if (type->parent_type)
+ type = &get<SPIRType>(type->parent_type);
+ else if (type->basetype == SPIRType::Struct)
+ type = &get<SPIRType>(type->member_types[c->scalar()]);
+
+ if (!has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex) &&
+ i - 3 == var_type.array.size())
+ continue;
+
+ interface_index += c->scalar();
+ }
+ // Save this to the access chain itself so we can recover it later when calling an interpolation function.
+ set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, interface_index);
+}
+
+
+// If the physical type of a physical buffer pointer has been changed
+// to a ulong or ulongn vector, add a cast back to the pointer type.
+void CompilerMSL::check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type)
+{
+ auto *p_physical_type = maybe_get<SPIRType>(physical_type);
+ if (p_physical_type &&
+ p_physical_type->storage == StorageClassPhysicalStorageBuffer &&
+ p_physical_type->basetype == to_unsigned_basetype(64))
+ {
+ if (p_physical_type->vecsize > 1)
+ expr += ".x";
+
+ expr = join("((", type_to_glsl(*type), ")", expr, ")");
+ }
+}
+
+// Override for MSL-specific syntax instructions
+void CompilerMSL::emit_instruction(const Instruction &instruction)
+{
+#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define MSL_PTR_BOP(op) emit_binary_ptr_op(ops[0], ops[1], ops[2], ops[3], #op)
+ // MSL does care about implicit integer promotion, but those cases are all handled in common code.
+#define MSL_BOP_CAST(op, type) \
+ emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode), false)
+#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
+#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
+#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
+#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define MSL_BFOP_CAST(op, type) \
+ emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
+#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
+#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
+
+ auto ops = stream(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+
+ opcode = get_remapped_spirv_op(opcode);
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(instruction);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ switch (opcode)
+ {
+ case OpLoad:
+ {
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ if (is_tessellation_shader())
+ {
+ if (!emit_tessellation_io_load(ops[0], id, ptr))
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ else
+ {
+ // Sample mask input for Metal is not an array
+ if (BuiltIn(get_decoration(ptr, DecorationBuiltIn)) == BuiltInSampleMask)
+ set_decoration(id, DecorationBuiltIn, BuiltInSampleMask);
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ break;
+ }
+
+ // Comparisons
+ case OpIEqual:
+ MSL_BOP_CAST(==, int_type);
+ break;
+
+ case OpLogicalEqual:
+ case OpFOrdEqual:
+ MSL_BOP(==);
+ break;
+
+ case OpINotEqual:
+ MSL_BOP_CAST(!=, int_type);
+ break;
+
+ case OpLogicalNotEqual:
+ case OpFOrdNotEqual:
+ // TODO: Should probably negate the == result here.
+ // Typically OrdNotEqual comes from GLSL which itself does not really specify what
+ // happens with NaN.
+ // Consider fixing this if we run into real issues.
+ MSL_BOP(!=);
+ break;
+
+ case OpUGreaterThan:
+ MSL_BOP_CAST(>, uint_type);
+ break;
+
+ case OpSGreaterThan:
+ MSL_BOP_CAST(>, int_type);
+ break;
+
+ case OpFOrdGreaterThan:
+ MSL_BOP(>);
+ break;
+
+ case OpUGreaterThanEqual:
+ MSL_BOP_CAST(>=, uint_type);
+ break;
+
+ case OpSGreaterThanEqual:
+ MSL_BOP_CAST(>=, int_type);
+ break;
+
+ case OpFOrdGreaterThanEqual:
+ MSL_BOP(>=);
+ break;
+
+ case OpULessThan:
+ MSL_BOP_CAST(<, uint_type);
+ break;
+
+ case OpSLessThan:
+ MSL_BOP_CAST(<, int_type);
+ break;
+
+ case OpFOrdLessThan:
+ MSL_BOP(<);
+ break;
+
+ case OpULessThanEqual:
+ MSL_BOP_CAST(<=, uint_type);
+ break;
+
+ case OpSLessThanEqual:
+ MSL_BOP_CAST(<=, int_type);
+ break;
+
+ case OpFOrdLessThanEqual:
+ MSL_BOP(<=);
+ break;
+
+ case OpFUnordEqual:
+ MSL_UNORD_BOP(==);
+ break;
+
+ case OpFUnordNotEqual:
+ // not equal in MSL generates une opcodes to begin with.
+ // Since unordered not equal is how it works in C, just inherit that behavior.
+ MSL_BOP(!=);
+ break;
+
+ case OpFUnordGreaterThan:
+ MSL_UNORD_BOP(>);
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ MSL_UNORD_BOP(>=);
+ break;
+
+ case OpFUnordLessThan:
+ MSL_UNORD_BOP(<);
+ break;
+
+ case OpFUnordLessThanEqual:
+ MSL_UNORD_BOP(<=);
+ break;
+
+ // Pointer math
+ case OpPtrEqual:
+ MSL_PTR_BOP(==);
+ break;
+
+ case OpPtrNotEqual:
+ MSL_PTR_BOP(!=);
+ break;
+
+ case OpPtrDiff:
+ MSL_PTR_BOP(-);
+ break;
+
+ // Derivatives
+ case OpDPdx:
+ case OpDPdxFine:
+ case OpDPdxCoarse:
+ MSL_UFOP(dfdx);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdy:
+ case OpDPdyFine:
+ case OpDPdyCoarse:
+ MSL_UFOP(dfdy);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidth:
+ case OpFwidthCoarse:
+ case OpFwidthFine:
+ MSL_UFOP(fwidth);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ // Bitfield
+ case OpBitFieldInsert:
+ {
+ emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "insert_bits", SPIRType::UInt);
+ break;
+ }
+
+ case OpBitFieldSExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", int_type, int_type,
+ SPIRType::UInt, SPIRType::UInt);
+ break;
+ }
+
+ case OpBitFieldUExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", uint_type, uint_type,
+ SPIRType::UInt, SPIRType::UInt);
+ break;
+ }
+
+ case OpBitReverse:
+ // BitReverse does not have issues with sign since result type must match input type.
+ MSL_UFOP(reverse_bits);
+ break;
+
+ case OpBitCount:
+ {
+ auto basetype = expression_type(ops[2]).basetype;
+ emit_unary_func_op_cast(ops[0], ops[1], ops[2], "popcount", basetype, basetype);
+ break;
+ }
+
+ case OpFRem:
+ MSL_BFOP(fmod);
+ break;
+
+ case OpFMul:
+ if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
+ MSL_BFOP(spvFMul);
+ else
+ MSL_BOP(*);
+ break;
+
+ case OpFAdd:
+ if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
+ MSL_BFOP(spvFAdd);
+ else
+ MSL_BOP(+);
+ break;
+
+ case OpFSub:
+ if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
+ MSL_BFOP(spvFSub);
+ else
+ MSL_BOP(-);
+ break;
+
+ // Atomics
+ case OpAtomicExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem = ops[4];
+ uint32_t val = ops[5];
+ emit_atomic_func_op(result_type, id, "atomic_exchange", opcode, mem_sem, mem_sem, false, ptr, val);
+ break;
+ }
+
+ case OpAtomicCompareExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem_pass = ops[4];
+ uint32_t mem_sem_fail = ops[5];
+ uint32_t val = ops[6];
+ uint32_t comp = ops[7];
+ emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak", opcode,
+ mem_sem_pass, mem_sem_fail, true,
+ ptr, comp, true, false, val);
+ break;
+ }
+
+ case OpAtomicCompareExchangeWeak:
+ SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
+
+ case OpAtomicLoad:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem = ops[4];
+ check_atomic_image(ptr);
+ emit_atomic_func_op(result_type, id, "atomic_load", opcode, mem_sem, mem_sem, false, ptr, 0);
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ uint32_t result_type = expression_type(ops[0]).self;
+ uint32_t id = ops[0];
+ uint32_t ptr = ops[0];
+ uint32_t mem_sem = ops[2];
+ uint32_t val = ops[3];
+ check_atomic_image(ptr);
+ emit_atomic_func_op(result_type, id, "atomic_store", opcode, mem_sem, mem_sem, false, ptr, val);
+ break;
+ }
+
+#define MSL_AFMO_IMPL(op, valsrc, valconst) \
+ do \
+ { \
+ uint32_t result_type = ops[0]; \
+ uint32_t id = ops[1]; \
+ uint32_t ptr = ops[2]; \
+ uint32_t mem_sem = ops[4]; \
+ uint32_t val = valsrc; \
+ emit_atomic_func_op(result_type, id, "atomic_fetch_" #op, opcode, \
+ mem_sem, mem_sem, false, ptr, val, \
+ false, valconst); \
+ } while (false)
+
+#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
+#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
+
+ case OpAtomicIIncrement:
+ MSL_AFMIO(add);
+ break;
+
+ case OpAtomicIDecrement:
+ MSL_AFMIO(sub);
+ break;
+
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ MSL_AFMO(add);
+ break;
+
+ case OpAtomicISub:
+ MSL_AFMO(sub);
+ break;
+
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ MSL_AFMO(min);
+ break;
+
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ MSL_AFMO(max);
+ break;
+
+ case OpAtomicAnd:
+ MSL_AFMO(and);
+ break;
+
+ case OpAtomicOr:
+ MSL_AFMO(or);
+ break;
+
+ case OpAtomicXor:
+ MSL_AFMO(xor);
+ break;
+
+ // Images
+
+ // Reads == Fetches in Metal
+ case OpImageRead:
+ {
+ // Mark that this shader reads from this image
+ uint32_t img_id = ops[2];
+ auto &type = expression_type(img_id);
+ auto *p_var = maybe_get_backing_variable(img_id);
+ if (type.image.dim != DimSubpassData)
+ {
+ if (p_var && has_decoration(p_var->self, DecorationNonReadable))
+ {
+ unset_decoration(p_var->self, DecorationNonReadable);
+ force_recompile();
+ }
+ }
+
+ // Metal requires explicit fences to break up RAW hazards, even within the same shader invocation
+ if (msl_options.readwrite_texture_fences && p_var && !has_decoration(p_var->self, DecorationNonWritable))
+ {
+ add_spv_func_and_recompile(SPVFuncImplImageFence);
+ // Need to wrap this with a value type,
+ // since the Metal headers are broken and do not consider case when the image is a reference.
+ statement("spvImageFence(", to_expression(img_id), ");");
+ }
+
+ emit_texture_op(instruction, false);
+ break;
+ }
+
+ // Emulate texture2D atomic operations
+ case OpImageTexelPointer:
+ {
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (var && atomic_image_vars_emulated.count(var->self))
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ std::string coord = to_expression(ops[3]);
+ auto &type = expression_type(ops[2]);
+ if (type.image.dim == Dim2D)
+ {
+ coord = join("spvImage2DAtomicCoord(", coord, ", ", to_expression(ops[2]), ")");
+ }
+
+ auto &e = set<SPIRExpression>(id, join(to_expression(ops[2]), "_atomic[", coord, "]"), result_type, true);
+ e.loaded_from = var ? var->self : ID(0);
+ inherit_expression_dependencies(id, ops[3]);
+ }
+ else
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ // Virtual expression. Split this up in the actual image atomic.
+ // In GLSL and HLSL we are able to resolve the dereference inline, but MSL has
+ // image.op(coord, ...) syntax.
+ auto &e =
+ set<SPIRExpression>(id, join(to_expression(ops[2]), "@",
+ bitcast_expression(SPIRType::UInt, ops[3])),
+ result_type, true);
+
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ e.loaded_from = var ? var->self : ID(0);
+ inherit_expression_dependencies(id, ops[3]);
+ }
+ break;
+ }
+
+ case OpImageWrite:
+ {
+ uint32_t img_id = ops[0];
+ uint32_t coord_id = ops[1];
+ uint32_t texel_id = ops[2];
+ const uint32_t *opt = &ops[3];
+ uint32_t length = instruction.length - 3;
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img_id);
+ auto &img_type = get<SPIRType>(type.self);
+
+ // Ensure this image has been marked as being written to and force a
+ // recommpile so that the image type output will include write access
+ auto *p_var = maybe_get_backing_variable(img_id);
+ if (p_var && has_decoration(p_var->self, DecorationNonWritable))
+ {
+ unset_decoration(p_var->self, DecorationNonWritable);
+ force_recompile();
+ }
+
+ bool forward = false;
+ uint32_t bias = 0;
+ uint32_t lod = 0;
+ uint32_t flags = 0;
+
+ if (length)
+ {
+ flags = *opt++;
+ length--;
+ }
+
+ auto test = [&](uint32_t &v, uint32_t flag) {
+ if (length && (flags & flag))
+ {
+ v = *opt++;
+ length--;
+ }
+ };
+
+ test(bias, ImageOperandsBiasMask);
+ test(lod, ImageOperandsLodMask);
+
+ auto &texel_type = expression_type(texel_id);
+ auto store_type = texel_type;
+ store_type.vecsize = 4;
+
+ TextureFunctionArguments args = {};
+ args.base.img = img_id;
+ args.base.imgtype = &img_type;
+ args.base.is_fetch = true;
+ args.coord = coord_id;
+ args.lod = lod;
+
+ string expr;
+ if (needs_frag_discard_checks())
+ expr = join("(", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ((void)0) : ");
+ expr += join(to_expression(img_id), ".write(",
+ remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)), ", ",
+ CompilerMSL::to_function_args(args, &forward), ")");
+ if (needs_frag_discard_checks())
+ expr += ")";
+ statement(expr, ";");
+
+ if (p_var && variable_storage_is_aliased(*p_var))
+ flush_all_aliased_variables();
+
+ break;
+ }
+
+ case OpImageQuerySize:
+ case OpImageQuerySizeLod:
+ {
+ uint32_t rslt_type_id = ops[0];
+ auto &rslt_type = get<SPIRType>(rslt_type_id);
+
+ uint32_t id = ops[1];
+
+ uint32_t img_id = ops[2];
+ string img_exp = to_expression(img_id);
+ auto &img_type = expression_type(img_id);
+ Dim img_dim = img_type.image.dim;
+ bool img_is_array = img_type.image.arrayed;
+
+ if (img_type.basetype != SPIRType::Image)
+ SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
+
+ string lod;
+ if (opcode == OpImageQuerySizeLod)
+ {
+ // LOD index defaults to zero, so don't bother outputing level zero index
+ string decl_lod = to_expression(ops[3]);
+ if (decl_lod != "0")
+ lod = decl_lod;
+ }
+
+ string expr = type_to_glsl(rslt_type) + "(";
+ expr += img_exp + ".get_width(" + lod + ")";
+
+ if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
+ expr += ", " + img_exp + ".get_height(" + lod + ")";
+
+ if (img_dim == Dim3D)
+ expr += ", " + img_exp + ".get_depth(" + lod + ")";
+
+ if (img_is_array)
+ {
+ expr += ", " + img_exp + ".get_array_size()";
+ if (img_dim == DimCube && msl_options.emulate_cube_array)
+ expr += " / 6";
+ }
+
+ expr += ")";
+
+ emit_op(rslt_type_id, id, expr, should_forward(img_id));
+
+ break;
+ }
+
+ case OpImageQueryLod:
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up.");
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t image_id = ops[2];
+ uint32_t coord_id = ops[3];
+ emit_uninitialized_temporary_expression(result_type, id);
+
+ std::string coord_expr = to_expression(coord_id);
+ auto sampler_expr = to_sampler_expression(image_id);
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(image_id);
+ auto image_expr = combined ? to_expression(combined->image) : to_expression(image_id);
+ const SPIRType &image_type = expression_type(image_id);
+ const SPIRType &coord_type = expression_type(coord_id);
+
+ switch (image_type.image.dim)
+ {
+ case Dim1D:
+ if (!msl_options.texture_1D_as_2D)
+ SPIRV_CROSS_THROW("ImageQueryLod is not supported on 1D textures.");
+ [[fallthrough]];
+ case Dim2D:
+ if (coord_type.vecsize > 2)
+ coord_expr = enclose_expression(coord_expr) + ".xy";
+ break;
+ case DimCube:
+ case Dim3D:
+ if (coord_type.vecsize > 3)
+ coord_expr = enclose_expression(coord_expr) + ".xyz";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Bad image type given to OpImageQueryLod");
+ }
+
+ // TODO: It is unclear if calculcate_clamped_lod also conditionally rounds
+ // the reported LOD based on the sampler. NEAREST miplevel should
+ // round the LOD, but LINEAR miplevel should not round.
+ // Let's hope this does not become an issue ...
+ statement(to_expression(id), ".x = ", image_expr, ".calculate_clamped_lod(", sampler_expr, ", ",
+ coord_expr, ");");
+ statement(to_expression(id), ".y = ", image_expr, ".calculate_unclamped_lod(", sampler_expr, ", ",
+ coord_expr, ");");
+ register_control_dependent_expression(id);
+ break;
+ }
+
+#define MSL_ImgQry(qrytype) \
+ do \
+ { \
+ uint32_t rslt_type_id = ops[0]; \
+ auto &rslt_type = get<SPIRType>(rslt_type_id); \
+ uint32_t id = ops[1]; \
+ uint32_t img_id = ops[2]; \
+ string img_exp = to_expression(img_id); \
+ string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
+ emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
+ } while (false)
+
+ case OpImageQueryLevels:
+ MSL_ImgQry(mip_levels);
+ break;
+
+ case OpImageQuerySamples:
+ MSL_ImgQry(samples);
+ break;
+
+ case OpImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
+
+ if (combined)
+ {
+ auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
+ auto *var = maybe_get_backing_variable(combined->image);
+ if (var)
+ e.loaded_from = var->self;
+ }
+ else
+ {
+ auto *var = maybe_get_backing_variable(ops[2]);
+ SPIRExpression *e;
+ if (var && has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler))
+ e = &emit_op(result_type, id, join(to_expression(ops[2]), ".plane0"), true, true);
+ else
+ e = &emit_op(result_type, id, to_expression(ops[2]), true, true);
+ if (var)
+ e->loaded_from = var->self;
+ }
+ break;
+ }
+
+ // Casting
+ case OpQuantizeToF16:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+ string exp = join("spvQuantizeToF16(", to_expression(arg), ")");
+ emit_op(result_type, id, exp, should_forward(arg));
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ if (is_tessellation_shader())
+ {
+ if (!emit_tessellation_access_chain(ops, instruction.length))
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ else
+ CompilerGLSL::emit_instruction(instruction);
+ fix_up_interpolant_access_chain(ops, instruction.length);
+ break;
+
+ case OpStore:
+ {
+ const auto &type = expression_type(ops[0]);
+
+ if (is_out_of_bounds_tessellation_level(ops[0]))
+ break;
+
+ if (needs_frag_discard_checks() &&
+ (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
+ {
+ // If we're in a continue block, this kludge will make the block too complex
+ // to emit normally.
+ assert(current_emitting_block);
+ auto cont_type = continue_block_type(*current_emitting_block);
+ if (cont_type != SPIRBlock::ContinueNone && cont_type != SPIRBlock::ComplexLoop)
+ {
+ current_emitting_block->complex_continue = true;
+ force_recompile();
+ }
+ statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
+ begin_scope();
+ }
+ if (!maybe_emit_array_assignment(ops[0], ops[1]))
+ CompilerGLSL::emit_instruction(instruction);
+ if (needs_frag_discard_checks() &&
+ (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
+ end_scope();
+ break;
+ }
+
+ // Compute barriers
+ case OpMemoryBarrier:
+ emit_barrier(0, ops[0], ops[1]);
+ break;
+
+ case OpControlBarrier:
+ // In GLSL a memory barrier is often followed by a control barrier.
+ // But in MSL, memory barriers are also control barriers, so don't
+ // emit a simple control barrier if a memory barrier has just been emitted.
+ if (previous_instruction_opcode != OpMemoryBarrier)
+ emit_barrier(ops[0], ops[1], ops[2]);
+ break;
+
+ case OpOuterProduct:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2];
+ uint32_t b = ops[3];
+
+ auto &type = get<SPIRType>(result_type);
+ string expr = type_to_glsl_constructor(type);
+ expr += "(";
+ for (uint32_t col = 0; col < type.columns; col++)
+ {
+ expr += to_enclosed_unpacked_expression(a);
+ expr += " * ";
+ expr += to_extract_component_expression(b, col);
+ if (col + 1 < type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ emit_op(result_type, id, expr, should_forward(a) && should_forward(b));
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ break;
+ }
+
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ {
+ if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
+ {
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ // If the matrix needs transpose, just flip the multiply order.
+ auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]);
+ if (e && e->need_transpose)
+ {
+ e->need_transpose = false;
+ string expr;
+
+ if (opcode == OpMatrixTimesVector)
+ {
+ expr = join("spvFMulVectorMatrix(", to_enclosed_unpacked_expression(ops[3]), ", ",
+ to_unpacked_row_major_matrix_expression(ops[2]), ")");
+ }
+ else
+ {
+ expr = join("spvFMulMatrixVector(", to_unpacked_row_major_matrix_expression(ops[3]), ", ",
+ to_enclosed_unpacked_expression(ops[2]), ")");
+ }
+
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ emit_op(ops[0], ops[1], expr, forward);
+ e->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ {
+ if (opcode == OpMatrixTimesVector)
+ MSL_BFOP(spvFMulMatrixVector);
+ else
+ MSL_BFOP(spvFMulVectorMatrix);
+ }
+ break;
+ }
+
+ case OpMatrixTimesMatrix:
+ {
+ if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
+ {
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ auto *a = maybe_get<SPIRExpression>(ops[2]);
+ auto *b = maybe_get<SPIRExpression>(ops[3]);
+
+ // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
+ // a^T * b^T = (b * a)^T.
+ if (a && b && a->need_transpose && b->need_transpose)
+ {
+ a->need_transpose = false;
+ b->need_transpose = false;
+
+ auto expr =
+ join("spvFMulMatrixMatrix(", enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), ", ",
+ enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), ")");
+
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ auto &e = emit_op(ops[0], ops[1], expr, forward);
+ e.need_transpose = true;
+ a->need_transpose = true;
+ b->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ MSL_BFOP(spvFMulMatrixMatrix);
+
+ break;
+ }
+
+ case OpIAddCarry:
+ case OpISubBorrow:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+
+ auto &res_type = get<SPIRType>(type.member_types[1]);
+ if (opcode == OpIAddCarry)
+ {
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ",
+ to_enclosed_unpacked_expression(op0), " + ", to_enclosed_unpacked_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
+ "(1), ", type_to_glsl(res_type), "(0), ", to_unpacked_expression(result_id), ".", to_member_name(type, 0),
+ " >= max(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "));");
+ }
+ else
+ {
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " - ",
+ to_enclosed_unpacked_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
+ "(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_unpacked_expression(op0),
+ " >= ", to_enclosed_unpacked_expression(op1), ");");
+ }
+ break;
+ }
+
+ case OpUMulExtended:
+ case OpSMulExtended:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ auto input_type = opcode == OpSMulExtended ? int_type : uint_type;
+ string cast_op0, cast_op1;
+
+ binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, false);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", cast_op0, " * ", cast_op1, ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", cast_op0, ", ", cast_op1, ");");
+ break;
+ }
+
+ case OpArrayLength:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t offset = type_struct_member_offset(type, ops[3]);
+ uint32_t stride = type_struct_member_array_stride(type, ops[3]);
+
+ auto expr = join("(", to_buffer_size_expression(ops[2]), " - ", offset, ") / ", stride);
+ emit_op(ops[0], ops[1], expr, true);
+ break;
+ }
+
+ // Legacy sub-group stuff ...
+ case OpSubgroupBallotKHR:
+ case OpSubgroupFirstInvocationKHR:
+ case OpSubgroupReadInvocationKHR:
+ case OpSubgroupAllKHR:
+ case OpSubgroupAnyKHR:
+ case OpSubgroupAllEqualKHR:
+ emit_subgroup_op(instruction);
+ break;
+
+ // SPV_INTEL_shader_integer_functions2
+ case OpUCountLeadingZerosINTEL:
+ MSL_UFOP(clz);
+ break;
+
+ case OpUCountTrailingZerosINTEL:
+ MSL_UFOP(ctz);
+ break;
+
+ case OpAbsISubINTEL:
+ case OpAbsUSubINTEL:
+ MSL_BFOP(absdiff);
+ break;
+
+ case OpIAddSatINTEL:
+ case OpUAddSatINTEL:
+ MSL_BFOP(addsat);
+ break;
+
+ case OpIAverageINTEL:
+ case OpUAverageINTEL:
+ MSL_BFOP(hadd);
+ break;
+
+ case OpIAverageRoundedINTEL:
+ case OpUAverageRoundedINTEL:
+ MSL_BFOP(rhadd);
+ break;
+
+ case OpISubSatINTEL:
+ case OpUSubSatINTEL:
+ MSL_BFOP(subsat);
+ break;
+
+ case OpIMul32x16INTEL:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2], b = ops[3];
+ bool forward = should_forward(a) && should_forward(b);
+ emit_op(result_type, id, join("int(short(", to_unpacked_expression(a), ")) * int(short(", to_unpacked_expression(b), "))"), forward);
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ break;
+ }
+
+ case OpUMul32x16INTEL:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2], b = ops[3];
+ bool forward = should_forward(a) && should_forward(b);
+ emit_op(result_type, id, join("uint(ushort(", to_unpacked_expression(a), ")) * uint(ushort(", to_unpacked_expression(b), "))"), forward);
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ break;
+ }
+
+ // SPV_EXT_demote_to_helper_invocation
+ case OpDemoteToHelperInvocationEXT:
+ if (!msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3.");
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+
+ case OpIsHelperInvocationEXT:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS.");
+ emit_op(ops[0], ops[1],
+ needs_manual_helper_invocation_updates() ? builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput) :
+ "simd_is_helper_thread()",
+ false);
+ break;
+
+ case OpBeginInvocationInterlockEXT:
+ case OpEndInvocationInterlockEXT:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("Raster order groups require MSL 2.0.");
+ break; // Nothing to do in the body
+
+ case OpConvertUToAccelerationStructureKHR:
+ SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL.");
+ case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
+ SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL.");
+
+ case OpRayQueryInitializeKHR:
+ {
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ add_spv_func_and_recompile(SPVFuncImplRayQueryIntersectionParams);
+
+ statement(to_expression(ops[0]), ".reset(", "ray(", to_expression(ops[4]), ", ", to_expression(ops[6]), ", ",
+ to_expression(ops[5]), ", ", to_expression(ops[7]), "), ", to_expression(ops[1]), ", ", to_expression(ops[3]),
+ ", spvMakeIntersectionParams(", to_expression(ops[2]), "));");
+ break;
+ }
+ case OpRayQueryProceedKHR:
+ {
+ flush_variable_declaration(ops[0]);
+ register_write(ops[2]);
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".next()"), false);
+ break;
+ }
+#define MSL_RAY_QUERY_IS_CANDIDATE get<SPIRConstant>(ops[3]).scalar_i32() == 0
+
+#define MSL_RAY_QUERY_GET_OP(op, msl_op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \
+ break
+
+#define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ if (MSL_RAY_QUERY_IS_CANDIDATE) \
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \
+ else \
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \
+ break
+
+#define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op)
+#define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op)
+
+ MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance);
+ MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_origin);
+ MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_direction);
+ MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord);
+ MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin);
+ MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction);
+ MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform);
+ MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform);
+ MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing);
+
+ case OpRayQueryGetIntersectionTypeKHR:
+ flush_variable_declaration(ops[2]);
+ if (MSL_RAY_QUERY_IS_CANDIDATE)
+ emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_candidate_intersection_type()) - 1"),
+ false);
+ else
+ emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_committed_intersection_type())"), false);
+ break;
+ case OpRayQueryGetIntersectionTKHR:
+ flush_variable_declaration(ops[2]);
+ if (MSL_RAY_QUERY_IS_CANDIDATE)
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_candidate_triangle_distance()"), false);
+ else
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_committed_distance()"), false);
+ break;
+ case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
+ {
+ flush_variable_declaration(ops[0]);
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".is_candidate_non_opaque_bounding_box()"), false);
+ break;
+ }
+ case OpRayQueryConfirmIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ statement(to_expression(ops[0]), ".commit_triangle_intersection();");
+ break;
+ case OpRayQueryGenerateIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ statement(to_expression(ops[0]), ".commit_bounding_box_intersection(", to_expression(ops[1]), ");");
+ break;
+ case OpRayQueryTerminateKHR:
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ statement(to_expression(ops[0]), ".abort();");
+ break;
+#undef MSL_RAY_QUERY_GET_OP
+#undef MSL_RAY_QUERY_IS_CANDIDATE
+#undef MSL_RAY_QUERY_IS_OP2
+#undef MSL_RAY_QUERY_GET_OP2
+#undef MSL_RAY_QUERY_OP_INNER2
+
+ case OpConvertPtrToU:
+ case OpConvertUToPtr:
+ case OpBitcast:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ auto &input_type = expression_type(ops[2]);
+
+ if (opcode != OpBitcast || type.pointer || input_type.pointer)
+ {
+ string op;
+
+ if (type.vecsize == 1 && input_type.vecsize == 1)
+ op = join("reinterpret_cast<", type_to_glsl(type), ">(", to_unpacked_expression(ops[2]), ")");
+ else if (input_type.vecsize == 2)
+ op = join("reinterpret_cast<", type_to_glsl(type), ">(as_type<ulong>(", to_unpacked_expression(ops[2]), "))");
+ else
+ op = join("as_type<", type_to_glsl(type), ">(reinterpret_cast<ulong>(", to_unpacked_expression(ops[2]), "))");
+
+ emit_op(ops[0], ops[1], op, should_forward(ops[2]));
+ inherit_expression_dependencies(ops[1], ops[2]);
+ }
+ else
+ CompilerGLSL::emit_instruction(instruction);
+
+ break;
+ }
+
+ case OpSDot:
+ case OpUDot:
+ case OpSUDot:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec1 = ops[2];
+ uint32_t vec2 = ops[3];
+
+ auto &input_type1 = expression_type(vec1);
+ auto &input_type2 = expression_type(vec2);
+
+ string vec1input, vec2input;
+ auto input_size = input_type1.vecsize;
+ if (instruction.length == 5)
+ {
+ if (ops[4] == PackedVectorFormatPackedVectorFormat4x8Bit)
+ {
+ string type = opcode == OpSDot || opcode == OpSUDot ? "char4" : "uchar4";
+ vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
+ type = opcode == OpSDot ? "char4" : "uchar4";
+ vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
+ input_size = 4;
+ }
+ else
+ SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
+ }
+ else
+ {
+ // Inputs are sign or zero-extended to their target width.
+ SPIRType::BaseType vec1_expected_type =
+ opcode != OpUDot ?
+ to_signed_basetype(input_type1.width) :
+ to_unsigned_basetype(input_type1.width);
+
+ SPIRType::BaseType vec2_expected_type =
+ opcode != OpSDot ?
+ to_unsigned_basetype(input_type2.width) :
+ to_signed_basetype(input_type2.width);
+
+ vec1input = bitcast_expression(vec1_expected_type, vec1);
+ vec2input = bitcast_expression(vec2_expected_type, vec2);
+ }
+
+ auto &type = get<SPIRType>(result_type);
+
+ // We'll get the appropriate sign-extend or zero-extend, no matter which type we cast to here.
+ // The addition in reduce_add is sign-invariant.
+ auto result_type_cast = join(type_to_glsl(type), input_size);
+
+ string exp = join("reduce_add(",
+ result_type_cast, "(", vec1input, ") * ",
+ result_type_cast, "(", vec2input, "))");
+
+ emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
+ inherit_expression_dependencies(id, vec1);
+ inherit_expression_dependencies(id, vec2);
+ break;
+ }
+
+ case OpSDotAccSat:
+ case OpUDotAccSat:
+ case OpSUDotAccSat:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec1 = ops[2];
+ uint32_t vec2 = ops[3];
+ uint32_t acc = ops[4];
+
+ auto input_type1 = expression_type(vec1);
+ auto input_type2 = expression_type(vec2);
+
+ string vec1input, vec2input;
+ if (instruction.length == 6)
+ {
+ if (ops[5] == PackedVectorFormatPackedVectorFormat4x8Bit)
+ {
+ string type = opcode == OpSDotAccSat || opcode == OpSUDotAccSat ? "char4" : "uchar4";
+ vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
+ type = opcode == OpSDotAccSat ? "char4" : "uchar4";
+ vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
+ input_type1.vecsize = 4;
+ input_type2.vecsize = 4;
+ }
+ else
+ SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
+ }
+ else
+ {
+ // Inputs are sign or zero-extended to their target width.
+ SPIRType::BaseType vec1_expected_type =
+ opcode != OpUDotAccSat ?
+ to_signed_basetype(input_type1.width) :
+ to_unsigned_basetype(input_type1.width);
+
+ SPIRType::BaseType vec2_expected_type =
+ opcode != OpSDotAccSat ?
+ to_unsigned_basetype(input_type2.width) :
+ to_signed_basetype(input_type2.width);
+
+ vec1input = bitcast_expression(vec1_expected_type, vec1);
+ vec2input = bitcast_expression(vec2_expected_type, vec2);
+ }
+
+ auto &type = get<SPIRType>(result_type);
+
+ SPIRType::BaseType pre_saturate_type =
+ opcode != OpUDotAccSat ?
+ to_signed_basetype(type.width) :
+ to_unsigned_basetype(type.width);
+
+ input_type1.basetype = pre_saturate_type;
+ input_type2.basetype = pre_saturate_type;
+
+ string exp = join(type_to_glsl(type), "(addsat(reduce_add(",
+ type_to_glsl(input_type1), "(", vec1input, ") * ",
+ type_to_glsl(input_type2), "(", vec2input, ")), ",
+ bitcast_expression(pre_saturate_type, acc), "))");
+
+ emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
+ inherit_expression_dependencies(id, vec1);
+ inherit_expression_dependencies(id, vec2);
+ break;
+ }
+
+ default:
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ previous_instruction_opcode = opcode;
+}
+
+void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse)
+{
+ if (sparse)
+ SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL.");
+
+ if (msl_options.use_framebuffer_fetch_subpasses)
+ {
+ auto *ops = stream(i);
+
+ uint32_t result_type_id = ops[0];
+ uint32_t id = ops[1];
+ uint32_t img = ops[2];
+
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if (imgtype.image.dim == DimSubpassData)
+ {
+ // Subpass inputs cannot be invalidated,
+ // so just forward the expression directly.
+ string expr = to_expression(img);
+ emit_op(result_type_id, id, expr, true);
+ return;
+ }
+ }
+
+ // Fallback to default implementation
+ CompilerGLSL::emit_texture_op(i, sparse);
+}
+
+void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
+{
+ if (get_execution_model() != ExecutionModelGLCompute && !is_tesc_shader())
+ return;
+
+ uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation);
+ uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation);
+ // Use the wider of the two scopes (smaller value)
+ exe_scope = min(exe_scope, mem_scope);
+
+ if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem)
+ // In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop.
+ return;
+
+ string bar_stmt;
+ if ((msl_options.is_ios() && msl_options.supports_msl_version(1, 2)) || msl_options.supports_msl_version(2))
+ bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier";
+ else
+ bar_stmt = "threadgroup_barrier";
+ bar_stmt += "(";
+
+ uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone);
+
+ // Use the | operator to combine flags if we can.
+ if (msl_options.supports_msl_version(1, 2))
+ {
+ string mem_flags = "";
+ // For tesc shaders, this also affects objects in the Output storage class.
+ // Since in Metal, these are placed in a device buffer, we have to sync device memory here.
+ if (is_tesc_shader() ||
+ (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)))
+ mem_flags += "mem_flags::mem_device";
+
+ // Fix tessellation patch function processing
+ if (is_tesc_shader() || (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
+ {
+ if (!mem_flags.empty())
+ mem_flags += " | ";
+ mem_flags += "mem_flags::mem_threadgroup";
+ }
+ if (mem_sem & MemorySemanticsImageMemoryMask)
+ {
+ if (!mem_flags.empty())
+ mem_flags += " | ";
+ mem_flags += "mem_flags::mem_texture";
+ }
+
+ if (mem_flags.empty())
+ mem_flags = "mem_flags::mem_none";
+
+ bar_stmt += mem_flags;
+ }
+ else
+ {
+ if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) &&
+ (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
+ bar_stmt += "mem_flags::mem_device_and_threadgroup";
+ else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))
+ bar_stmt += "mem_flags::mem_device";
+ else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))
+ bar_stmt += "mem_flags::mem_threadgroup";
+ else if (mem_sem & MemorySemanticsImageMemoryMask)
+ bar_stmt += "mem_flags::mem_texture";
+ else
+ bar_stmt += "mem_flags::mem_none";
+ }
+
+ bar_stmt += ");";
+
+ statement(bar_stmt);
+
+ assert(current_emitting_block);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ flush_all_active_variables();
+}
+
+static bool storage_class_array_is_thread(StorageClass storage)
+{
+ switch (storage)
+ {
+ case StorageClassInput:
+ case StorageClassOutput:
+ case StorageClassGeneric:
+ case StorageClassFunction:
+ case StorageClassPrivate:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool CompilerMSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id,
+ StorageClass lhs_storage, StorageClass rhs_storage)
+{
+ // Allow Metal to use the array<T> template to make arrays a value type.
+ // This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback.
+ bool lhs_is_thread_storage = storage_class_array_is_thread(lhs_storage);
+ bool rhs_is_thread_storage = storage_class_array_is_thread(rhs_storage);
+
+ bool lhs_is_array_template = lhs_is_thread_storage || lhs_storage == StorageClassWorkgroup;
+ bool rhs_is_array_template = rhs_is_thread_storage || rhs_storage == StorageClassWorkgroup;
+
+ // Special considerations for stage IO variables.
+ // If the variable is actually backed by non-user visible device storage, we use array templates for those.
+ //
+ // Another special consideration is given to thread local variables which happen to have Offset decorations
+ // applied to them. Block-like types do not use array templates, so we need to force POD path if we detect
+ // these scenarios. This check isn't perfect since it would be technically possible to mix and match these things,
+ // and for a fully correct solution we might have to track array template state through access chains as well,
+ // but for all reasonable use cases, this should suffice.
+ // This special case should also only apply to Function/Private storage classes.
+ // We should not check backing variable for temporaries.
+ auto *lhs_var = maybe_get_backing_variable(lhs_id);
+ if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(lhs_var->storage))
+ lhs_is_array_template = true;
+ else if (lhs_var && lhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(lhs_var->basetype)))
+ lhs_is_array_template = false;
+
+ auto *rhs_var = maybe_get_backing_variable(rhs_id);
+ if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(rhs_var->storage))
+ rhs_is_array_template = true;
+ else if (rhs_var && rhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(rhs_var->basetype)))
+ rhs_is_array_template = false;
+
+ // If threadgroup storage qualifiers are *not* used:
+ // Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier.
+ if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array())
+ {
+ // Fall back to normal copy path.
+ return false;
+ }
+ else
+ {
+ // Ensure the LHS variable has been declared
+ if (lhs_var)
+ flush_variable_declaration(lhs_var->self);
+
+ string lhs;
+ if (expr)
+ lhs = expr;
+ else
+ lhs = to_expression(lhs_id);
+
+ // Assignment from an array initializer is fine.
+ auto &type = expression_type(rhs_id);
+ auto *var = maybe_get_backing_variable(rhs_id);
+
+ // Unfortunately, we cannot template on address space in MSL,
+ // so explicit address space redirection it is ...
+ bool is_constant = false;
+ if (ir.ids[rhs_id].get_type() == TypeConstant)
+ {
+ is_constant = true;
+ }
+ else if (var && var->remapped_variable && var->statically_assigned &&
+ ir.ids[var->static_expression].get_type() == TypeConstant)
+ {
+ is_constant = true;
+ }
+ else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant)
+ {
+ is_constant = true;
+ }
+
+ // For the case where we have OpLoad triggering an array copy,
+ // we cannot easily detect this case ahead of time since it's
+ // context dependent. We might have to force a recompile here
+ // if this is the only use of array copies in our shader.
+ add_spv_func_and_recompile(type.array.size() > 1 ? SPVFuncImplArrayCopyMultidim : SPVFuncImplArrayCopy);
+
+ const char *tag = nullptr;
+ if (lhs_is_thread_storage && is_constant)
+ tag = "FromConstantToStack";
+ else if (lhs_storage == StorageClassWorkgroup && is_constant)
+ tag = "FromConstantToThreadGroup";
+ else if (lhs_is_thread_storage && rhs_is_thread_storage)
+ tag = "FromStackToStack";
+ else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage)
+ tag = "FromStackToThreadGroup";
+ else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup)
+ tag = "FromThreadGroupToStack";
+ else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup)
+ tag = "FromThreadGroupToThreadGroup";
+ else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer)
+ tag = "FromDeviceToDevice";
+ else if (lhs_storage == StorageClassStorageBuffer && is_constant)
+ tag = "FromConstantToDevice";
+ else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup)
+ tag = "FromThreadGroupToDevice";
+ else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage)
+ tag = "FromStackToDevice";
+ else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer)
+ tag = "FromDeviceToThreadGroup";
+ else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer)
+ tag = "FromDeviceToStack";
+ else
+ SPIRV_CROSS_THROW("Unknown storage class used for copying arrays.");
+
+ // Pass internal array of spvUnsafeArray<> into wrapper functions
+ if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays)
+ statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ".elements);");
+ if (lhs_is_array_template && !msl_options.force_native_arrays)
+ statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ");");
+ else if (rhs_is_array_template && !msl_options.force_native_arrays)
+ statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ".elements);");
+ else
+ statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ");");
+ }
+
+ return true;
+}
+
+uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const
+{
+ if (is_tessellating_triangles())
+ return builtin == BuiltInTessLevelInner ? 1 : 3;
+ else
+ return builtin == BuiltInTessLevelInner ? 2 : 4;
+}
+
+// Since MSL does not allow arrays to be copied via simple variable assignment,
+// if the LHS and RHS represent an assignment of an entire array, it must be
+// implemented by calling an array copy function.
+// Returns whether the struct assignment was emitted.
+bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
+{
+ // We only care about assignments of an entire array
+ auto &type = expression_type(id_lhs);
+ if (!is_array(get_pointee_type(type)))
+ return false;
+
+ auto *var = maybe_get<SPIRVariable>(id_lhs);
+
+ // Is this a remapped, static constant? Don't do anything.
+ if (var && var->remapped_variable && var->statically_assigned)
+ return true;
+
+ if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
+ {
+ // Special case, if we end up declaring a variable when assigning the constant array,
+ // we can avoid the copy by directly assigning the constant expression.
+ // This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
+ // the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
+ // After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
+ statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
+ return true;
+ }
+
+ if (is_tesc_shader() && has_decoration(id_lhs, DecorationBuiltIn))
+ {
+ auto builtin = BuiltIn(get_decoration(id_lhs, DecorationBuiltIn));
+ // Need to manually unroll the array store.
+ if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)
+ {
+ uint32_t array_size = get_physical_tess_level_array_size(builtin);
+ if (array_size == 1)
+ statement(to_expression(id_lhs), " = half(", to_expression(id_rhs), "[0]);");
+ else
+ {
+ for (uint32_t i = 0; i < array_size; i++)
+ statement(to_expression(id_lhs), "[", i, "] = half(", to_expression(id_rhs), "[", i, "]);");
+ }
+ return true;
+ }
+ }
+
+ auto lhs_storage = get_expression_effective_storage_class(id_lhs);
+ auto rhs_storage = get_expression_effective_storage_class(id_rhs);
+ if (!emit_array_copy(nullptr, id_lhs, id_rhs, lhs_storage, rhs_storage))
+ return false;
+
+ register_write(id_lhs);
+
+ return true;
+}
+
+// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
+void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode,
+ uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
+ bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
+{
+ string exp;
+
+ auto &ptr_type = expression_type(obj);
+ auto &type = get_pointee_type(ptr_type);
+ auto expected_type = type.basetype;
+ if (opcode == OpAtomicUMax || opcode == OpAtomicUMin)
+ expected_type = to_unsigned_basetype(type.width);
+ else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin)
+ expected_type = to_signed_basetype(type.width);
+
+ bool use_native_image_atomic;
+ if (msl_options.supports_msl_version(3, 1))
+ use_native_image_atomic = check_atomic_image(obj);
+ else
+ use_native_image_atomic = false;
+
+ if (type.width == 64)
+ SPIRV_CROSS_THROW("MSL currently does not support 64-bit atomics.");
+
+ auto remapped_type = type;
+ remapped_type.basetype = expected_type;
+
+ auto *var = maybe_get_backing_variable(obj);
+ const auto *res_type = var ? &get<SPIRType>(var->basetype) : nullptr;
+ assert(type.storage != StorageClassImage || res_type);
+
+ bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
+
+ bool check_discard = opcode != OpAtomicLoad && needs_frag_discard_checks() &&
+ ptr_type.storage != StorageClassWorkgroup;
+
+ // Even compare exchange atomics are vec4 on metal for ... reasons :v
+ uint32_t vec4_temporary_id = 0;
+ if (use_native_image_atomic && is_atomic_compare_exchange_strong)
+ {
+ uint32_t &tmp_id = extra_sub_expressions[result_id];
+ if (!tmp_id)
+ {
+ tmp_id = ir.increase_bound_by(2);
+
+ auto vec4_type = get<SPIRType>(result_type);
+ vec4_type.vecsize = 4;
+ set<SPIRType>(tmp_id + 1, vec4_type);
+ }
+
+ vec4_temporary_id = tmp_id;
+ }
+
+ if (check_discard)
+ {
+ if (is_atomic_compare_exchange_strong)
+ {
+ // We're already emitting a CAS loop here; a conditional won't hurt.
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ if (vec4_temporary_id)
+ emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
+ statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
+ begin_scope();
+ }
+ else
+ exp = join("(!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ");
+ }
+
+ if (use_native_image_atomic)
+ {
+ auto obj_expression = to_expression(obj);
+ auto split_index = obj_expression.find_first_of('@');
+
+ // Will only be false if we're in "force recompile later" mode.
+ if (split_index != string::npos)
+ {
+ auto coord = obj_expression.substr(split_index + 1);
+ auto image_expr = obj_expression.substr(0, split_index);
+
+ // Handle problem cases with sign where we need signed min/max on a uint image for example.
+ // It seems to work to cast the texture type itself, even if it is probably wildly outside of spec,
+ // but SPIR-V requires this to work.
+ if ((opcode == OpAtomicUMax || opcode == OpAtomicUMin ||
+ opcode == OpAtomicSMax || opcode == OpAtomicSMin) &&
+ type.basetype != expected_type)
+ {
+ auto *backing_var = maybe_get_backing_variable(obj);
+ if (backing_var)
+ {
+ add_spv_func_and_recompile(SPVFuncImplTextureCast);
+
+ const auto *backing_type = &get<SPIRType>(backing_var->basetype);
+ while (backing_type->op != OpTypeImage)
+ backing_type = &get<SPIRType>(backing_type->parent_type);
+
+ auto img_type = *backing_type;
+ auto tmp_type = type;
+ tmp_type.basetype = expected_type;
+ img_type.image.type = ir.increase_bound_by(1);
+ set<SPIRType>(img_type.image.type, tmp_type);
+
+ image_expr = join("spvTextureCast<", type_to_glsl(img_type, obj), ">(", image_expr, ")");
+ }
+ }
+
+ exp += join(image_expr, ".", op, "(");
+ if (ptr_type.storage == StorageClassImage && res_type->image.arrayed)
+ {
+ switch (res_type->image.dim)
+ {
+ case Dim1D:
+ if (msl_options.texture_1D_as_2D)
+ exp += join("uint2(", coord, ".x, 0), ", coord, ".y");
+ else
+ exp += join(coord, ".x, ", coord, ".y");
+
+ break;
+ case Dim2D:
+ exp += join(coord, ".xy, ", coord, ".z");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Cannot do atomics on Cube textures.");
+ }
+ }
+ else if (ptr_type.storage == StorageClassImage && res_type->image.dim == Dim1D && msl_options.texture_1D_as_2D)
+ exp += join("uint2(", coord, ", 0)");
+ else
+ exp += coord;
+ }
+ else
+ {
+ exp += obj_expression;
+ }
+ }
+ else
+ {
+ exp += string(op) + "_explicit(";
+ exp += "(";
+ // Emulate texture2D atomic operations
+ if (ptr_type.storage == StorageClassImage)
+ {
+ auto &flags = ir.get_decoration_bitset(var->self);
+ if (decoration_flags_signal_volatile(flags))
+ exp += "volatile ";
+ exp += "device";
+ }
+ else if (var && ptr_type.storage != StorageClassPhysicalStorageBuffer)
+ {
+ exp += get_argument_address_space(*var);
+ }
+ else
+ {
+ // Fallback scenario, could happen for raw pointers.
+ exp += ptr_type.storage == StorageClassWorkgroup ? "threadgroup" : "device";
+ }
+
+ exp += " atomic_";
+ // For signed and unsigned min/max, we can signal this through the pointer type.
+ // There is no other way, since C++ does not have explicit signage for atomics.
+ exp += type_to_glsl(remapped_type);
+ exp += "*)";
+
+ exp += "&";
+ exp += to_enclosed_expression(obj);
+ }
+
+ if (is_atomic_compare_exchange_strong)
+ {
+ assert(strcmp(op, "atomic_compare_exchange_weak") == 0);
+ assert(op2);
+ assert(has_mem_order_2);
+ exp += ", &";
+ exp += to_name(vec4_temporary_id ? vec4_temporary_id : result_id);
+ exp += ", ";
+ exp += to_expression(op2);
+
+ if (!use_native_image_atomic)
+ {
+ exp += ", ";
+ exp += get_memory_order(mem_order_1);
+ exp += ", ";
+ exp += get_memory_order(mem_order_2);
+ }
+ exp += ")";
+
+ // MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
+ // The MSL function returns false if the atomic write fails OR the comparison test fails,
+ // so we must validate that it wasn't the comparison test that failed before continuing
+ // the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
+ // The function updates the comparator value from the memory value, so the additional
+ // comparison test evaluates the memory value against the expected value.
+ if (!check_discard)
+ {
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ if (vec4_temporary_id)
+ emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
+ }
+
+ statement("do");
+ begin_scope();
+
+ string scalar_expression;
+ if (vec4_temporary_id)
+ scalar_expression = join(to_expression(vec4_temporary_id), ".x");
+ else
+ scalar_expression = to_expression(result_id);
+
+ statement(scalar_expression, " = ", to_expression(op1), ";");
+ end_scope_decl(join("while (!", exp, " && ", scalar_expression, " == ", to_enclosed_expression(op1), ")"));
+ if (vec4_temporary_id)
+ statement(to_expression(result_id), " = ", scalar_expression, ";");
+
+ // Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined)
+ if (check_discard)
+ {
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement(to_expression(result_id), " = {};");
+ end_scope();
+ }
+ }
+ else
+ {
+ assert(strcmp(op, "atomic_compare_exchange_weak") != 0);
+
+ if (op1)
+ {
+ exp += ", ";
+ if (op1_is_literal)
+ exp += to_string(op1);
+ else
+ exp += bitcast_expression(expected_type, op1);
+ }
+
+ if (op2)
+ exp += ", " + to_expression(op2);
+
+ if (!use_native_image_atomic)
+ {
+ exp += string(", ") + get_memory_order(mem_order_1);
+ if (has_mem_order_2)
+ exp += string(", ") + get_memory_order(mem_order_2);
+ }
+
+ exp += ")";
+
+ // For some particular reason, atomics return vec4 in Metal ...
+ if (use_native_image_atomic)
+ exp += ".x";
+
+ // Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined)
+ if (check_discard)
+ {
+ exp += " : ";
+ if (strcmp(op, "atomic_store") != 0)
+ exp += join(type_to_glsl(get<SPIRType>(result_type)), "{}");
+ else
+ exp += "((void)0)";
+ exp += ")";
+ }
+
+ if (expected_type != type.basetype)
+ exp = bitcast_expression(type, expected_type, exp);
+
+ if (strcmp(op, "atomic_store") != 0)
+ emit_op(result_type, result_id, exp, false);
+ else
+ statement(exp, ";");
+ }
+
+ flush_all_atomic_capable_variables();
+}
+
+// Metal only supports relaxed memory order for now
+const char *CompilerMSL::get_memory_order(uint32_t)
+{
+ return "memory_order_relaxed";
+}
+
+// Override for MSL-specific extension syntax instructions.
+// In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results.
+void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
+{
+ auto op = static_cast<GLSLstd450>(eop);
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ op = get_remapped_glsl_op(op);
+
+ auto &restype = get<SPIRType>(result_type);
+
+ switch (op)
+ {
+ case GLSLstd450Sinh:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::sinh(", to_unpacked_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "fast::sinh");
+ break;
+ case GLSLstd450Cosh:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::cosh(", to_unpacked_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "fast::cosh");
+ break;
+ case GLSLstd450Tanh:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::tanh(", to_unpacked_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "precise::tanh");
+ break;
+ case GLSLstd450Atan2:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::atan2(", to_unpacked_expression(args[0]), ", ", to_unpacked_expression(args[1]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]) && should_forward(args[1]));
+ inherit_expression_dependencies(id, args[0]);
+ inherit_expression_dependencies(id, args[1]);
+ }
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::atan2");
+ break;
+ case GLSLstd450InverseSqrt:
+ emit_unary_func_op(result_type, id, args[0], "rsqrt");
+ break;
+ case GLSLstd450RoundEven:
+ emit_unary_func_op(result_type, id, args[0], "rint");
+ break;
+
+ case GLSLstd450FindILsb:
+ {
+ // In this template version of findLSB, we return T.
+ auto basetype = expression_type(args[0]).basetype;
+ emit_unary_func_op_cast(result_type, id, args[0], "spvFindLSB", basetype, basetype);
+ break;
+ }
+
+ case GLSLstd450FindSMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "spvFindSMSB", int_type, int_type);
+ break;
+
+ case GLSLstd450FindUMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "spvFindUMSB", uint_type, uint_type);
+ break;
+
+ case GLSLstd450PackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
+ break;
+ case GLSLstd450PackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
+ break;
+ case GLSLstd450PackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
+ break;
+ case GLSLstd450PackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
+ break;
+
+ case GLSLstd450PackHalf2x16:
+ {
+ auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ break;
+ }
+
+ case GLSLstd450UnpackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
+ break;
+ case GLSLstd450UnpackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
+ break;
+ case GLSLstd450UnpackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
+ break;
+ case GLSLstd450UnpackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
+ break;
+
+ case GLSLstd450UnpackHalf2x16:
+ {
+ auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ break;
+ }
+
+ case GLSLstd450PackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
+ break;
+ case GLSLstd450UnpackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
+ break;
+
+ case GLSLstd450MatrixInverse:
+ {
+ auto &mat_type = get<SPIRType>(result_type);
+ switch (mat_type.columns)
+ {
+ case 2:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
+ break;
+ case 3:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
+ break;
+ case 4:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ case GLSLstd450FMin:
+ // If the result type isn't float, don't bother calling the specific
+ // precise::/fast:: version. Metal doesn't have those for half and
+ // double types.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
+ break;
+
+ case GLSLstd450FMax:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
+ break;
+
+ case GLSLstd450FClamp:
+ // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
+ break;
+
+ case GLSLstd450NMin:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
+ break;
+
+ case GLSLstd450NMax:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
+ break;
+
+ case GLSLstd450NClamp:
+ // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
+ break;
+
+ case GLSLstd450InterpolateAtCentroid:
+ {
+ // We can't just emit the expression normally, because the qualified name contains a call to the default
+ // interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct
+ // the base for the method call.
+ uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
+ string component;
+ if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
+ {
+ uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
+ auto *c = maybe_get<SPIRConstant>(index_expr);
+ if (!c || c->specialization)
+ component = join("[", to_expression(index_expr), "]");
+ else
+ component = join(".", index_to_swizzle(c->scalar()));
+ }
+ emit_op(result_type, id,
+ join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
+ ".interpolate_at_centroid()", component),
+ should_forward(args[0]));
+ break;
+ }
+
+ case GLSLstd450InterpolateAtSample:
+ {
+ uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
+ string component;
+ if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
+ {
+ uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
+ auto *c = maybe_get<SPIRConstant>(index_expr);
+ if (!c || c->specialization)
+ component = join("[", to_expression(index_expr), "]");
+ else
+ component = join(".", index_to_swizzle(c->scalar()));
+ }
+ emit_op(result_type, id,
+ join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
+ ".interpolate_at_sample(", to_expression(args[1]), ")", component),
+ should_forward(args[0]) && should_forward(args[1]));
+ break;
+ }
+
+ case GLSLstd450InterpolateAtOffset:
+ {
+ uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
+ string component;
+ if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
+ {
+ uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
+ auto *c = maybe_get<SPIRConstant>(index_expr);
+ if (!c || c->specialization)
+ component = join("[", to_expression(index_expr), "]");
+ else
+ component = join(".", index_to_swizzle(c->scalar()));
+ }
+ // Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do.
+ // Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this.
+ // It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel.
+ emit_op(result_type, id,
+ join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
+ ".interpolate_at_offset(", to_expression(args[1]), " + 0.4375)", component),
+ should_forward(args[0]) && should_forward(args[1]));
+ break;
+ }
+
+ case GLSLstd450Distance:
+ // MSL does not support scalar versions here.
+ if (expression_type(args[0]).vecsize == 1)
+ {
+ // Equivalent to length(a - b) -> abs(a - b).
+ emit_op(result_type, id,
+ join("abs(", to_enclosed_unpacked_expression(args[0]), " - ",
+ to_enclosed_unpacked_expression(args[1]), ")"),
+ should_forward(args[0]) && should_forward(args[1]));
+ inherit_expression_dependencies(id, args[0]);
+ inherit_expression_dependencies(id, args[1]);
+ }
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Length:
+ // MSL does not support scalar versions, so use abs().
+ if (expression_type(args[0]).vecsize == 1)
+ emit_unary_func_op(result_type, id, args[0], "abs");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Normalize:
+ {
+ auto &exp_type = expression_type(args[0]);
+ // MSL does not support scalar versions here.
+ // MSL has no implementation for normalize in the fast:: namespace for half2 and half3
+ // Returns -1 or 1 for valid input, sign() does the job.
+ if (exp_type.vecsize == 1)
+ emit_unary_func_op(result_type, id, args[0], "sign");
+ else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half)
+ emit_unary_func_op(result_type, id, args[0], "normalize");
+ else
+ emit_unary_func_op(result_type, id, args[0], "fast::normalize");
+ break;
+ }
+ case GLSLstd450Reflect:
+ if (get<SPIRType>(result_type).vecsize == 1)
+ emit_binary_func_op(result_type, id, args[0], args[1], "spvReflect");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Refract:
+ if (get<SPIRType>(result_type).vecsize == 1)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvRefract");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450FaceForward:
+ if (get<SPIRType>(result_type).vecsize == 1)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvFaceForward");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Modf:
+ case GLSLstd450Frexp:
+ {
+ // Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary.
+ // Another special case is if the variable is in a storage class which is not thread.
+ auto *ptr = maybe_get<SPIRExpression>(args[1]);
+ auto &type = expression_type(args[1]);
+
+ bool is_thread_storage = storage_class_array_is_thread(type.storage);
+ if (type.storage == StorageClassOutput && capture_output_to_buffer)
+ is_thread_storage = false;
+
+ if (!is_thread_storage ||
+ (ptr && ptr->access_chain && is_scalar(expression_type(args[1]))))
+ {
+ register_call_out_argument(args[1]);
+ forced_temporaries.insert(id);
+
+ // Need to create temporaries and copy over to access chain after.
+ // We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ...
+ uint32_t &tmp_id = extra_sub_expressions[id];
+ if (!tmp_id)
+ tmp_id = ir.increase_bound_by(1);
+
+ uint32_t tmp_type_id = get_pointee_type_id(expression_type_id(args[1]));
+ emit_uninitialized_temporary_expression(tmp_type_id, tmp_id);
+ emit_binary_func_op(result_type, id, args[0], tmp_id, eop == GLSLstd450Modf ? "modf" : "frexp");
+ statement(to_expression(args[1]), " = ", to_expression(tmp_id), ";");
+ }
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+ }
+
+ case GLSLstd450Pow:
+ // powr makes x < 0.0 undefined, just like SPIR-V.
+ emit_binary_func_op(result_type, id, args[0], args[1], "powr");
+ break;
+
+ default:
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+ }
+}
+
+void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
+ const uint32_t *args, uint32_t count)
+{
+ enum AMDShaderTrinaryMinMax
+ {
+ FMin3AMD = 1,
+ UMin3AMD = 2,
+ SMin3AMD = 3,
+ FMax3AMD = 4,
+ UMax3AMD = 5,
+ SMax3AMD = 6,
+ FMid3AMD = 7,
+ UMid3AMD = 8,
+ SMid3AMD = 9
+ };
+
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1.");
+
+ auto op = static_cast<AMDShaderTrinaryMinMax>(eop);
+
+ switch (op)
+ {
+ case FMid3AMD:
+ case UMid3AMD:
+ case SMid3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "median3");
+ break;
+ default:
+ CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, id, eop, args, count);
+ break;
+ }
+}
+
+// Emit a structure declaration for the specified interface variable.
+void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
+{
+ if (ib_var_id)
+ {
+ auto &ib_var = get<SPIRVariable>(ib_var_id);
+ auto &ib_type = get_variable_data_type(ib_var);
+ //assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
+ assert(ib_type.basetype == SPIRType::Struct);
+ emit_struct(ib_type);
+ }
+}
+
+// Emits the declaration signature of the specified function.
+// If this is the entry point function, Metal-specific return value and function arguments are added.
+void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
+{
+ if (func.self != ir.default_entry_point)
+ add_function_overload(func);
+
+ local_variable_names = resource_names;
+ string decl;
+
+ processing_entry_point = func.self == ir.default_entry_point;
+
+ // Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib.
+ if (!processing_entry_point)
+ statement(force_inline);
+
+ auto &type = get<SPIRType>(func.return_type);
+
+ if (!type.array.empty() && msl_options.force_native_arrays)
+ {
+ // We cannot return native arrays in MSL, so "return" through an out variable.
+ decl += "void";
+ }
+ else
+ {
+ decl += func_type_decl(type);
+ }
+
+ decl += " ";
+ decl += to_name(func.self);
+ decl += "(";
+
+ if (!type.array.empty() && msl_options.force_native_arrays)
+ {
+ // Fake arrays returns by writing to an out array instead.
+ decl += "thread ";
+ decl += type_to_glsl(type);
+ decl += " (&spvReturnValue)";
+ decl += type_to_array_glsl(type, 0);
+ if (!func.arguments.empty())
+ decl += ", ";
+ }
+
+ if (processing_entry_point)
+ {
+ if (msl_options.argument_buffers)
+ decl += entry_point_args_argument_buffer(!func.arguments.empty());
+ else
+ decl += entry_point_args_classic(!func.arguments.empty());
+
+ // append entry point args to avoid conflicts in local variable names.
+ local_variable_names.insert(resource_names.begin(), resource_names.end());
+
+ // If entry point function has variables that require early declaration,
+ // ensure they each have an empty initializer, creating one if needed.
+ // This is done at this late stage because the initialization expression
+ // is cleared after each compilation pass.
+ for (auto var_id : vars_needing_early_declaration)
+ {
+ auto &ed_var = get<SPIRVariable>(var_id);
+ ID &initializer = ed_var.initializer;
+ if (!initializer)
+ initializer = ir.increase_bound_by(1);
+
+ // Do not override proper initializers.
+ if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
+ set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
+ }
+ }
+
+ for (auto &arg : func.arguments)
+ {
+ uint32_t name_id = arg.id;
+
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ {
+ // If we need to modify the name of the variable, make sure we modify the original variable.
+ // Our alias is just a shadow variable.
+ if (arg.alias_global_variable && var->basevariable)
+ name_id = var->basevariable;
+
+ var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ }
+
+ add_local_variable_name(name_id);
+
+ decl += argument_decl(arg);
+
+ bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
+
+ auto &arg_type = get<SPIRType>(arg.type);
+ if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler)
+ {
+ // Manufacture automatic plane args for multiplanar texture
+ uint32_t planes = 1;
+ if (auto *constexpr_sampler = find_constexpr_sampler(name_id))
+ if (constexpr_sampler->ycbcr_conversion_enable)
+ planes = constexpr_sampler->planes;
+ for (uint32_t i = 1; i < planes; i++)
+ decl += join(", ", argument_decl(arg), plane_name_suffix, i);
+
+ // Manufacture automatic sampler arg for SampledImage texture
+ if (arg_type.image.dim != DimBuffer)
+ {
+ if (arg_type.array.empty() || (var ? is_var_runtime_size_array(*var) : is_runtime_size_array(arg_type)))
+ {
+ decl += join(", ", sampler_type(arg_type, arg.id, false), " ", to_sampler_expression(name_id));
+ }
+ else
+ {
+ const char *sampler_address_space =
+ descriptor_address_space(name_id,
+ StorageClassUniformConstant,
+ "thread const");
+ decl += join(", ", sampler_address_space, " ", sampler_type(arg_type, name_id, false), "& ",
+ to_sampler_expression(name_id));
+ }
+ }
+ }
+
+ // Manufacture automatic swizzle arg.
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type) &&
+ !is_dynamic_img_sampler)
+ {
+ bool arg_is_array = !arg_type.array.empty();
+ decl += join(", constant uint", arg_is_array ? "* " : "& ", to_swizzle_expression(name_id));
+ }
+
+ if (buffer_requires_array_length(name_id))
+ {
+ bool arg_is_array = !arg_type.array.empty();
+ decl += join(", constant uint", arg_is_array ? "* " : "& ", to_buffer_size_expression(name_id));
+ }
+
+ if (&arg != &func.arguments.back())
+ decl += ", ";
+ }
+
+ decl += ")";
+ statement(decl);
+}
+
+static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler)
+{
+ // For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images
+ // use implicit reconstruction.
+ return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1;
+}
+
+// Returns the texture sampling function string for the specified image and sampling characteristics.
+string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args)
+{
+ VariableID img = args.base.img;
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ bool is_dynamic_img_sampler = false;
+ if (auto *var = maybe_get_backing_variable(img))
+ {
+ constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
+ is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
+ }
+
+ // Special-case gather. We have to alter the component being looked up in the swizzle case.
+ if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler &&
+ (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
+ {
+ bool is_compare = comparison_ids.count(img);
+ add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle);
+ return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
+ }
+
+ // Special-case gather with an array of offsets. We have to lower into 4 separate gathers.
+ if (args.has_array_offsets && !is_dynamic_img_sampler &&
+ (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
+ {
+ bool is_compare = comparison_ids.count(img);
+ add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareConstOffsets : SPVFuncImplGatherConstOffsets);
+ add_spv_func_and_recompile(SPVFuncImplForwardArgs);
+ return is_compare ? "spvGatherCompareConstOffsets" : "spvGatherConstOffsets";
+ }
+
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+
+ // Texture reference
+ string fname;
+ if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler)
+ {
+ if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3)
+ SPIRV_CROSS_THROW("Unhandled number of color image planes!");
+ // 444 images aren't downsampled, so we don't need to do linear filtering.
+ if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 ||
+ constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST)
+ {
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest3Plane);
+ fname = "spvChromaReconstructNearest";
+ }
+ else // Linear with a downsampled format
+ {
+ fname = "spvChromaReconstructLinear";
+ switch (constexpr_sampler->resolution)
+ {
+ case MSL_FORMAT_RESOLUTION_444:
+ assert(false);
+ break; // not reached
+ case MSL_FORMAT_RESOLUTION_422:
+ switch (constexpr_sampler->x_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven3Plane);
+ fname += "422CositedEven";
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint3Plane);
+ fname += "422Midpoint";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid chroma location.");
+ }
+ break;
+ case MSL_FORMAT_RESOLUTION_420:
+ fname += "420";
+ switch (constexpr_sampler->x_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ switch (constexpr_sampler->y_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane);
+ else
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane);
+ fname += "XCositedEvenYCositedEven";
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane);
+ else
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane);
+ fname += "XCositedEvenYMidpoint";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y chroma location.");
+ }
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ switch (constexpr_sampler->y_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane);
+ else
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane);
+ fname += "XMidpointYCositedEven";
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane);
+ fname += "XMidpointYMidpoint";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y chroma location.");
+ }
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid X chroma location.");
+ }
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid format resolution.");
+ }
+ }
+ }
+ else
+ {
+ fname = to_expression(combined ? combined->image : img) + ".";
+
+ // Texture function and sampler
+ if (args.base.is_fetch)
+ fname += "read";
+ else if (args.base.is_gather)
+ fname += "gather";
+ else
+ fname += "sample";
+
+ if (args.has_dref)
+ fname += "_compare";
+ }
+
+ return fname;
+}
+
+string CompilerMSL::convert_to_f32(const string &expr, uint32_t components)
+{
+ SPIRType t { components > 1 ? OpTypeVector : OpTypeFloat };
+ t.basetype = SPIRType::Float;
+ t.vecsize = components;
+ t.columns = 1;
+ return join(type_to_glsl_constructor(t), "(", expr, ")");
+}
+
+static inline bool sampling_type_needs_f32_conversion(const SPIRType &type)
+{
+ // Double is not supported to begin with, but doesn't hurt to check for completion.
+ return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double;
+}
+
+// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
+string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
+{
+ VariableID img = args.base.img;
+ auto &imgtype = *args.base.imgtype;
+ uint32_t lod = args.lod;
+ uint32_t grad_x = args.grad_x;
+ uint32_t grad_y = args.grad_y;
+ uint32_t bias = args.bias;
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ bool is_dynamic_img_sampler = false;
+ if (auto *var = maybe_get_backing_variable(img))
+ {
+ constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
+ is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
+ }
+
+ string farg_str;
+ bool forward = true;
+
+ if (!is_dynamic_img_sampler)
+ {
+ // Texture reference (for some cases)
+ if (needs_chroma_reconstruction(constexpr_sampler))
+ {
+ // Multiplanar images need two or three textures.
+ farg_str += to_expression(img);
+ for (uint32_t i = 1; i < constexpr_sampler->planes; i++)
+ farg_str += join(", ", to_expression(img), plane_name_suffix, i);
+ }
+ else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
+ msl_options.swizzle_texture_samples && args.base.is_gather)
+ {
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+ farg_str += to_expression(combined ? combined->image : img);
+ }
+
+ // Gathers with constant offsets call a special function, so include the texture.
+ if (args.has_array_offsets)
+ farg_str += to_expression(img);
+
+ // Sampler reference
+ if (!args.base.is_fetch)
+ {
+ if (!farg_str.empty())
+ farg_str += ", ";
+ farg_str += to_sampler_expression(img);
+ }
+
+ if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
+ msl_options.swizzle_texture_samples && args.base.is_gather)
+ {
+ // Add the swizzle constant from the swizzle buffer.
+ farg_str += ", " + to_swizzle_expression(img);
+ used_swizzle_buffer = true;
+ }
+
+ // Const offsets gather puts the const offsets before the other args.
+ if (args.has_array_offsets)
+ {
+ forward = forward && should_forward(args.offset);
+ farg_str += ", " + to_expression(args.offset);
+ }
+
+ // Const offsets gather or swizzled gather puts the component before the other args.
+ if (args.component && (args.has_array_offsets || msl_options.swizzle_texture_samples))
+ {
+ forward = forward && should_forward(args.component);
+ farg_str += ", " + to_component_argument(args.component);
+ }
+ }
+
+ // Texture coordinates
+ forward = forward && should_forward(args.coord);
+ auto coord_expr = to_enclosed_expression(args.coord);
+ auto &coord_type = expression_type(args.coord);
+ bool coord_is_fp = type_is_floating_point(coord_type);
+ bool is_cube_fetch = false;
+
+ string tex_coords = coord_expr;
+ uint32_t alt_coord_component = 0;
+
+ switch (imgtype.image.dim)
+ {
+
+ case Dim1D:
+ if (coord_type.vecsize > 1)
+ tex_coords = enclose_expression(tex_coords) + ".x";
+
+ if (args.base.is_fetch)
+ tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ else if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 1);
+
+ if (msl_options.texture_1D_as_2D)
+ {
+ if (args.base.is_fetch)
+ tex_coords = "uint2(" + tex_coords + ", 0)";
+ else
+ tex_coords = "float2(" + tex_coords + ", 0.5)";
+ }
+
+ alt_coord_component = 1;
+ break;
+
+ case DimBuffer:
+ if (coord_type.vecsize > 1)
+ tex_coords = enclose_expression(tex_coords) + ".x";
+
+ if (msl_options.texture_buffer_native)
+ {
+ tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ // Metal texel buffer textures are 2D, so convert 1D coord to 2D.
+ // Support for Metal 2.1's new texture_buffer type.
+ if (args.base.is_fetch)
+ {
+ if (msl_options.texel_buffer_texture_width > 0)
+ {
+ tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " +
+ to_expression(img) + ")";
+ }
+ }
+ }
+
+ alt_coord_component = 1;
+ break;
+
+ case DimSubpassData:
+ // If we're using Metal's native frame-buffer fetch API for subpass inputs,
+ // this path will not be hit.
+ tex_coords = "uint2(gl_FragCoord.xy)";
+ alt_coord_component = 2;
+ break;
+
+ case Dim2D:
+ if (coord_type.vecsize > 2)
+ tex_coords = enclose_expression(tex_coords) + ".xy";
+
+ if (args.base.is_fetch)
+ tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ else if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 2);
+
+ alt_coord_component = 2;
+ break;
+
+ case Dim3D:
+ if (coord_type.vecsize > 3)
+ tex_coords = enclose_expression(tex_coords) + ".xyz";
+
+ if (args.base.is_fetch)
+ tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ else if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 3);
+
+ alt_coord_component = 3;
+ break;
+
+ case DimCube:
+ if (args.base.is_fetch)
+ {
+ is_cube_fetch = true;
+ tex_coords += ".xy";
+ tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ if (coord_type.vecsize > 3)
+ tex_coords = enclose_expression(tex_coords) + ".xyz";
+ }
+
+ if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 3);
+
+ alt_coord_component = 3;
+ break;
+
+ default:
+ break;
+ }
+
+ if (args.base.is_fetch && args.offset)
+ {
+ // Fetch offsets must be applied directly to the coordinate.
+ forward = forward && should_forward(args.offset);
+ auto &type = expression_type(args.offset);
+ if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D)
+ {
+ if (type.basetype != SPIRType::UInt)
+ tex_coords += join(" + uint2(", bitcast_expression(SPIRType::UInt, args.offset), ", 0)");
+ else
+ tex_coords += join(" + uint2(", to_enclosed_expression(args.offset), ", 0)");
+ }
+ else
+ {
+ if (type.basetype != SPIRType::UInt)
+ tex_coords += " + " + bitcast_expression(SPIRType::UInt, args.offset);
+ else
+ tex_coords += " + " + to_enclosed_expression(args.offset);
+ }
+ }
+
+ // If projection, use alt coord as divisor
+ if (args.base.is_proj)
+ {
+ if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords += " / " + convert_to_f32(to_extract_component_expression(args.coord, alt_coord_component), 1);
+ else
+ tex_coords += " / " + to_extract_component_expression(args.coord, alt_coord_component);
+ }
+
+ if (!farg_str.empty())
+ farg_str += ", ";
+
+ if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array)
+ {
+ farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy";
+
+ if (is_cube_fetch)
+ farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ")";
+ else
+ farg_str +=
+ ", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" +
+ round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
+ ") * 6u)";
+
+ add_spv_func_and_recompile(SPVFuncImplCubemapTo2DArrayFace);
+ }
+ else
+ {
+ farg_str += tex_coords;
+
+ // If fetch from cube, add face explicitly
+ if (is_cube_fetch)
+ {
+ // Special case for cube arrays, face and layer are packed in one dimension.
+ if (imgtype.image.arrayed)
+ farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") % 6u";
+ else
+ farg_str +=
+ ", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, 2), coord_is_fp) + ")";
+ }
+
+ // If array, use alt coord
+ if (imgtype.image.arrayed)
+ {
+ // Special case for cube arrays, face and layer are packed in one dimension.
+ if (imgtype.image.dim == DimCube && args.base.is_fetch)
+ {
+ farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") / 6u";
+ }
+ else
+ {
+ farg_str +=
+ ", uint(" +
+ round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
+ ")";
+ if (imgtype.image.dim == DimSubpassData)
+ {
+ if (msl_options.multiview)
+ farg_str += " + gl_ViewIndex";
+ else if (msl_options.arrayed_subpass_input)
+ farg_str += " + gl_Layer";
+ }
+ }
+ }
+ else if (imgtype.image.dim == DimSubpassData)
+ {
+ if (msl_options.multiview)
+ farg_str += ", gl_ViewIndex";
+ else if (msl_options.arrayed_subpass_input)
+ farg_str += ", gl_Layer";
+ }
+ }
+
+ // Depth compare reference value
+ if (args.dref)
+ {
+ forward = forward && should_forward(args.dref);
+ farg_str += ", ";
+
+ auto &dref_type = expression_type(args.dref);
+
+ string dref_expr;
+ if (args.base.is_proj)
+ dref_expr = join(to_enclosed_expression(args.dref), " / ",
+ to_extract_component_expression(args.coord, alt_coord_component));
+ else
+ dref_expr = to_expression(args.dref);
+
+ if (sampling_type_needs_f32_conversion(dref_type))
+ dref_expr = convert_to_f32(dref_expr, 1);
+
+ farg_str += dref_expr;
+
+ if (msl_options.is_macos() && (grad_x || grad_y))
+ {
+ // For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
+ // However, the most common case here is to have a constant gradient of 0, as that is the only way to express
+ // LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
+ // We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
+ bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
+ bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
+ if (constant_zero_x && constant_zero_y &&
+ (!imgtype.image.arrayed || !msl_options.sample_dref_lod_array_as_grad))
+ {
+ lod = 0;
+ grad_x = 0;
+ grad_y = 0;
+ farg_str += ", level(0)";
+ }
+ else if (!msl_options.supports_msl_version(2, 3))
+ {
+ SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
+ "supported on macOS prior to MSL 2.3.");
+ }
+ }
+
+ if (msl_options.is_macos() && bias)
+ {
+ // Bias is not supported either on macOS with sample_compare.
+ // Verify it is compile-time zero, and drop the argument.
+ if (expression_is_constant_null(bias))
+ {
+ bias = 0;
+ }
+ else if (!msl_options.supports_msl_version(2, 3))
+ {
+ SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported "
+ "on macOS prior to MSL 2.3.");
+ }
+ }
+ }
+
+ // LOD Options
+ // Metal does not support LOD for 1D textures.
+ if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
+ {
+ forward = forward && should_forward(bias);
+ farg_str += ", bias(" + to_expression(bias) + ")";
+ }
+
+ // Metal does not support LOD for 1D textures.
+ if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
+ {
+ forward = forward && should_forward(lod);
+ if (args.base.is_fetch)
+ {
+ farg_str += ", " + to_expression(lod);
+ }
+ else if (msl_options.sample_dref_lod_array_as_grad && args.dref && imgtype.image.arrayed)
+ {
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
+ "supported on macOS prior to MSL 2.3.");
+ // Some Metal devices have a bug where the LoD is erroneously biased upward
+ // when using a level() argument. Since this doesn't happen as much with gradient2d(),
+ // if we perform the LoD calculation in reverse, we can pass a gradient
+ // instead.
+ // lod = log2(rhoMax/eta) -> exp2(lod) = rhoMax/eta
+ // If we make all of the scale factors the same, eta will be 1 and
+ // exp2(lod) = rho.
+ // rhoX = dP/dx * extent; rhoY = dP/dy * extent
+ // Therefore, dP/dx = dP/dy = exp2(lod)/extent.
+ // (Subtracting 0.5 before exponentiation gives better results.)
+ string grad_opt, extent, grad_coord;
+ VariableID base_img = img;
+ if (auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
+ base_img = combined->image;
+ switch (imgtype.image.dim)
+ {
+ case Dim1D:
+ grad_opt = "gradient2d";
+ extent = join("float2(", to_expression(base_img), ".get_width(), 1.0)");
+ break;
+ case Dim2D:
+ grad_opt = "gradient2d";
+ extent = join("float2(", to_expression(base_img), ".get_width(), ", to_expression(base_img), ".get_height())");
+ break;
+ case DimCube:
+ if (imgtype.image.arrayed && msl_options.emulate_cube_array)
+ {
+ grad_opt = "gradient2d";
+ extent = join("float2(", to_expression(base_img), ".get_width())");
+ }
+ else
+ {
+ if (msl_options.agx_manual_cube_grad_fixup)
+ {
+ add_spv_func_and_recompile(SPVFuncImplGradientCube);
+ grad_opt = "spvGradientCube";
+ grad_coord = tex_coords + ", ";
+ }
+ else
+ {
+ grad_opt = "gradientcube";
+ }
+ extent = join("float3(", to_expression(base_img), ".get_width())");
+ }
+ break;
+ default:
+ grad_opt = "unsupported_gradient_dimension";
+ extent = "float3(1.0)";
+ break;
+ }
+ farg_str += join(", ", grad_opt, "(", grad_coord, "exp2(", to_expression(lod), " - 0.5) / ", extent,
+ ", exp2(", to_expression(lod), " - 0.5) / ", extent, ")");
+ }
+ else
+ {
+ farg_str += ", level(" + to_expression(lod) + ")";
+ }
+ }
+ else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) &&
+ imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2)
+ {
+ // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
+ // Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
+ farg_str += ", 0";
+ }
+
+ // Metal does not support LOD for 1D textures.
+ if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
+ {
+ forward = forward && should_forward(grad_x);
+ forward = forward && should_forward(grad_y);
+ string grad_opt, grad_coord;
+ switch (imgtype.image.dim)
+ {
+ case Dim1D:
+ case Dim2D:
+ grad_opt = "gradient2d";
+ break;
+ case Dim3D:
+ grad_opt = "gradient3d";
+ break;
+ case DimCube:
+ if (imgtype.image.arrayed && msl_options.emulate_cube_array)
+ {
+ grad_opt = "gradient2d";
+ }
+ else if (msl_options.agx_manual_cube_grad_fixup)
+ {
+ add_spv_func_and_recompile(SPVFuncImplGradientCube);
+ grad_opt = "spvGradientCube";
+ grad_coord = tex_coords + ", ";
+ }
+ else
+ {
+ grad_opt = "gradientcube";
+ }
+ break;
+ default:
+ grad_opt = "unsupported_gradient_dimension";
+ break;
+ }
+ farg_str += join(", ", grad_opt, "(", grad_coord, to_expression(grad_x), ", ", to_expression(grad_y), ")");
+ }
+
+ if (args.min_lod)
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up.");
+
+ forward = forward && should_forward(args.min_lod);
+ farg_str += ", min_lod_clamp(" + to_expression(args.min_lod) + ")";
+ }
+
+ // Add offsets
+ string offset_expr;
+ const SPIRType *offset_type = nullptr;
+ if (args.offset && !args.base.is_fetch && !args.has_array_offsets)
+ {
+ forward = forward && should_forward(args.offset);
+ offset_expr = to_expression(args.offset);
+ offset_type = &expression_type(args.offset);
+ }
+
+ if (!offset_expr.empty())
+ {
+ switch (imgtype.image.dim)
+ {
+ case Dim1D:
+ if (!msl_options.texture_1D_as_2D)
+ break;
+ if (offset_type->vecsize > 1)
+ offset_expr = enclose_expression(offset_expr) + ".x";
+
+ farg_str += join(", int2(", offset_expr, ", 0)");
+ break;
+
+ case Dim2D:
+ if (offset_type->vecsize > 2)
+ offset_expr = enclose_expression(offset_expr) + ".xy";
+
+ farg_str += ", " + offset_expr;
+ break;
+
+ case Dim3D:
+ if (offset_type->vecsize > 3)
+ offset_expr = enclose_expression(offset_expr) + ".xyz";
+
+ farg_str += ", " + offset_expr;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (args.component && !args.has_array_offsets)
+ {
+ // If 2D has gather component, ensure it also has an offset arg
+ if (imgtype.image.dim == Dim2D && offset_expr.empty())
+ farg_str += ", int2(0)";
+
+ if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler)
+ {
+ forward = forward && should_forward(args.component);
+
+ uint32_t image_var = 0;
+ if (const auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
+ {
+ if (const auto *img_var = maybe_get_backing_variable(combined->image))
+ image_var = img_var->self;
+ }
+ else if (const auto *var = maybe_get_backing_variable(img))
+ {
+ image_var = var->self;
+ }
+
+ if (image_var == 0 || !is_depth_image(expression_type(image_var), image_var))
+ farg_str += ", " + to_component_argument(args.component);
+ }
+ }
+
+ if (args.sample)
+ {
+ forward = forward && should_forward(args.sample);
+ farg_str += ", ";
+ farg_str += to_expression(args.sample);
+ }
+
+ *p_forward = forward;
+
+ return farg_str;
+}
+
+// If the texture coordinates are floating point, invokes MSL round() function to round them.
+string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
+{
+ return coord_is_fp ? ("rint(" + tex_coords + ")") : tex_coords;
+}
+
+// Returns a string to use in an image sampling function argument.
+// The ID must be a scalar constant.
+string CompilerMSL::to_component_argument(uint32_t id)
+{
+ uint32_t component_index = evaluate_constant_u32(id);
+ switch (component_index)
+ {
+ case 0:
+ return "component::x";
+ case 1:
+ return "component::y";
+ case 2:
+ return "component::z";
+ case 3:
+ return "component::w";
+
+ default:
+ SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
+ " is not a valid Component index, which must be one of 0, 1, 2, or 3.");
+ }
+}
+
+// Establish sampled image as expression object and assign the sampler to it.
+void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
+{
+ set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
+}
+
+string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
+ SmallVector<uint32_t> &inherited_expressions)
+{
+ auto *ops = stream(i);
+ uint32_t result_type_id = ops[0];
+ uint32_t img = ops[2];
+ auto &result_type = get<SPIRType>(result_type_id);
+ auto op = static_cast<Op>(i.op);
+ bool is_gather = (op == OpImageGather || op == OpImageDrefGather);
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ bool is_dynamic_img_sampler = false;
+ if (auto *var = maybe_get_backing_variable(img))
+ {
+ constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
+ is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
+ }
+
+ string expr;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
+ {
+ // If this needs sampler Y'CbCr conversion, we need to do some additional
+ // processing.
+ switch (constexpr_sampler->ycbcr_model)
+ {
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
+ // Default
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
+ add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT709);
+ expr += "spvConvertYCbCrBT709(";
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
+ add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT601);
+ expr += "spvConvertYCbCrBT601(";
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
+ add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT2020);
+ expr += "spvConvertYCbCrBT2020(";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
+ }
+
+ if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
+ {
+ switch (constexpr_sampler->ycbcr_range)
+ {
+ case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL:
+ add_spv_func_and_recompile(SPVFuncImplExpandITUFullRange);
+ expr += "spvExpandITUFullRange(";
+ break;
+ case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW:
+ add_spv_func_and_recompile(SPVFuncImplExpandITUNarrowRange);
+ expr += "spvExpandITUNarrowRange(";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y'CbCr range.");
+ }
+ }
+ }
+ else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
+ !is_dynamic_img_sampler)
+ {
+ add_spv_func_and_recompile(SPVFuncImplTextureSwizzle);
+ expr += "spvTextureSwizzle(";
+ }
+
+ string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions);
+
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
+ {
+ if (!constexpr_sampler->swizzle_is_identity())
+ {
+ static const char swizzle_names[] = "rgba";
+ if (!constexpr_sampler->swizzle_has_one_or_zero())
+ {
+ // If we can, do it inline.
+ expr += inner_expr + ".";
+ for (uint32_t c = 0; c < 4; c++)
+ {
+ switch (constexpr_sampler->swizzle[c])
+ {
+ case MSL_COMPONENT_SWIZZLE_IDENTITY:
+ expr += swizzle_names[c];
+ break;
+ case MSL_COMPONENT_SWIZZLE_R:
+ case MSL_COMPONENT_SWIZZLE_G:
+ case MSL_COMPONENT_SWIZZLE_B:
+ case MSL_COMPONENT_SWIZZLE_A:
+ expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid component swizzle.");
+ }
+ }
+ }
+ else
+ {
+ // Otherwise, we need to emit a temporary and swizzle that.
+ uint32_t temp_id = ir.increase_bound_by(1);
+ emit_op(result_type_id, temp_id, inner_expr, false);
+ for (auto &inherit : inherited_expressions)
+ inherit_expression_dependencies(temp_id, inherit);
+ inherited_expressions.clear();
+ inherited_expressions.push_back(temp_id);
+
+ switch (op)
+ {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ register_control_dependent_expression(temp_id);
+ break;
+
+ default:
+ break;
+ }
+ expr += type_to_glsl(result_type) + "(";
+ for (uint32_t c = 0; c < 4; c++)
+ {
+ switch (constexpr_sampler->swizzle[c])
+ {
+ case MSL_COMPONENT_SWIZZLE_IDENTITY:
+ expr += to_expression(temp_id) + "." + swizzle_names[c];
+ break;
+ case MSL_COMPONENT_SWIZZLE_ZERO:
+ expr += "0";
+ break;
+ case MSL_COMPONENT_SWIZZLE_ONE:
+ expr += "1";
+ break;
+ case MSL_COMPONENT_SWIZZLE_R:
+ case MSL_COMPONENT_SWIZZLE_G:
+ case MSL_COMPONENT_SWIZZLE_B:
+ case MSL_COMPONENT_SWIZZLE_A:
+ expr += to_expression(temp_id) + "." +
+ swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid component swizzle.");
+ }
+ if (c < 3)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+ }
+ else
+ expr += inner_expr;
+ if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
+ {
+ expr += join(", ", constexpr_sampler->bpc, ")");
+ if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY)
+ expr += ")";
+ }
+ }
+ else
+ {
+ expr += inner_expr;
+ if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
+ !is_dynamic_img_sampler)
+ {
+ // Add the swizzle constant from the swizzle buffer.
+ expr += ", " + to_swizzle_expression(img) + ")";
+ used_swizzle_buffer = true;
+ }
+ }
+
+ return expr;
+}
+
+static string create_swizzle(MSLComponentSwizzle swizzle)
+{
+ switch (swizzle)
+ {
+ case MSL_COMPONENT_SWIZZLE_IDENTITY:
+ return "spvSwizzle::none";
+ case MSL_COMPONENT_SWIZZLE_ZERO:
+ return "spvSwizzle::zero";
+ case MSL_COMPONENT_SWIZZLE_ONE:
+ return "spvSwizzle::one";
+ case MSL_COMPONENT_SWIZZLE_R:
+ return "spvSwizzle::red";
+ case MSL_COMPONENT_SWIZZLE_G:
+ return "spvSwizzle::green";
+ case MSL_COMPONENT_SWIZZLE_B:
+ return "spvSwizzle::blue";
+ case MSL_COMPONENT_SWIZZLE_A:
+ return "spvSwizzle::alpha";
+ default:
+ SPIRV_CROSS_THROW("Invalid component swizzle.");
+ }
+}
+
+// Returns a string representation of the ID, usable as a function arg.
+// Manufacture automatic sampler arg for SampledImage texture.
+string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id)
+{
+ string arg_str;
+
+ auto &type = expression_type(id);
+ bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
+ // If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around.
+ bool arg_is_dynamic_img_sampler = has_extended_decoration(id, SPIRVCrossDecorationDynamicImageSampler);
+ if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler)
+ arg_str = join("spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">(");
+
+ auto *c = maybe_get<SPIRConstant>(id);
+ if (msl_options.force_native_arrays && c && !get<SPIRType>(c->constant_type).array.empty())
+ {
+ // If we are passing a constant array directly to a function for some reason,
+ // the callee will expect an argument in thread const address space
+ // (since we can only bind to arrays with references in MSL).
+ // To resolve this, we must emit a copy in this address space.
+ // This kind of code gen should be rare enough that performance is not a real concern.
+ // Inline the SPIR-V to avoid this kind of suboptimal codegen.
+ //
+ // We risk calling this inside a continue block (invalid code),
+ // so just create a thread local copy in the current function.
+ arg_str = join("_", id, "_array_copy");
+ auto &constants = current_function->constant_arrays_needed_on_stack;
+ auto itr = find(begin(constants), end(constants), ID(id));
+ if (itr == end(constants))
+ {
+ force_recompile();
+ constants.push_back(id);
+ }
+ }
+ // Dereference pointer variables where needed.
+ // FIXME: This dereference is actually backwards. We should really just support passing pointer variables between functions.
+ else if (should_dereference(id))
+ arg_str += dereference_expression(type, CompilerGLSL::to_func_call_arg(arg, id));
+ else
+ arg_str += CompilerGLSL::to_func_call_arg(arg, id);
+
+ // Need to check the base variable in case we need to apply a qualified alias.
+ uint32_t var_id = 0;
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var)
+ var_id = var->basevariable;
+
+ if (!arg_is_dynamic_img_sampler)
+ {
+ auto *constexpr_sampler = find_constexpr_sampler(var_id ? var_id : id);
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ // Manufacture automatic plane args for multiplanar texture
+ uint32_t planes = 1;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ {
+ planes = constexpr_sampler->planes;
+ // If this parameter isn't aliasing a global, then we need to use
+ // the special "dynamic image-sampler" class to pass it--and we need
+ // to use it for *every* non-alias parameter, in case a combined
+ // image-sampler with a Y'CbCr conversion is passed. Hopefully, this
+ // pathological case is so rare that it should never be hit in practice.
+ if (!arg.alias_global_variable)
+ add_spv_func_and_recompile(SPVFuncImplDynamicImageSampler);
+ }
+ for (uint32_t i = 1; i < planes; i++)
+ arg_str += join(", ", CompilerGLSL::to_func_call_arg(arg, id), plane_name_suffix, i);
+ // Manufacture automatic sampler arg if the arg is a SampledImage texture.
+ if (type.image.dim != DimBuffer)
+ arg_str += ", " + to_sampler_expression(var_id ? var_id : id);
+
+ // Add sampler Y'CbCr conversion info if we have it
+ if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ {
+ SmallVector<string> samp_args;
+
+ switch (constexpr_sampler->resolution)
+ {
+ case MSL_FORMAT_RESOLUTION_444:
+ // Default
+ break;
+ case MSL_FORMAT_RESOLUTION_422:
+ samp_args.push_back("spvFormatResolution::_422");
+ break;
+ case MSL_FORMAT_RESOLUTION_420:
+ samp_args.push_back("spvFormatResolution::_420");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid format resolution.");
+ }
+
+ if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST)
+ samp_args.push_back("spvChromaFilter::linear");
+
+ if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
+ samp_args.push_back("spvXChromaLocation::midpoint");
+ if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
+ samp_args.push_back("spvYChromaLocation::midpoint");
+ switch (constexpr_sampler->ycbcr_model)
+ {
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
+ // Default
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_identity");
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_709");
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_601");
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_2020");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
+ }
+ if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL)
+ samp_args.push_back("spvYCbCrRange::itu_narrow");
+ samp_args.push_back(join("spvComponentBits(", constexpr_sampler->bpc, ")"));
+ arg_str += join(", spvYCbCrSampler(", merge(samp_args), ")");
+ }
+ }
+
+ if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ arg_str += join(", (uint(", create_swizzle(constexpr_sampler->swizzle[3]), ") << 24) | (uint(",
+ create_swizzle(constexpr_sampler->swizzle[2]), ") << 16) | (uint(",
+ create_swizzle(constexpr_sampler->swizzle[1]), ") << 8) | uint(",
+ create_swizzle(constexpr_sampler->swizzle[0]), ")");
+ else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
+ arg_str += ", " + to_swizzle_expression(var_id ? var_id : id);
+
+ if (buffer_requires_array_length(var_id))
+ arg_str += ", " + to_buffer_size_expression(var_id ? var_id : id);
+
+ if (is_dynamic_img_sampler)
+ arg_str += ")";
+ }
+
+ // Emulate texture2D atomic operations
+ auto *backing_var = maybe_get_backing_variable(var_id);
+ if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
+ {
+ arg_str += ", " + to_expression(var_id) + "_atomic";
+ }
+
+ return arg_str;
+}
+
+// If the ID represents a sampled image that has been assigned a sampler already,
+// generate an expression for the sampler, otherwise generate a fake sampler name
+// by appending a suffix to the expression constructed from the ID.
+string CompilerMSL::to_sampler_expression(uint32_t id)
+{
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
+ if (combined && combined->sampler)
+ return to_expression(combined->sampler);
+
+ uint32_t expr_id = combined ? uint32_t(combined->image) : id;
+
+ // Constexpr samplers are declared as local variables,
+ // so exclude any qualifier names on the image expression.
+ if (auto *var = maybe_get_backing_variable(expr_id))
+ {
+ uint32_t img_id = var->basevariable ? var->basevariable : VariableID(var->self);
+ if (find_constexpr_sampler(img_id))
+ return Compiler::to_name(img_id) + sampler_name_suffix;
+ }
+
+ auto img_expr = to_expression(expr_id);
+ auto index = img_expr.find_first_of('[');
+ if (index == string::npos)
+ return img_expr + sampler_name_suffix;
+ else
+ return img_expr.substr(0, index) + sampler_name_suffix + img_expr.substr(index);
+}
+
+string CompilerMSL::to_swizzle_expression(uint32_t id)
+{
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
+
+ auto expr = to_expression(combined ? combined->image : VariableID(id));
+ auto index = expr.find_first_of('[');
+
+ // If an image is part of an argument buffer translate this to a legal identifier.
+ string::size_type period = 0;
+ while ((period = expr.find_first_of('.', period)) != string::npos && period < index)
+ expr[period] = '_';
+
+ if (index == string::npos)
+ return expr + swizzle_name_suffix;
+ else
+ {
+ auto image_expr = expr.substr(0, index);
+ auto array_expr = expr.substr(index);
+ return image_expr + swizzle_name_suffix + array_expr;
+ }
+}
+
+string CompilerMSL::to_buffer_size_expression(uint32_t id)
+{
+ auto expr = to_expression(id);
+ auto index = expr.find_first_of('[');
+
+ // This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to
+ // the pointer expression spvDescriptorSetN.name to make a reasonable expression here.
+ // This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set.
+ if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*')
+ expr = address_of_expression(expr);
+
+ // If a buffer is part of an argument buffer translate this to a legal identifier.
+ for (auto &c : expr)
+ if (c == '.')
+ c = '_';
+
+ if (index == string::npos)
+ return expr + buffer_size_name_suffix;
+ else
+ {
+ auto buffer_expr = expr.substr(0, index);
+ auto array_expr = expr.substr(index);
+ if (auto var = maybe_get_backing_variable(id))
+ {
+ if (is_var_runtime_size_array(*var))
+ {
+ if (!msl_options.runtime_array_rich_descriptor)
+ SPIRV_CROSS_THROW("OpArrayLength requires rich descriptor format");
+
+ auto last_pos = array_expr.find_last_of(']');
+ if (last_pos != std::string::npos)
+ return buffer_expr + ".length(" + array_expr.substr(1, last_pos - 1) + ")";
+ }
+ }
+ return buffer_expr + buffer_size_name_suffix + array_expr;
+ }
+}
+
+// Checks whether the type is a Block all of whose members have DecorationPatch.
+bool CompilerMSL::is_patch_block(const SPIRType &type)
+{
+ if (!has_decoration(type.self, DecorationBlock))
+ return false;
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ if (!has_member_decoration(type.self, i, DecorationPatch))
+ return false;
+ }
+
+ return true;
+}
+
+// Checks whether the ID is a row_major matrix that requires conversion before use
+bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
+{
+ auto *e = maybe_get<SPIRExpression>(id);
+ if (e)
+ return e->need_transpose;
+ else
+ return has_decoration(id, DecorationRowMajor);
+}
+
+// Checks whether the member is a row_major matrix that requires conversion before use
+bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
+{
+ return has_member_decoration(type.self, index, DecorationRowMajor);
+}
+
+string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
+ bool is_packed, bool relaxed)
+{
+ if (!is_matrix(exp_type))
+ {
+ return CompilerGLSL::convert_row_major_matrix(std::move(exp_str), exp_type, physical_type_id, is_packed, relaxed);
+ }
+ else
+ {
+ strip_enclosed_expression(exp_str);
+ if (physical_type_id != 0 || is_packed)
+ exp_str = unpack_expression_type(exp_str, exp_type, physical_type_id, is_packed, true);
+ return join("transpose(", exp_str, ")");
+ }
+}
+
+// Called automatically at the end of the entry point function
+void CompilerMSL::emit_fixup()
+{
+ if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
+ {
+ if (options.vertex.fixup_clipspace)
+ statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
+ ".w) * 0.5; // Adjust clip-space for Metal");
+
+ if (options.vertex.flip_vert_y)
+ statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
+ }
+}
+
+// Return a string defining a structure member, with padding and packing.
+string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier)
+{
+ uint32_t orig_member_type_id = member_type_id;
+ if (member_is_remapped_physical_type(type, index))
+ member_type_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+ auto &physical_type = get<SPIRType>(member_type_id);
+
+ // If this member is packed, mark it as so.
+ string pack_pfx;
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ uint32_t orig_id = 0;
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
+ orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);
+
+ bool row_major = false;
+ if (is_matrix(physical_type))
+ row_major = has_member_decoration(type.self, index, DecorationRowMajor);
+
+ SPIRType row_major_physical_type { OpTypeMatrix };
+ const SPIRType *declared_type = &physical_type;
+
+ // If a struct is being declared with physical layout,
+ // do not use array<T> wrappers.
+ // This avoids a lot of complicated cases with packed vectors and matrices,
+ // and generally we cannot copy full arrays in and out of buffers into Function
+ // address space.
+ // Array of resources should also be declared as builtin arrays.
+ if (has_member_decoration(type.self, index, DecorationOffset))
+ is_using_builtin_array = true;
+ else if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
+ is_using_builtin_array = true;
+
+ if (member_is_packed_physical_type(type, index))
+ {
+ // If we're packing a matrix, output an appropriate typedef
+ if (physical_type.basetype == SPIRType::Struct)
+ {
+ SPIRV_CROSS_THROW("Cannot emit a packed struct currently.");
+ }
+ else if (is_matrix(physical_type))
+ {
+ uint32_t rows = physical_type.vecsize;
+ uint32_t cols = physical_type.columns;
+ pack_pfx = "packed_";
+ if (row_major)
+ {
+ // These are stored transposed.
+ rows = physical_type.columns;
+ cols = physical_type.vecsize;
+ pack_pfx = "packed_rm_";
+ }
+ string base_type = physical_type.width == 16 ? "half" : "float";
+ string td_line = "typedef ";
+ td_line += "packed_" + base_type + to_string(rows);
+ td_line += " " + pack_pfx;
+ // Use the actual matrix size here.
+ td_line += base_type + to_string(physical_type.columns) + "x" + to_string(physical_type.vecsize);
+ td_line += "[" + to_string(cols) + "]";
+ td_line += ";";
+ add_typedef_line(td_line);
+ }
+ else if (!is_scalar(physical_type)) // scalar type is already packed.
+ pack_pfx = "packed_";
+ }
+ else if (is_matrix(physical_type))
+ {
+ if (!msl_options.supports_msl_version(3, 0) &&
+ has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
+ {
+ pack_pfx = "spvStorage_";
+ add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
+ // The pack prefix causes problems with array<T> wrappers.
+ is_using_builtin_array = true;
+ }
+ if (row_major)
+ {
+ // Need to declare type with flipped vecsize/columns.
+ row_major_physical_type = physical_type;
+ swap(row_major_physical_type.vecsize, row_major_physical_type.columns);
+ declared_type = &row_major_physical_type;
+ }
+ }
+
+ // iOS Tier 1 argument buffers do not support writable images.
+ if (physical_type.basetype == SPIRType::Image &&
+ physical_type.image.sampled == 2 &&
+ msl_options.is_ios() &&
+ msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1 &&
+ !has_decoration(orig_id, DecorationNonWritable))
+ {
+ SPIRV_CROSS_THROW("Writable images are not allowed on Tier1 argument buffers on iOS.");
+ }
+
+ // Array information is baked into these types.
+ string array_type;
+ if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler &&
+ physical_type.basetype != SPIRType::SampledImage)
+ {
+ BuiltIn builtin = BuiltInMax;
+
+ // Special handling. In [[stage_out]] or [[stage_in]] blocks,
+ // we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want
+ // template array types to be declared.
+ bool is_ib_in_out =
+ ((stage_out_var_id && get_stage_out_struct_type().self == type.self &&
+ variable_storage_requires_stage_io(StorageClassOutput)) ||
+ (stage_in_var_id && get_stage_in_struct_type().self == type.self &&
+ variable_storage_requires_stage_io(StorageClassInput)));
+ if (is_ib_in_out && is_member_builtin(type, index, &builtin))
+ is_using_builtin_array = true;
+ array_type = type_to_array_glsl(physical_type, orig_id);
+ }
+
+ if (orig_id)
+ {
+ auto *data_type = declared_type;
+ if (is_pointer(*data_type))
+ data_type = &get_pointee_type(*data_type);
+
+ if (is_array(*data_type) && get_resource_array_size(*data_type, orig_id) == 0)
+ {
+ // Hack for declaring unsized array of resources. Need to declare dummy sized array by value inline.
+ // This can then be wrapped in spvDescriptorArray as usual.
+ array_type = "[1] /* unsized array hack */";
+ }
+ }
+
+ string decl_type;
+ if (declared_type->vecsize > 4)
+ {
+ auto orig_type = get<SPIRType>(orig_member_type_id);
+ if (is_matrix(orig_type) && row_major)
+ swap(orig_type.vecsize, orig_type.columns);
+ orig_type.columns = 1;
+ decl_type = type_to_glsl(orig_type, orig_id, true);
+
+ if (declared_type->columns > 1)
+ decl_type = join("spvPaddedStd140Matrix<", decl_type, ", ", declared_type->columns, ">");
+ else
+ decl_type = join("spvPaddedStd140<", decl_type, ">");
+ }
+ else
+ decl_type = type_to_glsl(*declared_type, orig_id, true);
+
+ const char *overlapping_binding_tag =
+ has_extended_member_decoration(type.self, index, SPIRVCrossDecorationOverlappingBinding) ?
+ "// Overlapping binding: " : "";
+
+ auto result = join(overlapping_binding_tag, pack_pfx, decl_type, " ", qualifier,
+ to_member_name(type, index), member_attribute_qualifier(type, index), array_type, ";");
+
+ is_using_builtin_array = false;
+ return result;
+}
+
+// Emit a structure member, padding and packing to maintain the correct memeber alignments.
+void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier, uint32_t)
+{
+ // If this member requires padding to maintain its declared offset, emit a dummy padding member before it.
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget))
+ {
+ uint32_t pad_len = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget);
+ statement("char _m", index, "_pad", "[", pad_len, "];");
+ }
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ builtin_declaration = true;
+ statement(to_struct_member(type, member_type_id, index, qualifier));
+ builtin_declaration = false;
+}
+
+void CompilerMSL::emit_struct_padding_target(const SPIRType &type)
+{
+ uint32_t struct_size = get_declared_struct_size_msl(type, true, true);
+ uint32_t target_size = get_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget);
+ if (target_size < struct_size)
+ SPIRV_CROSS_THROW("Cannot pad with negative bytes.");
+ else if (target_size > struct_size)
+ statement("char _m0_final_padding[", target_size - struct_size, "];");
+}
+
+// Return a MSL qualifier for the specified function attribute member
+string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
+{
+ auto &execution = get_entry_point();
+
+ uint32_t mbr_type_id = type.member_types[index];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(type, index, &builtin);
+
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
+ {
+ string quals = join(
+ " [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary), ")");
+ if (interlocked_resources.count(
+ get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID)))
+ quals += ", raster_order_group(0)";
+ quals += "]]";
+ return quals;
+ }
+
+ // Vertex function inputs
+ if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInBaseVertex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ if (msl_options.vertex_for_tessellation)
+ return "";
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ default:
+ return "";
+ }
+ }
+
+ uint32_t locn;
+ if (is_builtin)
+ locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
+ else
+ locn = get_member_location(type.self, index);
+
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Vertex and tessellation evaluation function outputs
+ if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) || is_tese_shader()) &&
+ type.storage == StorageClassOutput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInPointSize:
+ // Only mark the PointSize builtin if really rendering points.
+ // Some shaders may include a PointSize builtin even when used to render
+ // non-point topologies, and Metal will reject this builtin when compiling
+ // the shader into a render pipeline that uses a non-point topology.
+ return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
+
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ /* fallthrough */
+ case BuiltInPosition:
+ case BuiltInLayer:
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ case BuiltInClipDistance:
+ if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ case BuiltInCullDistance:
+ if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ default:
+ return "";
+ }
+ }
+ string loc_qual = member_location_attribute_qualifier(type, index);
+ if (!loc_qual.empty())
+ return join(" [[", loc_qual, "]]");
+ }
+
+ if (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation && type.storage == StorageClassOutput)
+ {
+ // For this type of shader, we always arrange for it to capture its
+ // output to a buffer. For this reason, qualifiers are irrelevant here.
+ if (is_builtin)
+ // We still have to assign a location so the output struct will sort correctly.
+ get_or_allocate_builtin_output_member_location(builtin, type.self, index);
+ return "";
+ }
+
+ // Tessellation control function inputs
+ if (is_tesc_shader() && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInInvocationId:
+ case BuiltInPrimitiveId:
+ if (msl_options.multi_patch_workgroup)
+ return "";
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+ case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
+ case BuiltInSubgroupSize: // FIXME: Should work in any stage
+ if (msl_options.emulate_subgroups)
+ return "";
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+ case BuiltInPatchVertices:
+ return "";
+ // Others come from stage input.
+ default:
+ break;
+ }
+ }
+ if (msl_options.multi_patch_workgroup)
+ return "";
+
+ uint32_t locn;
+ if (is_builtin)
+ locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
+ else
+ locn = get_member_location(type.self, index);
+
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Tessellation control function outputs
+ if (is_tesc_shader() && type.storage == StorageClassOutput)
+ {
+ // For this type of shader, we always arrange for it to capture its
+ // output to a buffer. For this reason, qualifiers are irrelevant here.
+ if (is_builtin)
+ // We still have to assign a location so the output struct will sort correctly.
+ get_or_allocate_builtin_output_member_location(builtin, type.self, index);
+ return "";
+ }
+
+ // Tessellation evaluation function inputs
+ if (is_tese_shader() && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInPrimitiveId:
+ case BuiltInTessCoord:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+ case BuiltInPatchVertices:
+ return "";
+ // Others come from stage input.
+ default:
+ break;
+ }
+ }
+
+ if (msl_options.raw_buffer_tese_input)
+ return "";
+
+ // The special control point array must not be marked with an attribute.
+ if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
+ return "";
+
+ uint32_t locn;
+ if (is_builtin)
+ locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
+ else
+ locn = get_member_location(type.self, index);
+
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Tessellation evaluation function outputs were handled above.
+
+ // Fragment function inputs
+ if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
+ {
+ string quals;
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInViewIndex:
+ if (!msl_options.multiview || !msl_options.multiview_layered_rendering)
+ break;
+ /* fallthrough */
+ case BuiltInFrontFacing:
+ case BuiltInPointCoord:
+ case BuiltInFragCoord:
+ case BuiltInSampleId:
+ case BuiltInSampleMask:
+ case BuiltInLayer:
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ quals = builtin_qualifier(builtin);
+ break;
+
+ case BuiltInClipDistance:
+ return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ case BuiltInCullDistance:
+ return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+
+ default:
+ break;
+ }
+ }
+ else
+ quals = member_location_attribute_qualifier(type, index);
+
+ if (builtin == BuiltInBaryCoordKHR || builtin == BuiltInBaryCoordNoPerspKHR)
+ {
+ if (has_member_decoration(type.self, index, DecorationFlat) ||
+ has_member_decoration(type.self, index, DecorationCentroid) ||
+ has_member_decoration(type.self, index, DecorationSample) ||
+ has_member_decoration(type.self, index, DecorationNoPerspective))
+ {
+ // NoPerspective is baked into the builtin type.
+ SPIRV_CROSS_THROW(
+ "Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs.");
+ }
+ }
+
+ // Don't bother decorating integers with the 'flat' attribute; it's
+ // the default (in fact, the only option). Also don't bother with the
+ // FragCoord builtin; it's always noperspective on Metal.
+ if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
+ {
+ if (has_member_decoration(type.self, index, DecorationFlat))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ quals += "flat";
+ }
+ else if (has_member_decoration(type.self, index, DecorationCentroid))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ quals += "centroid_no_perspective";
+ else
+ quals += "centroid_perspective";
+ }
+ else if (has_member_decoration(type.self, index, DecorationSample))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ quals += "sample_no_perspective";
+ else
+ quals += "sample_perspective";
+ }
+ else if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ quals += "center_no_perspective";
+ }
+ }
+
+ if (!quals.empty())
+ return " [[" + quals + "]]";
+ }
+
+ // Fragment function outputs
+ if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInFragStencilRefEXT:
+ // Similar to PointSize, only mark FragStencilRef if there's a stencil buffer.
+ // Some shaders may include a FragStencilRef builtin even when used to render
+ // without a stencil attachment, and Metal will reject this builtin
+ // when compiling the shader into a render pipeline that does not set
+ // stencilAttachmentPixelFormat.
+ if (!msl_options.enable_frag_stencil_ref_builtin)
+ return "";
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up.");
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ case BuiltInFragDepth:
+ // Ditto FragDepth.
+ if (!msl_options.enable_frag_depth_builtin)
+ return "";
+ /* fallthrough */
+ case BuiltInSampleMask:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ default:
+ return "";
+ }
+ }
+ uint32_t locn = get_member_location(type.self, index);
+ // Metal will likely complain about missing color attachments, too.
+ if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn)))
+ return "";
+ if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
+ ")]]");
+ else if (locn != k_unknown_location)
+ return join(" [[color(", locn, ")]]");
+ else if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return "";
+ }
+
+ // Compute function inputs
+ if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInNumSubgroups:
+ case BuiltInSubgroupId:
+ case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
+ case BuiltInSubgroupSize: // FIXME: Should work in any stage
+ if (msl_options.emulate_subgroups)
+ break;
+ /* fallthrough */
+ case BuiltInGlobalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInNumWorkgroups:
+ case BuiltInLocalInvocationId:
+ case BuiltInLocalInvocationIndex:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ default:
+ return "";
+ }
+ }
+ }
+
+ return "";
+}
+
+// A user-defined output variable is considered to match an input variable in the subsequent
+// stage if the two variables are declared with the same Location and Component decoration and
+// match in type and decoration, except that interpolation decorations are not required to match.
+// For the purposes of interface matching, variables declared without a Component decoration are
+// considered to have a Component decoration of zero.
+string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index)
+{
+ string quals;
+ uint32_t comp;
+ uint32_t locn = get_member_location(type.self, index, &comp);
+ if (locn != k_unknown_location)
+ {
+ quals += "user(locn";
+ quals += convert_to_string(locn);
+ if (comp != k_unknown_component && comp != 0)
+ {
+ quals += "_";
+ quals += convert_to_string(comp);
+ }
+ quals += ")";
+ }
+ return quals;
+}
+
+// Returns the location decoration of the member with the specified index in the specified type.
+// If the location of the member has been explicitly set, that location is used. If not, this
+// function assumes the members are ordered in their location order, and simply returns the
+// index as the location.
+uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const
+{
+ if (comp)
+ {
+ if (has_member_decoration(type_id, index, DecorationComponent))
+ *comp = get_member_decoration(type_id, index, DecorationComponent);
+ else
+ *comp = k_unknown_component;
+ }
+
+ if (has_member_decoration(type_id, index, DecorationLocation))
+ return get_member_decoration(type_id, index, DecorationLocation);
+ else
+ return k_unknown_location;
+}
+
+uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
+ uint32_t type_id, uint32_t index,
+ uint32_t *comp)
+{
+ uint32_t loc = get_member_location(type_id, index, comp);
+ if (loc != k_unknown_location)
+ return loc;
+
+ if (comp)
+ *comp = k_unknown_component;
+
+ // Late allocation. Find a location which is unused by the application.
+ // This can happen for built-in inputs in tessellation which are mixed and matched with user inputs.
+ auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
+ uint32_t count = type_to_location_count(mbr_type);
+
+ loc = 0;
+
+ const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
+ for (uint32_t i = 0; i < location_count; i++)
+ if (location_inputs_in_use.count(location + i) != 0)
+ return true;
+ return false;
+ };
+
+ while (location_range_in_use(loc, count))
+ loc++;
+
+ set_member_decoration(type_id, index, DecorationLocation, loc);
+
+ // Triangle tess level inputs are shared in one packed float4,
+ // mark both builtins as sharing one location.
+ if (!msl_options.raw_buffer_tese_input && is_tessellating_triangles() &&
+ (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
+ {
+ builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc;
+ builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc;
+ }
+ else
+ builtin_to_automatic_input_location[builtin] = loc;
+
+ mark_location_as_used_by_shader(loc, mbr_type, StorageClassInput, true);
+ return loc;
+}
+
+uint32_t CompilerMSL::get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin,
+ uint32_t type_id, uint32_t index,
+ uint32_t *comp)
+{
+ uint32_t loc = get_member_location(type_id, index, comp);
+ if (loc != k_unknown_location)
+ return loc;
+ loc = 0;
+
+ if (comp)
+ *comp = k_unknown_component;
+
+ // Late allocation. Find a location which is unused by the application.
+ // This can happen for built-in outputs in tessellation which are mixed and matched with user inputs.
+ auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
+ uint32_t count = type_to_location_count(mbr_type);
+
+ const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
+ for (uint32_t i = 0; i < location_count; i++)
+ if (location_outputs_in_use.count(location + i) != 0)
+ return true;
+ return false;
+ };
+
+ while (location_range_in_use(loc, count))
+ loc++;
+
+ set_member_decoration(type_id, index, DecorationLocation, loc);
+
+ // Triangle tess level inputs are shared in one packed float4;
+ // mark both builtins as sharing one location.
+ if (is_tessellating_triangles() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
+ {
+ builtin_to_automatic_output_location[BuiltInTessLevelInner] = loc;
+ builtin_to_automatic_output_location[BuiltInTessLevelOuter] = loc;
+ }
+ else
+ builtin_to_automatic_output_location[builtin] = loc;
+
+ mark_location_as_used_by_shader(loc, mbr_type, StorageClassOutput, true);
+ return loc;
+}
+
+// Returns the type declaration for a function, including the
+// entry type if the current function is the entry point function
+string CompilerMSL::func_type_decl(SPIRType &type)
+{
+ // The regular function return type. If not processing the entry point function, that's all we need
+ string return_type = type_to_glsl(type) + type_to_array_glsl(type, 0);
+ if (!processing_entry_point)
+ return return_type;
+
+ // If an outgoing interface block has been defined, and it should be returned, override the entry point return type
+ bool ep_should_return_output = !get_is_rasterization_disabled();
+ if (stage_out_var_id && ep_should_return_output)
+ return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type, 0);
+
+ // Prepend a entry type, based on the execution model
+ string entry_type;
+ auto &execution = get_entry_point();
+ switch (execution.model)
+ {
+ case ExecutionModelVertex:
+ if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex";
+ break;
+ case ExecutionModelTessellationEvaluation:
+ if (!msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ if (execution.flags.get(ExecutionModeIsolines))
+ SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
+ if (msl_options.is_ios())
+ entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ") ]] vertex");
+ else
+ entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ", ",
+ execution.output_vertices, ") ]] vertex");
+ break;
+ case ExecutionModelFragment:
+ entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment";
+ break;
+ case ExecutionModelTessellationControl:
+ if (!msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ if (execution.flags.get(ExecutionModeIsolines))
+ SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
+ /* fallthrough */
+ case ExecutionModelGLCompute:
+ case ExecutionModelKernel:
+ entry_type = "kernel";
+ break;
+ default:
+ entry_type = "unknown";
+ break;
+ }
+
+ return entry_type + " " + return_type;
+}
+
+bool CompilerMSL::is_tesc_shader() const
+{
+ return get_execution_model() == ExecutionModelTessellationControl;
+}
+
+bool CompilerMSL::is_tese_shader() const
+{
+ return get_execution_model() == ExecutionModelTessellationEvaluation;
+}
+
+bool CompilerMSL::uses_explicit_early_fragment_test()
+{
+ auto &ep_flags = get_entry_point().flags;
+ return ep_flags.get(ExecutionModeEarlyFragmentTests) || ep_flags.get(ExecutionModePostDepthCoverage);
+}
+
+// In MSL, address space qualifiers are required for all pointer or reference variables
+string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
+{
+ const auto &type = get<SPIRType>(argument.basetype);
+ return get_type_address_space(type, argument.self, true);
+}
+
+bool CompilerMSL::decoration_flags_signal_volatile(const Bitset &flags)
+{
+ return flags.get(DecorationVolatile) || flags.get(DecorationCoherent);
+}
+
+string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument)
+{
+ // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
+ Bitset flags;
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && type.basetype == SPIRType::Struct &&
+ (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
+ flags = get_buffer_block_flags(id);
+ else
+ flags = get_decoration_bitset(id);
+
+ const char *addr_space = nullptr;
+ switch (type.storage)
+ {
+ case StorageClassWorkgroup:
+ addr_space = "threadgroup";
+ break;
+
+ case StorageClassStorageBuffer:
+ case StorageClassPhysicalStorageBuffer:
+ {
+ // For arguments from variable pointers, we use the write count deduction, so
+ // we should not assume any constness here. Only for global SSBOs.
+ bool readonly = false;
+ if (!var || has_decoration(type.self, DecorationBlock))
+ readonly = flags.get(DecorationNonWritable);
+
+ addr_space = readonly ? "const device" : "device";
+ break;
+ }
+
+ case StorageClassUniform:
+ case StorageClassUniformConstant:
+ case StorageClassPushConstant:
+ if (type.basetype == SPIRType::Struct)
+ {
+ bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+ if (ssbo)
+ addr_space = flags.get(DecorationNonWritable) ? "const device" : "device";
+ else
+ addr_space = "constant";
+ }
+ else if (!argument)
+ {
+ addr_space = "constant";
+ }
+ else if (type_is_msl_framebuffer_fetch(type))
+ {
+ // Subpass inputs are passed around by value.
+ addr_space = "";
+ }
+ break;
+
+ case StorageClassFunction:
+ case StorageClassGeneric:
+ break;
+
+ case StorageClassInput:
+ if (is_tesc_shader() && var && var->basevariable == stage_in_ptr_var_id)
+ addr_space = msl_options.multi_patch_workgroup ? "const device" : "threadgroup";
+ // Don't pass tessellation levels in the device AS; we load and convert them
+ // to float manually.
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input && var)
+ {
+ bool is_stage_in = var->basevariable == stage_in_ptr_var_id;
+ bool is_patch_stage_in = has_decoration(var->self, DecorationPatch);
+ bool is_builtin = has_decoration(var->self, DecorationBuiltIn);
+ BuiltIn builtin = (BuiltIn)get_decoration(var->self, DecorationBuiltIn);
+ bool is_tess_level = is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner);
+ if (is_stage_in || (is_patch_stage_in && !is_tess_level))
+ addr_space = "const device";
+ }
+ if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id)
+ addr_space = "thread";
+ break;
+
+ case StorageClassOutput:
+ if (capture_output_to_buffer)
+ {
+ if (var && type.storage == StorageClassOutput)
+ {
+ bool is_masked = is_stage_output_variable_masked(*var);
+
+ if (is_masked)
+ {
+ if (is_tessellation_shader())
+ addr_space = "threadgroup";
+ else
+ addr_space = "thread";
+ }
+ else if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))
+ addr_space = "threadgroup";
+ }
+
+ if (!addr_space)
+ addr_space = "device";
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (!addr_space)
+ {
+ // No address space for plain values.
+ addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : "";
+ }
+
+ return join(decoration_flags_signal_volatile(flags) ? "volatile " : "", addr_space);
+}
+
+const char *CompilerMSL::to_restrict(uint32_t id, bool space)
+{
+ // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
+ Bitset flags;
+ if (ir.ids[id].get_type() == TypeVariable)
+ {
+ uint32_t type_id = expression_type_id(id);
+ auto &type = expression_type(id);
+ if (type.basetype == SPIRType::Struct &&
+ (has_decoration(type_id, DecorationBlock) || has_decoration(type_id, DecorationBufferBlock)))
+ flags = get_buffer_block_flags(id);
+ else
+ flags = get_decoration_bitset(id);
+ }
+ else
+ flags = get_decoration_bitset(id);
+
+ return flags.get(DecorationRestrict) || flags.get(DecorationRestrictPointerEXT) ?
+ (space ? "__restrict " : "__restrict") : "";
+}
+
+string CompilerMSL::entry_point_arg_stage_in()
+{
+ string decl;
+
+ if ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
+ (is_tese_shader() && msl_options.raw_buffer_tese_input))
+ return decl;
+
+ // Stage-in structure
+ uint32_t stage_in_id;
+ if (is_tese_shader())
+ stage_in_id = patch_stage_in_var_id;
+ else
+ stage_in_id = stage_in_var_id;
+
+ if (stage_in_id)
+ {
+ auto &var = get<SPIRVariable>(stage_in_id);
+ auto &type = get_variable_data_type(var);
+
+ add_resource_name(var.self);
+ decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
+ }
+
+ return decl;
+}
+
+// Returns true if this input builtin should be a direct parameter on a shader function parameter list,
+// and false for builtins that should be passed or calculated some other way.
+bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type)
+{
+ switch (bi_type)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInBaseVertex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation;
+ // Tess. control function in
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ case BuiltInPatchVertices:
+ return false;
+ case BuiltInInvocationId:
+ case BuiltInPrimitiveId:
+ return !is_tesc_shader() || !msl_options.multi_patch_workgroup;
+ // Tess. evaluation function in
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ return false;
+ // Fragment function in
+ case BuiltInSamplePosition:
+ case BuiltInHelperInvocation:
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ return false;
+ case BuiltInViewIndex:
+ return get_execution_model() == ExecutionModelFragment && msl_options.multiview &&
+ msl_options.multiview_layered_rendering;
+ // Compute function in
+ case BuiltInSubgroupId:
+ case BuiltInNumSubgroups:
+ return !msl_options.emulate_subgroups;
+ // Any stage function in
+ case BuiltInDeviceIndex:
+ case BuiltInSubgroupEqMask:
+ case BuiltInSubgroupGeMask:
+ case BuiltInSubgroupGtMask:
+ case BuiltInSubgroupLeMask:
+ case BuiltInSubgroupLtMask:
+ return false;
+ case BuiltInSubgroupSize:
+ if (msl_options.fixed_subgroup_size != 0)
+ return false;
+ /* fallthrough */
+ case BuiltInSubgroupLocalInvocationId:
+ return !msl_options.emulate_subgroups;
+ default:
+ return true;
+ }
+}
+
+// Returns true if this is a fragment shader that runs per sample, and false otherwise.
+bool CompilerMSL::is_sample_rate() const
+{
+ auto &caps = get_declared_capabilities();
+ return get_execution_model() == ExecutionModelFragment &&
+ (msl_options.force_sample_rate_shading ||
+ std::find(caps.begin(), caps.end(), CapabilitySampleRateShading) != caps.end() ||
+ (msl_options.use_framebuffer_fetch_subpasses && need_subpass_input_ms));
+}
+
+bool CompilerMSL::is_intersection_query() const
+{
+ auto &caps = get_declared_capabilities();
+ return std::find(caps.begin(), caps.end(), CapabilityRayQueryKHR) != caps.end();
+}
+
+void CompilerMSL::entry_point_args_builtin(string &ep_args)
+{
+ // Builtin variables
+ SmallVector<pair<SPIRVariable *, BuiltIn>, 8> active_builtins;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ if (var.storage != StorageClassInput)
+ return;
+
+ auto bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
+
+ // Don't emit SamplePosition as a separate parameter. In the entry
+ // point, we get that by calling get_sample_position() on the sample ID.
+ if (is_builtin_variable(var) &&
+ get_variable_data_type(var).basetype != SPIRType::Struct &&
+ get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
+ {
+ // If the builtin is not part of the active input builtin set, don't emit it.
+ // Relevant for multiple entry-point modules which might declare unused builtins.
+ if (!active_input_builtins.get(bi_type) || !interface_variable_exists_in_entry_point(var_id))
+ return;
+
+ // Remember this variable. We may need to correct its type.
+ active_builtins.push_back(make_pair(&var, bi_type));
+
+ if (is_direct_input_builtin(bi_type))
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ builtin_declaration = true;
+
+ // Handle different MSL gl_TessCoord types. (float2, float3)
+ if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads))
+ ep_args += "float2 " + to_expression(var_id) + "In";
+ else
+ ep_args += builtin_type_decl(bi_type, var_id) + " " + to_expression(var_id);
+
+ ep_args += string(" [[") + builtin_qualifier(bi_type);
+ if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(ExecutionModePostDepthCoverage))
+ {
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0.");
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3.");
+ ep_args += ", post_depth_coverage";
+ }
+ ep_args += "]]";
+ builtin_declaration = false;
+ }
+ }
+
+ if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase))
+ {
+ // This is a special implicit builtin, not corresponding to any SPIR-V builtin,
+ // which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present,
+ // assume we emitted it for a good reason.
+ assert(msl_options.supports_msl_version(1, 2));
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_origin]]";
+ }
+
+ if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize))
+ {
+ // This is another special implicit builtin, not corresponding to any SPIR-V builtin,
+ // which holds the number of vertices and instances to draw. If it's present,
+ // assume we emitted it for a good reason.
+ assert(msl_options.supports_msl_version(1, 2));
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_size]]";
+ }
+ });
+
+ // Correct the types of all encountered active builtins. We couldn't do this before
+ // because ensure_correct_builtin_type() may increase the bound, which isn't allowed
+ // while iterating over IDs.
+ for (auto &var : active_builtins)
+ var.first->basetype = ensure_correct_builtin_type(var.first->basetype, var.second);
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ if (needs_base_vertex_arg == TriState::Yes)
+ ep_args += built_in_func_arg(BuiltInBaseVertex, !ep_args.empty());
+
+ if (needs_base_instance_arg == TriState::Yes)
+ ep_args += built_in_func_arg(BuiltInBaseInstance, !ep_args.empty());
+
+ if (capture_output_to_buffer)
+ {
+ // Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
+ // specially because it needs to be a pointer, not a reference.
+ if (stage_out_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
+ " [[buffer(", msl_options.shader_output_buffer_index, ")]]");
+ }
+
+ if (is_tesc_shader())
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
+ }
+ else if (stage_out_var_id &&
+ !(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
+ }
+
+ if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation &&
+ (active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInVertexId)) &&
+ msl_options.vertex_index_type != Options::IndexType::None)
+ {
+ // Add the index buffer so we can set gl_VertexIndex correctly.
+ if (!ep_args.empty())
+ ep_args += ", ";
+ switch (msl_options.vertex_index_type)
+ {
+ case Options::IndexType::None:
+ break;
+ case Options::IndexType::UInt16:
+ ep_args += join("const device ushort* ", index_buffer_var_name, " [[buffer(",
+ msl_options.shader_index_buffer_index, ")]]");
+ break;
+ case Options::IndexType::UInt32:
+ ep_args += join("const device uint* ", index_buffer_var_name, " [[buffer(",
+ msl_options.shader_index_buffer_index, ")]]");
+ break;
+ }
+ }
+
+ // Tessellation control shaders get three additional parameters:
+ // a buffer to hold the per-patch data, a buffer to hold the per-patch
+ // tessellation levels, and a block of workgroup memory to hold the
+ // input control point data.
+ if (is_tesc_shader())
+ {
+ if (patch_stage_out_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
+ }
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
+ convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
+
+ // Initializer for tess factors must be handled specially since it's never declared as a normal variable.
+ uint32_t outer_factor_initializer_id = 0;
+ uint32_t inner_factor_initializer_id = 0;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (!has_decoration(var.self, DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer)
+ return;
+
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ if (builtin == BuiltInTessLevelInner)
+ inner_factor_initializer_id = var.initializer;
+ else if (builtin == BuiltInTessLevelOuter)
+ outer_factor_initializer_id = var.initializer;
+ });
+
+ const SPIRConstant *c = nullptr;
+
+ if (outer_factor_initializer_id && (c = maybe_get<SPIRConstant>(outer_factor_initializer_id)))
+ {
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ uint32_t components = is_tessellating_triangles() ? 3 : 4;
+ for (uint32_t i = 0; i < components; i++)
+ {
+ statement(builtin_to_glsl(BuiltInTessLevelOuter, StorageClassOutput), "[", i,
+ "] = ", "half(", to_expression(c->subconstants[i]), ");");
+ }
+ });
+ }
+
+ if (inner_factor_initializer_id && (c = maybe_get<SPIRConstant>(inner_factor_initializer_id)))
+ {
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ if (is_tessellating_triangles())
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), " = ", "half(",
+ to_expression(c->subconstants[0]), ");");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ for (uint32_t i = 0; i < 2; i++)
+ {
+ statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), "[", i, "] = ",
+ "half(", to_expression(c->subconstants[i]), ");");
+ }
+ });
+ }
+ }
+
+ if (stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ if (msl_options.multi_patch_workgroup)
+ {
+ ep_args += join("device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
+ }
+ else
+ {
+ ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
+ " [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
+ }
+ }
+ }
+ }
+ // Tessellation evaluation shaders get three additional parameters:
+ // a buffer for the per-patch data, a buffer for the per-patch
+ // tessellation levels, and a buffer for the control point data.
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input)
+ {
+ if (patch_stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("const device ", type_to_glsl(get_patch_stage_in_struct_type()), "* ", patch_input_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_patch_input_buffer_index), ")]]");
+ }
+
+ if (tess_level_inner_var_id || tess_level_outer_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("const device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
+ }
+
+ if (stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("const device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
+ }
+ }
+}
+
+string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
+{
+ string ep_args = entry_point_arg_stage_in();
+ Bitset claimed_bindings;
+
+ for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
+ {
+ uint32_t id = argument_buffer_ids[i];
+ if (id == 0)
+ continue;
+
+ add_resource_name(id);
+ auto &var = get<SPIRVariable>(id);
+ auto &type = get_variable_data_type(var);
+
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ // Check if the argument buffer binding itself has been remapped.
+ uint32_t buffer_binding;
+ auto itr = resource_bindings.find({ get_entry_point().model, i, kArgumentBufferBinding });
+ if (itr != end(resource_bindings))
+ {
+ buffer_binding = itr->second.first.msl_buffer;
+ itr->second.second = true;
+ }
+ else
+ {
+ // As a fallback, directly map desc set <-> binding.
+ // If that was taken, take the next buffer binding.
+ if (claimed_bindings.get(i))
+ buffer_binding = next_metal_resource_index_buffer;
+ else
+ buffer_binding = i;
+ }
+
+ claimed_bindings.set(buffer_binding);
+
+ ep_args += get_argument_address_space(var) + " ";
+
+ if (recursive_inputs.count(type.self))
+ ep_args += string("void* ") + to_restrict(id, true) + to_name(id) + "_vp";
+ else
+ ep_args += type_to_glsl(type) + "& " + to_restrict(id, true) + to_name(id);
+
+ ep_args += " [[buffer(" + convert_to_string(buffer_binding) + ")]]";
+
+ next_metal_resource_index_buffer = max(next_metal_resource_index_buffer, buffer_binding + 1);
+ }
+
+ entry_point_args_discrete_descriptors(ep_args);
+ entry_point_args_builtin(ep_args);
+
+ if (!ep_args.empty() && append_comma)
+ ep_args += ", ";
+
+ return ep_args;
+}
+
+const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const
+{
+ // Try by ID.
+ {
+ auto itr = constexpr_samplers_by_id.find(id);
+ if (itr != end(constexpr_samplers_by_id))
+ return &itr->second;
+ }
+
+ // Try by binding.
+ {
+ uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
+ uint32_t binding = get_decoration(id, DecorationBinding);
+
+ auto itr = constexpr_samplers_by_binding.find({ desc_set, binding });
+ if (itr != end(constexpr_samplers_by_binding))
+ return &itr->second;
+ }
+
+ return nullptr;
+}
+
+void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
+{
+ // Output resources, sorted by resource index & type
+ // We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
+ // with different order of buffers can result in issues with buffer assignments inside the driver.
+ struct Resource
+ {
+ SPIRVariable *var;
+ SPIRVariable *discrete_descriptor_alias;
+ string name;
+ SPIRType::BaseType basetype;
+ uint32_t index;
+ uint32_t plane;
+ uint32_t secondary_index;
+ };
+
+ SmallVector<Resource> resources;
+
+ entry_point_bindings.clear();
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ auto &type = get_variable_data_type(var);
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+
+ if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant)
+ {
+ if (descriptor_set_is_argument_buffer(desc_set))
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ // Runtime arrays need to be wrapped in spvDescriptorArray from argument buffer payload.
+ entry_point_bindings.push_back(&var);
+ // We'll wrap this, so to_name() will always use non-qualified name.
+ // We'll need the qualified name to create temporary variable instead.
+ ir.meta[var_id].decoration.qualified_alias_explicit_override = true;
+ }
+ return;
+ }
+ }
+
+ // Handle descriptor aliasing of simple discrete cases.
+ // We can handle aliasing of buffers by casting pointers.
+ // The amount of aliasing we can perform for discrete descriptors is very limited.
+ // For fully mutable-style aliasing, we need argument buffers where we can exploit the fact
+ // that descriptors are all 8 bytes.
+ SPIRVariable *discrete_descriptor_alias = nullptr;
+ if (var.storage == StorageClassUniform || var.storage == StorageClassStorageBuffer)
+ {
+ for (auto &resource : resources)
+ {
+ if (get_decoration(resource.var->self, DecorationDescriptorSet) ==
+ get_decoration(var_id, DecorationDescriptorSet) &&
+ get_decoration(resource.var->self, DecorationBinding) ==
+ get_decoration(var_id, DecorationBinding) &&
+ resource.basetype == SPIRType::Struct && type.basetype == SPIRType::Struct &&
+ (resource.var->storage == StorageClassUniform ||
+ resource.var->storage == StorageClassStorageBuffer))
+ {
+ discrete_descriptor_alias = resource.var;
+ // Self-reference marks that we should declare the resource,
+ // and it's being used as an alias (so we can emit void* instead).
+ resource.discrete_descriptor_alias = resource.var;
+ // Need to promote interlocked usage so that the primary declaration is correct.
+ if (interlocked_resources.count(var_id))
+ interlocked_resources.insert(resource.var->self);
+ break;
+ }
+ }
+ }
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
+ {
+ constexpr_sampler = find_constexpr_sampler(var_id);
+ if (constexpr_sampler)
+ {
+ // Mark this ID as a constexpr sampler for later in case it came from set/bindings.
+ constexpr_samplers_by_id[var_id] = *constexpr_sampler;
+ }
+ }
+
+ // Emulate texture2D atomic operations
+ uint32_t secondary_index = 0;
+ if (atomic_image_vars_emulated.count(var.self))
+ {
+ secondary_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
+ }
+
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ add_resource_name(var_id);
+
+ uint32_t plane_count = 1;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ plane_count = constexpr_sampler->planes;
+
+ entry_point_bindings.push_back(&var);
+ for (uint32_t i = 0; i < plane_count; i++)
+ resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), SPIRType::Image,
+ get_metal_resource_index(var, SPIRType::Image, i), i, secondary_index });
+
+ if (type.image.dim != DimBuffer && !constexpr_sampler)
+ {
+ resources.push_back({&var, discrete_descriptor_alias, to_sampler_expression(var_id), SPIRType::Sampler,
+ get_metal_resource_index(var, SPIRType::Sampler), 0, 0 });
+ }
+ }
+ else if (!constexpr_sampler)
+ {
+ // constexpr samplers are not declared as resources.
+ add_resource_name(var_id);
+
+ // Don't allocate resource indices for aliases.
+ uint32_t resource_index = ~0u;
+ if (!discrete_descriptor_alias)
+ resource_index = get_metal_resource_index(var, type.basetype);
+
+ entry_point_bindings.push_back(&var);
+ resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), type.basetype,
+ resource_index, 0, secondary_index });
+ }
+ }
+ });
+
+ stable_sort(resources.begin(), resources.end(),
+ [](const Resource &lhs, const Resource &rhs)
+ { return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index); });
+
+ for (auto &r : resources)
+ {
+ auto &var = *r.var;
+ auto &type = get_variable_data_type(var);
+
+ uint32_t var_id = var.self;
+
+ switch (r.basetype)
+ {
+ case SPIRType::Struct:
+ {
+ auto &m = ir.meta[type.self];
+ if (m.members.size() == 0)
+ break;
+
+ if (r.discrete_descriptor_alias)
+ {
+ if (r.var == r.discrete_descriptor_alias)
+ {
+ auto primary_name = join("spvBufferAliasSet",
+ get_decoration(var_id, DecorationDescriptorSet),
+ "Binding",
+ get_decoration(var_id, DecorationBinding));
+
+ // Declare the primary alias as void*
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " void* " + primary_name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+
+ buffer_aliases_discrete.push_back(r.var->self);
+ }
+ else if (!type.array.empty())
+ {
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
+
+ is_using_builtin_array = true;
+ if (is_var_runtime_size_array(var))
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+ if (!ep_args.empty())
+ ep_args += ", ";
+ const bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+ if ((var.storage == spv::StorageClassStorageBuffer || ssbo) &&
+ msl_options.runtime_array_rich_descriptor)
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableSizedDescriptor);
+ ep_args += "const device spvBufferDescriptor<" + get_argument_address_space(var) + " " +
+ type_to_glsl(type) + "*>* ";
+ }
+ else
+ {
+ ep_args += "const device spvDescriptor<" + get_argument_address_space(var) + " " +
+ type_to_glsl(type) + "*>* ";
+ }
+ ep_args += to_restrict(var_id, true) + r.name + "_";
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ else
+ {
+ uint32_t array_size = get_resource_array_size(type, var_id);
+ for (uint32_t i = 0; i < array_size; ++i)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " +
+ to_restrict(var_id, true) + r.name + "_" + convert_to_string(i);
+ ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ }
+ is_using_builtin_array = false;
+ }
+ else
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " ";
+
+ if (recursive_inputs.count(type.self))
+ ep_args += string("void* ") + to_restrict(var_id, true) + r.name + "_vp";
+ else
+ ep_args += type_to_glsl(type) + "& " + to_restrict(var_id, true) + r.name;
+
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ break;
+ }
+ case SPIRType::Sampler:
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += sampler_type(type, var_id, false) + " " + r.name;
+ if (is_var_runtime_size_array(var))
+ ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")]]";
+ else
+ ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
+ break;
+ case SPIRType::Image:
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ const auto &basetype = get<SPIRType>(var.basetype);
+ if (!type_is_msl_framebuffer_fetch(basetype))
+ {
+ ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
+ if (r.plane > 0)
+ ep_args += join(plane_name_suffix, r.plane);
+
+ if (is_var_runtime_size_array(var))
+ ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")";
+ else
+ ep_args += " [[texture(" + convert_to_string(r.index) + ")";
+
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ else
+ {
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3.");
+ ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
+ ep_args += " [[color(" + convert_to_string(r.index) + ")]]";
+ }
+
+ // Emulate texture2D atomic operations
+ if (atomic_image_vars_emulated.count(var.self))
+ {
+ auto &flags = ir.get_decoration_bitset(var.self);
+ const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
+ ep_args += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(basetype.image.type), 0));
+ ep_args += "* " + r.name + "_atomic";
+ ep_args += " [[buffer(" + convert_to_string(r.secondary_index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ break;
+ }
+ case SPIRType::AccelerationStructure:
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
+ const auto &parent_type = get<SPIRType>(type.parent_type);
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += "const device spvDescriptor<" + type_to_glsl(parent_type) + ">* " +
+ to_restrict(var_id, true) + r.name + "_";
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
+ }
+ else
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += type_to_glsl(type, var_id) + " " + r.name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
+ }
+ break;
+ }
+ default:
+ if (!ep_args.empty())
+ ep_args += ", ";
+ if (!type.pointer)
+ ep_args += get_type_address_space(get<SPIRType>(var.basetype), var_id) + " " +
+ type_to_glsl(type, var_id) + "& " + r.name;
+ else
+ ep_args += type_to_glsl(type, var_id) + " " + r.name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ break;
+ }
+ }
+}
+
+// Returns a string containing a comma-delimited list of args for the entry point function
+// This is the "classic" method of MSL 1 when we don't have argument buffer support.
+string CompilerMSL::entry_point_args_classic(bool append_comma)
+{
+ string ep_args = entry_point_arg_stage_in();
+ entry_point_args_discrete_descriptors(ep_args);
+ entry_point_args_builtin(ep_args);
+
+ if (!ep_args.empty() && append_comma)
+ ep_args += ", ";
+
+ return ep_args;
+}
+
+void CompilerMSL::fix_up_shader_inputs_outputs()
+{
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+
+ // Emit a guard to ensure we don't execute beyond the last vertex.
+ // Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that
+ // tessellation control shaders do, so early returns should be OK. We may need to revisit this
+ // if it ever becomes possible to use barriers from a vertex shader.
+ if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
+ {
+ entry_func.fixup_hooks_in.push_back([this]() {
+ statement("if (any(", to_expression(builtin_invocation_id_id),
+ " >= ", to_expression(builtin_stage_input_size_id), "))");
+ statement(" return;");
+ });
+ }
+
+ // Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = get_variable_data_type(var);
+ uint32_t var_id = var.self;
+ bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+
+ if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var))
+ {
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
+ {
+ entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
+ bool is_array_type = !type.array.empty();
+
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ {
+ statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
+ ".spvSwizzleConstants", "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
+ }
+ else
+ {
+ // If we have an array of images, we need to be able to index into it, so take a pointer instead.
+ statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(swizzle_buffer_id), "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
+ }
+ });
+ }
+ }
+ else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) &&
+ !is_hidden_variable(var))
+ {
+ if (buffer_requires_array_length(var.self))
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [this, &type, &var, var_id]()
+ {
+ bool is_array_type = !type.array.empty() && !is_var_runtime_size_array(var);
+
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ {
+ statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
+ ".spvBufferSizeConstants", "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::UInt)), "];");
+ }
+ else
+ {
+ // If we have an array of images, we need to be able to index into it, so take a pointer instead.
+ statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(buffer_size_buffer_id), "[",
+ convert_to_string(get_metal_resource_index(var, type.basetype)), "];");
+ }
+ });
+ }
+ }
+
+ if (!msl_options.argument_buffers &&
+ msl_options.replace_recursive_inputs && type_contains_recursion(type) &&
+ (var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer))
+ {
+ recursive_inputs.insert(type.self);
+ entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
+ auto addr_space = get_argument_address_space(var);
+ auto var_name = to_name(var_id);
+ statement(addr_space, " auto& ", to_restrict(var_id, true), var_name,
+ " = *(", addr_space, " ", type_to_glsl(type), "*)", var_name, "_vp;");
+ });
+ }
+ });
+
+ // Builtin variables
+ ir.for_each_typed_id<SPIRVariable>([this, &entry_func](uint32_t, SPIRVariable &var) {
+ uint32_t var_id = var.self;
+ BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
+
+ if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
+ return;
+ if (!interface_variable_exists_in_entry_point(var.self))
+ return;
+
+ if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bi_type))
+ {
+ switch (bi_type)
+ {
+ case BuiltInSamplePosition:
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
+ to_expression(builtin_sample_id_id), ");");
+ });
+ break;
+ case BuiltInFragCoord:
+ if (is_sample_rate())
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(to_expression(var_id), ".xy += get_sample_position(",
+ to_expression(builtin_sample_id_id), ") - 0.5;");
+ });
+ }
+ break;
+ case BuiltInInvocationId:
+ // This is direct-mapped without multi-patch workgroups.
+ if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_invocation_id_id), ".x % ", this->get_entry_point().output_vertices,
+ ";");
+ });
+ break;
+ case BuiltInPrimitiveId:
+ // This is natively supported by fragment and tessellation evaluation shaders.
+ // In tessellation control shaders, this is direct-mapped without multi-patch workgroups.
+ if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = min(",
+ to_expression(builtin_invocation_id_id), ".x / ", this->get_entry_point().output_vertices,
+ ", spvIndirectParams[1] - 1);");
+ });
+ break;
+ case BuiltInPatchVertices:
+ if (is_tese_shader())
+ {
+ if (msl_options.raw_buffer_tese_input)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ get_entry_point().output_vertices, ";");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(patch_stage_in_var_id), ".gl_in.size();");
+ });
+ }
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
+ });
+ }
+ break;
+ case BuiltInTessCoord:
+ if (get_entry_point().flags.get(ExecutionModeQuads))
+ {
+ // The entry point will only have a float2 TessCoord variable.
+ // Pad to float3.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ auto name = builtin_to_glsl(BuiltInTessCoord, StorageClassInput);
+ statement("float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);");
+ });
+ }
+
+ // Emit a fixup to account for the shifted domain. Don't do this for triangles;
+ // MoltenVK will just reverse the winding order instead.
+ if (msl_options.tess_domain_origin_lower_left && !is_tessellating_triangles())
+ {
+ string tc = to_expression(var_id);
+ entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
+ }
+ break;
+ case BuiltInSubgroupId:
+ if (!msl_options.emulate_subgroups)
+ break;
+ // For subgroup emulation, this is the same as the local invocation index.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_local_invocation_index_id), ";");
+ });
+ break;
+ case BuiltInNumSubgroups:
+ if (!msl_options.emulate_subgroups)
+ break;
+ // For subgroup emulation, this is the same as the workgroup size.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ auto &type = expression_type(builtin_workgroup_size_id);
+ string size_expr = to_expression(builtin_workgroup_size_id);
+ if (type.vecsize >= 3)
+ size_expr = join(size_expr, ".x * ", size_expr, ".y * ", size_expr, ".z");
+ else if (type.vecsize == 2)
+ size_expr = join(size_expr, ".x * ", size_expr, ".y");
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", size_expr, ";");
+ });
+ break;
+ case BuiltInSubgroupLocalInvocationId:
+ if (!msl_options.emulate_subgroups)
+ break;
+ // For subgroup emulation, assume subgroups of size 1.
+ entry_func.fixup_hooks_in.push_back(
+ [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); });
+ break;
+ case BuiltInSubgroupSize:
+ if (msl_options.emulate_subgroups)
+ {
+ // For subgroup emulation, assume subgroups of size 1.
+ entry_func.fixup_hooks_in.push_back(
+ [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 1;"); });
+ }
+ else if (msl_options.fixed_subgroup_size != 0)
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ msl_options.fixed_subgroup_size, ";");
+ });
+ }
+ break;
+ case BuiltInSubgroupEqMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", "uint4(1 << ",
+ to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_subgroup_invocation_id_id), " >= 32 ? uint4(0, (1 << (",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32)), uint2(0)) : uint4(1 << ",
+ to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupGeMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ if (msl_options.fixed_subgroup_size != 0)
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // Case where index < 32, size < 32:
+ // mask0 = bfi(0, 0xFFFFFFFF, index, size - index);
+ // mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0
+ // Case where index < 32 but size >= 32:
+ // mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index);
+ // mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32);
+ // Case where index >= 32:
+ // mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0
+ // mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index);
+ // This is expressed without branches to avoid divergent
+ // control flow--hence the complicated min/max expressions.
+ // This is further complicated by the fact that if you attempt
+ // to bfi/bfe out-of-bounds on Metal, undefined behavior is the
+ // result.
+ if (msl_options.fixed_subgroup_size > 32)
+ {
+ // Don't use the subgroup size variable with fixed subgroup sizes,
+ // since the variables could be defined in the wrong order.
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(32 - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 0)), insert_bits(0u, 0xFFFFFFFF,"
+ " (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), ",
+ msl_options.fixed_subgroup_size, " - max(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 32u)), uint2(0));");
+ }
+ else if (msl_options.fixed_subgroup_size != 0)
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), ", ",
+ msl_options.fixed_subgroup_size, " - ",
+ to_expression(builtin_subgroup_invocation_id_id),
+ "), uint3(0));");
+ }
+ else if (msl_options.is_ios())
+ {
+ // On iOS, the SIMD-group size will currently never exceed 32.
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), ", ",
+ to_expression(builtin_subgroup_size_id), " - ",
+ to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(min((int)",
+ to_expression(builtin_subgroup_size_id), ", 32) - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), (uint)max((int)",
+ to_expression(builtin_subgroup_size_id), " - (int)max(",
+ to_expression(builtin_subgroup_invocation_id_id), ", 32u), 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupGtMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // The same logic applies here, except now the index is one
+ // more than the subgroup invocation ID.
+ if (msl_options.fixed_subgroup_size > 32)
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(32 - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), ",
+ msl_options.fixed_subgroup_size, " - max(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " + 1, 32u)), uint2(0));");
+ }
+ else if (msl_options.fixed_subgroup_size != 0)
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
+ msl_options.fixed_subgroup_size, " - ",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " - 1), uint3(0));");
+ }
+ else if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
+ to_expression(builtin_subgroup_size_id), " - ",
+ to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(min((int)",
+ to_expression(builtin_subgroup_size_id), ", 32) - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), (uint)max((int)",
+ to_expression(builtin_subgroup_size_id), " - (int)max(",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupLeMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, ",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupLtMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, ",
+ to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32, 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInViewIndex:
+ if (!msl_options.multiview)
+ {
+ // According to the Vulkan spec, when not running under a multiview
+ // render pass, ViewIndex is 0.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;");
+ });
+ }
+ else if (msl_options.view_index_from_device_index)
+ {
+ // In this case, we take the view index from that of the device we're running on.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ msl_options.device_index, ";");
+ });
+ // We actually don't want to set the render_target_array_index here.
+ // Since every physical device is rendering a different view,
+ // there's no need for layered rendering here.
+ }
+ else if (!msl_options.multiview_layered_rendering)
+ {
+ // In this case, the views are rendered one at a time. The view index, then,
+ // is just the first part of the "view mask".
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(view_mask_buffer_id), "[0];");
+ });
+ }
+ else if (get_execution_model() == ExecutionModelFragment)
+ {
+ // Because we adjusted the view index in the vertex shader, we have to
+ // adjust it back here.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(to_expression(var_id), " += ", to_expression(view_mask_buffer_id), "[0];");
+ });
+ }
+ else if (get_execution_model() == ExecutionModelVertex)
+ {
+ // Metal provides no special support for multiview, so we smuggle
+ // the view index in the instance index.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(view_mask_buffer_id), "[0] + (", to_expression(builtin_instance_idx_id),
+ " - ", to_expression(builtin_base_instance_id), ") % ",
+ to_expression(view_mask_buffer_id), "[1];");
+ statement(to_expression(builtin_instance_idx_id), " = (",
+ to_expression(builtin_instance_idx_id), " - ",
+ to_expression(builtin_base_instance_id), ") / ", to_expression(view_mask_buffer_id),
+ "[1] + ", to_expression(builtin_base_instance_id), ";");
+ });
+ // In addition to setting the variable itself, we also need to
+ // set the render_target_array_index with it on output. We have to
+ // offset this by the base view index, because Metal isn't in on
+ // our little game here.
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(to_expression(builtin_layer_id), " = ", to_expression(var_id), " - ",
+ to_expression(view_mask_buffer_id), "[0];");
+ });
+ }
+ break;
+ case BuiltInDeviceIndex:
+ // Metal pipelines belong to the devices which create them, so we'll
+ // need to create a MTLPipelineState for every MTLDevice in a grouped
+ // VkDevice. We can assume, then, that the device index is constant.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ msl_options.device_index, ";");
+ });
+ break;
+ case BuiltInWorkgroupId:
+ if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInWorkgroupId))
+ break;
+
+ // The vkCmdDispatchBase() command lets the client set the base value
+ // of WorkgroupId. Metal has no direct equivalent; we must make this
+ // adjustment ourselves.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), ";");
+ });
+ break;
+ case BuiltInGlobalInvocationId:
+ if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInGlobalInvocationId))
+ break;
+
+ // GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize.
+ // This needs to be adjusted too.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ auto &execution = this->get_entry_point();
+ uint32_t workgroup_size_id = execution.workgroup_size.constant;
+ if (workgroup_size_id)
+ statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
+ " * ", to_expression(workgroup_size_id), ";");
+ else
+ statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
+ " * uint3(", execution.workgroup_size.x, ", ", execution.workgroup_size.y, ", ",
+ execution.workgroup_size.z, ");");
+ });
+ break;
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ builtin_declaration = true;
+ switch (msl_options.vertex_index_type)
+ {
+ case Options::IndexType::None:
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_invocation_id_id), ".x + ",
+ to_expression(builtin_dispatch_base_id), ".x;");
+ break;
+ case Options::IndexType::UInt16:
+ case Options::IndexType::UInt32:
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", index_buffer_var_name,
+ "[", to_expression(builtin_invocation_id_id), ".x] + ",
+ to_expression(builtin_dispatch_base_id), ".x;");
+ break;
+ }
+ builtin_declaration = false;
+ });
+ break;
+ case BuiltInBaseVertex:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_dispatch_base_id), ".x;");
+ });
+ break;
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ builtin_declaration = true;
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_invocation_id_id), ".y + ", to_expression(builtin_dispatch_base_id),
+ ".y;");
+ builtin_declaration = false;
+ });
+ break;
+ case BuiltInBaseInstance:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_dispatch_base_id), ".y;");
+ });
+ break;
+ default:
+ break;
+ }
+ }
+ else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment &&
+ is_builtin_variable(var) && active_output_builtins.get(bi_type))
+ {
+ switch (bi_type)
+ {
+ case BuiltInSampleMask:
+ if (has_additional_fixed_sample_mask())
+ {
+ // If the additional fixed sample mask was set, we need to adjust the sample_mask
+ // output to reflect that. If the shader outputs the sample_mask itself too, we need
+ // to AND the two masks to get the final one.
+ string op_str = does_shader_write_sample_mask ? " &= " : " = ";
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(to_expression(builtin_sample_mask_id), op_str, additional_fixed_sample_mask_str(), ";");
+ });
+ }
+ break;
+ case BuiltInFragDepth:
+ if (msl_options.input_attachment_is_ds_attachment && !writes_to_depth)
+ {
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(to_expression(builtin_frag_depth_id), " = ", to_expression(builtin_frag_coord_id), ".z;");
+ });
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ });
+}
+
+// Returns the Metal index of the resource of the specified type as used by the specified variable.
+uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane)
+{
+ auto &execution = get_entry_point();
+ auto &var_dec = ir.meta[var.self].decoration;
+ auto &var_type = get<SPIRType>(var.basetype);
+ uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
+ uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
+
+ // If a matching binding has been specified, find and use it.
+ auto itr = resource_bindings.find({ execution.model, var_desc_set, var_binding });
+
+ // Atomic helper buffers for image atomics need to use secondary bindings as well.
+ bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) ||
+ basetype == SPIRType::AtomicCounter;
+
+ auto resource_decoration =
+ use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary;
+
+ if (plane == 1)
+ resource_decoration = SPIRVCrossDecorationResourceIndexTertiary;
+ if (plane == 2)
+ resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary;
+
+ if (itr != end(resource_bindings))
+ {
+ auto &remap = itr->second;
+ remap.second = true;
+ switch (basetype)
+ {
+ case SPIRType::Image:
+ set_extended_decoration(var.self, resource_decoration, remap.first.msl_texture + plane);
+ return remap.first.msl_texture + plane;
+ case SPIRType::Sampler:
+ set_extended_decoration(var.self, resource_decoration, remap.first.msl_sampler);
+ return remap.first.msl_sampler;
+ default:
+ set_extended_decoration(var.self, resource_decoration, remap.first.msl_buffer);
+ return remap.first.msl_buffer;
+ }
+ }
+
+ // If we have already allocated an index, keep using it.
+ if (has_extended_decoration(var.self, resource_decoration))
+ return get_extended_decoration(var.self, resource_decoration);
+
+ auto &type = get<SPIRType>(var.basetype);
+
+ if (type_is_msl_framebuffer_fetch(type))
+ {
+ // Frame-buffer fetch gets its fallback resource index from the input attachment index,
+ // which is then treated as color index.
+ return get_decoration(var.self, DecorationInputAttachmentIndex);
+ }
+ else if (msl_options.enable_decoration_binding)
+ {
+ // Allow user to enable decoration binding.
+ // If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback.
+ if (has_decoration(var.self, DecorationBinding))
+ {
+ var_binding = get_decoration(var.self, DecorationBinding);
+ // Avoid emitting sentinel bindings.
+ if (var_binding < 0x80000000u)
+ return var_binding;
+ }
+ }
+
+ // If we did not explicitly remap, allocate bindings on demand.
+ // We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different.
+
+ bool allocate_argument_buffer_ids = false;
+
+ if (var.storage != StorageClassPushConstant)
+ allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(var_desc_set);
+
+ uint32_t binding_stride = 1;
+ for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
+ binding_stride *= to_array_size_literal(type, i);
+
+ // If a binding has not been specified, revert to incrementing resource indices.
+ uint32_t resource_index;
+
+ if (allocate_argument_buffer_ids)
+ {
+ // Allocate from a flat ID binding space.
+ resource_index = next_metal_resource_ids[var_desc_set];
+ next_metal_resource_ids[var_desc_set] += binding_stride;
+ }
+ else
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ basetype = SPIRType::Struct;
+ binding_stride = 1;
+ }
+ // Allocate from plain bindings which are allocated per resource type.
+ switch (basetype)
+ {
+ case SPIRType::Image:
+ resource_index = next_metal_resource_index_texture;
+ next_metal_resource_index_texture += binding_stride;
+ break;
+ case SPIRType::Sampler:
+ resource_index = next_metal_resource_index_sampler;
+ next_metal_resource_index_sampler += binding_stride;
+ break;
+ default:
+ resource_index = next_metal_resource_index_buffer;
+ next_metal_resource_index_buffer += binding_stride;
+ break;
+ }
+ }
+
+ set_extended_decoration(var.self, resource_decoration, resource_index);
+ return resource_index;
+}
+
+bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const
+{
+ return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
+ msl_options.use_framebuffer_fetch_subpasses;
+}
+
+const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const
+{
+ if (msl_options.argument_buffers)
+ {
+ bool storage_class_is_descriptor = storage == StorageClassUniform ||
+ storage == StorageClassStorageBuffer ||
+ storage == StorageClassUniformConstant;
+
+ uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
+ if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set))
+ {
+ // An awkward case where we need to emit *more* address space declarations (yay!).
+ // An example is where we pass down an array of buffer pointers to leaf functions.
+ // It's a constant array containing pointers to constants.
+ // The pointer array is always constant however. E.g.
+ // device SSBO * constant (&array)[N].
+ // const device SSBO * constant (&array)[N].
+ // constant SSBO * constant (&array)[N].
+ // However, this only matters for argument buffers, since for MSL 1.0 style codegen,
+ // we emit the buffer array on stack instead, and that seems to work just fine apparently.
+
+ // If the argument was marked as being in device address space, any pointer to member would
+ // be const device, not constant.
+ if (argument_buffer_device_storage_mask & (1u << desc_set))
+ return "const device";
+ else
+ return "constant";
+ }
+ }
+
+ return plain_address_space;
+}
+
+string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
+{
+ auto &var = get<SPIRVariable>(arg.id);
+ auto &type = get_variable_data_type(var);
+ auto &var_type = get<SPIRType>(arg.type);
+ StorageClass type_storage = var_type.storage;
+
+ // If we need to modify the name of the variable, make sure we use the original variable.
+ // Our alias is just a shadow variable.
+ uint32_t name_id = var.self;
+ if (arg.alias_global_variable && var.basevariable)
+ name_id = var.basevariable;
+
+ bool constref = !arg.alias_global_variable && is_pointer(var_type) && arg.write_count == 0;
+ // Framebuffer fetch is plain value, const looks out of place, but it is not wrong.
+ if (type_is_msl_framebuffer_fetch(type))
+ constref = false;
+ else if (type_storage == StorageClassUniformConstant)
+ constref = true;
+
+ bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
+ type.basetype == SPIRType::Sampler;
+ bool type_is_tlas = type.basetype == SPIRType::AccelerationStructure;
+
+ // For opaque types we handle const later due to descriptor address spaces.
+ const char *cv_qualifier = (constref && !type_is_image) ? "const " : "";
+ string decl;
+
+ // If this is a combined image-sampler for a 2D image with floating-point type,
+ // we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter
+ // for a global, then we need to emit a "dynamic" combined image-sampler.
+ // Unfortunately, this is necessary to properly support passing around
+ // combined image-samplers with Y'CbCr conversions on them.
+ bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage &&
+ type.image.dim == Dim2D && type_is_floating_point(get<SPIRType>(type.image.type)) &&
+ spv_function_implementations.count(SPVFuncImplDynamicImageSampler);
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ string address_space = get_argument_address_space(var);
+ bool builtin = has_decoration(var.self, DecorationBuiltIn);
+ auto builtin_type = BuiltIn(get_decoration(arg.id, DecorationBuiltIn));
+
+ if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id))
+ decl = join(cv_qualifier, type_to_glsl(type, arg.id));
+ else if (builtin)
+ {
+ // Only use templated array for Clip/Cull distance when feasible.
+ // In other scenarios, we need need to override array length for tess levels (if used as outputs),
+ // or we need to emit the expected type for builtins (uint vs int).
+ auto storage = get<SPIRType>(var.basetype).storage;
+
+ if (storage == StorageClassInput &&
+ (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
+ {
+ is_using_builtin_array = false;
+ }
+ else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance)
+ {
+ is_using_builtin_array = true;
+ }
+
+ if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) &&
+ !is_stage_output_builtin_masked(builtin_type))
+ is_using_builtin_array = true;
+
+ if (is_using_builtin_array)
+ decl = join(cv_qualifier, builtin_type_decl(builtin_type, arg.id));
+ else
+ decl = join(cv_qualifier, type_to_glsl(type, arg.id));
+ }
+ else if (is_var_runtime_size_array(var))
+ {
+ const auto *parent_type = &get<SPIRType>(type.parent_type);
+ auto type_name = type_to_glsl(*parent_type, arg.id);
+ if (type.basetype == SPIRType::AccelerationStructure)
+ decl = join("spvDescriptorArray<", type_name, ">");
+ else if (type_is_image)
+ decl = join("spvDescriptorArray<", cv_qualifier, type_name, ">");
+ else
+ decl = join("spvDescriptorArray<", address_space, " ", type_name, "*>");
+ address_space = "const";
+ }
+ else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type))
+ {
+ is_using_builtin_array = true;
+ decl += join(cv_qualifier, type_to_glsl(type, arg.id), "*");
+ }
+ else if (is_dynamic_img_sampler)
+ {
+ decl = join(cv_qualifier, "spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">");
+ // Mark the variable so that we can handle passing it to another function.
+ set_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
+ }
+ else
+ {
+ // The type is a pointer type we need to emit cv_qualifier late.
+ if (is_pointer(type))
+ {
+ decl = type_to_glsl(type, arg.id);
+ if (*cv_qualifier != '\0')
+ decl += join(" ", cv_qualifier);
+ }
+ else
+ {
+ decl = join(cv_qualifier, type_to_glsl(type, arg.id));
+ }
+ }
+
+ if (!builtin && !is_pointer(var_type) &&
+ (type_storage == StorageClassFunction || type_storage == StorageClassGeneric))
+ {
+ // If the argument is a pure value and not an opaque type, we will pass by value.
+ if (msl_options.force_native_arrays && is_array(type))
+ {
+ // We are receiving an array by value. This is problematic.
+ // We cannot be sure of the target address space since we are supposed to receive a copy,
+ // but this is not possible with MSL without some extra work.
+ // We will have to assume we're getting a reference in thread address space.
+ // If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
+ // Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
+ // non-constant arrays, but we can create thread const from constant.
+ decl = string("thread const ") + decl;
+ decl += " (&";
+ const char *restrict_kw = to_restrict(name_id, true);
+ if (*restrict_kw)
+ {
+ decl += " ";
+ decl += restrict_kw;
+ }
+ decl += to_expression(name_id);
+ decl += ")";
+ decl += type_to_array_glsl(type, name_id);
+ }
+ else
+ {
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+ }
+ else if (is_array(type) && !type_is_image)
+ {
+ // Arrays of opaque types are special cased.
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+
+ // spvDescriptorArray absorbs the address space inside the template.
+ if (!is_var_runtime_size_array(var))
+ {
+ const char *argument_buffer_space = descriptor_address_space(name_id, type_storage, nullptr);
+ if (argument_buffer_space)
+ {
+ decl += " ";
+ decl += argument_buffer_space;
+ }
+ }
+
+ // Special case, need to override the array size here if we're using tess level as an argument.
+ if (is_tesc_shader() && builtin &&
+ (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
+ {
+ uint32_t array_size = get_physical_tess_level_array_size(builtin_type);
+ if (array_size == 1)
+ {
+ decl += " &";
+ decl += to_expression(name_id);
+ }
+ else
+ {
+ decl += " (&";
+ decl += to_expression(name_id);
+ decl += ")";
+ decl += join("[", array_size, "]");
+ }
+ }
+ else if (is_var_runtime_size_array(var))
+ {
+ decl += " " + to_expression(name_id);
+ }
+ else
+ {
+ auto array_size_decl = type_to_array_glsl(type, name_id);
+ if (array_size_decl.empty())
+ decl += "& ";
+ else
+ decl += " (&";
+
+ const char *restrict_kw = to_restrict(name_id, true);
+ if (*restrict_kw)
+ {
+ decl += " ";
+ decl += restrict_kw;
+ }
+ decl += to_expression(name_id);
+
+ if (!array_size_decl.empty())
+ {
+ decl += ")";
+ decl += array_size_decl;
+ }
+ }
+ }
+ else if (!type_is_image && !type_is_tlas &&
+ (!pull_model_inputs.count(var.basevariable) || type.basetype == SPIRType::Struct))
+ {
+ // If this is going to be a reference to a variable pointer, the address space
+ // for the reference has to go before the '&', but after the '*'.
+ if (!address_space.empty())
+ {
+ if (is_pointer(type))
+ {
+ if (*cv_qualifier == '\0')
+ decl += ' ';
+ decl += join(address_space, " ");
+ }
+ else
+ decl = join(address_space, " ", decl);
+ }
+ decl += "&";
+ decl += " ";
+ decl += to_restrict(name_id, true);
+ decl += to_expression(name_id);
+ }
+ else if (type_is_image || type_is_tlas)
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ decl = address_space + " " + decl + " " + to_expression(name_id);
+ }
+ else if (type.array.empty())
+ {
+ // For non-arrayed types we can just pass opaque descriptors by value.
+ // This fixes problems if descriptors are passed by value from argument buffers and plain descriptors
+ // in same shader.
+ // There is no address space we can actually use, but value will work.
+ // This will break if applications attempt to pass down descriptor arrays as arguments, but
+ // fortunately that is extremely unlikely ...
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+ else
+ {
+ const char *img_address_space = descriptor_address_space(name_id, type_storage, "thread const");
+ decl = join(img_address_space, " ", decl);
+ decl += "& ";
+ decl += to_expression(name_id);
+ }
+ }
+ else
+ {
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+
+ // Emulate texture2D atomic operations
+ auto *backing_var = maybe_get_backing_variable(name_id);
+ if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
+ {
+ auto &flags = ir.get_decoration_bitset(backing_var->self);
+ const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
+ decl += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(var_type.image.type), 0));
+ decl += "* " + to_expression(name_id) + "_atomic";
+ }
+
+ is_using_builtin_array = false;
+
+ return decl;
+}
+
+// If we're currently in the entry point function, and the object
+// has a qualified name, use it, otherwise use the standard name.
+string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
+{
+ if (current_function && (current_function->self == ir.default_entry_point))
+ {
+ auto *m = ir.find_meta(id);
+ if (m && !m->decoration.qualified_alias_explicit_override && !m->decoration.qualified_alias.empty())
+ return m->decoration.qualified_alias;
+ }
+ return Compiler::to_name(id, allow_alias);
+}
+
+// Appends the name of the member to the variable qualifier string, except for Builtins.
+string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index)
+{
+ // Don't qualify Builtin names because they are unique and are treated as such when building expressions
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(type, index, &builtin))
+ return builtin_to_glsl(builtin, type.storage);
+
+ // Strip any underscore prefix from member name
+ string mbr_name = to_member_name(type, index);
+ size_t startPos = mbr_name.find_first_not_of("_");
+ mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
+ return join(qualifier, "_", mbr_name);
+}
+
+// Ensures that the specified name is permanently usable by prepending a prefix
+// if the first chars are _ and a digit, which indicate a transient name.
+string CompilerMSL::ensure_valid_name(string name, string pfx)
+{
+ return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
+}
+
+const std::unordered_set<std::string> &CompilerMSL::get_reserved_keyword_set()
+{
+ static const unordered_set<string> keywords = {
+ "kernel",
+ "vertex",
+ "fragment",
+ "compute",
+ "constant",
+ "device",
+ "bias",
+ "level",
+ "gradient2d",
+ "gradientcube",
+ "gradient3d",
+ "min_lod_clamp",
+ "assert",
+ "VARIABLE_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT_V",
+ "METAL_ALIGN",
+ "METAL_ASM",
+ "METAL_CONST",
+ "METAL_DEPRECATED",
+ "METAL_ENABLE_IF",
+ "METAL_FUNC",
+ "METAL_INTERNAL",
+ "METAL_NON_NULL_RETURN",
+ "METAL_NORETURN",
+ "METAL_NOTHROW",
+ "METAL_PURE",
+ "METAL_UNAVAILABLE",
+ "METAL_IMPLICIT",
+ "METAL_EXPLICIT",
+ "METAL_CONST_ARG",
+ "METAL_ARG_UNIFORM",
+ "METAL_ZERO_ARG",
+ "METAL_VALID_LOD_ARG",
+ "METAL_VALID_LEVEL_ARG",
+ "METAL_VALID_STORE_ORDER",
+ "METAL_VALID_LOAD_ORDER",
+ "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
+ "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
+ "METAL_VALID_RENDER_TARGET",
+ "is_function_constant_defined",
+ "CHAR_BIT",
+ "SCHAR_MAX",
+ "SCHAR_MIN",
+ "UCHAR_MAX",
+ "CHAR_MAX",
+ "CHAR_MIN",
+ "USHRT_MAX",
+ "SHRT_MAX",
+ "SHRT_MIN",
+ "UINT_MAX",
+ "INT_MAX",
+ "INT_MIN",
+ "FLT_DIG",
+ "FLT_MANT_DIG",
+ "FLT_MAX_10_EXP",
+ "FLT_MAX_EXP",
+ "FLT_MIN_10_EXP",
+ "FLT_MIN_EXP",
+ "FLT_RADIX",
+ "FLT_MAX",
+ "FLT_MIN",
+ "FLT_EPSILON",
+ "FP_ILOGB0",
+ "FP_ILOGBNAN",
+ "MAXFLOAT",
+ "HUGE_VALF",
+ "INFINITY",
+ "NAN",
+ "M_E_F",
+ "M_LOG2E_F",
+ "M_LOG10E_F",
+ "M_LN2_F",
+ "M_LN10_F",
+ "M_PI_F",
+ "M_PI_2_F",
+ "M_PI_4_F",
+ "M_1_PI_F",
+ "M_2_PI_F",
+ "M_2_SQRTPI_F",
+ "M_SQRT2_F",
+ "M_SQRT1_2_F",
+ "HALF_DIG",
+ "HALF_MANT_DIG",
+ "HALF_MAX_10_EXP",
+ "HALF_MAX_EXP",
+ "HALF_MIN_10_EXP",
+ "HALF_MIN_EXP",
+ "HALF_RADIX",
+ "HALF_MAX",
+ "HALF_MIN",
+ "HALF_EPSILON",
+ "MAXHALF",
+ "HUGE_VALH",
+ "M_E_H",
+ "M_LOG2E_H",
+ "M_LOG10E_H",
+ "M_LN2_H",
+ "M_LN10_H",
+ "M_PI_H",
+ "M_PI_2_H",
+ "M_PI_4_H",
+ "M_1_PI_H",
+ "M_2_PI_H",
+ "M_2_SQRTPI_H",
+ "M_SQRT2_H",
+ "M_SQRT1_2_H",
+ "DBL_DIG",
+ "DBL_MANT_DIG",
+ "DBL_MAX_10_EXP",
+ "DBL_MAX_EXP",
+ "DBL_MIN_10_EXP",
+ "DBL_MIN_EXP",
+ "DBL_RADIX",
+ "DBL_MAX",
+ "DBL_MIN",
+ "DBL_EPSILON",
+ "HUGE_VAL",
+ "M_E",
+ "M_LOG2E",
+ "M_LOG10E",
+ "M_LN2",
+ "M_LN10",
+ "M_PI",
+ "M_PI_2",
+ "M_PI_4",
+ "M_1_PI",
+ "M_2_PI",
+ "M_2_SQRTPI",
+ "M_SQRT2",
+ "M_SQRT1_2",
+ "quad_broadcast",
+ "thread",
+ "threadgroup",
+ };
+
+ return keywords;
+}
+
+const std::unordered_set<std::string> &CompilerMSL::get_illegal_func_names()
+{
+ static const unordered_set<string> illegal_func_names = {
+ "main",
+ "saturate",
+ "assert",
+ "fmin3",
+ "fmax3",
+ "divide",
+ "median3",
+ "VARIABLE_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT_V",
+ "METAL_ALIGN",
+ "METAL_ASM",
+ "METAL_CONST",
+ "METAL_DEPRECATED",
+ "METAL_ENABLE_IF",
+ "METAL_FUNC",
+ "METAL_INTERNAL",
+ "METAL_NON_NULL_RETURN",
+ "METAL_NORETURN",
+ "METAL_NOTHROW",
+ "METAL_PURE",
+ "METAL_UNAVAILABLE",
+ "METAL_IMPLICIT",
+ "METAL_EXPLICIT",
+ "METAL_CONST_ARG",
+ "METAL_ARG_UNIFORM",
+ "METAL_ZERO_ARG",
+ "METAL_VALID_LOD_ARG",
+ "METAL_VALID_LEVEL_ARG",
+ "METAL_VALID_STORE_ORDER",
+ "METAL_VALID_LOAD_ORDER",
+ "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
+ "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
+ "METAL_VALID_RENDER_TARGET",
+ "is_function_constant_defined",
+ "CHAR_BIT",
+ "SCHAR_MAX",
+ "SCHAR_MIN",
+ "UCHAR_MAX",
+ "CHAR_MAX",
+ "CHAR_MIN",
+ "USHRT_MAX",
+ "SHRT_MAX",
+ "SHRT_MIN",
+ "UINT_MAX",
+ "INT_MAX",
+ "INT_MIN",
+ "FLT_DIG",
+ "FLT_MANT_DIG",
+ "FLT_MAX_10_EXP",
+ "FLT_MAX_EXP",
+ "FLT_MIN_10_EXP",
+ "FLT_MIN_EXP",
+ "FLT_RADIX",
+ "FLT_MAX",
+ "FLT_MIN",
+ "FLT_EPSILON",
+ "FP_ILOGB0",
+ "FP_ILOGBNAN",
+ "MAXFLOAT",
+ "HUGE_VALF",
+ "INFINITY",
+ "NAN",
+ "M_E_F",
+ "M_LOG2E_F",
+ "M_LOG10E_F",
+ "M_LN2_F",
+ "M_LN10_F",
+ "M_PI_F",
+ "M_PI_2_F",
+ "M_PI_4_F",
+ "M_1_PI_F",
+ "M_2_PI_F",
+ "M_2_SQRTPI_F",
+ "M_SQRT2_F",
+ "M_SQRT1_2_F",
+ "HALF_DIG",
+ "HALF_MANT_DIG",
+ "HALF_MAX_10_EXP",
+ "HALF_MAX_EXP",
+ "HALF_MIN_10_EXP",
+ "HALF_MIN_EXP",
+ "HALF_RADIX",
+ "HALF_MAX",
+ "HALF_MIN",
+ "HALF_EPSILON",
+ "MAXHALF",
+ "HUGE_VALH",
+ "M_E_H",
+ "M_LOG2E_H",
+ "M_LOG10E_H",
+ "M_LN2_H",
+ "M_LN10_H",
+ "M_PI_H",
+ "M_PI_2_H",
+ "M_PI_4_H",
+ "M_1_PI_H",
+ "M_2_PI_H",
+ "M_2_SQRTPI_H",
+ "M_SQRT2_H",
+ "M_SQRT1_2_H",
+ "DBL_DIG",
+ "DBL_MANT_DIG",
+ "DBL_MAX_10_EXP",
+ "DBL_MAX_EXP",
+ "DBL_MIN_10_EXP",
+ "DBL_MIN_EXP",
+ "DBL_RADIX",
+ "DBL_MAX",
+ "DBL_MIN",
+ "DBL_EPSILON",
+ "HUGE_VAL",
+ "M_E",
+ "M_LOG2E",
+ "M_LOG10E",
+ "M_LN2",
+ "M_LN10",
+ "M_PI",
+ "M_PI_2",
+ "M_PI_4",
+ "M_1_PI",
+ "M_2_PI",
+ "M_2_SQRTPI",
+ "M_SQRT2",
+ "M_SQRT1_2",
+ };
+
+ return illegal_func_names;
+}
+
+// Replace all names that match MSL keywords or Metal Standard Library functions.
+void CompilerMSL::replace_illegal_names()
+{
+ // FIXME: MSL and GLSL are doing two different things here.
+ // Agree on convention and remove this override.
+ auto &keywords = get_reserved_keyword_set();
+ auto &illegal_func_names = get_illegal_func_names();
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
+ auto *meta = ir.find_meta(self);
+ if (!meta)
+ return;
+
+ auto &dec = meta->decoration;
+ if (keywords.find(dec.alias) != end(keywords))
+ dec.alias += "0";
+ });
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
+ auto *meta = ir.find_meta(self);
+ if (!meta)
+ return;
+
+ auto &dec = meta->decoration;
+ if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
+ dec.alias += "0";
+ });
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
+ auto *meta = ir.find_meta(self);
+ if (!meta)
+ return;
+
+ for (auto &mbr_dec : meta->members)
+ if (keywords.find(mbr_dec.alias) != end(keywords))
+ mbr_dec.alias += "0";
+ });
+
+ CompilerGLSL::replace_illegal_names();
+}
+
+void CompilerMSL::replace_illegal_entry_point_names()
+{
+ auto &illegal_func_names = get_illegal_func_names();
+
+ // It is important to this before we fixup identifiers,
+ // since if ep_name is reserved, we will need to fix that up,
+ // and then copy alias back into entry.name after the fixup.
+ for (auto &entry : ir.entry_points)
+ {
+ // Change both the entry point name and the alias, to keep them synced.
+ string &ep_name = entry.second.name;
+ if (illegal_func_names.find(ep_name) != end(illegal_func_names))
+ ep_name += "0";
+
+ ir.meta[entry.first].decoration.alias = ep_name;
+ }
+}
+
+void CompilerMSL::sync_entry_point_aliases_and_names()
+{
+ for (auto &entry : ir.entry_points)
+ entry.second.name = ir.meta[entry.first].decoration.alias;
+}
+
+string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved)
+{
+ auto *var = maybe_get_backing_variable(base);
+ // If this is a buffer array, we have to dereference the buffer pointers.
+ // Otherwise, if this is a pointer expression, dereference it.
+
+ bool declared_as_pointer = false;
+
+ if (var)
+ {
+ // Only allow -> dereference for block types. This is so we get expressions like
+ // buffer[i]->first_member.second_member, rather than buffer[i]->first->second.
+ const bool is_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ bool is_buffer_variable =
+ is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer);
+ declared_as_pointer = is_buffer_variable && is_array(get_pointee_type(var->basetype));
+ }
+
+ if (declared_as_pointer || (!ptr_chain_is_resolved && should_dereference(base)))
+ return join("->", to_member_name(type, index));
+ else
+ return join(".", to_member_name(type, index));
+}
+
+string CompilerMSL::to_qualifiers_glsl(uint32_t id)
+{
+ string quals;
+
+ auto *var = maybe_get<SPIRVariable>(id);
+ auto &type = expression_type(id);
+
+ if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(*var, StorageClassWorkgroup)))
+ quals += "threadgroup ";
+
+ return quals;
+}
+
+// The optional id parameter indicates the object whose type we are trying
+// to find the description for. It is optional. Most type descriptions do not
+// depend on a specific object's use of that type.
+string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id, bool member)
+{
+ string type_name;
+
+ // Pointer?
+ if (is_pointer(type) || type_is_array_of_pointers(type))
+ {
+ assert(type.pointer_depth > 0);
+
+ const char *restrict_kw;
+
+ auto type_address_space = get_type_address_space(type, id);
+ const auto *p_parent_type = &get<SPIRType>(type.parent_type);
+
+ // If we're wrapping buffer descriptors in a spvDescriptorArray, we'll have to handle it as a special case.
+ if (member && id)
+ {
+ auto &var = get<SPIRVariable>(id);
+ if (is_var_runtime_size_array(var) && is_runtime_size_array(*p_parent_type))
+ {
+ const bool ssbo = has_decoration(p_parent_type->self, DecorationBufferBlock);
+ bool buffer_desc =
+ (var.storage == StorageClassStorageBuffer || ssbo) &&
+ msl_options.runtime_array_rich_descriptor;
+
+ const char *wrapper_type = buffer_desc ? "spvBufferDescriptor" : "spvDescriptor";
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+ add_spv_func_and_recompile(buffer_desc ? SPVFuncImplVariableSizedDescriptor : SPVFuncImplVariableDescriptor);
+
+ type_name = join(wrapper_type, "<", type_address_space, " ", type_to_glsl(*p_parent_type, id), " *>");
+ return type_name;
+ }
+ }
+
+ // Work around C pointer qualifier rules. If glsl_type is a pointer type as well
+ // we'll need to emit the address space to the right.
+ // We could always go this route, but it makes the code unnatural.
+ // Prefer emitting thread T *foo over T thread* foo since it's more readable,
+ // but we'll have to emit thread T * thread * T constant bar; for example.
+ if (is_pointer(type) && is_pointer(*p_parent_type))
+ type_name = join(type_to_glsl(*p_parent_type, id), " ", type_address_space, " ");
+ else
+ {
+ // Since this is not a pointer-to-pointer, ensure we've dug down to the base type.
+ // Some situations chain pointers even though they are not formally pointers-of-pointers.
+ while (is_pointer(*p_parent_type))
+ p_parent_type = &get<SPIRType>(p_parent_type->parent_type);
+
+ // If we're emitting BDA, just use the templated type.
+ // Emitting builtin arrays need a lot of cooperation with other code to ensure
+ // the C-style nesting works right.
+ // FIXME: This is somewhat of a hack.
+ bool old_is_using_builtin_array = is_using_builtin_array;
+ if (is_physical_pointer(type))
+ is_using_builtin_array = false;
+
+ type_name = join(type_address_space, " ", type_to_glsl(*p_parent_type, id));
+
+ is_using_builtin_array = old_is_using_builtin_array;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ // These are handles.
+ break;
+ default:
+ // Anything else can be a raw pointer.
+ type_name += "*";
+ restrict_kw = to_restrict(id, false);
+ if (*restrict_kw)
+ {
+ type_name += " ";
+ type_name += restrict_kw;
+ }
+ break;
+ }
+ return type_name;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Struct:
+ // Need OpName lookup here to get a "sensible" name for a struct.
+ // Allow Metal to use the array<T> template to make arrays a value type
+ type_name = to_name(type.self);
+ break;
+
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ return image_type_glsl(type, id, member);
+
+ case SPIRType::Sampler:
+ return sampler_type(type, id, member);
+
+ case SPIRType::Void:
+ return "void";
+
+ case SPIRType::AtomicCounter:
+ return "atomic_uint";
+
+ case SPIRType::ControlPointArray:
+ return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");
+
+ case SPIRType::Interpolant:
+ return join("interpolant<", type_to_glsl(get<SPIRType>(type.parent_type), id), ", interpolation::",
+ has_decoration(type.self, DecorationNoPerspective) ? "no_perspective" : "perspective", ">");
+
+ // Scalars
+ case SPIRType::Boolean:
+ {
+ auto *var = maybe_get_backing_variable(id);
+ if (var && var->basevariable)
+ var = &get<SPIRVariable>(var->basevariable);
+
+ // Need to special-case threadgroup booleans. They are supposed to be logical
+ // storage, but MSL compilers will sometimes crash if you use threadgroup bool.
+ // Workaround this by using 16-bit types instead and fixup on load-store to this data.
+ if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup || member)
+ type_name = "short";
+ else
+ type_name = "bool";
+ break;
+ }
+
+ case SPIRType::Char:
+ case SPIRType::SByte:
+ type_name = "char";
+ break;
+ case SPIRType::UByte:
+ type_name = "uchar";
+ break;
+ case SPIRType::Short:
+ type_name = "short";
+ break;
+ case SPIRType::UShort:
+ type_name = "ushort";
+ break;
+ case SPIRType::Int:
+ type_name = "int";
+ break;
+ case SPIRType::UInt:
+ type_name = "uint";
+ break;
+ case SPIRType::Int64:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
+ type_name = "long";
+ break;
+ case SPIRType::UInt64:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
+ type_name = "ulong";
+ break;
+ case SPIRType::Half:
+ type_name = "half";
+ break;
+ case SPIRType::Float:
+ type_name = "float";
+ break;
+ case SPIRType::Double:
+ type_name = "double"; // Currently unsupported
+ break;
+ case SPIRType::AccelerationStructure:
+ if (msl_options.supports_msl_version(2, 4))
+ type_name = "raytracing::acceleration_structure<raytracing::instancing>";
+ else if (msl_options.supports_msl_version(2, 3))
+ type_name = "raytracing::instance_acceleration_structure";
+ else
+ SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above.");
+ break;
+ case SPIRType::RayQuery:
+ return "raytracing::intersection_query<raytracing::instancing, raytracing::triangle_data>";
+
+ default:
+ return "unknown_type";
+ }
+
+ // Matrix?
+ if (type.columns > 1)
+ {
+ auto *var = maybe_get_backing_variable(id);
+ if (var && var->basevariable)
+ var = &get<SPIRVariable>(var->basevariable);
+
+ // Need to special-case threadgroup matrices. Due to an oversight, Metal's
+ // matrix struct prior to Metal 3 lacks constructors in the threadgroup AS,
+ // preventing us from default-constructing or initializing matrices in threadgroup storage.
+ // Work around this by using our own type as storage.
+ if (((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup) &&
+ !msl_options.supports_msl_version(3, 0))
+ {
+ add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
+ type_name = "spvStorage_" + type_name;
+ }
+
+ type_name += to_string(type.columns) + "x";
+ }
+
+ // Vector or Matrix?
+ if (type.vecsize > 1)
+ type_name += to_string(type.vecsize);
+
+ if (type.array.empty() || using_builtin_array())
+ {
+ return type_name;
+ }
+ else
+ {
+ // Allow Metal to use the array<T> template to make arrays a value type
+ add_spv_func_and_recompile(SPVFuncImplUnsafeArray);
+ string res;
+ string sizes;
+
+ for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
+ {
+ res += "spvUnsafeArray<";
+ sizes += ", ";
+ sizes += to_array_size(type, i);
+ sizes += ">";
+ }
+
+ res += type_name + sizes;
+ return res;
+ }
+}
+
+string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
+{
+ return type_to_glsl(type, id, false);
+}
+
+string CompilerMSL::type_to_array_glsl(const SPIRType &type, uint32_t variable_id)
+{
+ // Allow Metal to use the array<T> template to make arrays a value type
+ switch (type.basetype)
+ {
+ case SPIRType::AtomicCounter:
+ case SPIRType::ControlPointArray:
+ case SPIRType::RayQuery:
+ return CompilerGLSL::type_to_array_glsl(type, variable_id);
+
+ default:
+ if (type_is_array_of_pointers(type) || using_builtin_array())
+ {
+ const SPIRVariable *var = variable_id ? &get<SPIRVariable>(variable_id) : nullptr;
+ if (var && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer) &&
+ is_array(get_variable_data_type(*var)))
+ {
+ return join("[", get_resource_array_size(type, variable_id), "]");
+ }
+ else
+ return CompilerGLSL::type_to_array_glsl(type, variable_id);
+ }
+ else
+ return "";
+ }
+}
+
+string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop)
+{
+ switch (cop.opcode)
+ {
+ case OpQuantizeToF16:
+ add_spv_func_and_recompile(SPVFuncImplQuantizeToF16);
+ return join("spvQuantizeToF16(", to_expression(cop.arguments[0]), ")");
+ default:
+ return CompilerGLSL::constant_op_expression(cop);
+ }
+}
+
+bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const
+{
+ if (variable.storage == storage)
+ return true;
+
+ if (storage == StorageClassWorkgroup)
+ {
+ // Specially masked IO block variable.
+ // Normally, we will never access IO blocks directly here.
+ // The only scenario which that should occur is with a masked IO block.
+ if (is_tesc_shader() && variable.storage == StorageClassOutput &&
+ has_decoration(get<SPIRType>(variable.basetype).self, DecorationBlock))
+ {
+ return true;
+ }
+
+ return variable.storage == StorageClassOutput && is_tesc_shader() && is_stage_output_variable_masked(variable);
+ }
+ else if (storage == StorageClassStorageBuffer)
+ {
+ // These builtins are passed directly; we don't want to use remapping
+ // for them.
+ auto builtin = (BuiltIn)get_decoration(variable.self, DecorationBuiltIn);
+ if (is_tese_shader() && is_builtin_variable(variable) && (builtin == BuiltInTessCoord || builtin == BuiltInPrimitiveId))
+ return false;
+
+ // We won't be able to catch writes to control point outputs here since variable
+ // refers to a function local pointer.
+ // This is fine, as there cannot be concurrent writers to that memory anyways,
+ // so we just ignore that case.
+
+ return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) &&
+ !variable_storage_requires_stage_io(variable.storage) &&
+ (variable.storage != StorageClassOutput || !is_stage_output_variable_masked(variable));
+ }
+ else
+ {
+ return false;
+ }
+}
+
+// GCC workaround of lambdas calling protected funcs
+std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id)
+{
+ return CompilerGLSL::variable_decl(type, name, id);
+}
+
+std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id, bool member)
+{
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ {
+ // Check against the base variable, and not a fake ID which might have been generated for this variable.
+ id = var->basevariable;
+ }
+
+ if (!type.array.empty())
+ {
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
+
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
+
+ // Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
+ // If we have a runtime array, it could be a variable-count descriptor set binding.
+ auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
+ uint32_t array_size = get_resource_array_size(type, id);
+
+ if (array_size == 0)
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+
+ const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
+ if (member)
+ descriptor_wrapper = "spvDescriptor";
+ return join(descriptor_wrapper, "<", sampler_type(parent, id, false), ">",
+ processing_entry_point ? "*" : "");
+ }
+ else
+ {
+ return join("array<", sampler_type(parent, id, false), ", ", array_size, ">");
+ }
+ }
+ else
+ return "sampler";
+}
+
+// Returns an MSL string describing the SPIR-V image type
+string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id, bool member)
+{
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ {
+ // For comparison images, check against the base variable,
+ // and not the fake ID which might have been generated for this variable.
+ id = var->basevariable;
+ }
+
+ if (!type.array.empty())
+ {
+ uint32_t major = 2, minor = 0;
+ if (msl_options.is_ios())
+ {
+ major = 1;
+ minor = 2;
+ }
+ if (!msl_options.supports_msl_version(major, minor))
+ {
+ if (msl_options.is_ios())
+ SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
+ else
+ SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
+ }
+
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
+
+ // Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
+ // If we have a runtime array, it could be a variable-count descriptor set binding.
+ auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
+ uint32_t array_size = get_resource_array_size(type, id);
+
+ if (array_size == 0)
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+ const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
+ if (member)
+ {
+ descriptor_wrapper = "spvDescriptor";
+ // This requires a specialized wrapper type that packs image and sampler side by side.
+ // It is possible in theory.
+ if (type.basetype == SPIRType::SampledImage)
+ SPIRV_CROSS_THROW("Argument buffer runtime array currently not supported for combined image sampler.");
+ }
+ return join(descriptor_wrapper, "<", image_type_glsl(parent, id, false), ">",
+ processing_entry_point ? "*" : "");
+ }
+ else
+ {
+ return join("array<", image_type_glsl(parent, id, false), ", ", array_size, ">");
+ }
+ }
+
+ string img_type_name;
+
+ auto &img_type = type.image;
+
+ if (is_depth_image(type, id))
+ {
+ switch (img_type.dim)
+ {
+ case Dim1D:
+ case Dim2D:
+ if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
+ {
+ // Use a native Metal 1D texture
+ img_type_name += "depth1d_unsupported_by_metal";
+ break;
+ }
+
+ if (img_type.ms && img_type.arrayed)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
+ img_type_name += "depth2d_ms_array";
+ }
+ else if (img_type.ms)
+ img_type_name += "depth2d_ms";
+ else if (img_type.arrayed)
+ img_type_name += "depth2d_array";
+ else
+ img_type_name += "depth2d";
+ break;
+ case Dim3D:
+ img_type_name += "depth3d_unsupported_by_metal";
+ break;
+ case DimCube:
+ if (!msl_options.emulate_cube_array)
+ img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
+ else
+ img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube");
+ break;
+ default:
+ img_type_name += "unknown_depth_texture_type";
+ break;
+ }
+ }
+ else
+ {
+ switch (img_type.dim)
+ {
+ case DimBuffer:
+ if (img_type.ms || img_type.arrayed)
+ SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");
+
+ if (msl_options.texture_buffer_native)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
+ img_type_name = "texture_buffer";
+ }
+ else
+ img_type_name += "texture2d";
+ break;
+ case Dim1D:
+ case Dim2D:
+ case DimSubpassData:
+ {
+ bool subpass_array =
+ img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input);
+ if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
+ {
+ // Use a native Metal 1D texture
+ img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
+ break;
+ }
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if (type_is_msl_framebuffer_fetch(type))
+ {
+ auto img_type_4 = get<SPIRType>(img_type.type);
+ img_type_4.vecsize = 4;
+ return type_to_glsl(img_type_4);
+ }
+ if (img_type.ms && (img_type.arrayed || subpass_array))
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
+ img_type_name += "texture2d_ms_array";
+ }
+ else if (img_type.ms)
+ img_type_name += "texture2d_ms";
+ else if (img_type.arrayed || subpass_array)
+ img_type_name += "texture2d_array";
+ else
+ img_type_name += "texture2d";
+ break;
+ }
+ case Dim3D:
+ img_type_name += "texture3d";
+ break;
+ case DimCube:
+ if (!msl_options.emulate_cube_array)
+ img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
+ else
+ img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube");
+ break;
+ default:
+ img_type_name += "unknown_texture_type";
+ break;
+ }
+ }
+
+ // Append the pixel type
+ img_type_name += "<";
+ img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
+
+ // For unsampled images, append the sample/read/write access qualifier.
+ // For kernel images, the access qualifier my be supplied directly by SPIR-V.
+ // Otherwise it may be set based on whether the image is read from or written to within the shader.
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
+ {
+ switch (img_type.access)
+ {
+ case AccessQualifierReadOnly:
+ img_type_name += ", access::read";
+ break;
+
+ case AccessQualifierWriteOnly:
+ img_type_name += ", access::write";
+ break;
+
+ case AccessQualifierReadWrite:
+ img_type_name += ", access::read_write";
+ break;
+
+ default:
+ {
+ auto *p_var = maybe_get_backing_variable(id);
+ if (p_var && p_var->basevariable)
+ p_var = maybe_get<SPIRVariable>(p_var->basevariable);
+ if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
+ {
+ img_type_name += ", access::";
+
+ if (!has_decoration(p_var->self, DecorationNonReadable))
+ img_type_name += "read_";
+
+ img_type_name += "write";
+ }
+ break;
+ }
+ }
+ }
+
+ img_type_name += ">";
+
+ return img_type_name;
+}
+
+void CompilerMSL::emit_subgroup_op(const Instruction &i)
+{
+ const uint32_t *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (msl_options.emulate_subgroups)
+ {
+ // In this mode, only the GroupNonUniform cap is supported. The only op
+ // we need to handle, then, is OpGroupNonUniformElect.
+ if (op != OpGroupNonUniformElect)
+ SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect.");
+ // In this mode, the subgroup size is assumed to be one, so every invocation
+ // is elected.
+ emit_op(ops[0], ops[1], "true", true);
+ return;
+ }
+
+ // Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with
+ // full support in 13.0 (2.2). macOS only supports broadcast and shuffle on
+ // 10.13 (2.0), with full support in 10.14 (2.1).
+ // Note that Apple GPUs before A13 make no distinction between a quad-group
+ // and a SIMD-group; all SIMD-groups are quad-groups on those.
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up.");
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(i);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ if (msl_options.is_ios() && (!msl_options.supports_msl_version(2, 3) || !msl_options.ios_use_simdgroup_functions))
+ {
+ switch (op)
+ {
+ default:
+ SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up.");
+ case OpGroupNonUniformBroadcastFirst:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up.");
+ break;
+ case OpGroupNonUniformElect:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up.");
+ break;
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAllEqual:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformBallotBitCount:
+ case OpSubgroupBallotKHR:
+ case OpSubgroupAllKHR:
+ case OpSubgroupAnyKHR:
+ case OpSubgroupAllEqualKHR:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up.");
+ break;
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpGroupNonUniformQuadSwap:
+ case OpGroupNonUniformQuadBroadcast:
+ case OpSubgroupReadInvocationKHR:
+ break;
+ }
+ }
+
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ {
+ switch (op)
+ {
+ default:
+ SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up.");
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpSubgroupReadInvocationKHR:
+ break;
+ }
+ }
+
+ uint32_t op_idx = 0;
+ uint32_t result_type = ops[op_idx++];
+ uint32_t id = ops[op_idx++];
+
+ Scope scope;
+ switch (op)
+ {
+ case OpSubgroupBallotKHR:
+ case OpSubgroupFirstInvocationKHR:
+ case OpSubgroupReadInvocationKHR:
+ case OpSubgroupAllKHR:
+ case OpSubgroupAnyKHR:
+ case OpSubgroupAllEqualKHR:
+ // These earlier instructions don't have the scope operand.
+ scope = ScopeSubgroup;
+ break;
+ default:
+ scope = static_cast<Scope>(evaluate_constant_u32(ops[op_idx++]));
+ break;
+ }
+ if (scope != ScopeSubgroup)
+ SPIRV_CROSS_THROW("Only subgroup scope is supported.");
+
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ if (msl_options.use_quadgroup_operation())
+ emit_op(result_type, id, "quad_is_first()", false);
+ else
+ emit_op(result_type, id, "simd_is_first()", false);
+ break;
+
+ case OpGroupNonUniformBroadcast:
+ case OpSubgroupReadInvocationKHR:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBroadcast");
+ break;
+
+ case OpGroupNonUniformBroadcastFirst:
+ case OpSubgroupFirstInvocationKHR:
+ emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBroadcastFirst");
+ break;
+
+ case OpGroupNonUniformBallot:
+ case OpSubgroupBallotKHR:
+ emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBallot");
+ break;
+
+ case OpGroupNonUniformInverseBallot:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, "spvSubgroupBallotBitExtract");
+ break;
+
+ case OpGroupNonUniformBallotBitExtract:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBallotBitExtract");
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindLSB");
+ break;
+
+ case OpGroupNonUniformBallotFindMSB:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindMSB");
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]);
+ switch (operation)
+ {
+ case GroupOperationReduce:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotBitCount");
+ break;
+ case GroupOperationInclusiveScan:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
+ "spvSubgroupBallotInclusiveBitCount");
+ break;
+ case GroupOperationExclusiveScan:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
+ "spvSubgroupBallotExclusiveBitCount");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid BitCount operation.");
+ }
+ break;
+ }
+
+ case OpGroupNonUniformShuffle:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffle");
+ break;
+
+ case OpGroupNonUniformShuffleXor:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleXor");
+ break;
+
+ case OpGroupNonUniformShuffleUp:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleUp");
+ break;
+
+ case OpGroupNonUniformShuffleDown:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleDown");
+ break;
+
+ case OpGroupNonUniformAll:
+ case OpSubgroupAllKHR:
+ if (msl_options.use_quadgroup_operation())
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_all");
+ else
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_all");
+ break;
+
+ case OpGroupNonUniformAny:
+ case OpSubgroupAnyKHR:
+ if (msl_options.use_quadgroup_operation())
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_any");
+ else
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_any");
+ break;
+
+ case OpGroupNonUniformAllEqual:
+ case OpSubgroupAllEqualKHR:
+ emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupAllEqual");
+ break;
+
+ // clang-format off
+#define MSL_GROUP_OP(op, msl_op) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
+ else if (operation == GroupOperationInclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_inclusive_" #msl_op); \
+ else if (operation == GroupOperationExclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_exclusive_" #msl_op); \
+ else if (operation == GroupOperationClusteredReduce) \
+ { \
+ /* Only cluster sizes of 4 are supported. */ \
+ uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
+ if (cluster_size != 4) \
+ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
+ } \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+ MSL_GROUP_OP(FAdd, sum)
+ MSL_GROUP_OP(FMul, product)
+ MSL_GROUP_OP(IAdd, sum)
+ MSL_GROUP_OP(IMul, product)
+#undef MSL_GROUP_OP
+ // The others, unfortunately, don't support InclusiveScan or ExclusiveScan.
+
+#define MSL_GROUP_OP(op, msl_op) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
+ else if (operation == GroupOperationInclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationExclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationClusteredReduce) \
+ { \
+ /* Only cluster sizes of 4 are supported. */ \
+ uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
+ if (cluster_size != 4) \
+ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
+ } \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+#define MSL_GROUP_OP_CAST(op, msl_op, type) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op_cast(result_type, id, ops[op_idx], "simd_" #msl_op, type, type); \
+ else if (operation == GroupOperationInclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationExclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationClusteredReduce) \
+ { \
+ /* Only cluster sizes of 4 are supported. */ \
+ uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
+ if (cluster_size != 4) \
+ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
+ emit_unary_func_op_cast(result_type, id, ops[op_idx], "quad_" #msl_op, type, type); \
+ } \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+ MSL_GROUP_OP(FMin, min)
+ MSL_GROUP_OP(FMax, max)
+ MSL_GROUP_OP_CAST(SMin, min, int_type)
+ MSL_GROUP_OP_CAST(SMax, max, int_type)
+ MSL_GROUP_OP_CAST(UMin, min, uint_type)
+ MSL_GROUP_OP_CAST(UMax, max, uint_type)
+ MSL_GROUP_OP(BitwiseAnd, and)
+ MSL_GROUP_OP(BitwiseOr, or)
+ MSL_GROUP_OP(BitwiseXor, xor)
+ MSL_GROUP_OP(LogicalAnd, and)
+ MSL_GROUP_OP(LogicalOr, or)
+ MSL_GROUP_OP(LogicalXor, xor)
+ // clang-format on
+#undef MSL_GROUP_OP
+#undef MSL_GROUP_OP_CAST
+
+ case OpGroupNonUniformQuadSwap:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadSwap");
+ break;
+
+ case OpGroupNonUniformQuadBroadcast:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadBroadcast");
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
+ }
+
+ register_control_dependent_expression(id);
+}
+
+string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
+{
+ if (out_type.basetype == in_type.basetype)
+ return "";
+
+ assert(out_type.basetype != SPIRType::Boolean);
+ assert(in_type.basetype != SPIRType::Boolean);
+
+ bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type) && (out_type.vecsize == in_type.vecsize);
+ bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize);
+
+ // Bitcasting can only be used between types of the same overall size.
+ // And always formally cast between integers, because it's trivial, and also
+ // because Metal can internally cast the results of some integer ops to a larger
+ // size (eg. short shift right becomes int), which means chaining integer ops
+ // together may introduce size variations that SPIR-V doesn't know about.
+ if (same_size_cast && !integral_cast)
+ return "as_type<" + type_to_glsl(out_type) + ">";
+ else
+ return type_to_glsl(out_type);
+}
+
+bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t)
+{
+ // This is handled from the outside where we deal with PtrToU/UToPtr and friends.
+ return false;
+}
+
+// Returns an MSL string identifying the name of a SPIR-V builtin.
+// Output builtins are qualified with the name of the stage out structure.
+string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
+{
+ switch (builtin)
+ {
+ // Handle HLSL-style 0-based vertex/instance index.
+ // Override GLSL compiler strictness
+ case BuiltInVertexId:
+ ensure_builtin(StorageClassInput, BuiltInVertexId);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_vertex_arg != TriState::No)
+ needs_base_vertex_arg = TriState::Yes;
+ return "gl_VertexID";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseVertex);
+ return "(gl_VertexID - gl_BaseVertex)";
+ }
+ }
+ else
+ {
+ return "gl_VertexID";
+ }
+ case BuiltInInstanceId:
+ ensure_builtin(StorageClassInput, BuiltInInstanceId);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_instance_arg != TriState::No)
+ needs_base_instance_arg = TriState::Yes;
+ return "gl_InstanceID";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseInstance);
+ return "(gl_InstanceID - gl_BaseInstance)";
+ }
+ }
+ else
+ {
+ return "gl_InstanceID";
+ }
+ case BuiltInVertexIndex:
+ ensure_builtin(StorageClassInput, BuiltInVertexIndex);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_vertex_arg != TriState::No)
+ needs_base_vertex_arg = TriState::Yes;
+ return "gl_VertexIndex";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseVertex);
+ return "(gl_VertexIndex - gl_BaseVertex)";
+ }
+ }
+ else
+ {
+ return "gl_VertexIndex";
+ }
+ case BuiltInInstanceIndex:
+ ensure_builtin(StorageClassInput, BuiltInInstanceIndex);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_instance_arg != TriState::No)
+ needs_base_instance_arg = TriState::Yes;
+ return "gl_InstanceIndex";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseInstance);
+ return "(gl_InstanceIndex - gl_BaseInstance)";
+ }
+ }
+ else
+ {
+ return "gl_InstanceIndex";
+ }
+ case BuiltInBaseVertex:
+ if (msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ needs_base_vertex_arg = TriState::No;
+ return "gl_BaseVertex";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware.");
+ }
+ case BuiltInBaseInstance:
+ if (msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ needs_base_instance_arg = TriState::No;
+ return "gl_BaseInstance";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware.");
+ }
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // When used in the entry function, output builtins are qualified with output struct name.
+ // Test storage class as NOT Input, as output builtins might be part of generic type.
+ // Also don't do this for tessellation control shaders.
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ /* fallthrough */
+ case BuiltInFragDepth:
+ case BuiltInFragStencilRefEXT:
+ if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) ||
+ (builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin))
+ break;
+ /* fallthrough */
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ case BuiltInLayer:
+ if (is_tesc_shader())
+ break;
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
+ !is_stage_output_builtin_masked(builtin))
+ return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ break;
+
+ case BuiltInSampleMask:
+ if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
+ (has_additional_fixed_sample_mask() || needs_sample_id))
+ {
+ string samp_mask_in;
+ samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ if (has_additional_fixed_sample_mask())
+ samp_mask_in += " & " + additional_fixed_sample_mask_str();
+ if (needs_sample_id)
+ samp_mask_in += " & (1 << gl_SampleID)";
+ samp_mask_in += ")";
+ return samp_mask_in;
+ }
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
+ !is_stage_output_builtin_masked(builtin))
+ return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ break;
+
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
+ return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ break;
+
+ case BuiltInTessLevelOuter:
+ if (is_tesc_shader() && storage != StorageClassInput && current_function &&
+ (current_function->self == ir.default_entry_point))
+ {
+ return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "].edgeTessellationFactor");
+ }
+ break;
+
+ case BuiltInTessLevelInner:
+ if (is_tesc_shader() && storage != StorageClassInput && current_function &&
+ (current_function->self == ir.default_entry_point))
+ {
+ return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "].insideTessellationFactor");
+ }
+ break;
+
+ case BuiltInHelperInvocation:
+ if (needs_manual_helper_invocation_updates())
+ break;
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
+ // In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early.
+ return "simd_is_helper_thread()";
+
+ default:
+ break;
+ }
+
+ return CompilerGLSL::builtin_to_glsl(builtin, storage);
+}
+
+// Returns an MSL string attribute qualifer for a SPIR-V builtin
+string CompilerMSL::builtin_qualifier(BuiltIn builtin)
+{
+ auto &execution = get_entry_point();
+
+ switch (builtin)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ return "vertex_id";
+ case BuiltInVertexIndex:
+ return "vertex_id";
+ case BuiltInBaseVertex:
+ return "base_vertex";
+ case BuiltInInstanceId:
+ return "instance_id";
+ case BuiltInInstanceIndex:
+ return "instance_id";
+ case BuiltInBaseInstance:
+ return "base_instance";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // Vertex function out
+ case BuiltInClipDistance:
+ return "clip_distance";
+ case BuiltInPointSize:
+ return "point_size";
+ case BuiltInPosition:
+ if (position_invariant)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up.");
+ return "position, invariant";
+ }
+ else
+ return "position";
+ case BuiltInLayer:
+ return "render_target_array_index";
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ return "viewport_array_index";
+
+ // Tess. control function in
+ case BuiltInInvocationId:
+ if (msl_options.multi_patch_workgroup)
+ {
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL.");
+ }
+ return "thread_index_in_threadgroup";
+ case BuiltInPatchVertices:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
+ case BuiltInPrimitiveId:
+ switch (execution.model)
+ {
+ case ExecutionModelTessellationControl:
+ if (msl_options.multi_patch_workgroup)
+ {
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL.");
+ }
+ return "threadgroup_position_in_grid";
+ case ExecutionModelTessellationEvaluation:
+ return "patch_id";
+ case ExecutionModelFragment:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2.");
+ return "primitive_id";
+ default:
+ SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
+ }
+
+ // Tess. control function out
+ case BuiltInTessLevelOuter:
+ case BuiltInTessLevelInner:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
+
+ // Tess. evaluation function in
+ case BuiltInTessCoord:
+ return "position_in_patch";
+
+ // Fragment function in
+ case BuiltInFrontFacing:
+ return "front_facing";
+ case BuiltInPointCoord:
+ return "point_coord";
+ case BuiltInFragCoord:
+ return "position";
+ case BuiltInSampleId:
+ return "sample_id";
+ case BuiltInSampleMask:
+ return "sample_mask";
+ case BuiltInSamplePosition:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
+ case BuiltInViewIndex:
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders.");
+ // The ViewIndex was implicitly used in the prior stages to set the render_target_array_index,
+ // so we can get it from there.
+ return "render_target_array_index";
+
+ // Fragment function out
+ case BuiltInFragDepth:
+ if (execution.flags.get(ExecutionModeDepthGreater))
+ return "depth(greater)";
+ else if (execution.flags.get(ExecutionModeDepthLess))
+ return "depth(less)";
+ else
+ return "depth(any)";
+
+ case BuiltInFragStencilRefEXT:
+ return "stencil";
+
+ // Compute function in
+ case BuiltInGlobalInvocationId:
+ return "thread_position_in_grid";
+
+ case BuiltInWorkgroupId:
+ return "threadgroup_position_in_grid";
+
+ case BuiltInNumWorkgroups:
+ return "threadgroups_per_grid";
+
+ case BuiltInLocalInvocationId:
+ return "thread_position_in_threadgroup";
+
+ case BuiltInLocalInvocationIndex:
+ return "thread_index_in_threadgroup";
+
+ case BuiltInSubgroupSize:
+ if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??");
+ if (execution.model == ExecutionModelFragment)
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders.");
+ return "threads_per_simdgroup";
+ }
+ else
+ {
+ // thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0,
+ // but not in fragment.
+ return "thread_execution_width";
+ }
+
+ case BuiltInNumSubgroups:
+ if (msl_options.emulate_subgroups)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation.");
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
+ return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup";
+
+ case BuiltInSubgroupId:
+ if (msl_options.emulate_subgroups)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation.");
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
+ return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup";
+
+ case BuiltInSubgroupLocalInvocationId:
+ if (msl_options.emulate_subgroups)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation.");
+ if (execution.model == ExecutionModelFragment)
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders.");
+ return "thread_index_in_simdgroup";
+ }
+ else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute ||
+ execution.model == ExecutionModelTessellationControl ||
+ (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation))
+ {
+ // We are generating a Metal kernel function.
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0.");
+ return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup";
+ }
+ else
+ SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function.");
+
+ case BuiltInSubgroupEqMask:
+ case BuiltInSubgroupGeMask:
+ case BuiltInSubgroupGtMask:
+ case BuiltInSubgroupLeMask:
+ case BuiltInSubgroupLtMask:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL.");
+
+ case BuiltInBaryCoordKHR:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
+ else if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
+ return "barycentric_coord, center_perspective";
+
+ case BuiltInBaryCoordNoPerspKHR:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
+ else if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
+ return "barycentric_coord, center_no_perspective";
+
+ default:
+ return "unsupported-built-in";
+ }
+}
+
+// Returns an MSL string type declaration for a SPIR-V builtin
+string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id)
+{
+ switch (builtin)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ return "uint";
+ case BuiltInVertexIndex:
+ return "uint";
+ case BuiltInBaseVertex:
+ return "uint";
+ case BuiltInInstanceId:
+ return "uint";
+ case BuiltInInstanceIndex:
+ return "uint";
+ case BuiltInBaseInstance:
+ return "uint";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // Vertex function out
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ return "float";
+ case BuiltInPointSize:
+ return "float";
+ case BuiltInPosition:
+ return "float4";
+ case BuiltInLayer:
+ return "uint";
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ return "uint";
+
+ // Tess. control function in
+ case BuiltInInvocationId:
+ return "uint";
+ case BuiltInPatchVertices:
+ return "uint";
+ case BuiltInPrimitiveId:
+ return "uint";
+
+ // Tess. control function out
+ case BuiltInTessLevelInner:
+ if (is_tese_shader())
+ return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float2";
+ return "half";
+ case BuiltInTessLevelOuter:
+ if (is_tese_shader())
+ return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float4";
+ return "half";
+
+ // Tess. evaluation function in
+ case BuiltInTessCoord:
+ return "float3";
+
+ // Fragment function in
+ case BuiltInFrontFacing:
+ return "bool";
+ case BuiltInPointCoord:
+ return "float2";
+ case BuiltInFragCoord:
+ return "float4";
+ case BuiltInSampleId:
+ return "uint";
+ case BuiltInSampleMask:
+ return "uint";
+ case BuiltInSamplePosition:
+ return "float2";
+ case BuiltInViewIndex:
+ return "uint";
+
+ case BuiltInHelperInvocation:
+ return "bool";
+
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ // Use the type as declared, can be 1, 2 or 3 components.
+ return type_to_glsl(get_variable_data_type(get<SPIRVariable>(id)));
+
+ // Fragment function out
+ case BuiltInFragDepth:
+ return "float";
+
+ case BuiltInFragStencilRefEXT:
+ return "uint";
+
+ // Compute function in
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInNumWorkgroups:
+ case BuiltInWorkgroupId:
+ return "uint3";
+ case BuiltInLocalInvocationIndex:
+ case BuiltInNumSubgroups:
+ case BuiltInSubgroupId:
+ case BuiltInSubgroupSize:
+ case BuiltInSubgroupLocalInvocationId:
+ return "uint";
+ case BuiltInSubgroupEqMask:
+ case BuiltInSubgroupGeMask:
+ case BuiltInSubgroupGtMask:
+ case BuiltInSubgroupLeMask:
+ case BuiltInSubgroupLtMask:
+ return "uint4";
+
+ case BuiltInDeviceIndex:
+ return "int";
+
+ default:
+ return "unsupported-built-in-type";
+ }
+}
+
+// Returns the declaration of a built-in argument to a function
+string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
+{
+ string bi_arg;
+ if (prefix_comma)
+ bi_arg += ", ";
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ builtin_declaration = true;
+ bi_arg += builtin_type_decl(builtin);
+ bi_arg += string(" ") + builtin_to_glsl(builtin, StorageClassInput);
+ bi_arg += string(" [[") + builtin_qualifier(builtin) + string("]]");
+ builtin_declaration = false;
+
+ return bi_arg;
+}
+
+const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const
+{
+ if (member_is_remapped_physical_type(type, index))
+ return get<SPIRType>(get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID));
+ else
+ return get<SPIRType>(type.member_types[index]);
+}
+
+SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const
+{
+ SPIRType type = get_physical_member_type(ib_type, index);
+ uint32_t loc = get_member_decoration(ib_type.self, index, DecorationLocation);
+ uint32_t cmp = get_member_decoration(ib_type.self, index, DecorationComponent);
+ auto p_va = inputs_by_location.find({loc, cmp});
+ if (p_va != end(inputs_by_location) && p_va->second.vecsize > type.vecsize)
+ type.vecsize = p_va->second.vecsize;
+
+ return type;
+}
+
+uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const
+{
+ // Array stride in MSL is always size * array_size. sizeof(float3) == 16,
+ // unlike GLSL and HLSL where array stride would be 16 and size 12.
+
+ // We could use parent type here and recurse, but that makes creating physical type remappings
+ // far more complicated. We'd rather just create the final type, and ignore having to create the entire type
+ // hierarchy in order to compute this value, so make a temporary type on the stack.
+
+ auto basic_type = type;
+ basic_type.array.clear();
+ basic_type.array_size_literal.clear();
+ uint32_t value_size = get_declared_type_size_msl(basic_type, is_packed, row_major);
+
+ uint32_t dimensions = uint32_t(type.array.size());
+ assert(dimensions > 0);
+ dimensions--;
+
+ // Multiply together every dimension, except the last one.
+ for (uint32_t dim = 0; dim < dimensions; dim++)
+ {
+ uint32_t array_size = to_array_size_literal(type, dim);
+ value_size *= max<uint32_t>(array_size, 1u);
+ }
+
+ return value_size;
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_array_stride_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_array_stride_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const
+{
+ // For packed matrices, we just use the size of the vector type.
+ // Otherwise, MatrixStride == alignment, which is the size of the underlying vector type.
+ if (packed)
+ return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize);
+ else
+ return get_declared_type_alignment_msl(type, false, row_major);
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_matrix_stride_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_matrix_stride_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment,
+ bool ignore_padding) const
+{
+ // If we have a target size, that is the declared size as well.
+ if (!ignore_padding && has_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget))
+ return get_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget);
+
+ if (struct_type.member_types.empty())
+ return 0;
+
+ uint32_t mbr_cnt = uint32_t(struct_type.member_types.size());
+
+ // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
+ uint32_t alignment = 1;
+
+ if (!ignore_alignment)
+ {
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, i);
+ alignment = max(alignment, mbr_alignment);
+ }
+ }
+
+ // Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends
+ // on physical size in MSL, and the size of the struct itself is then aligned to struct alignment.
+ uint32_t spirv_offset = type_struct_member_offset(struct_type, mbr_cnt - 1);
+ uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, mbr_cnt - 1);
+ msl_size = (msl_size + alignment - 1) & ~(alignment - 1);
+ return msl_size;
+}
+
+uint32_t CompilerMSL::get_physical_type_stride(const SPIRType &type) const
+{
+ // This should only be relevant for plain types such as scalars and vectors?
+ // If we're pointing to a struct, it will recursively pick up packed/row-major state.
+ return get_declared_type_size_msl(type, false, false);
+}
+
+// Returns the byte size of a struct member.
+uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const
+{
+ // Pointers take 8 bytes each
+ // Match both pointer and array-of-pointer here.
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ {
+ uint32_t type_size = 8;
+
+ // Work our way through potentially layered arrays,
+ // stopping when we hit a pointer that is not also an array.
+ int32_t dim_idx = (int32_t)type.array.size() - 1;
+ auto *p_type = &type;
+ while (!is_pointer(*p_type) && dim_idx >= 0)
+ {
+ type_size *= to_array_size_literal(*p_type, dim_idx);
+ p_type = &get<SPIRType>(p_type->parent_type);
+ dim_idx--;
+ }
+
+ return type_size;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying size of opaque object.");
+
+ default:
+ {
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ return get_declared_type_array_stride_msl(type, is_packed, row_major) * max<uint32_t>(array_size, 1u);
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ return get_declared_struct_size_msl(type);
+
+ if (is_packed)
+ {
+ return type.vecsize * type.columns * (type.width / 8);
+ }
+ else
+ {
+ // An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
+ uint32_t vecsize = type.vecsize;
+ uint32_t columns = type.columns;
+
+ if (row_major && columns > 1)
+ swap(vecsize, columns);
+
+ if (vecsize == 3)
+ vecsize = 4;
+
+ return vecsize * columns * (type.width / 8);
+ }
+ }
+ }
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_size_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_size_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+// Returns the byte alignment of a type.
+uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const
+{
+ // Pointers align on multiples of 8 bytes.
+ // Deliberately ignore array-ness here. It's not relevant for alignment.
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ return 8;
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying alignment of opaque object.");
+
+ case SPIRType::Double:
+ SPIRV_CROSS_THROW("double types are not supported in buffers in MSL.");
+
+ case SPIRType::Struct:
+ {
+ // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
+ uint32_t alignment = 1;
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ alignment = max(alignment, uint32_t(get_declared_struct_member_alignment_msl(type, i)));
+ return alignment;
+ }
+
+ default:
+ {
+ if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above.");
+ if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above.");
+ // Alignment of packed type is the same as the underlying component or column size.
+ // Alignment of unpacked type is the same as the vector size.
+ // Alignment of 3-elements vector is the same as 4-elements (including packed using column).
+ if (is_packed)
+ {
+ // If we have packed_T and friends, the alignment is always scalar.
+ return type.width / 8;
+ }
+ else
+ {
+ // This is the general rule for MSL. Size == alignment.
+ uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize;
+ return (type.width / 8) * (vecsize == 3 ? 4 : vecsize);
+ }
+ }
+ }
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_alignment_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_alignment_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+bool CompilerMSL::skip_argument(uint32_t) const
+{
+ return false;
+}
+
+void CompilerMSL::analyze_sampled_image_usage()
+{
+ if (msl_options.swizzle_texture_samples)
+ {
+ SampledImageScanner scanner(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
+ }
+}
+
+bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
+{
+ switch (opcode)
+ {
+ case OpLoad:
+ case OpImage:
+ case OpSampledImage:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+ auto &type = compiler.get<SPIRType>(result_type);
+ if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
+ return true;
+
+ uint32_t id = args[1];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ break;
+ }
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageFetch:
+ case OpImageGather:
+ case OpImageDrefGather:
+ compiler.has_sampled_images =
+ compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
+ compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images;
+ break;
+ default:
+ break;
+ }
+ return true;
+}
+
+// If a needed custom function wasn't added before, add it and force a recompile.
+void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func)
+{
+ if (spv_function_implementations.count(spv_func) == 0)
+ {
+ spv_function_implementations.insert(spv_func);
+ suppress_missing_prototypes = true;
+ force_recompile();
+ }
+}
+
+bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ // Since MSL exists in a single execution scope, function prototype declarations are not
+ // needed, and clutter the output. If secondary functions are output (either as a SPIR-V
+ // function implementation or as indicated by the presence of OpFunctionCall), then set
+ // suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
+
+ // Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
+ SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
+ if (spv_func != SPVFuncImplNone)
+ {
+ compiler.spv_function_implementations.insert(spv_func);
+ suppress_missing_prototypes = true;
+ }
+
+ switch (opcode)
+ {
+
+ case OpFunctionCall:
+ suppress_missing_prototypes = true;
+ break;
+
+ case OpDemoteToHelperInvocationEXT:
+ uses_discard = true;
+ break;
+
+ // Emulate texture2D atomic operations
+ case OpImageTexelPointer:
+ {
+ if (!compiler.msl_options.supports_msl_version(3, 1))
+ {
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ image_pointers_emulated[args[1]] = var ? var->self : ID(0);
+ }
+ break;
+ }
+
+ case OpImageWrite:
+ uses_image_write = true;
+ break;
+
+ case OpStore:
+ check_resource_write(args[0]);
+ break;
+
+ // Emulate texture2D atomic operations
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ {
+ uses_atomics = true;
+ auto it = image_pointers_emulated.find(args[2]);
+ if (it != image_pointers_emulated.end())
+ {
+ uses_image_write = true;
+ compiler.atomic_image_vars_emulated.insert(it->second);
+ }
+ else
+ check_resource_write(args[2]);
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ uses_atomics = true;
+ auto it = image_pointers_emulated.find(args[0]);
+ if (it != image_pointers_emulated.end())
+ {
+ compiler.atomic_image_vars_emulated.insert(it->second);
+ uses_image_write = true;
+ }
+ else
+ check_resource_write(args[0]);
+ break;
+ }
+
+ case OpAtomicLoad:
+ {
+ uses_atomics = true;
+ auto it = image_pointers_emulated.find(args[2]);
+ if (it != image_pointers_emulated.end())
+ {
+ compiler.atomic_image_vars_emulated.insert(it->second);
+ }
+ break;
+ }
+
+ case OpGroupNonUniformInverseBallot:
+ needs_subgroup_invocation_id = true;
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ needs_subgroup_size = true;
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ if (args[3] == GroupOperationReduce)
+ needs_subgroup_size = true;
+ else
+ needs_subgroup_invocation_id = true;
+ break;
+
+ case OpArrayLength:
+ {
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ if (var != nullptr)
+ {
+ if (!compiler.is_var_runtime_size_array(*var))
+ compiler.buffers_requiring_array_length.insert(var->self);
+ }
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ // OpArrayLength might want to know if taking ArrayLength of an array of SSBOs.
+ uint32_t result_type = args[0];
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ compiler.ir.ids[id].set_allow_type_rewrite();
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = args[2];
+ if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(args[3]);
+ switch (op_450)
+ {
+ case GLSLstd450InterpolateAtCentroid:
+ case GLSLstd450InterpolateAtSample:
+ case GLSLstd450InterpolateAtOffset:
+ {
+ if (!compiler.msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3.");
+ // Fragment varyings used with pull-model interpolation need special handling,
+ // due to the way pull-model interpolation works in Metal.
+ auto *var = compiler.maybe_get_backing_variable(args[4]);
+ if (var)
+ {
+ compiler.pull_model_inputs.insert(var->self);
+ auto &var_type = compiler.get_variable_element_type(*var);
+ // In addition, if this variable has a 'Sample' decoration, we need the sample ID
+ // in order to do default interpolation.
+ if (compiler.has_decoration(var->self, DecorationSample))
+ {
+ needs_sample_id = true;
+ }
+ else if (var_type.basetype == SPIRType::Struct)
+ {
+ // Now we need to check each member and see if it has this decoration.
+ for (uint32_t i = 0; i < var_type.member_types.size(); ++i)
+ {
+ if (compiler.has_member_decoration(var_type.self, i, DecorationSample))
+ {
+ needs_sample_id = true;
+ break;
+ }
+ }
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpIsHelperInvocationEXT:
+ if (compiler.needs_manual_helper_invocation_updates())
+ needs_helper_invocation = true;
+ break;
+
+ default:
+ break;
+ }
+
+ // If it has one, keep track of the instruction's result type, mapped by ID
+ uint32_t result_type, result_id;
+ if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
+ result_types[result_id] = result_type;
+
+ return true;
+}
+
+// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
+void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
+{
+ auto *p_var = compiler.maybe_get_backing_variable(var_id);
+ StorageClass sc = p_var ? p_var->storage : StorageClassMax;
+ if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
+ uses_buffer_write = true;
+}
+
+// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
+CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
+{
+ switch (opcode)
+ {
+ case OpFMod:
+ return SPVFuncImplMod;
+
+ case OpFAdd:
+ case OpFSub:
+ if (compiler.msl_options.invariant_float_math ||
+ compiler.has_decoration(args[1], DecorationNoContraction))
+ {
+ return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub;
+ }
+ break;
+
+ case OpFMul:
+ case OpOuterProduct:
+ case OpMatrixTimesVector:
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesMatrix:
+ if (compiler.msl_options.invariant_float_math ||
+ compiler.has_decoration(args[1], DecorationNoContraction))
+ {
+ return SPVFuncImplFMul;
+ }
+ break;
+
+ case OpQuantizeToF16:
+ return SPVFuncImplQuantizeToF16;
+
+ case OpTypeArray:
+ {
+ // Allow Metal to use the array<T> template to make arrays a value type
+ return SPVFuncImplUnsafeArray;
+ }
+
+ // Emulate texture2D atomic operations
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ case OpAtomicLoad:
+ case OpAtomicStore:
+ {
+ auto it = image_pointers_emulated.find(args[opcode == OpAtomicStore ? 0 : 2]);
+ if (it != image_pointers_emulated.end())
+ {
+ uint32_t tid = compiler.get<SPIRVariable>(it->second).basetype;
+ if (tid && compiler.get<SPIRType>(tid).image.dim == Dim2D)
+ return SPVFuncImplImage2DAtomicCoords;
+ }
+ break;
+ }
+
+ case OpImageFetch:
+ case OpImageRead:
+ case OpImageWrite:
+ {
+ // Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
+ uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
+ if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
+ return SPVFuncImplTexelBufferCoords;
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = args[2];
+ if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(args[3]);
+ switch (op_450)
+ {
+ case GLSLstd450Radians:
+ return SPVFuncImplRadians;
+ case GLSLstd450Degrees:
+ return SPVFuncImplDegrees;
+ case GLSLstd450FindILsb:
+ return SPVFuncImplFindILsb;
+ case GLSLstd450FindSMsb:
+ return SPVFuncImplFindSMsb;
+ case GLSLstd450FindUMsb:
+ return SPVFuncImplFindUMsb;
+ case GLSLstd450SSign:
+ return SPVFuncImplSSign;
+ case GLSLstd450Reflect:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.vecsize == 1)
+ return SPVFuncImplReflectScalar;
+ break;
+ }
+ case GLSLstd450Refract:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.vecsize == 1)
+ return SPVFuncImplRefractScalar;
+ break;
+ }
+ case GLSLstd450FaceForward:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.vecsize == 1)
+ return SPVFuncImplFaceForwardScalar;
+ break;
+ }
+ case GLSLstd450MatrixInverse:
+ {
+ auto &mat_type = compiler.get<SPIRType>(args[0]);
+ switch (mat_type.columns)
+ {
+ case 2:
+ return SPVFuncImplInverse2x2;
+ case 3:
+ return SPVFuncImplInverse3x3;
+ case 4:
+ return SPVFuncImplInverse4x4;
+ default:
+ break;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpGroupNonUniformBroadcast:
+ case OpSubgroupReadInvocationKHR:
+ return SPVFuncImplSubgroupBroadcast;
+
+ case OpGroupNonUniformBroadcastFirst:
+ case OpSubgroupFirstInvocationKHR:
+ return SPVFuncImplSubgroupBroadcastFirst;
+
+ case OpGroupNonUniformBallot:
+ case OpSubgroupBallotKHR:
+ return SPVFuncImplSubgroupBallot;
+
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ return SPVFuncImplSubgroupBallotBitExtract;
+
+ case OpGroupNonUniformBallotFindLSB:
+ return SPVFuncImplSubgroupBallotFindLSB;
+
+ case OpGroupNonUniformBallotFindMSB:
+ return SPVFuncImplSubgroupBallotFindMSB;
+
+ case OpGroupNonUniformBallotBitCount:
+ return SPVFuncImplSubgroupBallotBitCount;
+
+ case OpGroupNonUniformAllEqual:
+ case OpSubgroupAllEqualKHR:
+ return SPVFuncImplSubgroupAllEqual;
+
+ case OpGroupNonUniformShuffle:
+ return SPVFuncImplSubgroupShuffle;
+
+ case OpGroupNonUniformShuffleXor:
+ return SPVFuncImplSubgroupShuffleXor;
+
+ case OpGroupNonUniformShuffleUp:
+ return SPVFuncImplSubgroupShuffleUp;
+
+ case OpGroupNonUniformShuffleDown:
+ return SPVFuncImplSubgroupShuffleDown;
+
+ case OpGroupNonUniformQuadBroadcast:
+ return SPVFuncImplQuadBroadcast;
+
+ case OpGroupNonUniformQuadSwap:
+ return SPVFuncImplQuadSwap;
+
+ case OpSDot:
+ case OpUDot:
+ case OpSUDot:
+ case OpSDotAccSat:
+ case OpUDotAccSat:
+ case OpSUDotAccSat:
+ return SPVFuncImplReduceAdd;
+
+ default:
+ break;
+ }
+ return SPVFuncImplNone;
+}
+
+// Sort both type and meta member content based on builtin status (put builtins at end),
+// then by the required sorting aspect.
+void CompilerMSL::MemberSorter::sort()
+{
+ // Create a temporary array of consecutive member indices and sort it based on how
+ // the members should be reordered, based on builtin and sorting aspect meta info.
+ size_t mbr_cnt = type.member_types.size();
+ SmallVector<uint32_t> mbr_idxs(mbr_cnt);
+ std::iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
+ std::stable_sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
+
+ bool sort_is_identity = true;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ if (mbr_idx != mbr_idxs[mbr_idx])
+ {
+ sort_is_identity = false;
+ break;
+ }
+ }
+
+ if (sort_is_identity)
+ return;
+
+ if (meta.members.size() < type.member_types.size())
+ {
+ // This should never trigger in normal circumstances, but to be safe.
+ meta.members.resize(type.member_types.size());
+ }
+
+ // Move type and meta member info to the order defined by the sorted member indices.
+ // This is done by creating temporary copies of both member types and meta, and then
+ // copying back to the original content at the sorted indices.
+ auto mbr_types_cpy = type.member_types;
+ auto mbr_meta_cpy = meta.members;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
+ meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
+ }
+
+ // If we're sorting by Offset, this might affect user code which accesses a buffer block.
+ // We will need to redirect member indices from defined index to sorted index using reverse lookup.
+ if (sort_aspect == SortAspect::Offset)
+ {
+ type.member_type_index_redirection.resize(mbr_cnt);
+ for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++)
+ type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx;
+ }
+}
+
+bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
+{
+ auto &mbr_meta1 = meta.members[mbr_idx1];
+ auto &mbr_meta2 = meta.members[mbr_idx2];
+
+ if (sort_aspect == LocationThenBuiltInType)
+ {
+ // Sort first by builtin status (put builtins at end), then by the sorting aspect.
+ if (mbr_meta1.builtin != mbr_meta2.builtin)
+ return mbr_meta2.builtin;
+ else if (mbr_meta1.builtin)
+ return mbr_meta1.builtin_type < mbr_meta2.builtin_type;
+ else if (mbr_meta1.location == mbr_meta2.location)
+ return mbr_meta1.component < mbr_meta2.component;
+ else
+ return mbr_meta1.location < mbr_meta2.location;
+ }
+ else
+ return mbr_meta1.offset < mbr_meta2.offset;
+}
+
+CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
+ : type(t)
+ , meta(m)
+ , sort_aspect(sa)
+{
+ // Ensure enough meta info is available
+ meta.members.resize(max(type.member_types.size(), meta.members.size()));
+}
+
+void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler)
+{
+ auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
+ if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
+ SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
+ if (!type.array.empty())
+ SPIRV_CROSS_THROW("Can not remap array of samplers.");
+ constexpr_samplers_by_id[id] = sampler;
+}
+
+void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding,
+ const MSLConstexprSampler &sampler)
+{
+ constexpr_samplers_by_binding[{ desc_set, binding }] = sampler;
+}
+
+void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
+{
+ bool is_packed = has_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypePacked);
+ auto *source_expr = maybe_get<SPIRExpression>(source_id);
+ auto *var = maybe_get_backing_variable(source_id);
+ const SPIRType *var_type = nullptr, *phys_type = nullptr;
+
+ if (uint32_t phys_id = get_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypeID))
+ phys_type = &get<SPIRType>(phys_id);
+ else
+ phys_type = &expr_type;
+
+ if (var)
+ {
+ source_id = var->self;
+ var_type = &get_variable_data_type(*var);
+ }
+
+ bool rewrite_boolean_load =
+ expr_type.basetype == SPIRType::Boolean &&
+ (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));
+
+ // Type fixups for workgroup variables if they are booleans.
+ if (rewrite_boolean_load)
+ {
+ if (is_array(expr_type))
+ expr = to_rerolled_array_expression(expr_type, expr, expr_type);
+ else
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ }
+
+ // Type fixups for workgroup variables if they are matrices.
+ // Don't do fixup for packed types; those are handled specially.
+ // FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
+ if (!msl_options.supports_msl_version(3, 0) && var &&
+ (var->storage == StorageClassWorkgroup ||
+ (var_type->basetype == SPIRType::Struct &&
+ has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
+ expr_type.columns > 1)
+ {
+ SPIRType matrix_type = *phys_type;
+ if (source_expr && source_expr->need_transpose)
+ swap(matrix_type.vecsize, matrix_type.columns);
+ matrix_type.array.clear();
+ matrix_type.array_size_literal.clear();
+ expr = join(type_to_glsl(matrix_type), "(", expr, ")");
+ }
+
+ // Only interested in standalone builtin variables in the switch below.
+ if (!has_decoration(source_id, DecorationBuiltIn))
+ {
+ // If the backing variable does not match our expected sign, we can fix it up here.
+ // See ensure_correct_input_type().
+ if (var && var->storage == StorageClassInput)
+ {
+ auto &base_type = get<SPIRType>(var->basetype);
+ if (base_type.basetype != SPIRType::Struct && expr_type.basetype != base_type.basetype)
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ }
+ return;
+ }
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+ auto expected_width = expr_type.width;
+ switch (builtin)
+ {
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInLocalInvocationIndex:
+ case BuiltInWorkgroupSize:
+ case BuiltInNumWorkgroups:
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInPrimitiveId:
+ case BuiltInSubgroupSize:
+ case BuiltInSubgroupLocalInvocationId:
+ case BuiltInViewIndex:
+ case BuiltInVertexIndex:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ case BuiltInBaseVertex:
+ case BuiltInSampleMask:
+ expected_type = SPIRType::UInt;
+ expected_width = 32;
+ break;
+
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ if (is_tesc_shader())
+ {
+ expected_type = SPIRType::Half;
+ expected_width = 16;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (is_array(expr_type) && builtin == BuiltInSampleMask)
+ {
+ // Needs special handling.
+ auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
+ wrap_expr += join(type_to_glsl(get<SPIRType>(expr_type.parent_type)), "(", expr, ")");
+ wrap_expr += " })";
+ expr = std::move(wrap_expr);
+ }
+ else if (expected_type != expr_type.basetype)
+ {
+ if (is_array(expr_type) && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
+ {
+ // Triggers when loading TessLevel directly as an array.
+ // Need explicit padding + cast.
+ auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
+
+ uint32_t array_size = get_physical_tess_level_array_size(builtin);
+ for (uint32_t i = 0; i < array_size; i++)
+ {
+ if (array_size > 1)
+ wrap_expr += join("float(", expr, "[", i, "])");
+ else
+ wrap_expr += join("float(", expr, ")");
+ if (i + 1 < array_size)
+ wrap_expr += ", ";
+ }
+
+ if (is_tessellating_triangles())
+ wrap_expr += ", 0.0";
+
+ wrap_expr += " })";
+ expr = std::move(wrap_expr);
+ }
+ else
+ {
+ // These are of different widths, so we cannot do a straight bitcast.
+ if (expected_width != expr_type.width)
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ else
+ expr = bitcast_expression(expr_type, expected_type, expr);
+ }
+ }
+}
+
+void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
+{
+ bool is_packed = has_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypePacked);
+ auto *target_expr = maybe_get<SPIRExpression>(target_id);
+ auto *var = maybe_get_backing_variable(target_id);
+ const SPIRType *var_type = nullptr, *phys_type = nullptr;
+
+ if (uint32_t phys_id = get_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypeID))
+ phys_type = &get<SPIRType>(phys_id);
+ else
+ phys_type = &expr_type;
+
+ if (var)
+ {
+ target_id = var->self;
+ var_type = &get_variable_data_type(*var);
+ }
+
+ bool rewrite_boolean_store =
+ expr_type.basetype == SPIRType::Boolean &&
+ (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));
+
+ // Type fixups for workgroup variables or struct members if they are booleans.
+ if (rewrite_boolean_store)
+ {
+ if (is_array(expr_type))
+ {
+ expr = to_rerolled_array_expression(*var_type, expr, expr_type);
+ }
+ else
+ {
+ auto short_type = expr_type;
+ short_type.basetype = SPIRType::Short;
+ expr = join(type_to_glsl(short_type), "(", expr, ")");
+ }
+ }
+
+ // Type fixups for workgroup variables if they are matrices.
+ // Don't do fixup for packed types; those are handled specially.
+ // FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
+ if (!msl_options.supports_msl_version(3, 0) && var &&
+ (var->storage == StorageClassWorkgroup ||
+ (var_type->basetype == SPIRType::Struct &&
+ has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
+ expr_type.columns > 1)
+ {
+ SPIRType matrix_type = *phys_type;
+ if (target_expr && target_expr->need_transpose)
+ swap(matrix_type.vecsize, matrix_type.columns);
+ expr = join("spvStorage_", type_to_glsl(matrix_type), "(", expr, ")");
+ }
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(target_id, DecorationBuiltIn))
+ return;
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+ auto expected_width = expr_type.width;
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInPrimitiveId:
+ case BuiltInViewIndex:
+ expected_type = SPIRType::UInt;
+ expected_width = 32;
+ break;
+
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ expected_type = SPIRType::Half;
+ expected_width = 16;
+ break;
+
+ default:
+ break;
+ }
+
+ if (expected_type != expr_type.basetype)
+ {
+ if (expected_width != expr_type.width)
+ {
+ // These are of different widths, so we cannot do a straight bitcast.
+ auto type = expr_type;
+ type.basetype = expected_type;
+ type.width = expected_width;
+ expr = join(type_to_glsl(type), "(", expr, ")");
+ }
+ else
+ {
+ auto type = expr_type;
+ type.basetype = expected_type;
+ expr = bitcast_expression(type, expr_type.basetype, expr);
+ }
+ }
+}
+
+string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
+{
+ // We risk getting an array initializer here with MSL. If we have an array.
+ // FIXME: We cannot handle non-constant arrays being initialized.
+ // We will need to inject spvArrayCopy here somehow ...
+ auto &type = get<SPIRType>(var.basetype);
+ string expr;
+ if (ir.ids[var.initializer].get_type() == TypeConstant &&
+ (!type.array.empty() || type.basetype == SPIRType::Struct))
+ expr = constant_expression(get<SPIRConstant>(var.initializer));
+ else
+ expr = CompilerGLSL::to_initializer_expression(var);
+ // If the initializer has more vector components than the variable, add a swizzle.
+ // FIXME: This can't handle arrays or structs.
+ auto &init_type = expression_type(var.initializer);
+ if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize)
+ expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0));
+ return expr;
+}
+
+string CompilerMSL::to_zero_initialized_expression(uint32_t)
+{
+ return "{}";
+}
+
+bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
+{
+ if (!msl_options.argument_buffers)
+ return false;
+ if (desc_set >= kMaxArgumentBuffers)
+ return false;
+
+ return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
+}
+
+bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const
+{
+ // iOS Tier 1 argument buffers do not support writable images.
+ // When the argument buffer is encoded, we don't know whether this image will have a
+ // NonWritable decoration, so just use discrete arguments for all storage images on iOS.
+ bool is_supported_type = !(type.basetype == SPIRType::Image &&
+ type.image.sampled == 2 &&
+ msl_options.is_ios() &&
+ msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1);
+ return is_supported_type && !type_is_msl_framebuffer_fetch(type);
+}
+
+void CompilerMSL::emit_argument_buffer_aliased_descriptor(const SPIRVariable &aliased_var,
+ const SPIRVariable &base_var)
+{
+ // To deal with buffer <-> image aliasing, we need to perform an unholy UB ritual.
+ // A texture type in Metal 3.0 is a pointer. However, we cannot simply cast a pointer to texture.
+ // What we *can* do is to cast pointer-to-pointer to pointer-to-texture.
+
+ // We need to explicitly reach into the descriptor buffer lvalue, not any spvDescriptorArray wrapper.
+ auto *var_meta = ir.find_meta(base_var.self);
+ bool old_explicit_qualifier = var_meta && var_meta->decoration.qualified_alias_explicit_override;
+ if (var_meta)
+ var_meta->decoration.qualified_alias_explicit_override = false;
+ auto unqualified_name = to_name(base_var.self, false);
+ if (var_meta)
+ var_meta->decoration.qualified_alias_explicit_override = old_explicit_qualifier;
+
+ // For non-arrayed buffers, we have already performed a de-reference.
+ // We need a proper lvalue to cast, so strip away the de-reference.
+ if (unqualified_name.size() > 2 && unqualified_name[0] == '(' && unqualified_name[1] == '*')
+ {
+ unqualified_name.erase(unqualified_name.begin(), unqualified_name.begin() + 2);
+ unqualified_name.pop_back();
+ }
+
+ string name;
+
+ auto &var_type = get<SPIRType>(aliased_var.basetype);
+ auto &data_type = get_variable_data_type(aliased_var);
+ string descriptor_storage = descriptor_address_space(aliased_var.self, aliased_var.storage, "");
+
+ if (aliased_var.storage == StorageClassUniformConstant)
+ {
+ if (is_var_runtime_size_array(aliased_var))
+ {
+ // This becomes a plain pointer to spvDescriptor.
+ name = join("reinterpret_cast<", descriptor_storage, " ",
+ type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), ">(&",
+ unqualified_name, ")");
+ }
+ else
+ {
+ name = join("reinterpret_cast<", descriptor_storage, " ",
+ type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), " &>(",
+ unqualified_name, ");");
+ }
+ }
+ else
+ {
+ // Buffer types.
+ bool old_is_using_builtin_array = is_using_builtin_array;
+ is_using_builtin_array = true;
+
+ bool needs_post_cast_deref = !is_array(data_type);
+ string ref_type = needs_post_cast_deref ? "&" : join("(&)", type_to_array_glsl(var_type, aliased_var.self));
+
+ if (is_var_runtime_size_array(aliased_var))
+ {
+ name = join("reinterpret_cast<",
+ type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " *>(&",
+ unqualified_name, ")");
+ }
+ else
+ {
+ name = join(needs_post_cast_deref ? "*" : "", "reinterpret_cast<",
+ type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " ",
+ ref_type,
+ ">(", unqualified_name, ");");
+ }
+
+ if (needs_post_cast_deref)
+ descriptor_storage = get_type_address_space(var_type, aliased_var.self, false);
+
+ // These kinds of ridiculous casts trigger warnings in compiler. Just ignore them.
+ if (!suppress_incompatible_pointer_types_discard_qualifiers)
+ {
+ suppress_incompatible_pointer_types_discard_qualifiers = true;
+ force_recompile_guarantee_forward_progress();
+ }
+
+ is_using_builtin_array = old_is_using_builtin_array;
+ }
+
+ if (!is_var_runtime_size_array(aliased_var))
+ {
+ // Lower to temporary, so drop the qualification.
+ set_qualified_name(aliased_var.self, "");
+ statement(descriptor_storage, " auto &", to_name(aliased_var.self), " = ", name);
+ }
+ else
+ {
+ // This alias may have already been used to emit an entry point declaration. If there is a mismatch, we need a recompile.
+ // Moving this code to be run earlier will also conflict,
+ // because we need the qualified alias for the base resource,
+ // so forcing recompile until things sync up is the least invasive method for now.
+ if (ir.meta[aliased_var.self].decoration.qualified_alias != name)
+ force_recompile();
+
+ // This will get wrapped in a separate temporary when a spvDescriptorArray wrapper is emitted.
+ set_qualified_name(aliased_var.self, name);
+ }
+}
+
+void CompilerMSL::analyze_argument_buffers()
+{
+ // Gather all used resources and sort them out into argument buffers.
+ // Each argument buffer corresponds to a descriptor set in SPIR-V.
+ // The [[id(N)]] values used correspond to the resource mapping we have for MSL.
+ // Otherwise, the binding number is used, but this is generally not safe some types like
+ // combined image samplers and arrays of resources. Metal needs different indices here,
+ // while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
+ // you will need to use the remapping from the API.
+ for (auto &id : argument_buffer_ids)
+ id = 0;
+
+ // Output resources, sorted by resource index & type.
+ struct Resource
+ {
+ SPIRVariable *var;
+ string name;
+ SPIRType::BaseType basetype;
+ uint32_t index;
+ uint32_t plane_count;
+ uint32_t plane;
+ uint32_t overlapping_var_id;
+ };
+ SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
+ SmallVector<uint32_t> inline_block_vars;
+
+ bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {};
+ bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {};
+ bool needs_buffer_sizes = false;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
+ // Ignore if it's part of a push descriptor set.
+ if (!descriptor_set_is_argument_buffer(desc_set))
+ return;
+
+ uint32_t var_id = var.self;
+ auto &type = get_variable_data_type(var);
+
+ if (desc_set >= kMaxArgumentBuffers)
+ SPIRV_CROSS_THROW("Descriptor set index is out of range.");
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
+ {
+ constexpr_sampler = find_constexpr_sampler(var_id);
+ if (constexpr_sampler)
+ {
+ // Mark this ID as a constexpr sampler for later in case it came from set/bindings.
+ constexpr_samplers_by_id[var_id] = *constexpr_sampler;
+ }
+ }
+
+ uint32_t binding = get_decoration(var_id, DecorationBinding);
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ add_resource_name(var_id);
+
+ uint32_t plane_count = 1;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ plane_count = constexpr_sampler->planes;
+
+ for (uint32_t i = 0; i < plane_count; i++)
+ {
+ uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image, i);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::Image, image_resource_index, plane_count, i, 0 });
+ }
+
+ if (type.image.dim != DimBuffer && !constexpr_sampler)
+ {
+ uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
+ resources_in_set[desc_set].push_back(
+ { &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index, 1, 0, 0 });
+ }
+ }
+ else if (inline_uniform_blocks.count(SetBindingPair{ desc_set, binding }))
+ {
+ inline_block_vars.push_back(var_id);
+ }
+ else if (!constexpr_sampler && is_supported_argument_buffer_type(type))
+ {
+ // constexpr samplers are not declared as resources.
+ // Inline uniform blocks are always emitted at the end.
+ add_resource_name(var_id);
+
+ uint32_t resource_index = get_metal_resource_index(var, type.basetype);
+
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), type.basetype, resource_index, 1, 0, 0 });
+
+ // Emulate texture2D atomic operations
+ if (atomic_image_vars_emulated.count(var.self))
+ {
+ uint32_t buffer_resource_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id) + "_atomic", SPIRType::Struct, buffer_resource_index, 1, 0, 0 });
+ }
+ }
+
+ // Check if this descriptor set needs a swizzle buffer.
+ if (needs_swizzle_buffer_def && is_sampled_image_type(type))
+ set_needs_swizzle_buffer[desc_set] = true;
+ else if (buffer_requires_array_length(var_id))
+ {
+ set_needs_buffer_sizes[desc_set] = true;
+ needs_buffer_sizes = true;
+ }
+ }
+ });
+
+ if (needs_swizzle_buffer_def || needs_buffer_sizes)
+ {
+ uint32_t uint_ptr_type_id = 0;
+
+ // We might have to add a swizzle buffer resource to the set.
+ for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
+ {
+ if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set])
+ continue;
+
+ if (uint_ptr_type_id == 0)
+ {
+ uint_ptr_type_id = ir.increase_bound_by(1);
+
+ // Create a buffer to hold extra data, including the swizzle constants.
+ SPIRType uint_type_pointer = get_uint_type();
+ uint_type_pointer.op = OpTypePointer;
+ uint_type_pointer.pointer = true;
+ uint_type_pointer.pointer_depth++;
+ uint_type_pointer.parent_type = get_uint_type_id();
+ uint_type_pointer.storage = StorageClassUniform;
+ set<SPIRType>(uint_ptr_type_id, uint_type_pointer);
+ set_decoration(uint_ptr_type_id, DecorationArrayStride, 4);
+ }
+
+ if (set_needs_swizzle_buffer[desc_set])
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+ auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
+ set_name(var_id, "spvSwizzleConstants");
+ set_decoration(var_id, DecorationDescriptorSet, desc_set);
+ set_decoration(var_id, DecorationBinding, kSwizzleBufferBinding);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 });
+ }
+
+ if (set_needs_buffer_sizes[desc_set])
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+ auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
+ set_name(var_id, "spvBufferSizeConstants");
+ set_decoration(var_id, DecorationDescriptorSet, desc_set);
+ set_decoration(var_id, DecorationBinding, kBufferSizeBufferBinding);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 });
+ }
+ }
+ }
+
+ // Now add inline uniform blocks.
+ for (uint32_t var_id : inline_block_vars)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ add_resource_name(var_id);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::Struct, get_metal_resource_index(var, SPIRType::Struct), 1, 0, 0 });
+ }
+
+ for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
+ {
+ auto &resources = resources_in_set[desc_set];
+ if (resources.empty())
+ continue;
+
+ assert(descriptor_set_is_argument_buffer(desc_set));
+
+ uint32_t next_id = ir.increase_bound_by(3);
+ uint32_t type_id = next_id + 1;
+ uint32_t ptr_type_id = next_id + 2;
+ argument_buffer_ids[desc_set] = next_id;
+
+ auto &buffer_type = set<SPIRType>(type_id, OpTypeStruct);
+
+ buffer_type.basetype = SPIRType::Struct;
+
+ if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0)
+ {
+ buffer_type.storage = StorageClassStorageBuffer;
+ // Make sure the argument buffer gets marked as const device.
+ set_decoration(next_id, DecorationNonWritable);
+ // Need to mark the type as a Block to enable this.
+ set_decoration(type_id, DecorationBlock);
+ }
+ else
+ buffer_type.storage = StorageClassUniform;
+
+ auto buffer_type_name = join("spvDescriptorSetBuffer", desc_set);
+ set_name(type_id, buffer_type_name);
+
+ auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
+ ptr_type = buffer_type;
+ ptr_type.op = spv::OpTypePointer;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.parent_type = type_id;
+
+ uint32_t buffer_variable_id = next_id;
+ auto &buffer_var = set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
+ auto buffer_name = join("spvDescriptorSet", desc_set);
+ set_name(buffer_variable_id, buffer_name);
+
+ // Ids must be emitted in ID order.
+ stable_sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
+ return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
+ });
+
+ for (size_t i = 0; i < resources.size() - 1; i++)
+ {
+ auto &r1 = resources[i];
+ auto &r2 = resources[i + 1];
+
+ if (r1.index == r2.index)
+ {
+ if (r1.overlapping_var_id)
+ r2.overlapping_var_id = r1.overlapping_var_id;
+ else
+ r2.overlapping_var_id = r1.var->self;
+
+ set_extended_decoration(r2.var->self, SPIRVCrossDecorationOverlappingBinding, r2.overlapping_var_id);
+ }
+ }
+
+ uint32_t member_index = 0;
+ uint32_t next_arg_buff_index = 0;
+ for (auto &resource : resources)
+ {
+ auto &var = *resource.var;
+ auto &type = get_variable_data_type(var);
+
+ if (is_var_runtime_size_array(var) && (argument_buffer_device_storage_mask & (1u << desc_set)) == 0)
+ SPIRV_CROSS_THROW("Runtime sized variables must be in device storage argument buffers.");
+
+ // If needed, synthesize and add padding members.
+ // member_index and next_arg_buff_index are incremented when padding members are added.
+ if (msl_options.pad_argument_buffer_resources && resource.plane == 0 && resource.overlapping_var_id == 0)
+ {
+ auto rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
+ while (resource.index > next_arg_buff_index)
+ {
+ switch (rez_bind.basetype)
+ {
+ case SPIRType::Void:
+ case SPIRType::Boolean:
+ case SPIRType::SByte:
+ case SPIRType::UByte:
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Half:
+ case SPIRType::Float:
+ case SPIRType::Double:
+ add_argument_buffer_padding_buffer_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ case SPIRType::Image:
+ add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ case SPIRType::Sampler:
+ add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ case SPIRType::SampledImage:
+ if (next_arg_buff_index == rez_bind.msl_sampler)
+ add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ else
+ add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ default:
+ break;
+ }
+
+ // After padding, retrieve the resource again. It will either be more padding, or the actual resource.
+ rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
+ }
+
+ // Adjust the number of slots consumed by current member itself.
+ // Use the count value from the app, instead of the shader, in case the
+ // shader is only accessing part, or even one element, of the array.
+ next_arg_buff_index += resource.plane_count * rez_bind.count;
+ }
+
+ string mbr_name = ensure_valid_name(resource.name, "m");
+ if (resource.plane > 0)
+ mbr_name += join(plane_name_suffix, resource.plane);
+ set_member_name(buffer_type.self, member_index, mbr_name);
+
+ if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
+ {
+ // Have to synthesize a sampler type here.
+
+ bool type_is_array = !type.array.empty();
+ uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
+ auto &new_sampler_type = set<SPIRType>(sampler_type_id, OpTypeSampler);
+ new_sampler_type.basetype = SPIRType::Sampler;
+ new_sampler_type.storage = StorageClassUniformConstant;
+
+ if (type_is_array)
+ {
+ uint32_t sampler_type_array_id = sampler_type_id + 1;
+ auto &sampler_type_array = set<SPIRType>(sampler_type_array_id, OpTypeArray);
+ sampler_type_array = new_sampler_type;
+ sampler_type_array.array = type.array;
+ sampler_type_array.array_size_literal = type.array_size_literal;
+ sampler_type_array.parent_type = sampler_type_id;
+ buffer_type.member_types.push_back(sampler_type_array_id);
+ }
+ else
+ buffer_type.member_types.push_back(sampler_type_id);
+ }
+ else
+ {
+ uint32_t binding = get_decoration(var.self, DecorationBinding);
+ SetBindingPair pair = { desc_set, binding };
+
+ if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
+ resource.basetype == SPIRType::SampledImage)
+ {
+ // Drop pointer information when we emit the resources into a struct.
+ buffer_type.member_types.push_back(get_variable_data_type_id(var));
+ if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
+ {
+ if (!msl_options.supports_msl_version(3, 0))
+ SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+.");
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ entry_func.fixup_hooks_in.push_back([this, resource]() {
+ emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id));
+ });
+ }
+ else if (resource.plane == 0)
+ {
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ }
+ else if (buffers_requiring_dynamic_offset.count(pair))
+ {
+ // Don't set the qualified name here; we'll define a variable holding the corrected buffer address later.
+ buffer_type.member_types.push_back(var.basetype);
+ buffers_requiring_dynamic_offset[pair].second = var.self;
+ }
+ else if (inline_uniform_blocks.count(pair))
+ {
+ // Put the buffer block itself into the argument buffer.
+ buffer_type.member_types.push_back(get_variable_data_type_id(var));
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ else if (atomic_image_vars_emulated.count(var.self))
+ {
+ // Emulate texture2D atomic operations.
+ // Don't set the qualified name: it's already set for this variable,
+ // and the code that references the buffer manually appends "_atomic"
+ // to the name.
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t atomic_type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+
+ SPIRType atomic_type { OpTypeInt };
+ atomic_type.basetype = SPIRType::AtomicCounter;
+ atomic_type.width = 32;
+ atomic_type.vecsize = 1;
+ set<SPIRType>(atomic_type_id, atomic_type);
+
+ atomic_type.op = OpTypePointer;
+ atomic_type.pointer = true;
+ atomic_type.pointer_depth++;
+ atomic_type.parent_type = atomic_type_id;
+ atomic_type.storage = StorageClassStorageBuffer;
+ auto &atomic_ptr_type = set<SPIRType>(type_ptr_id, atomic_type);
+ atomic_ptr_type.self = atomic_type_id;
+
+ buffer_type.member_types.push_back(type_ptr_id);
+ }
+ else
+ {
+ buffer_type.member_types.push_back(var.basetype);
+ if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
+ {
+ // Casting raw pointers is fine since their ABI is fixed, but anything opaque is deeply questionable on Metal 2.
+ if (get<SPIRVariable>(resource.overlapping_var_id).storage == StorageClassUniformConstant &&
+ !msl_options.supports_msl_version(3, 0))
+ {
+ SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+.");
+ }
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ entry_func.fixup_hooks_in.push_back([this, resource]() {
+ emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id));
+ });
+ }
+ else if (type.array.empty())
+ set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
+ else
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ }
+
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationResourceIndexPrimary,
+ resource.index);
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
+ var.self);
+ if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationOverlappingBinding);
+ member_index++;
+ }
+
+ if (msl_options.replace_recursive_inputs && type_contains_recursion(buffer_type))
+ {
+ recursive_inputs.insert(type_id);
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ auto addr_space = get_argument_address_space(buffer_var);
+ entry_func.fixup_hooks_in.push_back([this, addr_space, buffer_name, buffer_type_name]() {
+ statement(addr_space, " auto& ", buffer_name, " = *(", addr_space, " ", buffer_type_name, "*)", buffer_name, "_vp;");
+ });
+ }
+ }
+}
+
+// Return the resource type of the app-provided resources for the descriptor set,
+// that matches the resource index of the argument buffer index.
+// This is a two-step lookup, first lookup the resource binding number from the argument buffer index,
+// then lookup the resource binding using the binding number.
+const MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx) const
+{
+ auto stage = get_entry_point().model;
+ StageSetBinding arg_idx_tuple = { stage, desc_set, arg_idx };
+ auto arg_itr = resource_arg_buff_idx_to_binding_number.find(arg_idx_tuple);
+ if (arg_itr != end(resource_arg_buff_idx_to_binding_number))
+ {
+ StageSetBinding bind_tuple = { stage, desc_set, arg_itr->second };
+ auto bind_itr = resource_bindings.find(bind_tuple);
+ if (bind_itr != end(resource_bindings))
+ return bind_itr->second.first;
+ }
+ SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer "
+ "elements, all descriptor set resources must be supplied with a base type by the app.");
+}
+
+// Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index.
+// Metal does not support arrays of buffers, so these are emitted as multiple struct members.
+void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
+{
+ if (!argument_buffer_padding_buffer_type_id)
+ {
+ uint32_t buff_type_id = ir.increase_bound_by(2);
+ auto &buff_type = set<SPIRType>(buff_type_id, OpNop);
+ buff_type.basetype = rez_bind.basetype;
+ buff_type.storage = StorageClassUniformConstant;
+
+ uint32_t ptr_type_id = buff_type_id + 1;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
+ ptr_type = buff_type;
+ ptr_type.op = spv::OpTypePointer;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.parent_type = buff_type_id;
+
+ argument_buffer_padding_buffer_type_id = ptr_type_id;
+ }
+
+ add_argument_buffer_padding_type(argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
+}
+
+// Adds an argument buffer padding argument image type as a member of the struct type at the member index.
+void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
+{
+ if (!argument_buffer_padding_image_type_id)
+ {
+ uint32_t base_type_id = ir.increase_bound_by(2);
+ auto &base_type = set<SPIRType>(base_type_id, OpTypeFloat);
+ base_type.basetype = SPIRType::Float;
+ base_type.width = 32;
+
+ uint32_t img_type_id = base_type_id + 1;
+ auto &img_type = set<SPIRType>(img_type_id, OpTypeImage);
+ img_type.basetype = SPIRType::Image;
+ img_type.storage = StorageClassUniformConstant;
+
+ img_type.image.type = base_type_id;
+ img_type.image.dim = Dim2D;
+ img_type.image.depth = false;
+ img_type.image.arrayed = false;
+ img_type.image.ms = false;
+ img_type.image.sampled = 1;
+ img_type.image.format = ImageFormatUnknown;
+ img_type.image.access = AccessQualifierMax;
+
+ argument_buffer_padding_image_type_id = img_type_id;
+ }
+
+ add_argument_buffer_padding_type(argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
+}
+
+// Adds an argument buffer padding argument sampler type as a member of the struct type at the member index.
+void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
+{
+ if (!argument_buffer_padding_sampler_type_id)
+ {
+ uint32_t samp_type_id = ir.increase_bound_by(1);
+ auto &samp_type = set<SPIRType>(samp_type_id, OpTypeSampler);
+ samp_type.basetype = SPIRType::Sampler;
+ samp_type.storage = StorageClassUniformConstant;
+
+ argument_buffer_padding_sampler_type_id = samp_type_id;
+ }
+
+ add_argument_buffer_padding_type(argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
+}
+
+// Adds the argument buffer padding argument type as a member of the struct type at the member index.
+// Advances both arg_buff_index and mbr_idx to next argument slots.
+void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, uint32_t count)
+{
+ uint32_t type_id = mbr_type_id;
+ if (count > 1)
+ {
+ uint32_t ary_type_id = ir.increase_bound_by(1);
+ auto &ary_type = set<SPIRType>(ary_type_id, get<SPIRType>(type_id));
+ ary_type.op = OpTypeArray;
+ ary_type.array.push_back(count);
+ ary_type.array_size_literal.push_back(true);
+ ary_type.parent_type = type_id;
+ type_id = ary_type_id;
+ }
+
+ set_member_name(struct_type.self, mbr_idx, join("_m", arg_buff_index, "_pad"));
+ set_extended_member_decoration(struct_type.self, mbr_idx, SPIRVCrossDecorationResourceIndexPrimary, arg_buff_index);
+ struct_type.member_types.push_back(type_id);
+
+ arg_buff_index += count;
+ mbr_idx++;
+}
+
+void CompilerMSL::activate_argument_buffer_resources()
+{
+ // For ABI compatibility, force-enable all resources which are part of argument buffers.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, const SPIRVariable &) {
+ if (!has_decoration(self, DecorationDescriptorSet))
+ return;
+
+ uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ add_active_interface_variable(self);
+ });
+}
+
+bool CompilerMSL::using_builtin_array() const
+{
+ return msl_options.force_native_arrays || is_using_builtin_array;
+}
+
+void CompilerMSL::set_combined_sampler_suffix(const char *suffix)
+{
+ sampler_name_suffix = suffix;
+}
+
+const char *CompilerMSL::get_combined_sampler_suffix() const
+{
+ return sampler_name_suffix.c_str();
+}
+
+void CompilerMSL::emit_block_hints(const SPIRBlock &)
+{
+}
+
+string CompilerMSL::additional_fixed_sample_mask_str() const
+{
+ char print_buffer[32];
+#ifdef _MSC_VER
+ // snprintf does not exist or is buggy on older MSVC versions, some of
+ // them being used by MinGW. Use sprintf instead and disable
+ // corresponding warning.
+#pragma warning(push)
+#pragma warning(disable : 4996)
+#endif
+#if _WIN32
+ sprintf(print_buffer, "0x%x", msl_options.additional_fixed_sample_mask);
+#else
+ snprintf(print_buffer, sizeof(print_buffer), "0x%x", msl_options.additional_fixed_sample_mask);
+#endif
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+ return print_buffer;
+}
diff --git a/thirdparty/spirv-cross/spirv_msl.hpp b/thirdparty/spirv-cross/spirv_msl.hpp
new file mode 100644
index 0000000000..2d970c0da5
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_msl.hpp
@@ -0,0 +1,1349 @@
+/*
+ * Copyright 2016-2021 The Brenwill Workshop Ltd.
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_MSL_HPP
+#define SPIRV_CROSS_MSL_HPP
+
+#include "spirv_glsl.hpp"
+#include <map>
+#include <set>
+#include <stddef.h>
+#include <unordered_map>
+#include <unordered_set>
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+
+// Indicates the format of a shader interface variable. Currently limited to specifying
+// if the input is an 8-bit unsigned integer, 16-bit unsigned integer, or
+// some other format.
+enum MSLShaderVariableFormat
+{
+ MSL_SHADER_VARIABLE_FORMAT_OTHER = 0,
+ MSL_SHADER_VARIABLE_FORMAT_UINT8 = 1,
+ MSL_SHADER_VARIABLE_FORMAT_UINT16 = 2,
+ MSL_SHADER_VARIABLE_FORMAT_ANY16 = 3,
+ MSL_SHADER_VARIABLE_FORMAT_ANY32 = 4,
+
+ // Deprecated aliases.
+ MSL_VERTEX_FORMAT_OTHER = MSL_SHADER_VARIABLE_FORMAT_OTHER,
+ MSL_VERTEX_FORMAT_UINT8 = MSL_SHADER_VARIABLE_FORMAT_UINT8,
+ MSL_VERTEX_FORMAT_UINT16 = MSL_SHADER_VARIABLE_FORMAT_UINT16,
+ MSL_SHADER_INPUT_FORMAT_OTHER = MSL_SHADER_VARIABLE_FORMAT_OTHER,
+ MSL_SHADER_INPUT_FORMAT_UINT8 = MSL_SHADER_VARIABLE_FORMAT_UINT8,
+ MSL_SHADER_INPUT_FORMAT_UINT16 = MSL_SHADER_VARIABLE_FORMAT_UINT16,
+ MSL_SHADER_INPUT_FORMAT_ANY16 = MSL_SHADER_VARIABLE_FORMAT_ANY16,
+ MSL_SHADER_INPUT_FORMAT_ANY32 = MSL_SHADER_VARIABLE_FORMAT_ANY32,
+
+ MSL_SHADER_VARIABLE_FORMAT_INT_MAX = 0x7fffffff
+};
+
+// Indicates the rate at which a variable changes value, one of: per-vertex,
+// per-primitive, or per-patch.
+enum MSLShaderVariableRate
+{
+ MSL_SHADER_VARIABLE_RATE_PER_VERTEX = 0,
+ MSL_SHADER_VARIABLE_RATE_PER_PRIMITIVE = 1,
+ MSL_SHADER_VARIABLE_RATE_PER_PATCH = 2,
+
+ MSL_SHADER_VARIABLE_RATE_INT_MAX = 0x7fffffff,
+};
+
+// Defines MSL characteristics of a shader interface variable at a particular location.
+// After compilation, it is possible to query whether or not this location was used.
+// If vecsize is nonzero, it must be greater than or equal to the vecsize declared in the shader,
+// or behavior is undefined.
+struct MSLShaderInterfaceVariable
+{
+ uint32_t location = 0;
+ uint32_t component = 0;
+ MSLShaderVariableFormat format = MSL_SHADER_VARIABLE_FORMAT_OTHER;
+ spv::BuiltIn builtin = spv::BuiltInMax;
+ uint32_t vecsize = 0;
+ MSLShaderVariableRate rate = MSL_SHADER_VARIABLE_RATE_PER_VERTEX;
+};
+
+// Matches the binding index of a MSL resource for a binding within a descriptor set.
+// Taken together, the stage, desc_set and binding combine to form a reference to a resource
+// descriptor used in a particular shading stage. The count field indicates the number of
+// resources consumed by this binding, if the binding represents an array of resources.
+// If the resource array is a run-time-sized array, which are legal in GLSL or SPIR-V, this value
+// will be used to declare the array size in MSL, which does not support run-time-sized arrays.
+// If pad_argument_buffer_resources is enabled, the base_type and count values are used to
+// specify the base type and array size of the resource in the argument buffer, if that resource
+// is not defined and used by the shader. With pad_argument_buffer_resources enabled, this
+// information will be used to pad the argument buffer structure, in order to align that
+// structure consistently for all uses, across all shaders, of the descriptor set represented
+// by the arugment buffer. If pad_argument_buffer_resources is disabled, base_type does not
+// need to be populated, and if the resource is also not a run-time sized array, the count
+// field does not need to be populated.
+// If using MSL 2.0 argument buffers, the descriptor set is not marked as a discrete descriptor set,
+// and (for iOS only) the resource is not a storage image (sampled != 2), the binding reference we
+// remap to will become an [[id(N)]] attribute within the "descriptor set" argument buffer structure.
+// For resources which are bound in the "classic" MSL 1.0 way or discrete descriptors, the remap will
+// become a [[buffer(N)]], [[texture(N)]] or [[sampler(N)]] depending on the resource types used.
+struct MSLResourceBinding
+{
+ spv::ExecutionModel stage = spv::ExecutionModelMax;
+ SPIRType::BaseType basetype = SPIRType::Unknown;
+ uint32_t desc_set = 0;
+ uint32_t binding = 0;
+ uint32_t count = 0;
+ uint32_t msl_buffer = 0;
+ uint32_t msl_texture = 0;
+ uint32_t msl_sampler = 0;
+};
+
+enum MSLSamplerCoord
+{
+ MSL_SAMPLER_COORD_NORMALIZED = 0,
+ MSL_SAMPLER_COORD_PIXEL = 1,
+ MSL_SAMPLER_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerFilter
+{
+ MSL_SAMPLER_FILTER_NEAREST = 0,
+ MSL_SAMPLER_FILTER_LINEAR = 1,
+ MSL_SAMPLER_FILTER_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerMipFilter
+{
+ MSL_SAMPLER_MIP_FILTER_NONE = 0,
+ MSL_SAMPLER_MIP_FILTER_NEAREST = 1,
+ MSL_SAMPLER_MIP_FILTER_LINEAR = 2,
+ MSL_SAMPLER_MIP_FILTER_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerAddress
+{
+ MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO = 0,
+ MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE = 1,
+ MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER = 2,
+ MSL_SAMPLER_ADDRESS_REPEAT = 3,
+ MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT = 4,
+ MSL_SAMPLER_ADDRESS_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerCompareFunc
+{
+ MSL_SAMPLER_COMPARE_FUNC_NEVER = 0,
+ MSL_SAMPLER_COMPARE_FUNC_LESS = 1,
+ MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL = 2,
+ MSL_SAMPLER_COMPARE_FUNC_GREATER = 3,
+ MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL = 4,
+ MSL_SAMPLER_COMPARE_FUNC_EQUAL = 5,
+ MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL = 6,
+ MSL_SAMPLER_COMPARE_FUNC_ALWAYS = 7,
+ MSL_SAMPLER_COMPARE_FUNC_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerBorderColor
+{
+ MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK = 0,
+ MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK = 1,
+ MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE = 2,
+ MSL_SAMPLER_BORDER_COLOR_INT_MAX = 0x7fffffff
+};
+
+enum MSLFormatResolution
+{
+ MSL_FORMAT_RESOLUTION_444 = 0,
+ MSL_FORMAT_RESOLUTION_422,
+ MSL_FORMAT_RESOLUTION_420,
+ MSL_FORMAT_RESOLUTION_INT_MAX = 0x7fffffff
+};
+
+enum MSLChromaLocation
+{
+ MSL_CHROMA_LOCATION_COSITED_EVEN = 0,
+ MSL_CHROMA_LOCATION_MIDPOINT,
+ MSL_CHROMA_LOCATION_INT_MAX = 0x7fffffff
+};
+
+enum MSLComponentSwizzle
+{
+ MSL_COMPONENT_SWIZZLE_IDENTITY = 0,
+ MSL_COMPONENT_SWIZZLE_ZERO,
+ MSL_COMPONENT_SWIZZLE_ONE,
+ MSL_COMPONENT_SWIZZLE_R,
+ MSL_COMPONENT_SWIZZLE_G,
+ MSL_COMPONENT_SWIZZLE_B,
+ MSL_COMPONENT_SWIZZLE_A,
+ MSL_COMPONENT_SWIZZLE_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerYCbCrModelConversion
+{
+ MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY = 0,
+ MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY,
+ MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709,
+ MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601,
+ MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020,
+ MSL_SAMPLER_YCBCR_MODEL_CONVERSION_INT_MAX = 0x7fffffff
+};
+
+enum MSLSamplerYCbCrRange
+{
+ MSL_SAMPLER_YCBCR_RANGE_ITU_FULL = 0,
+ MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW,
+ MSL_SAMPLER_YCBCR_RANGE_INT_MAX = 0x7fffffff
+};
+
+struct MSLConstexprSampler
+{
+ MSLSamplerCoord coord = MSL_SAMPLER_COORD_NORMALIZED;
+ MSLSamplerFilter min_filter = MSL_SAMPLER_FILTER_NEAREST;
+ MSLSamplerFilter mag_filter = MSL_SAMPLER_FILTER_NEAREST;
+ MSLSamplerMipFilter mip_filter = MSL_SAMPLER_MIP_FILTER_NONE;
+ MSLSamplerAddress s_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE;
+ MSLSamplerAddress t_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE;
+ MSLSamplerAddress r_address = MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE;
+ MSLSamplerCompareFunc compare_func = MSL_SAMPLER_COMPARE_FUNC_NEVER;
+ MSLSamplerBorderColor border_color = MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK;
+ float lod_clamp_min = 0.0f;
+ float lod_clamp_max = 1000.0f;
+ int max_anisotropy = 1;
+
+ // Sampler Y'CbCr conversion parameters
+ uint32_t planes = 0;
+ MSLFormatResolution resolution = MSL_FORMAT_RESOLUTION_444;
+ MSLSamplerFilter chroma_filter = MSL_SAMPLER_FILTER_NEAREST;
+ MSLChromaLocation x_chroma_offset = MSL_CHROMA_LOCATION_COSITED_EVEN;
+ MSLChromaLocation y_chroma_offset = MSL_CHROMA_LOCATION_COSITED_EVEN;
+ MSLComponentSwizzle swizzle[4]; // IDENTITY, IDENTITY, IDENTITY, IDENTITY
+ MSLSamplerYCbCrModelConversion ycbcr_model = MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
+ MSLSamplerYCbCrRange ycbcr_range = MSL_SAMPLER_YCBCR_RANGE_ITU_FULL;
+ uint32_t bpc = 8;
+
+ bool compare_enable = false;
+ bool lod_clamp_enable = false;
+ bool anisotropy_enable = false;
+ bool ycbcr_conversion_enable = false;
+
+ MSLConstexprSampler()
+ {
+ for (uint32_t i = 0; i < 4; i++)
+ swizzle[i] = MSL_COMPONENT_SWIZZLE_IDENTITY;
+ }
+ bool swizzle_is_identity() const
+ {
+ return (swizzle[0] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[1] == MSL_COMPONENT_SWIZZLE_IDENTITY &&
+ swizzle[2] == MSL_COMPONENT_SWIZZLE_IDENTITY && swizzle[3] == MSL_COMPONENT_SWIZZLE_IDENTITY);
+ }
+ bool swizzle_has_one_or_zero() const
+ {
+ return (swizzle[0] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[0] == MSL_COMPONENT_SWIZZLE_ONE ||
+ swizzle[1] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[1] == MSL_COMPONENT_SWIZZLE_ONE ||
+ swizzle[2] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[2] == MSL_COMPONENT_SWIZZLE_ONE ||
+ swizzle[3] == MSL_COMPONENT_SWIZZLE_ZERO || swizzle[3] == MSL_COMPONENT_SWIZZLE_ONE);
+ }
+};
+
+// Special constant used in a MSLResourceBinding desc_set
+// element to indicate the bindings for the push constants.
+// Kinda deprecated. Just use ResourceBindingPushConstant{DescriptorSet,Binding} directly.
+static const uint32_t kPushConstDescSet = ResourceBindingPushConstantDescriptorSet;
+
+// Special constant used in a MSLResourceBinding binding
+// element to indicate the bindings for the push constants.
+// Kinda deprecated. Just use ResourceBindingPushConstant{DescriptorSet,Binding} directly.
+static const uint32_t kPushConstBinding = ResourceBindingPushConstantBinding;
+
+// Special constant used in a MSLResourceBinding binding
+// element to indicate the buffer binding for swizzle buffers.
+static const uint32_t kSwizzleBufferBinding = ~(1u);
+
+// Special constant used in a MSLResourceBinding binding
+// element to indicate the buffer binding for buffer size buffers to support OpArrayLength.
+static const uint32_t kBufferSizeBufferBinding = ~(2u);
+
+// Special constant used in a MSLResourceBinding binding
+// element to indicate the buffer binding used for the argument buffer itself.
+// This buffer binding should be kept as small as possible as all automatic bindings for buffers
+// will start at max(kArgumentBufferBinding) + 1.
+static const uint32_t kArgumentBufferBinding = ~(3u);
+
+static const uint32_t kMaxArgumentBuffers = 8;
+
+// Decompiles SPIR-V to Metal Shading Language
+class CompilerMSL : public CompilerGLSL
+{
+public:
+ // Options for compiling to Metal Shading Language
+ struct Options
+ {
+ typedef enum
+ {
+ iOS = 0,
+ macOS = 1
+ } Platform;
+
+ Platform platform = macOS;
+ uint32_t msl_version = make_msl_version(1, 2);
+ uint32_t texel_buffer_texture_width = 4096; // Width of 2D Metal textures used as 1D texel buffers
+ uint32_t r32ui_linear_texture_alignment = 4;
+ uint32_t r32ui_alignment_constant_id = 65535;
+ uint32_t swizzle_buffer_index = 30;
+ uint32_t indirect_params_buffer_index = 29;
+ uint32_t shader_output_buffer_index = 28;
+ uint32_t shader_patch_output_buffer_index = 27;
+ uint32_t shader_tess_factor_buffer_index = 26;
+ uint32_t buffer_size_buffer_index = 25;
+ uint32_t view_mask_buffer_index = 24;
+ uint32_t dynamic_offsets_buffer_index = 23;
+ uint32_t shader_input_buffer_index = 22;
+ uint32_t shader_index_buffer_index = 21;
+ uint32_t shader_patch_input_buffer_index = 20;
+ uint32_t shader_input_wg_index = 0;
+ uint32_t device_index = 0;
+ uint32_t enable_frag_output_mask = 0xffffffff;
+ // Metal doesn't allow setting a fixed sample mask directly in the pipeline.
+ // We can evade this restriction by ANDing the internal sample_mask output
+ // of the shader with the additional fixed sample mask.
+ uint32_t additional_fixed_sample_mask = 0xffffffff;
+ bool enable_point_size_builtin = true;
+ bool enable_frag_depth_builtin = true;
+ bool enable_frag_stencil_ref_builtin = true;
+ bool disable_rasterization = false;
+ bool capture_output_to_buffer = false;
+ bool swizzle_texture_samples = false;
+ bool tess_domain_origin_lower_left = false;
+ bool multiview = false;
+ bool multiview_layered_rendering = true;
+ bool view_index_from_device_index = false;
+ bool dispatch_base = false;
+ bool texture_1D_as_2D = false;
+
+ // Enable use of Metal argument buffers.
+ // MSL 2.0 must also be enabled.
+ bool argument_buffers = false;
+
+ // Defines Metal argument buffer tier levels.
+ // Uses same values as Metal MTLArgumentBuffersTier enumeration.
+ enum class ArgumentBuffersTier
+ {
+ Tier1 = 0,
+ Tier2 = 1,
+ };
+
+ // When using Metal argument buffers, indicates the Metal argument buffer tier level supported by the Metal platform.
+ // Ignored when Options::argument_buffers is disabled.
+ // - Tier1 supports writable images on macOS, but not on iOS.
+ // - Tier2 supports writable images on macOS and iOS, and higher resource count limits.
+ // Tier capabilities based on recommendations from Apple engineering.
+ ArgumentBuffersTier argument_buffers_tier = ArgumentBuffersTier::Tier1;
+
+ // Enables specifick argument buffer format with extra information to track SSBO-length
+ bool runtime_array_rich_descriptor = false;
+
+ // Ensures vertex and instance indices start at zero. This reflects the behavior of HLSL with SV_VertexID and SV_InstanceID.
+ bool enable_base_index_zero = false;
+
+ // Fragment output in MSL must have at least as many components as the render pass.
+ // Add support to explicit pad out components.
+ bool pad_fragment_output_components = false;
+
+ // Specifies whether the iOS target version supports the [[base_vertex]] and [[base_instance]] attributes.
+ bool ios_support_base_vertex_instance = false;
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ bool use_framebuffer_fetch_subpasses = false;
+
+ // Enables use of "fma" intrinsic for invariant float math
+ bool invariant_float_math = false;
+
+ // Emulate texturecube_array with texture2d_array for iOS where this type is not available
+ bool emulate_cube_array = false;
+
+ // Allow user to enable decoration binding
+ bool enable_decoration_binding = false;
+
+ // Requires MSL 2.1, use the native support for texel buffers.
+ bool texture_buffer_native = false;
+
+ // Forces all resources which are part of an argument buffer to be considered active.
+ // This ensures ABI compatibility between shaders where some resources might be unused,
+ // and would otherwise declare a different IAB.
+ bool force_active_argument_buffer_resources = false;
+
+ // Aligns each resource in an argument buffer to its assigned index value, id(N),
+ // by adding synthetic padding members in the argument buffer struct for any resources
+ // in the argument buffer that are not defined and used by the shader. This allows
+ // the shader to index into the correct argument in a descriptor set argument buffer
+ // that is shared across shaders, where not all resources in the argument buffer are
+ // defined in each shader. For this to work, an MSLResourceBinding must be provided for
+ // all descriptors in any descriptor set held in an argument buffer in the shader, and
+ // that MSLResourceBinding must have the basetype and count members populated correctly.
+ // The implementation here assumes any inline blocks in the argument buffer is provided
+ // in a Metal buffer, and doesn't take into consideration inline blocks that are
+ // optionally embedded directly into the argument buffer via add_inline_uniform_block().
+ bool pad_argument_buffer_resources = false;
+
+ // Forces the use of plain arrays, which works around certain driver bugs on certain versions
+ // of Intel Macbooks. See https://github.com/KhronosGroup/SPIRV-Cross/issues/1210.
+ // May reduce performance in scenarios where arrays are copied around as value-types.
+ bool force_native_arrays = false;
+
+ // If a shader writes clip distance, also emit user varyings which
+ // can be read in subsequent stages.
+ bool enable_clip_distance_user_varying = true;
+
+ // In a tessellation control shader, assume that more than one patch can be processed in a
+ // single workgroup. This requires changes to the way the InvocationId and PrimitiveId
+ // builtins are processed, but should result in more efficient usage of the GPU.
+ bool multi_patch_workgroup = false;
+
+ // Use storage buffers instead of vertex-style attributes for tessellation evaluation
+ // input. This may require conversion of inputs in the generated post-tessellation
+ // vertex shader, but allows the use of nested arrays.
+ bool raw_buffer_tese_input = false;
+
+ // If set, a vertex shader will be compiled as part of a tessellation pipeline.
+ // It will be translated as a compute kernel, so it can use the global invocation ID
+ // to index the output buffer.
+ bool vertex_for_tessellation = false;
+
+ // Assume that SubpassData images have multiple layers. Layered input attachments
+ // are addressed relative to the Layer output from the vertex pipeline. This option
+ // has no effect with multiview, since all input attachments are assumed to be layered
+ // and will be addressed using the current ViewIndex.
+ bool arrayed_subpass_input = false;
+
+ // Whether to use SIMD-group or quadgroup functions to implement group non-uniform
+ // operations. Some GPUs on iOS do not support the SIMD-group functions, only the
+ // quadgroup functions.
+ bool ios_use_simdgroup_functions = false;
+
+ // If set, the subgroup size will be assumed to be one, and subgroup-related
+ // builtins and operations will be emitted accordingly. This mode is intended to
+ // be used by MoltenVK on hardware/software configurations which do not provide
+ // sufficient support for subgroups.
+ bool emulate_subgroups = false;
+
+ // If nonzero, a fixed subgroup size to assume. Metal, similarly to VK_EXT_subgroup_size_control,
+ // allows the SIMD-group size (aka thread execution width) to vary depending on
+ // register usage and requirements. In certain circumstances--for example, a pipeline
+ // in MoltenVK without VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT--
+ // this is undesirable. This fixes the value of the SubgroupSize builtin, instead of
+ // mapping it to the Metal builtin [[thread_execution_width]]. If the thread
+ // execution width is reduced, the extra invocations will appear to be inactive.
+ // If zero, the SubgroupSize will be allowed to vary, and the builtin will be mapped
+ // to the Metal [[thread_execution_width]] builtin.
+ uint32_t fixed_subgroup_size = 0;
+
+ enum class IndexType
+ {
+ None = 0,
+ UInt16 = 1,
+ UInt32 = 2
+ };
+
+ // The type of index in the index buffer, if present. For a compute shader, Metal
+ // requires specifying the indexing at pipeline creation, rather than at draw time
+ // as with graphics pipelines. This means we must create three different pipelines,
+ // for no indexing, 16-bit indices, and 32-bit indices. Each requires different
+ // handling for the gl_VertexIndex builtin. We may as well, then, create three
+ // different shaders for these three scenarios.
+ IndexType vertex_index_type = IndexType::None;
+
+ // If set, a dummy [[sample_id]] input is added to a fragment shader if none is present.
+ // This will force the shader to run at sample rate, assuming Metal does not optimize
+ // the extra threads away.
+ bool force_sample_rate_shading = false;
+
+ // If set, gl_HelperInvocation will be set manually whenever a fragment is discarded.
+ // Some Metal devices have a bug where simd_is_helper_thread() does not return true
+ // after a fragment has been discarded. This is a workaround that is only expected to be needed
+ // until the bug is fixed in Metal; it is provided as an option to allow disabling it when that occurs.
+ bool manual_helper_invocation_updates = true;
+
+ // If set, extra checks will be emitted in fragment shaders to prevent writes
+ // from discarded fragments. Some Metal devices have a bug where writes to storage resources
+ // from discarded fragment threads continue to occur, despite the fragment being
+ // discarded. This is a workaround that is only expected to be needed until the
+ // bug is fixed in Metal; it is provided as an option so it can be enabled
+ // only when the bug is present.
+ bool check_discarded_frag_stores = false;
+
+ // If set, Lod operands to OpImageSample*DrefExplicitLod for 1D and 2D array images
+ // will be implemented using a gradient instead of passing the level operand directly.
+ // Some Metal devices have a bug where the level() argument to depth2d_array<T>::sample_compare()
+ // in a fragment shader is biased by some unknown amount, possibly dependent on the
+ // partial derivatives of the texture coordinates. This is a workaround that is only
+ // expected to be needed until the bug is fixed in Metal; it is provided as an option
+ // so it can be enabled only when the bug is present.
+ bool sample_dref_lod_array_as_grad = false;
+
+ // MSL doesn't guarantee coherence between writes and subsequent reads of read_write textures.
+ // This inserts fences before each read of a read_write texture to ensure coherency.
+ // If you're sure you never rely on this, you can set this to false for a possible performance improvement.
+ // Note: Only Apple's GPU compiler takes advantage of the lack of coherency, so make sure to test on Apple GPUs if you disable this.
+ bool readwrite_texture_fences = true;
+
+ // Metal 3.1 introduced a Metal regression bug which causes infinite recursion during
+ // Metal's analysis of an entry point input structure that is itself recursive. Enabling
+ // this option will replace the recursive input declaration with a alternate variable of
+ // type void*, and then cast to the correct type at the top of the entry point function.
+ // The bug has been reported to Apple, and will hopefully be fixed in future releases.
+ bool replace_recursive_inputs = false;
+
+ // If set, manual fixups of gradient vectors for cube texture lookups will be performed.
+ // All released Apple Silicon GPUs to date behave incorrectly when sampling a cube texture
+ // with explicit gradients. They will ignore one of the three partial derivatives based
+ // on the selected major axis, and expect the remaining derivatives to be partially
+ // transformed.
+ bool agx_manual_cube_grad_fixup = false;
+
+ // Metal will discard fragments with side effects under certain circumstances prematurely.
+ // Example: CTS test dEQP-VK.fragment_operations.early_fragment.discard_no_early_fragment_tests_depth
+ // Test will render a full screen quad with varying depth [0,1] for each fragment.
+ // Each fragment will do an operation with side effects, modify the depth value and
+ // discard the fragment. The test expects the fragment to be run due to:
+ // https://registry.khronos.org/vulkan/specs/1.0-extensions/html/vkspec.html#fragops-shader-depthreplacement
+ // which states that the fragment shader must be run due to replacing the depth in shader.
+ // However, Metal may prematurely discards fragments without executing them
+ // (I believe this to be due to a greedy optimization on their end) making the test fail.
+ // This option enforces fragment execution for such cases where the fragment has operations
+ // with side effects. Provided as an option hoping Metal will fix this issue in the future.
+ bool force_fragment_with_side_effects_execution = false;
+
+ // If set, adds a depth pass through statement to circumvent the following issue:
+ // When the same depth/stencil is used as input and depth/stencil attachment, we need to
+ // force Metal to perform the depth/stencil write after fragment execution. Otherwise,
+ // Metal will write to the depth attachment before fragment execution. This happens
+ // if the fragment does not modify the depth value.
+ bool input_attachment_is_ds_attachment = false;
+
+ bool is_ios() const
+ {
+ return platform == iOS;
+ }
+
+ bool is_macos() const
+ {
+ return platform == macOS;
+ }
+
+ bool use_quadgroup_operation() const
+ {
+ return is_ios() && !ios_use_simdgroup_functions;
+ }
+
+ void set_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0)
+ {
+ msl_version = make_msl_version(major, minor, patch);
+ }
+
+ bool supports_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0) const
+ {
+ return msl_version >= make_msl_version(major, minor, patch);
+ }
+
+ static uint32_t make_msl_version(uint32_t major, uint32_t minor = 0, uint32_t patch = 0)
+ {
+ return (major * 10000) + (minor * 100) + patch;
+ }
+ };
+
+ const Options &get_msl_options() const
+ {
+ return msl_options;
+ }
+
+ void set_msl_options(const Options &opts)
+ {
+ msl_options = opts;
+ }
+
+ // Provide feedback to calling API to allow runtime to disable pipeline
+ // rasterization if vertex shader requires rasterization to be disabled.
+ bool get_is_rasterization_disabled() const
+ {
+ return is_rasterization_disabled && (get_entry_point().model == spv::ExecutionModelVertex ||
+ get_entry_point().model == spv::ExecutionModelTessellationControl ||
+ get_entry_point().model == spv::ExecutionModelTessellationEvaluation);
+ }
+
+ // Provide feedback to calling API to allow it to pass an auxiliary
+ // swizzle buffer if the shader needs it.
+ bool needs_swizzle_buffer() const
+ {
+ return used_swizzle_buffer;
+ }
+
+ // Provide feedback to calling API to allow it to pass a buffer
+ // containing STORAGE_BUFFER buffer sizes to support OpArrayLength.
+ bool needs_buffer_size_buffer() const
+ {
+ return !buffers_requiring_array_length.empty();
+ }
+
+ bool buffer_requires_array_length(VariableID id) const
+ {
+ return buffers_requiring_array_length.count(id) != 0;
+ }
+
+ // Provide feedback to calling API to allow it to pass a buffer
+ // containing the view mask for the current multiview subpass.
+ bool needs_view_mask_buffer() const
+ {
+ return msl_options.multiview && !msl_options.view_index_from_device_index;
+ }
+
+ // Provide feedback to calling API to allow it to pass a buffer
+ // containing the dispatch base workgroup ID.
+ bool needs_dispatch_base_buffer() const
+ {
+ return msl_options.dispatch_base && !msl_options.supports_msl_version(1, 2);
+ }
+
+ // Provide feedback to calling API to allow it to pass an output
+ // buffer if the shader needs it.
+ bool needs_output_buffer() const
+ {
+ return capture_output_to_buffer && stage_out_var_id != ID(0);
+ }
+
+ // Provide feedback to calling API to allow it to pass a patch output
+ // buffer if the shader needs it.
+ bool needs_patch_output_buffer() const
+ {
+ return capture_output_to_buffer && patch_stage_out_var_id != ID(0);
+ }
+
+ // Provide feedback to calling API to allow it to pass an input threadgroup
+ // buffer if the shader needs it.
+ bool needs_input_threadgroup_mem() const
+ {
+ return capture_output_to_buffer && stage_in_var_id != ID(0);
+ }
+
+ explicit CompilerMSL(std::vector<uint32_t> spirv);
+ CompilerMSL(const uint32_t *ir, size_t word_count);
+ explicit CompilerMSL(const ParsedIR &ir);
+ explicit CompilerMSL(ParsedIR &&ir);
+
+ // input is a shader interface variable description used to fix up shader input variables.
+ // If shader inputs are provided, is_msl_shader_input_used() will return true after
+ // calling ::compile() if the location were used by the MSL code.
+ void add_msl_shader_input(const MSLShaderInterfaceVariable &input);
+
+ // output is a shader interface variable description used to fix up shader output variables.
+ // If shader outputs are provided, is_msl_shader_output_used() will return true after
+ // calling ::compile() if the location were used by the MSL code.
+ void add_msl_shader_output(const MSLShaderInterfaceVariable &output);
+
+ // resource is a resource binding to indicate the MSL buffer,
+ // texture or sampler index to use for a particular SPIR-V description set
+ // and binding. If resource bindings are provided,
+ // is_msl_resource_binding_used() will return true after calling ::compile() if
+ // the set/binding combination was used by the MSL code.
+ void add_msl_resource_binding(const MSLResourceBinding &resource);
+
+ // desc_set and binding are the SPIR-V descriptor set and binding of a buffer resource
+ // in this shader. index is the index within the dynamic offset buffer to use. This
+ // function marks that resource as using a dynamic offset (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
+ // or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC). This function only has any effect if argument buffers
+ // are enabled. If so, the buffer will have its address adjusted at the beginning of the shader with
+ // an offset taken from the dynamic offset buffer.
+ void add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index);
+
+ // desc_set and binding are the SPIR-V descriptor set and binding of a buffer resource
+ // in this shader. This function marks that resource as an inline uniform block
+ // (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT). This function only has any effect if argument buffers
+ // are enabled. If so, the buffer block will be directly embedded into the argument
+ // buffer, instead of being referenced indirectly via pointer.
+ void add_inline_uniform_block(uint32_t desc_set, uint32_t binding);
+
+ // When using MSL argument buffers, we can force "classic" MSL 1.0 binding schemes for certain descriptor sets.
+ // This corresponds to VK_KHR_push_descriptor in Vulkan.
+ void add_discrete_descriptor_set(uint32_t desc_set);
+
+ // If an argument buffer is large enough, it may need to be in the device storage space rather than
+ // constant. Opt-in to this behavior here on a per set basis.
+ void set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage);
+
+ // Query after compilation is done. This allows you to check if an input location was used by the shader.
+ bool is_msl_shader_input_used(uint32_t location);
+
+ // Query after compilation is done. This allows you to check if an output location were used by the shader.
+ bool is_msl_shader_output_used(uint32_t location);
+
+ // If not using add_msl_shader_input, it's possible
+ // that certain builtin attributes need to be automatically assigned locations.
+ // This is typical for tessellation builtin inputs such as tess levels, gl_Position, etc.
+ // This returns k_unknown_location if the location was explicitly assigned with
+ // add_msl_shader_input or the builtin is not used, otherwise returns N in [[attribute(N)]].
+ uint32_t get_automatic_builtin_input_location(spv::BuiltIn builtin) const;
+
+ // If not using add_msl_shader_output, it's possible
+ // that certain builtin attributes need to be automatically assigned locations.
+ // This is typical for tessellation builtin outputs such as tess levels, gl_Position, etc.
+ // This returns k_unknown_location if the location were explicitly assigned with
+ // add_msl_shader_output or the builtin were not used, otherwise returns N in [[attribute(N)]].
+ uint32_t get_automatic_builtin_output_location(spv::BuiltIn builtin) const;
+
+ // NOTE: Only resources which are remapped using add_msl_resource_binding will be reported here.
+ // Constexpr samplers are always assumed to be emitted.
+ // No specific MSLResourceBinding remapping is required for constexpr samplers as long as they are remapped
+ // by remap_constexpr_sampler(_by_binding).
+ bool is_msl_resource_binding_used(spv::ExecutionModel model, uint32_t set, uint32_t binding) const;
+
+ // This must only be called after a successful call to CompilerMSL::compile().
+ // For a variable resource ID obtained through reflection API, report the automatically assigned resource index.
+ // If the descriptor set was part of an argument buffer, report the [[id(N)]],
+ // or [[buffer/texture/sampler]] binding for other resources.
+ // If the resource was a combined image sampler, report the image binding here,
+ // use the _secondary version of this call to query the sampler half of the resource.
+ // If no binding exists, uint32_t(-1) is returned.
+ uint32_t get_automatic_msl_resource_binding(uint32_t id) const;
+
+ // Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers, in which case the
+ // sampler's binding is returned instead. For any other resource type, -1 is returned.
+ // Secondary bindings are also used for the auxillary image atomic buffer.
+ uint32_t get_automatic_msl_resource_binding_secondary(uint32_t id) const;
+
+ // Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers for multiplanar images,
+ // in which case the second plane's binding is returned instead. For any other resource type, -1 is returned.
+ uint32_t get_automatic_msl_resource_binding_tertiary(uint32_t id) const;
+
+ // Same as get_automatic_msl_resource_binding, but should only be used for combined image samplers for triplanar images,
+ // in which case the third plane's binding is returned instead. For any other resource type, -1 is returned.
+ uint32_t get_automatic_msl_resource_binding_quaternary(uint32_t id) const;
+
+ // Compiles the SPIR-V code into Metal Shading Language.
+ std::string compile() override;
+
+ // Remap a sampler with ID to a constexpr sampler.
+ // Older iOS targets must use constexpr samplers in certain cases (PCF),
+ // so a static sampler must be used.
+ // The sampler will not consume a binding, but be declared in the entry point as a constexpr sampler.
+ // This can be used on both combined image/samplers (sampler2D) or standalone samplers.
+ // The remapped sampler must not be an array of samplers.
+ // Prefer remap_constexpr_sampler_by_binding unless you're also doing reflection anyways.
+ void remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler);
+
+ // Same as remap_constexpr_sampler, except you provide set/binding, rather than variable ID.
+ // Remaps based on ID take priority over set/binding remaps.
+ void remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding, const MSLConstexprSampler &sampler);
+
+ // If using CompilerMSL::Options::pad_fragment_output_components, override the number of components we expect
+ // to use for a particular location. The default is 4 if number of components is not overridden.
+ void set_fragment_output_components(uint32_t location, uint32_t components);
+
+ void set_combined_sampler_suffix(const char *suffix);
+ const char *get_combined_sampler_suffix() const;
+
+protected:
+ // An enum of SPIR-V functions that are implemented in additional
+ // source code that is added to the shader if necessary.
+ enum SPVFuncImpl : uint8_t
+ {
+ SPVFuncImplNone,
+ SPVFuncImplMod,
+ SPVFuncImplRadians,
+ SPVFuncImplDegrees,
+ SPVFuncImplFindILsb,
+ SPVFuncImplFindSMsb,
+ SPVFuncImplFindUMsb,
+ SPVFuncImplSSign,
+ SPVFuncImplArrayCopy,
+ SPVFuncImplArrayCopyMultidim,
+ SPVFuncImplTexelBufferCoords,
+ SPVFuncImplImage2DAtomicCoords, // Emulate texture2D atomic operations
+ SPVFuncImplGradientCube,
+ SPVFuncImplFMul,
+ SPVFuncImplFAdd,
+ SPVFuncImplFSub,
+ SPVFuncImplQuantizeToF16,
+ SPVFuncImplCubemapTo2DArrayFace,
+ SPVFuncImplUnsafeArray, // Allow Metal to use the array<T> template to make arrays a value type
+ SPVFuncImplStorageMatrix, // Allow threadgroup construction of matrices
+ SPVFuncImplInverse4x4,
+ SPVFuncImplInverse3x3,
+ SPVFuncImplInverse2x2,
+ // It is very important that this come before *Swizzle and ChromaReconstruct*, to ensure it's
+ // emitted before them.
+ SPVFuncImplForwardArgs,
+ // Likewise, this must come before *Swizzle.
+ SPVFuncImplGetSwizzle,
+ SPVFuncImplTextureSwizzle,
+ SPVFuncImplGatherSwizzle,
+ SPVFuncImplGatherCompareSwizzle,
+ SPVFuncImplGatherConstOffsets,
+ SPVFuncImplGatherCompareConstOffsets,
+ SPVFuncImplSubgroupBroadcast,
+ SPVFuncImplSubgroupBroadcastFirst,
+ SPVFuncImplSubgroupBallot,
+ SPVFuncImplSubgroupBallotBitExtract,
+ SPVFuncImplSubgroupBallotFindLSB,
+ SPVFuncImplSubgroupBallotFindMSB,
+ SPVFuncImplSubgroupBallotBitCount,
+ SPVFuncImplSubgroupAllEqual,
+ SPVFuncImplSubgroupShuffle,
+ SPVFuncImplSubgroupShuffleXor,
+ SPVFuncImplSubgroupShuffleUp,
+ SPVFuncImplSubgroupShuffleDown,
+ SPVFuncImplQuadBroadcast,
+ SPVFuncImplQuadSwap,
+ SPVFuncImplReflectScalar,
+ SPVFuncImplRefractScalar,
+ SPVFuncImplFaceForwardScalar,
+ SPVFuncImplChromaReconstructNearest2Plane,
+ SPVFuncImplChromaReconstructNearest3Plane,
+ SPVFuncImplChromaReconstructLinear422CositedEven2Plane,
+ SPVFuncImplChromaReconstructLinear422CositedEven3Plane,
+ SPVFuncImplChromaReconstructLinear422Midpoint2Plane,
+ SPVFuncImplChromaReconstructLinear422Midpoint3Plane,
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane,
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane,
+ SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane,
+ SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane,
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane,
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane,
+ SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane,
+ SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane,
+ SPVFuncImplExpandITUFullRange,
+ SPVFuncImplExpandITUNarrowRange,
+ SPVFuncImplConvertYCbCrBT709,
+ SPVFuncImplConvertYCbCrBT601,
+ SPVFuncImplConvertYCbCrBT2020,
+ SPVFuncImplDynamicImageSampler,
+ SPVFuncImplRayQueryIntersectionParams,
+ SPVFuncImplVariableDescriptor,
+ SPVFuncImplVariableSizedDescriptor,
+ SPVFuncImplVariableDescriptorArray,
+ SPVFuncImplPaddedStd140,
+ SPVFuncImplReduceAdd,
+ SPVFuncImplImageFence,
+ SPVFuncImplTextureCast
+ };
+
+ // If the underlying resource has been used for comparison then duplicate loads of that resource must be too
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ void emit_texture_op(const Instruction &i, bool sparse) override;
+ void emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
+ std::string to_ptr_expression(uint32_t id, bool register_expression_read = true);
+ void emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op);
+ void emit_instruction(const Instruction &instr) override;
+ void emit_glsl_op(uint32_t result_type, uint32_t result_id, uint32_t op, const uint32_t *args,
+ uint32_t count) override;
+ void emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t result_id, uint32_t op,
+ const uint32_t *args, uint32_t count) override;
+ void emit_header() override;
+ void emit_function_prototype(SPIRFunction &func, const Bitset &return_flags) override;
+ void emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id) override;
+ void emit_subgroup_op(const Instruction &i) override;
+ std::string to_texture_op(const Instruction &i, bool sparse, bool *forward,
+ SmallVector<uint32_t> &inherited_expressions) override;
+ void emit_fixup() override;
+ std::string to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const std::string &qualifier = "");
+ void emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const std::string &qualifier = "", uint32_t base_offset = 0) override;
+ void emit_struct_padding_target(const SPIRType &type) override;
+ std::string type_to_glsl(const SPIRType &type, uint32_t id, bool member);
+ std::string type_to_glsl(const SPIRType &type, uint32_t id = 0) override;
+ void emit_block_hints(const SPIRBlock &block) override;
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ std::string type_to_array_glsl(const SPIRType &type, uint32_t variable_id) override;
+ std::string constant_op_expression(const SPIRConstantOp &cop) override;
+
+ bool variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const override;
+
+ // GCC workaround of lambdas calling protected functions (for older GCC versions)
+ std::string variable_decl(const SPIRType &type, const std::string &name, uint32_t id = 0) override;
+
+ std::string image_type_glsl(const SPIRType &type, uint32_t id, bool member) override;
+ std::string sampler_type(const SPIRType &type, uint32_t id, bool member);
+ std::string builtin_to_glsl(spv::BuiltIn builtin, spv::StorageClass storage) override;
+ std::string to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id) override;
+ std::string to_name(uint32_t id, bool allow_alias = true) const override;
+ std::string to_function_name(const TextureFunctionNameArguments &args) override;
+ std::string to_function_args(const TextureFunctionArguments &args, bool *p_forward) override;
+ std::string to_initializer_expression(const SPIRVariable &var) override;
+ std::string to_zero_initialized_expression(uint32_t type_id) override;
+
+ std::string unpack_expression_type(std::string expr_str, const SPIRType &type, uint32_t physical_type_id,
+ bool is_packed, bool row_major) override;
+
+ // Returns true for BuiltInSampleMask because gl_SampleMask[] is an array in SPIR-V, but [[sample_mask]] is a scalar in Metal.
+ bool builtin_translates_to_nonarray(spv::BuiltIn builtin) const override;
+
+ std::string bitcast_glsl_op(const SPIRType &result_type, const SPIRType &argument_type) override;
+ bool emit_complex_bitcast(uint32_t result_id, uint32_t id, uint32_t op0) override;
+ bool skip_argument(uint32_t id) const override;
+ std::string to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved) override;
+ std::string to_qualifiers_glsl(uint32_t id) override;
+ void replace_illegal_names() override;
+ void declare_constant_arrays();
+
+ void replace_illegal_entry_point_names();
+ void sync_entry_point_aliases_and_names();
+
+ static const std::unordered_set<std::string> &get_reserved_keyword_set();
+ static const std::unordered_set<std::string> &get_illegal_func_names();
+
+ // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
+ void declare_complex_constant_arrays();
+
+ bool is_patch_block(const SPIRType &type);
+ bool is_non_native_row_major_matrix(uint32_t id) override;
+ bool member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index) override;
+ std::string convert_row_major_matrix(std::string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
+ bool is_packed, bool relaxed) override;
+
+ bool is_tesc_shader() const;
+ bool is_tese_shader() const;
+
+ void preprocess_op_codes();
+ void localize_global_variables();
+ void extract_global_variables_from_functions();
+ void mark_packable_structs();
+ void mark_as_packable(SPIRType &type);
+ void mark_as_workgroup_struct(SPIRType &type);
+
+ std::unordered_map<uint32_t, std::set<uint32_t>> function_global_vars;
+ void extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
+ std::unordered_set<uint32_t> &global_var_ids,
+ std::unordered_set<uint32_t> &processed_func_ids);
+ uint32_t add_interface_block(spv::StorageClass storage, bool patch = false);
+ uint32_t add_interface_block_pointer(uint32_t ib_var_id, spv::StorageClass storage);
+
+ struct InterfaceBlockMeta
+ {
+ struct LocationMeta
+ {
+ uint32_t base_type_id = 0;
+ uint32_t num_components = 0;
+ bool flat = false;
+ bool noperspective = false;
+ bool centroid = false;
+ bool sample = false;
+ };
+ std::unordered_map<uint32_t, LocationMeta> location_meta;
+ bool strip_array = false;
+ bool allow_local_declaration = false;
+ };
+
+ std::string to_tesc_invocation_id();
+ void emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array);
+ void add_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, InterfaceBlockMeta &meta);
+ void add_composite_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta);
+ void add_plain_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta);
+ bool add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
+ SPIRVariable &var, const SPIRType &type,
+ InterfaceBlockMeta &meta);
+ void add_plain_member_variable_to_interface_block(spv::StorageClass storage,
+ const std::string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, SPIRType &var_type,
+ uint32_t mbr_idx, InterfaceBlockMeta &meta,
+ const std::string &mbr_name_qual,
+ const std::string &var_chain_qual,
+ uint32_t &location, uint32_t &var_mbr_idx);
+ void add_composite_member_variable_to_interface_block(spv::StorageClass storage,
+ const std::string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, SPIRType &var_type,
+ uint32_t mbr_idx, InterfaceBlockMeta &meta,
+ const std::string &mbr_name_qual,
+ const std::string &var_chain_qual,
+ uint32_t &location, uint32_t &var_mbr_idx,
+ const Bitset &interpolation_qual);
+ void add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var);
+ void add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var);
+
+ void fix_up_interface_member_indices(spv::StorageClass storage, uint32_t ib_type_id);
+
+ void mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
+ spv::StorageClass storage, bool fallback = false);
+ uint32_t ensure_correct_builtin_type(uint32_t type_id, spv::BuiltIn builtin);
+ uint32_t ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component,
+ uint32_t num_components, bool strip_array);
+
+ void emit_custom_templates();
+ void emit_custom_functions();
+ void emit_resources();
+ void emit_specialization_constants_and_structs();
+ void emit_interface_block(uint32_t ib_var_id);
+ bool maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs);
+ bool is_var_runtime_size_array(const SPIRVariable &var) const;
+ uint32_t get_resource_array_size(const SPIRType &type, uint32_t id) const;
+
+ void fix_up_shader_inputs_outputs();
+
+ std::string func_type_decl(SPIRType &type);
+ std::string entry_point_args_classic(bool append_comma);
+ std::string entry_point_args_argument_buffer(bool append_comma);
+ std::string entry_point_arg_stage_in();
+ void entry_point_args_builtin(std::string &args);
+ void entry_point_args_discrete_descriptors(std::string &args);
+ std::string append_member_name(const std::string &qualifier, const SPIRType &type, uint32_t index);
+ std::string ensure_valid_name(std::string name, std::string pfx);
+ std::string to_sampler_expression(uint32_t id);
+ std::string to_swizzle_expression(uint32_t id);
+ std::string to_buffer_size_expression(uint32_t id);
+ bool is_sample_rate() const;
+ bool is_intersection_query() const;
+ bool is_direct_input_builtin(spv::BuiltIn builtin);
+ std::string builtin_qualifier(spv::BuiltIn builtin);
+ std::string builtin_type_decl(spv::BuiltIn builtin, uint32_t id = 0);
+ std::string built_in_func_arg(spv::BuiltIn builtin, bool prefix_comma);
+ std::string member_attribute_qualifier(const SPIRType &type, uint32_t index);
+ std::string member_location_attribute_qualifier(const SPIRType &type, uint32_t index);
+ std::string argument_decl(const SPIRFunction::Parameter &arg);
+ const char *descriptor_address_space(uint32_t id, spv::StorageClass storage, const char *plain_address_space) const;
+ std::string round_fp_tex_coords(std::string tex_coords, bool coord_is_fp);
+ uint32_t get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane = 0);
+ uint32_t get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp = nullptr) const;
+ uint32_t get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
+ uint32_t type_id, uint32_t index, uint32_t *comp = nullptr);
+ uint32_t get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin,
+ uint32_t type_id, uint32_t index, uint32_t *comp = nullptr);
+
+ uint32_t get_physical_tess_level_array_size(spv::BuiltIn builtin) const;
+
+ uint32_t get_physical_type_stride(const SPIRType &type) const override;
+
+ // MSL packing rules. These compute the effective packing rules as observed by the MSL compiler in the MSL output.
+ // These values can change depending on various extended decorations which control packing rules.
+ // We need to make these rules match up with SPIR-V declared rules.
+ uint32_t get_declared_type_size_msl(const SPIRType &type, bool packed, bool row_major) const;
+ uint32_t get_declared_type_array_stride_msl(const SPIRType &type, bool packed, bool row_major) const;
+ uint32_t get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const;
+ uint32_t get_declared_type_alignment_msl(const SPIRType &type, bool packed, bool row_major) const;
+
+ uint32_t get_declared_struct_member_size_msl(const SPIRType &struct_type, uint32_t index) const;
+ uint32_t get_declared_struct_member_array_stride_msl(const SPIRType &struct_type, uint32_t index) const;
+ uint32_t get_declared_struct_member_matrix_stride_msl(const SPIRType &struct_type, uint32_t index) const;
+ uint32_t get_declared_struct_member_alignment_msl(const SPIRType &struct_type, uint32_t index) const;
+
+ uint32_t get_declared_input_size_msl(const SPIRType &struct_type, uint32_t index) const;
+ uint32_t get_declared_input_array_stride_msl(const SPIRType &struct_type, uint32_t index) const;
+ uint32_t get_declared_input_matrix_stride_msl(const SPIRType &struct_type, uint32_t index) const;
+ uint32_t get_declared_input_alignment_msl(const SPIRType &struct_type, uint32_t index) const;
+
+ const SPIRType &get_physical_member_type(const SPIRType &struct_type, uint32_t index) const;
+ SPIRType get_presumed_input_type(const SPIRType &struct_type, uint32_t index) const;
+
+ uint32_t get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment = false,
+ bool ignore_padding = false) const;
+
+ std::string to_component_argument(uint32_t id);
+ void align_struct(SPIRType &ib_type, std::unordered_set<uint32_t> &aligned_structs);
+ void mark_scalar_layout_structs(const SPIRType &ib_type);
+ void mark_struct_members_packed(const SPIRType &type);
+ void ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index);
+ bool validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const;
+ std::string get_argument_address_space(const SPIRVariable &argument);
+ std::string get_type_address_space(const SPIRType &type, uint32_t id, bool argument = false);
+ static bool decoration_flags_signal_volatile(const Bitset &flags);
+ const char *to_restrict(uint32_t id, bool space);
+ SPIRType &get_stage_in_struct_type();
+ SPIRType &get_stage_out_struct_type();
+ SPIRType &get_patch_stage_in_struct_type();
+ SPIRType &get_patch_stage_out_struct_type();
+ std::string get_tess_factor_struct_name();
+ SPIRType &get_uint_type();
+ uint32_t get_uint_type_id();
+ void emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, spv::Op opcode,
+ uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t op0, uint32_t op1 = 0,
+ bool op1_is_pointer = false, bool op1_is_literal = false, uint32_t op2 = 0);
+ const char *get_memory_order(uint32_t spv_mem_sem);
+ void add_pragma_line(const std::string &line);
+ void add_typedef_line(const std::string &line);
+ void emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem);
+ bool emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id,
+ spv::StorageClass lhs_storage, spv::StorageClass rhs_storage) override;
+ void build_implicit_builtins();
+ uint32_t build_constant_uint_array_pointer();
+ void emit_entry_point_declarations() override;
+ bool uses_explicit_early_fragment_test();
+
+ uint32_t builtin_frag_coord_id = 0;
+ uint32_t builtin_sample_id_id = 0;
+ uint32_t builtin_sample_mask_id = 0;
+ uint32_t builtin_helper_invocation_id = 0;
+ uint32_t builtin_vertex_idx_id = 0;
+ uint32_t builtin_base_vertex_id = 0;
+ uint32_t builtin_instance_idx_id = 0;
+ uint32_t builtin_base_instance_id = 0;
+ uint32_t builtin_view_idx_id = 0;
+ uint32_t builtin_layer_id = 0;
+ uint32_t builtin_invocation_id_id = 0;
+ uint32_t builtin_primitive_id_id = 0;
+ uint32_t builtin_subgroup_invocation_id_id = 0;
+ uint32_t builtin_subgroup_size_id = 0;
+ uint32_t builtin_dispatch_base_id = 0;
+ uint32_t builtin_stage_input_size_id = 0;
+ uint32_t builtin_local_invocation_index_id = 0;
+ uint32_t builtin_workgroup_size_id = 0;
+ uint32_t builtin_frag_depth_id = 0;
+ uint32_t swizzle_buffer_id = 0;
+ uint32_t buffer_size_buffer_id = 0;
+ uint32_t view_mask_buffer_id = 0;
+ uint32_t dynamic_offsets_buffer_id = 0;
+ uint32_t uint_type_id = 0;
+ uint32_t argument_buffer_padding_buffer_type_id = 0;
+ uint32_t argument_buffer_padding_image_type_id = 0;
+ uint32_t argument_buffer_padding_sampler_type_id = 0;
+
+ bool does_shader_write_sample_mask = false;
+ bool frag_shader_needs_discard_checks = false;
+
+ void cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type) override;
+ void cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type) override;
+ void emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression) override;
+
+ void analyze_sampled_image_usage();
+
+ bool access_chain_needs_stage_io_builtin_translation(uint32_t base) override;
+ bool prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type, spv::StorageClass storage,
+ bool &is_packed) override;
+ void fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length);
+ void check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type) override;
+
+ bool emit_tessellation_access_chain(const uint32_t *ops, uint32_t length);
+ bool emit_tessellation_io_load(uint32_t result_type, uint32_t id, uint32_t ptr);
+ bool is_out_of_bounds_tessellation_level(uint32_t id_lhs);
+
+ void ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin);
+
+ void mark_implicit_builtin(spv::StorageClass storage, spv::BuiltIn builtin, uint32_t id);
+
+ std::string convert_to_f32(const std::string &expr, uint32_t components);
+
+ Options msl_options;
+ std::set<SPVFuncImpl> spv_function_implementations;
+ // Must be ordered to ensure declarations are in a specific order.
+ std::map<LocationComponentPair, MSLShaderInterfaceVariable> inputs_by_location;
+ std::unordered_map<uint32_t, MSLShaderInterfaceVariable> inputs_by_builtin;
+ std::map<LocationComponentPair, MSLShaderInterfaceVariable> outputs_by_location;
+ std::unordered_map<uint32_t, MSLShaderInterfaceVariable> outputs_by_builtin;
+ std::unordered_set<uint32_t> location_inputs_in_use;
+ std::unordered_set<uint32_t> location_inputs_in_use_fallback;
+ std::unordered_set<uint32_t> location_outputs_in_use;
+ std::unordered_set<uint32_t> location_outputs_in_use_fallback;
+ std::unordered_map<uint32_t, uint32_t> fragment_output_components;
+ std::unordered_map<uint32_t, uint32_t> builtin_to_automatic_input_location;
+ std::unordered_map<uint32_t, uint32_t> builtin_to_automatic_output_location;
+ std::set<std::string> pragma_lines;
+ std::set<std::string> typedef_lines;
+ SmallVector<uint32_t> vars_needing_early_declaration;
+
+ std::unordered_map<StageSetBinding, std::pair<MSLResourceBinding, bool>, InternalHasher> resource_bindings;
+ std::unordered_map<StageSetBinding, uint32_t, InternalHasher> resource_arg_buff_idx_to_binding_number;
+
+ uint32_t next_metal_resource_index_buffer = 0;
+ uint32_t next_metal_resource_index_texture = 0;
+ uint32_t next_metal_resource_index_sampler = 0;
+ // Intentionally uninitialized, works around MSVC 2013 bug.
+ uint32_t next_metal_resource_ids[kMaxArgumentBuffers];
+
+ VariableID stage_in_var_id = 0;
+ VariableID stage_out_var_id = 0;
+ VariableID patch_stage_in_var_id = 0;
+ VariableID patch_stage_out_var_id = 0;
+ VariableID stage_in_ptr_var_id = 0;
+ VariableID stage_out_ptr_var_id = 0;
+ VariableID tess_level_inner_var_id = 0;
+ VariableID tess_level_outer_var_id = 0;
+ VariableID stage_out_masked_builtin_type_id = 0;
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ enum class TriState
+ {
+ Neutral,
+ No,
+ Yes
+ };
+ TriState needs_base_vertex_arg = TriState::Neutral;
+ TriState needs_base_instance_arg = TriState::Neutral;
+
+ bool has_sampled_images = false;
+ bool builtin_declaration = false; // Handle HLSL-style 0-based vertex/instance index.
+
+ bool is_using_builtin_array = false; // Force the use of C style array declaration.
+ bool using_builtin_array() const;
+
+ bool is_rasterization_disabled = false;
+ bool capture_output_to_buffer = false;
+ bool needs_swizzle_buffer_def = false;
+ bool used_swizzle_buffer = false;
+ bool added_builtin_tess_level = false;
+ bool needs_subgroup_invocation_id = false;
+ bool needs_subgroup_size = false;
+ bool needs_sample_id = false;
+ bool needs_helper_invocation = false;
+ bool writes_to_depth = false;
+ std::string qual_pos_var_name;
+ std::string stage_in_var_name = "in";
+ std::string stage_out_var_name = "out";
+ std::string patch_stage_in_var_name = "patchIn";
+ std::string patch_stage_out_var_name = "patchOut";
+ std::string sampler_name_suffix = "Smplr";
+ std::string swizzle_name_suffix = "Swzl";
+ std::string buffer_size_name_suffix = "BufferSize";
+ std::string plane_name_suffix = "Plane";
+ std::string input_wg_var_name = "gl_in";
+ std::string input_buffer_var_name = "spvIn";
+ std::string output_buffer_var_name = "spvOut";
+ std::string patch_input_buffer_var_name = "spvPatchIn";
+ std::string patch_output_buffer_var_name = "spvPatchOut";
+ std::string tess_factor_buffer_var_name = "spvTessLevel";
+ std::string index_buffer_var_name = "spvIndices";
+ spv::Op previous_instruction_opcode = spv::OpNop;
+
+ // Must be ordered since declaration is in a specific order.
+ std::map<uint32_t, MSLConstexprSampler> constexpr_samplers_by_id;
+ std::unordered_map<SetBindingPair, MSLConstexprSampler, InternalHasher> constexpr_samplers_by_binding;
+ const MSLConstexprSampler *find_constexpr_sampler(uint32_t id) const;
+
+ std::unordered_set<uint32_t> buffers_requiring_array_length;
+ SmallVector<std::pair<uint32_t, uint32_t>> buffer_aliases_argument;
+ SmallVector<uint32_t> buffer_aliases_discrete;
+ std::unordered_set<uint32_t> atomic_image_vars_emulated; // Emulate texture2D atomic operations
+ std::unordered_set<uint32_t> pull_model_inputs;
+ std::unordered_set<uint32_t> recursive_inputs;
+
+ SmallVector<SPIRVariable *> entry_point_bindings;
+
+ // Must be ordered since array is in a specific order.
+ std::map<SetBindingPair, std::pair<uint32_t, uint32_t>> buffers_requiring_dynamic_offset;
+
+ SmallVector<uint32_t> disabled_frag_outputs;
+
+ std::unordered_set<SetBindingPair, InternalHasher> inline_uniform_blocks;
+
+ uint32_t argument_buffer_ids[kMaxArgumentBuffers];
+ uint32_t argument_buffer_discrete_mask = 0;
+ uint32_t argument_buffer_device_storage_mask = 0;
+
+ void emit_argument_buffer_aliased_descriptor(const SPIRVariable &aliased_var,
+ const SPIRVariable &base_var);
+
+ void analyze_argument_buffers();
+ bool descriptor_set_is_argument_buffer(uint32_t desc_set) const;
+ const MSLResourceBinding &get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx) const;
+ void add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind);
+ void add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind);
+ void add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind);
+ void add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, uint32_t count);
+
+ uint32_t get_target_components_for_fragment_location(uint32_t location) const;
+ uint32_t build_extended_vector_type(uint32_t type_id, uint32_t components,
+ SPIRType::BaseType basetype = SPIRType::Unknown);
+ uint32_t build_msl_interpolant_type(uint32_t type_id, bool is_noperspective);
+
+ bool suppress_missing_prototypes = false;
+ bool suppress_incompatible_pointer_types_discard_qualifiers = false;
+
+ void add_spv_func_and_recompile(SPVFuncImpl spv_func);
+
+ void activate_argument_buffer_resources();
+
+ bool type_is_msl_framebuffer_fetch(const SPIRType &type) const;
+ bool is_supported_argument_buffer_type(const SPIRType &type) const;
+
+ bool variable_storage_requires_stage_io(spv::StorageClass storage) const;
+
+ bool needs_manual_helper_invocation_updates() const
+ {
+ return msl_options.manual_helper_invocation_updates && msl_options.supports_msl_version(2, 3);
+ }
+ bool needs_frag_discard_checks() const
+ {
+ return get_execution_model() == spv::ExecutionModelFragment && msl_options.supports_msl_version(2, 3) &&
+ msl_options.check_discarded_frag_stores && frag_shader_needs_discard_checks;
+ }
+
+ bool has_additional_fixed_sample_mask() const { return msl_options.additional_fixed_sample_mask != 0xffffffff; }
+ std::string additional_fixed_sample_mask_str() const;
+
+ // OpcodeHandler that handles several MSL preprocessing operations.
+ struct OpCodePreprocessor : OpcodeHandler
+ {
+ OpCodePreprocessor(CompilerMSL &compiler_)
+ : compiler(compiler_)
+ {
+ }
+
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
+ CompilerMSL::SPVFuncImpl get_spv_func_impl(spv::Op opcode, const uint32_t *args);
+ void check_resource_write(uint32_t var_id);
+
+ CompilerMSL &compiler;
+ std::unordered_map<uint32_t, uint32_t> result_types;
+ std::unordered_map<uint32_t, uint32_t> image_pointers_emulated; // Emulate texture2D atomic operations
+ bool suppress_missing_prototypes = false;
+ bool uses_atomics = false;
+ bool uses_image_write = false;
+ bool uses_buffer_write = false;
+ bool uses_discard = false;
+ bool needs_subgroup_invocation_id = false;
+ bool needs_subgroup_size = false;
+ bool needs_sample_id = false;
+ bool needs_helper_invocation = false;
+ };
+
+ // OpcodeHandler that scans for uses of sampled images
+ struct SampledImageScanner : OpcodeHandler
+ {
+ SampledImageScanner(CompilerMSL &compiler_)
+ : compiler(compiler_)
+ {
+ }
+
+ bool handle(spv::Op opcode, const uint32_t *args, uint32_t) override;
+
+ CompilerMSL &compiler;
+ };
+
+ // Sorts the members of a SPIRType and associated Meta info based on a settable sorting
+ // aspect, which defines which aspect of the struct members will be used to sort them.
+ // Regardless of the sorting aspect, built-in members always appear at the end of the struct.
+ struct MemberSorter
+ {
+ enum SortAspect
+ {
+ LocationThenBuiltInType,
+ Offset
+ };
+
+ void sort();
+ bool operator()(uint32_t mbr_idx1, uint32_t mbr_idx2);
+ MemberSorter(SPIRType &t, Meta &m, SortAspect sa);
+
+ SPIRType &type;
+ Meta &meta;
+ SortAspect sort_aspect;
+ };
+};
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_parser.cpp b/thirdparty/spirv-cross/spirv_parser.cpp
new file mode 100644
index 0000000000..6108dbb653
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_parser.cpp
@@ -0,0 +1,1337 @@
+/*
+ * Copyright 2018-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_parser.hpp"
+#include <assert.h>
+
+using namespace std;
+using namespace spv;
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+Parser::Parser(vector<uint32_t> spirv)
+{
+ ir.spirv = std::move(spirv);
+}
+
+Parser::Parser(const uint32_t *spirv_data, size_t word_count)
+{
+ ir.spirv = vector<uint32_t>(spirv_data, spirv_data + word_count);
+}
+
+static bool decoration_is_string(Decoration decoration)
+{
+ switch (decoration)
+ {
+ case DecorationHlslSemanticGOOGLE:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static inline uint32_t swap_endian(uint32_t v)
+{
+ return ((v >> 24) & 0x000000ffu) | ((v >> 8) & 0x0000ff00u) | ((v << 8) & 0x00ff0000u) | ((v << 24) & 0xff000000u);
+}
+
+static bool is_valid_spirv_version(uint32_t version)
+{
+ switch (version)
+ {
+ // Allow v99 since it tends to just work.
+ case 99:
+ case 0x10000: // SPIR-V 1.0
+ case 0x10100: // SPIR-V 1.1
+ case 0x10200: // SPIR-V 1.2
+ case 0x10300: // SPIR-V 1.3
+ case 0x10400: // SPIR-V 1.4
+ case 0x10500: // SPIR-V 1.5
+ case 0x10600: // SPIR-V 1.6
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+void Parser::parse()
+{
+ auto &spirv = ir.spirv;
+
+ auto len = spirv.size();
+ if (len < 5)
+ SPIRV_CROSS_THROW("SPIRV file too small.");
+
+ auto s = spirv.data();
+
+ // Endian-swap if we need to.
+ if (s[0] == swap_endian(MagicNumber))
+ transform(begin(spirv), end(spirv), begin(spirv), [](uint32_t c) { return swap_endian(c); });
+
+ if (s[0] != MagicNumber || !is_valid_spirv_version(s[1]))
+ SPIRV_CROSS_THROW("Invalid SPIRV format.");
+
+ uint32_t bound = s[3];
+
+ const uint32_t MaximumNumberOfIDs = 0x3fffff;
+ if (bound > MaximumNumberOfIDs)
+ SPIRV_CROSS_THROW("ID bound exceeds limit of 0x3fffff.\n");
+
+ ir.set_id_bounds(bound);
+
+ uint32_t offset = 5;
+
+ SmallVector<Instruction> instructions;
+ while (offset < len)
+ {
+ Instruction instr = {};
+ instr.op = spirv[offset] & 0xffff;
+ instr.count = (spirv[offset] >> 16) & 0xffff;
+
+ if (instr.count == 0)
+ SPIRV_CROSS_THROW("SPIR-V instructions cannot consume 0 words. Invalid SPIR-V file.");
+
+ instr.offset = offset + 1;
+ instr.length = instr.count - 1;
+
+ offset += instr.count;
+
+ if (offset > spirv.size())
+ SPIRV_CROSS_THROW("SPIR-V instruction goes out of bounds.");
+
+ instructions.push_back(instr);
+ }
+
+ for (auto &i : instructions)
+ parse(i);
+
+ for (auto &fixup : forward_pointer_fixups)
+ {
+ auto &target = get<SPIRType>(fixup.first);
+ auto &source = get<SPIRType>(fixup.second);
+ target.member_types = source.member_types;
+ target.basetype = source.basetype;
+ target.self = source.self;
+ }
+ forward_pointer_fixups.clear();
+
+ if (current_function)
+ SPIRV_CROSS_THROW("Function was not terminated.");
+ if (current_block)
+ SPIRV_CROSS_THROW("Block was not terminated.");
+ if (ir.default_entry_point == 0)
+ SPIRV_CROSS_THROW("There is no entry point in the SPIR-V module.");
+}
+
+const uint32_t *Parser::stream(const Instruction &instr) const
+{
+ // If we're not going to use any arguments, just return nullptr.
+ // We want to avoid case where we return an out of range pointer
+ // that trips debug assertions on some platforms.
+ if (!instr.length)
+ return nullptr;
+
+ if (instr.offset + instr.length > ir.spirv.size())
+ SPIRV_CROSS_THROW("Compiler::stream() out of range.");
+ return &ir.spirv[instr.offset];
+}
+
+static string extract_string(const vector<uint32_t> &spirv, uint32_t offset)
+{
+ string ret;
+ for (uint32_t i = offset; i < spirv.size(); i++)
+ {
+ uint32_t w = spirv[i];
+
+ for (uint32_t j = 0; j < 4; j++, w >>= 8)
+ {
+ char c = w & 0xff;
+ if (c == '\0')
+ return ret;
+ ret += c;
+ }
+ }
+
+ SPIRV_CROSS_THROW("String was not terminated before EOF");
+}
+
+void Parser::parse(const Instruction &instruction)
+{
+ auto *ops = stream(instruction);
+ auto op = static_cast<Op>(instruction.op);
+ uint32_t length = instruction.length;
+
+ // HACK for glslang that might emit OpEmitMeshTasksEXT followed by return / branch.
+ // Instead of failing hard, just ignore it.
+ if (ignore_trailing_block_opcodes)
+ {
+ ignore_trailing_block_opcodes = false;
+ if (op == OpReturn || op == OpBranch || op == OpUnreachable)
+ return;
+ }
+
+ switch (op)
+ {
+ case OpSourceContinued:
+ case OpSourceExtension:
+ case OpNop:
+ case OpModuleProcessed:
+ break;
+
+ case OpString:
+ {
+ set<SPIRString>(ops[0], extract_string(ir.spirv, instruction.offset + 1));
+ break;
+ }
+
+ case OpMemoryModel:
+ ir.addressing_model = static_cast<AddressingModel>(ops[0]);
+ ir.memory_model = static_cast<MemoryModel>(ops[1]);
+ break;
+
+ case OpSource:
+ {
+ auto lang = static_cast<SourceLanguage>(ops[0]);
+ switch (lang)
+ {
+ case SourceLanguageESSL:
+ ir.source.es = true;
+ ir.source.version = ops[1];
+ ir.source.known = true;
+ ir.source.hlsl = false;
+ break;
+
+ case SourceLanguageGLSL:
+ ir.source.es = false;
+ ir.source.version = ops[1];
+ ir.source.known = true;
+ ir.source.hlsl = false;
+ break;
+
+ case SourceLanguageHLSL:
+ // For purposes of cross-compiling, this is GLSL 450.
+ ir.source.es = false;
+ ir.source.version = 450;
+ ir.source.known = true;
+ ir.source.hlsl = true;
+ break;
+
+ default:
+ ir.source.known = false;
+ break;
+ }
+ break;
+ }
+
+ case OpUndef:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ set<SPIRUndef>(id, result_type);
+ if (current_block)
+ current_block->ops.push_back(instruction);
+ break;
+ }
+
+ case OpCapability:
+ {
+ uint32_t cap = ops[0];
+ if (cap == CapabilityKernel)
+ SPIRV_CROSS_THROW("Kernel capability not supported.");
+
+ ir.declared_capabilities.push_back(static_cast<Capability>(ops[0]));
+ break;
+ }
+
+ case OpExtension:
+ {
+ auto ext = extract_string(ir.spirv, instruction.offset);
+ ir.declared_extensions.push_back(std::move(ext));
+ break;
+ }
+
+ case OpExtInstImport:
+ {
+ uint32_t id = ops[0];
+
+ SPIRExtension::Extension spirv_ext = SPIRExtension::Unsupported;
+
+ auto ext = extract_string(ir.spirv, instruction.offset + 1);
+ if (ext == "GLSL.std.450")
+ spirv_ext = SPIRExtension::GLSL;
+ else if (ext == "DebugInfo")
+ spirv_ext = SPIRExtension::SPV_debug_info;
+ else if (ext == "SPV_AMD_shader_ballot")
+ spirv_ext = SPIRExtension::SPV_AMD_shader_ballot;
+ else if (ext == "SPV_AMD_shader_explicit_vertex_parameter")
+ spirv_ext = SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter;
+ else if (ext == "SPV_AMD_shader_trinary_minmax")
+ spirv_ext = SPIRExtension::SPV_AMD_shader_trinary_minmax;
+ else if (ext == "SPV_AMD_gcn_shader")
+ spirv_ext = SPIRExtension::SPV_AMD_gcn_shader;
+ else if (ext == "NonSemantic.DebugPrintf")
+ spirv_ext = SPIRExtension::NonSemanticDebugPrintf;
+ else if (ext == "NonSemantic.Shader.DebugInfo.100")
+ spirv_ext = SPIRExtension::NonSemanticShaderDebugInfo;
+ else if (ext.find("NonSemantic.") == 0)
+ spirv_ext = SPIRExtension::NonSemanticGeneric;
+
+ set<SPIRExtension>(id, spirv_ext);
+ // Other SPIR-V extensions which have ExtInstrs are currently not supported.
+
+ break;
+ }
+
+ case OpExtInst:
+ {
+ // The SPIR-V debug information extended instructions might come at global scope.
+ if (current_block)
+ {
+ current_block->ops.push_back(instruction);
+ if (length >= 2)
+ {
+ const auto *type = maybe_get<SPIRType>(ops[0]);
+ if (type)
+ ir.load_type_width.insert({ ops[1], type->width });
+ }
+ }
+ break;
+ }
+
+ case OpEntryPoint:
+ {
+ auto itr =
+ ir.entry_points.insert(make_pair(ops[1], SPIREntryPoint(ops[1], static_cast<ExecutionModel>(ops[0]),
+ extract_string(ir.spirv, instruction.offset + 2))));
+ auto &e = itr.first->second;
+
+ // Strings need nul-terminator and consume the whole word.
+ uint32_t strlen_words = uint32_t((e.name.size() + 1 + 3) >> 2);
+
+ for (uint32_t i = strlen_words + 2; i < instruction.length; i++)
+ e.interface_variables.push_back(ops[i]);
+
+ // Set the name of the entry point in case OpName is not provided later.
+ ir.set_name(ops[1], e.name);
+
+ // If we don't have an entry, make the first one our "default".
+ if (!ir.default_entry_point)
+ ir.default_entry_point = ops[1];
+ break;
+ }
+
+ case OpExecutionMode:
+ {
+ auto &execution = ir.entry_points[ops[0]];
+ auto mode = static_cast<ExecutionMode>(ops[1]);
+ execution.flags.set(mode);
+
+ switch (mode)
+ {
+ case ExecutionModeInvocations:
+ execution.invocations = ops[2];
+ break;
+
+ case ExecutionModeLocalSize:
+ execution.workgroup_size.x = ops[2];
+ execution.workgroup_size.y = ops[3];
+ execution.workgroup_size.z = ops[4];
+ break;
+
+ case ExecutionModeOutputVertices:
+ execution.output_vertices = ops[2];
+ break;
+
+ case ExecutionModeOutputPrimitivesEXT:
+ execution.output_primitives = ops[2];
+ break;
+
+ default:
+ break;
+ }
+ break;
+ }
+
+ case OpExecutionModeId:
+ {
+ auto &execution = ir.entry_points[ops[0]];
+ auto mode = static_cast<ExecutionMode>(ops[1]);
+ execution.flags.set(mode);
+
+ if (mode == ExecutionModeLocalSizeId)
+ {
+ execution.workgroup_size.id_x = ops[2];
+ execution.workgroup_size.id_y = ops[3];
+ execution.workgroup_size.id_z = ops[4];
+ }
+
+ break;
+ }
+
+ case OpName:
+ {
+ uint32_t id = ops[0];
+ ir.set_name(id, extract_string(ir.spirv, instruction.offset + 1));
+ break;
+ }
+
+ case OpMemberName:
+ {
+ uint32_t id = ops[0];
+ uint32_t member = ops[1];
+ ir.set_member_name(id, member, extract_string(ir.spirv, instruction.offset + 2));
+ break;
+ }
+
+ case OpDecorationGroup:
+ {
+ // Noop, this simply means an ID should be a collector of decorations.
+ // The meta array is already a flat array of decorations which will contain the relevant decorations.
+ break;
+ }
+
+ case OpGroupDecorate:
+ {
+ uint32_t group_id = ops[0];
+ auto &decorations = ir.meta[group_id].decoration;
+ auto &flags = decorations.decoration_flags;
+
+ // Copies decorations from one ID to another. Only copy decorations which are set in the group,
+ // i.e., we cannot just copy the meta structure directly.
+ for (uint32_t i = 1; i < length; i++)
+ {
+ uint32_t target = ops[i];
+ flags.for_each_bit([&](uint32_t bit) {
+ auto decoration = static_cast<Decoration>(bit);
+
+ if (decoration_is_string(decoration))
+ {
+ ir.set_decoration_string(target, decoration, ir.get_decoration_string(group_id, decoration));
+ }
+ else
+ {
+ ir.meta[target].decoration_word_offset[decoration] =
+ ir.meta[group_id].decoration_word_offset[decoration];
+ ir.set_decoration(target, decoration, ir.get_decoration(group_id, decoration));
+ }
+ });
+ }
+ break;
+ }
+
+ case OpGroupMemberDecorate:
+ {
+ uint32_t group_id = ops[0];
+ auto &flags = ir.meta[group_id].decoration.decoration_flags;
+
+ // Copies decorations from one ID to another. Only copy decorations which are set in the group,
+ // i.e., we cannot just copy the meta structure directly.
+ for (uint32_t i = 1; i + 1 < length; i += 2)
+ {
+ uint32_t target = ops[i + 0];
+ uint32_t index = ops[i + 1];
+ flags.for_each_bit([&](uint32_t bit) {
+ auto decoration = static_cast<Decoration>(bit);
+
+ if (decoration_is_string(decoration))
+ ir.set_member_decoration_string(target, index, decoration,
+ ir.get_decoration_string(group_id, decoration));
+ else
+ ir.set_member_decoration(target, index, decoration, ir.get_decoration(group_id, decoration));
+ });
+ }
+ break;
+ }
+
+ case OpDecorate:
+ case OpDecorateId:
+ {
+ // OpDecorateId technically supports an array of arguments, but our only supported decorations are single uint,
+ // so merge decorate and decorate-id here.
+ uint32_t id = ops[0];
+
+ auto decoration = static_cast<Decoration>(ops[1]);
+ if (length >= 3)
+ {
+ ir.meta[id].decoration_word_offset[decoration] = uint32_t(&ops[2] - ir.spirv.data());
+ ir.set_decoration(id, decoration, ops[2]);
+ }
+ else
+ ir.set_decoration(id, decoration);
+
+ break;
+ }
+
+ case OpDecorateStringGOOGLE:
+ {
+ uint32_t id = ops[0];
+ auto decoration = static_cast<Decoration>(ops[1]);
+ ir.set_decoration_string(id, decoration, extract_string(ir.spirv, instruction.offset + 2));
+ break;
+ }
+
+ case OpMemberDecorate:
+ {
+ uint32_t id = ops[0];
+ uint32_t member = ops[1];
+ auto decoration = static_cast<Decoration>(ops[2]);
+ if (length >= 4)
+ ir.set_member_decoration(id, member, decoration, ops[3]);
+ else
+ ir.set_member_decoration(id, member, decoration);
+ break;
+ }
+
+ case OpMemberDecorateStringGOOGLE:
+ {
+ uint32_t id = ops[0];
+ uint32_t member = ops[1];
+ auto decoration = static_cast<Decoration>(ops[2]);
+ ir.set_member_decoration_string(id, member, decoration, extract_string(ir.spirv, instruction.offset + 3));
+ break;
+ }
+
+ // Build up basic types.
+ case OpTypeVoid:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::Void;
+ break;
+ }
+
+ case OpTypeBool:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::Boolean;
+ type.width = 1;
+ break;
+ }
+
+ case OpTypeFloat:
+ {
+ uint32_t id = ops[0];
+ uint32_t width = ops[1];
+ auto &type = set<SPIRType>(id, op);
+ if (width == 64)
+ type.basetype = SPIRType::Double;
+ else if (width == 32)
+ type.basetype = SPIRType::Float;
+ else if (width == 16)
+ type.basetype = SPIRType::Half;
+ else
+ SPIRV_CROSS_THROW("Unrecognized bit-width of floating point type.");
+ type.width = width;
+ break;
+ }
+
+ case OpTypeInt:
+ {
+ uint32_t id = ops[0];
+ uint32_t width = ops[1];
+ bool signedness = ops[2] != 0;
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = signedness ? to_signed_basetype(width) : to_unsigned_basetype(width);
+ type.width = width;
+ break;
+ }
+
+ // Build composite types by "inheriting".
+ // NOTE: The self member is also copied! For pointers and array modifiers this is a good thing
+ // since we can refer to decorations on pointee classes which is needed for UBO/SSBO, I/O blocks in geometry/tess etc.
+ case OpTypeVector:
+ {
+ uint32_t id = ops[0];
+ uint32_t vecsize = ops[2];
+
+ auto &base = get<SPIRType>(ops[1]);
+ auto &vecbase = set<SPIRType>(id, base);
+
+ vecbase.op = op;
+ vecbase.vecsize = vecsize;
+ vecbase.self = id;
+ vecbase.parent_type = ops[1];
+ break;
+ }
+
+ case OpTypeMatrix:
+ {
+ uint32_t id = ops[0];
+ uint32_t colcount = ops[2];
+
+ auto &base = get<SPIRType>(ops[1]);
+ auto &matrixbase = set<SPIRType>(id, base);
+
+ matrixbase.op = op;
+ matrixbase.columns = colcount;
+ matrixbase.self = id;
+ matrixbase.parent_type = ops[1];
+ break;
+ }
+
+ case OpTypeArray:
+ {
+ uint32_t id = ops[0];
+ uint32_t tid = ops[1];
+ auto &base = get<SPIRType>(tid);
+ auto &arraybase = set<SPIRType>(id, base);
+
+ arraybase.op = op;
+ arraybase.parent_type = tid;
+
+ uint32_t cid = ops[2];
+ ir.mark_used_as_array_length(cid);
+ auto *c = maybe_get<SPIRConstant>(cid);
+ bool literal = c && !c->specialization;
+
+ // We're copying type information into Array types, so we'll need a fixup for any physical pointer
+ // references.
+ if (base.forward_pointer)
+ forward_pointer_fixups.push_back({ id, tid });
+
+ arraybase.array_size_literal.push_back(literal);
+ arraybase.array.push_back(literal ? c->scalar() : cid);
+
+ // .self resolves down to non-array/non-pointer type.
+ arraybase.self = base.self;
+ break;
+ }
+
+ case OpTypeRuntimeArray:
+ {
+ uint32_t id = ops[0];
+
+ auto &base = get<SPIRType>(ops[1]);
+ auto &arraybase = set<SPIRType>(id, base);
+
+ // We're copying type information into Array types, so we'll need a fixup for any physical pointer
+ // references.
+ if (base.forward_pointer)
+ forward_pointer_fixups.push_back({ id, ops[1] });
+
+ arraybase.op = op;
+ arraybase.array.push_back(0);
+ arraybase.array_size_literal.push_back(true);
+ arraybase.parent_type = ops[1];
+
+ // .self resolves down to non-array/non-pointer type.
+ arraybase.self = base.self;
+ break;
+ }
+
+ case OpTypeImage:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::Image;
+ type.image.type = ops[1];
+ type.image.dim = static_cast<Dim>(ops[2]);
+ type.image.depth = ops[3] == 1;
+ type.image.arrayed = ops[4] != 0;
+ type.image.ms = ops[5] != 0;
+ type.image.sampled = ops[6];
+ type.image.format = static_cast<ImageFormat>(ops[7]);
+ type.image.access = (length >= 9) ? static_cast<AccessQualifier>(ops[8]) : AccessQualifierMax;
+ break;
+ }
+
+ case OpTypeSampledImage:
+ {
+ uint32_t id = ops[0];
+ uint32_t imagetype = ops[1];
+ auto &type = set<SPIRType>(id, op);
+ type = get<SPIRType>(imagetype);
+ type.basetype = SPIRType::SampledImage;
+ type.self = id;
+ break;
+ }
+
+ case OpTypeSampler:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::Sampler;
+ break;
+ }
+
+ case OpTypePointer:
+ {
+ uint32_t id = ops[0];
+
+ // Very rarely, we might receive a FunctionPrototype here.
+ // We won't be able to compile it, but we shouldn't crash when parsing.
+ // We should be able to reflect.
+ auto *base = maybe_get<SPIRType>(ops[2]);
+ auto &ptrbase = set<SPIRType>(id, op);
+
+ if (base)
+ {
+ ptrbase = *base;
+ ptrbase.op = op;
+ }
+
+ ptrbase.pointer = true;
+ ptrbase.pointer_depth++;
+ ptrbase.storage = static_cast<StorageClass>(ops[1]);
+
+ if (ptrbase.storage == StorageClassAtomicCounter)
+ ptrbase.basetype = SPIRType::AtomicCounter;
+
+ if (base && base->forward_pointer)
+ forward_pointer_fixups.push_back({ id, ops[2] });
+
+ ptrbase.parent_type = ops[2];
+
+ // Do NOT set ptrbase.self!
+ break;
+ }
+
+ case OpTypeForwardPointer:
+ {
+ uint32_t id = ops[0];
+ auto &ptrbase = set<SPIRType>(id, op);
+ ptrbase.pointer = true;
+ ptrbase.pointer_depth++;
+ ptrbase.storage = static_cast<StorageClass>(ops[1]);
+ ptrbase.forward_pointer = true;
+
+ if (ptrbase.storage == StorageClassAtomicCounter)
+ ptrbase.basetype = SPIRType::AtomicCounter;
+
+ break;
+ }
+
+ case OpTypeStruct:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::Struct;
+ for (uint32_t i = 1; i < length; i++)
+ type.member_types.push_back(ops[i]);
+
+ // Check if we have seen this struct type before, with just different
+ // decorations.
+ //
+ // Add workaround for issue #17 as well by looking at OpName for the struct
+ // types, which we shouldn't normally do.
+ // We should not normally have to consider type aliases like this to begin with
+ // however ... glslang issues #304, #307 cover this.
+
+ // For stripped names, never consider struct type aliasing.
+ // We risk declaring the same struct multiple times, but type-punning is not allowed
+ // so this is safe.
+ bool consider_aliasing = !ir.get_name(type.self).empty();
+ if (consider_aliasing)
+ {
+ for (auto &other : global_struct_cache)
+ {
+ if (ir.get_name(type.self) == ir.get_name(other) &&
+ types_are_logically_equivalent(type, get<SPIRType>(other)))
+ {
+ type.type_alias = other;
+ break;
+ }
+ }
+
+ if (type.type_alias == TypeID(0))
+ global_struct_cache.push_back(id);
+ }
+ break;
+ }
+
+ case OpTypeFunction:
+ {
+ uint32_t id = ops[0];
+ uint32_t ret = ops[1];
+
+ auto &func = set<SPIRFunctionPrototype>(id, ret);
+ for (uint32_t i = 2; i < length; i++)
+ func.parameter_types.push_back(ops[i]);
+ break;
+ }
+
+ case OpTypeAccelerationStructureKHR:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::AccelerationStructure;
+ break;
+ }
+
+ case OpTypeRayQueryKHR:
+ {
+ uint32_t id = ops[0];
+ auto &type = set<SPIRType>(id, op);
+ type.basetype = SPIRType::RayQuery;
+ break;
+ }
+
+ // Variable declaration
+ // All variables are essentially pointers with a storage qualifier.
+ case OpVariable:
+ {
+ uint32_t type = ops[0];
+ uint32_t id = ops[1];
+ auto storage = static_cast<StorageClass>(ops[2]);
+ uint32_t initializer = length == 4 ? ops[3] : 0;
+
+ if (storage == StorageClassFunction)
+ {
+ if (!current_function)
+ SPIRV_CROSS_THROW("No function currently in scope");
+ current_function->add_local_variable(id);
+ }
+
+ set<SPIRVariable>(id, type, storage, initializer);
+ break;
+ }
+
+ // OpPhi
+ // OpPhi is a fairly magical opcode.
+ // It selects temporary variables based on which parent block we *came from*.
+ // In high-level languages we can "de-SSA" by creating a function local, and flush out temporaries to this function-local
+ // variable to emulate SSA Phi.
+ case OpPhi:
+ {
+ if (!current_function)
+ SPIRV_CROSS_THROW("No function currently in scope");
+ if (!current_block)
+ SPIRV_CROSS_THROW("No block currently in scope");
+
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ // Instead of a temporary, create a new function-wide temporary with this ID instead.
+ auto &var = set<SPIRVariable>(id, result_type, spv::StorageClassFunction);
+ var.phi_variable = true;
+
+ current_function->add_local_variable(id);
+
+ for (uint32_t i = 2; i + 2 <= length; i += 2)
+ current_block->phi_variables.push_back({ ops[i], ops[i + 1], id });
+ break;
+ }
+
+ // Constants
+ case OpSpecConstant:
+ case OpConstant:
+ {
+ uint32_t id = ops[1];
+ auto &type = get<SPIRType>(ops[0]);
+
+ if (type.width > 32)
+ set<SPIRConstant>(id, ops[0], ops[2] | (uint64_t(ops[3]) << 32), op == OpSpecConstant);
+ else
+ set<SPIRConstant>(id, ops[0], ops[2], op == OpSpecConstant);
+ break;
+ }
+
+ case OpSpecConstantFalse:
+ case OpConstantFalse:
+ {
+ uint32_t id = ops[1];
+ set<SPIRConstant>(id, ops[0], uint32_t(0), op == OpSpecConstantFalse);
+ break;
+ }
+
+ case OpSpecConstantTrue:
+ case OpConstantTrue:
+ {
+ uint32_t id = ops[1];
+ set<SPIRConstant>(id, ops[0], uint32_t(1), op == OpSpecConstantTrue);
+ break;
+ }
+
+ case OpConstantNull:
+ {
+ uint32_t id = ops[1];
+ uint32_t type = ops[0];
+ ir.make_constant_null(id, type, true);
+ break;
+ }
+
+ case OpSpecConstantComposite:
+ case OpConstantComposite:
+ {
+ uint32_t id = ops[1];
+ uint32_t type = ops[0];
+
+ auto &ctype = get<SPIRType>(type);
+
+ // We can have constants which are structs and arrays.
+ // In this case, our SPIRConstant will be a list of other SPIRConstant ids which we
+ // can refer to.
+ if (ctype.basetype == SPIRType::Struct || !ctype.array.empty())
+ {
+ set<SPIRConstant>(id, type, ops + 2, length - 2, op == OpSpecConstantComposite);
+ }
+ else
+ {
+ uint32_t elements = length - 2;
+ if (elements > 4)
+ SPIRV_CROSS_THROW("OpConstantComposite only supports 1, 2, 3 and 4 elements.");
+
+ SPIRConstant remapped_constant_ops[4];
+ const SPIRConstant *c[4];
+ for (uint32_t i = 0; i < elements; i++)
+ {
+ // Specialization constants operations can also be part of this.
+ // We do not know their value, so any attempt to query SPIRConstant later
+ // will fail. We can only propagate the ID of the expression and use to_expression on it.
+ auto *constant_op = maybe_get<SPIRConstantOp>(ops[2 + i]);
+ auto *undef_op = maybe_get<SPIRUndef>(ops[2 + i]);
+ if (constant_op)
+ {
+ if (op == OpConstantComposite)
+ SPIRV_CROSS_THROW("Specialization constant operation used in OpConstantComposite.");
+
+ remapped_constant_ops[i].make_null(get<SPIRType>(constant_op->basetype));
+ remapped_constant_ops[i].self = constant_op->self;
+ remapped_constant_ops[i].constant_type = constant_op->basetype;
+ remapped_constant_ops[i].specialization = true;
+ c[i] = &remapped_constant_ops[i];
+ }
+ else if (undef_op)
+ {
+ // Undefined, just pick 0.
+ remapped_constant_ops[i].make_null(get<SPIRType>(undef_op->basetype));
+ remapped_constant_ops[i].constant_type = undef_op->basetype;
+ c[i] = &remapped_constant_ops[i];
+ }
+ else
+ c[i] = &get<SPIRConstant>(ops[2 + i]);
+ }
+ set<SPIRConstant>(id, type, c, elements, op == OpSpecConstantComposite);
+ }
+ break;
+ }
+
+ // Functions
+ case OpFunction:
+ {
+ uint32_t res = ops[0];
+ uint32_t id = ops[1];
+ // Control
+ uint32_t type = ops[3];
+
+ if (current_function)
+ SPIRV_CROSS_THROW("Must end a function before starting a new one!");
+
+ current_function = &set<SPIRFunction>(id, res, type);
+ break;
+ }
+
+ case OpFunctionParameter:
+ {
+ uint32_t type = ops[0];
+ uint32_t id = ops[1];
+
+ if (!current_function)
+ SPIRV_CROSS_THROW("Must be in a function!");
+
+ current_function->add_parameter(type, id);
+ set<SPIRVariable>(id, type, StorageClassFunction);
+ break;
+ }
+
+ case OpFunctionEnd:
+ {
+ if (current_block)
+ {
+ // Very specific error message, but seems to come up quite often.
+ SPIRV_CROSS_THROW(
+ "Cannot end a function before ending the current block.\n"
+ "Likely cause: If this SPIR-V was created from glslang HLSL, make sure the entry point is valid.");
+ }
+ current_function = nullptr;
+ break;
+ }
+
+ // Blocks
+ case OpLabel:
+ {
+ // OpLabel always starts a block.
+ if (!current_function)
+ SPIRV_CROSS_THROW("Blocks cannot exist outside functions!");
+
+ uint32_t id = ops[0];
+
+ current_function->blocks.push_back(id);
+ if (!current_function->entry_block)
+ current_function->entry_block = id;
+
+ if (current_block)
+ SPIRV_CROSS_THROW("Cannot start a block before ending the current block.");
+
+ current_block = &set<SPIRBlock>(id);
+ break;
+ }
+
+ // Branch instructions end blocks.
+ case OpBranch:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+
+ uint32_t target = ops[0];
+ current_block->terminator = SPIRBlock::Direct;
+ current_block->next_block = target;
+ current_block = nullptr;
+ break;
+ }
+
+ case OpBranchConditional:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+
+ current_block->condition = ops[0];
+ current_block->true_block = ops[1];
+ current_block->false_block = ops[2];
+
+ current_block->terminator = SPIRBlock::Select;
+
+ if (current_block->true_block == current_block->false_block)
+ {
+ // Bogus conditional, translate to a direct branch.
+ // Avoids some ugly edge cases later when analyzing CFGs.
+
+ // There are some super jank cases where the merge block is different from the true/false,
+ // and later branches can "break" out of the selection construct this way.
+ // This is complete nonsense, but CTS hits this case.
+ // In this scenario, we should see the selection construct as more of a Switch with one default case.
+ // The problem here is that this breaks any attempt to break out of outer switch statements,
+ // but it's theoretically solvable if this ever comes up using the ladder breaking system ...
+
+ if (current_block->true_block != current_block->next_block &&
+ current_block->merge == SPIRBlock::MergeSelection)
+ {
+ uint32_t ids = ir.increase_bound_by(2);
+
+ auto &type = set<SPIRType>(ids, OpTypeInt);
+ type.basetype = SPIRType::Int;
+ type.width = 32;
+ auto &c = set<SPIRConstant>(ids + 1, ids);
+
+ current_block->condition = c.self;
+ current_block->default_block = current_block->true_block;
+ current_block->terminator = SPIRBlock::MultiSelect;
+ ir.block_meta[current_block->next_block] &= ~ParsedIR::BLOCK_META_SELECTION_MERGE_BIT;
+ ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT;
+ }
+ else
+ {
+ // Collapse loops if we have to.
+ bool collapsed_loop = current_block->true_block == current_block->merge_block &&
+ current_block->merge == SPIRBlock::MergeLoop;
+
+ if (collapsed_loop)
+ {
+ ir.block_meta[current_block->merge_block] &= ~ParsedIR::BLOCK_META_LOOP_MERGE_BIT;
+ ir.block_meta[current_block->continue_block] &= ~ParsedIR::BLOCK_META_CONTINUE_BIT;
+ }
+
+ current_block->next_block = current_block->true_block;
+ current_block->condition = 0;
+ current_block->true_block = 0;
+ current_block->false_block = 0;
+ current_block->merge_block = 0;
+ current_block->merge = SPIRBlock::MergeNone;
+ current_block->terminator = SPIRBlock::Direct;
+ }
+ }
+
+ current_block = nullptr;
+ break;
+ }
+
+ case OpSwitch:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+
+ current_block->terminator = SPIRBlock::MultiSelect;
+
+ current_block->condition = ops[0];
+ current_block->default_block = ops[1];
+
+ uint32_t remaining_ops = length - 2;
+ if ((remaining_ops % 2) == 0)
+ {
+ for (uint32_t i = 2; i + 2 <= length; i += 2)
+ current_block->cases_32bit.push_back({ ops[i], ops[i + 1] });
+ }
+
+ if ((remaining_ops % 3) == 0)
+ {
+ for (uint32_t i = 2; i + 3 <= length; i += 3)
+ {
+ uint64_t value = (static_cast<uint64_t>(ops[i + 1]) << 32) | ops[i];
+ current_block->cases_64bit.push_back({ value, ops[i + 2] });
+ }
+ }
+
+ // If we jump to next block, make it break instead since we're inside a switch case block at that point.
+ ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT;
+
+ current_block = nullptr;
+ break;
+ }
+
+ case OpKill:
+ case OpTerminateInvocation:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::Kill;
+ current_block = nullptr;
+ break;
+ }
+
+ case OpTerminateRayKHR:
+ // NV variant is not a terminator.
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::TerminateRay;
+ current_block = nullptr;
+ break;
+
+ case OpIgnoreIntersectionKHR:
+ // NV variant is not a terminator.
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::IgnoreIntersection;
+ current_block = nullptr;
+ break;
+
+ case OpEmitMeshTasksEXT:
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::EmitMeshTasks;
+ for (uint32_t i = 0; i < 3; i++)
+ current_block->mesh.groups[i] = ops[i];
+ current_block->mesh.payload = length >= 4 ? ops[3] : 0;
+ current_block = nullptr;
+ // Currently glslang is bugged and does not treat EmitMeshTasksEXT as a terminator.
+ ignore_trailing_block_opcodes = true;
+ break;
+
+ case OpReturn:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::Return;
+ current_block = nullptr;
+ break;
+ }
+
+ case OpReturnValue:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::Return;
+ current_block->return_value = ops[0];
+ current_block = nullptr;
+ break;
+ }
+
+ case OpUnreachable:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to end a non-existing block.");
+ current_block->terminator = SPIRBlock::Unreachable;
+ current_block = nullptr;
+ break;
+ }
+
+ case OpSelectionMerge:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to modify a non-existing block.");
+
+ current_block->next_block = ops[0];
+ current_block->merge = SPIRBlock::MergeSelection;
+ ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_SELECTION_MERGE_BIT;
+
+ if (length >= 2)
+ {
+ if (ops[1] & SelectionControlFlattenMask)
+ current_block->hint = SPIRBlock::HintFlatten;
+ else if (ops[1] & SelectionControlDontFlattenMask)
+ current_block->hint = SPIRBlock::HintDontFlatten;
+ }
+ break;
+ }
+
+ case OpLoopMerge:
+ {
+ if (!current_block)
+ SPIRV_CROSS_THROW("Trying to modify a non-existing block.");
+
+ current_block->merge_block = ops[0];
+ current_block->continue_block = ops[1];
+ current_block->merge = SPIRBlock::MergeLoop;
+
+ ir.block_meta[current_block->self] |= ParsedIR::BLOCK_META_LOOP_HEADER_BIT;
+ ir.block_meta[current_block->merge_block] |= ParsedIR::BLOCK_META_LOOP_MERGE_BIT;
+
+ ir.continue_block_to_loop_header[current_block->continue_block] = BlockID(current_block->self);
+
+ // Don't add loop headers to continue blocks,
+ // which would make it impossible branch into the loop header since
+ // they are treated as continues.
+ if (current_block->continue_block != BlockID(current_block->self))
+ ir.block_meta[current_block->continue_block] |= ParsedIR::BLOCK_META_CONTINUE_BIT;
+
+ if (length >= 3)
+ {
+ if (ops[2] & LoopControlUnrollMask)
+ current_block->hint = SPIRBlock::HintUnroll;
+ else if (ops[2] & LoopControlDontUnrollMask)
+ current_block->hint = SPIRBlock::HintDontUnroll;
+ }
+ break;
+ }
+
+ case OpSpecConstantOp:
+ {
+ if (length < 3)
+ SPIRV_CROSS_THROW("OpSpecConstantOp not enough arguments.");
+
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto spec_op = static_cast<Op>(ops[2]);
+
+ set<SPIRConstantOp>(id, result_type, spec_op, ops + 3, length - 3);
+ break;
+ }
+
+ case OpLine:
+ {
+ // OpLine might come at global scope, but we don't care about those since they will not be declared in any
+ // meaningful correct order.
+ // Ignore all OpLine directives which live outside a function.
+ if (current_block)
+ current_block->ops.push_back(instruction);
+
+ // Line directives may arrive before first OpLabel.
+ // Treat this as the line of the function declaration,
+ // so warnings for arguments can propagate properly.
+ if (current_function)
+ {
+ // Store the first one we find and emit it before creating the function prototype.
+ if (current_function->entry_line.file_id == 0)
+ {
+ current_function->entry_line.file_id = ops[0];
+ current_function->entry_line.line_literal = ops[1];
+ }
+ }
+ break;
+ }
+
+ case OpNoLine:
+ {
+ // OpNoLine might come at global scope.
+ if (current_block)
+ current_block->ops.push_back(instruction);
+ break;
+ }
+
+ // Actual opcodes.
+ default:
+ {
+ if (length >= 2)
+ {
+ const auto *type = maybe_get<SPIRType>(ops[0]);
+ if (type)
+ ir.load_type_width.insert({ ops[1], type->width });
+ }
+
+ if (!current_block)
+ SPIRV_CROSS_THROW("Currently no block to insert opcode.");
+
+ current_block->ops.push_back(instruction);
+ break;
+ }
+ }
+}
+
+bool Parser::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const
+{
+ if (a.basetype != b.basetype)
+ return false;
+ if (a.width != b.width)
+ return false;
+ if (a.vecsize != b.vecsize)
+ return false;
+ if (a.columns != b.columns)
+ return false;
+ if (a.array.size() != b.array.size())
+ return false;
+
+ size_t array_count = a.array.size();
+ if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0)
+ return false;
+
+ if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage)
+ {
+ if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0)
+ return false;
+ }
+
+ if (a.member_types.size() != b.member_types.size())
+ return false;
+
+ size_t member_types = a.member_types.size();
+ for (size_t i = 0; i < member_types; i++)
+ {
+ if (!types_are_logically_equivalent(get<SPIRType>(a.member_types[i]), get<SPIRType>(b.member_types[i])))
+ return false;
+ }
+
+ return true;
+}
+
+bool Parser::variable_storage_is_aliased(const SPIRVariable &v) const
+{
+ auto &type = get<SPIRType>(v.basetype);
+
+ auto *type_meta = ir.find_meta(type.self);
+
+ bool ssbo = v.storage == StorageClassStorageBuffer ||
+ (type_meta && type_meta->decoration.decoration_flags.get(DecorationBufferBlock));
+ bool image = type.basetype == SPIRType::Image;
+ bool counter = type.basetype == SPIRType::AtomicCounter;
+
+ bool is_restrict;
+ if (ssbo)
+ is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict);
+ else
+ is_restrict = ir.has_decoration(v.self, DecorationRestrict);
+
+ return !is_restrict && (ssbo || image || counter);
+}
+} // namespace SPIRV_CROSS_NAMESPACE
diff --git a/thirdparty/spirv-cross/spirv_parser.hpp b/thirdparty/spirv-cross/spirv_parser.hpp
new file mode 100644
index 0000000000..dabc0e2244
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_parser.hpp
@@ -0,0 +1,103 @@
+/*
+ * Copyright 2018-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_PARSER_HPP
+#define SPIRV_CROSS_PARSER_HPP
+
+#include "spirv_cross_parsed_ir.hpp"
+#include <stdint.h>
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+class Parser
+{
+public:
+ Parser(const uint32_t *spirv_data, size_t word_count);
+ Parser(std::vector<uint32_t> spirv);
+
+ void parse();
+
+ ParsedIR &get_parsed_ir()
+ {
+ return ir;
+ }
+
+private:
+ ParsedIR ir;
+ SPIRFunction *current_function = nullptr;
+ SPIRBlock *current_block = nullptr;
+ // For workarounds.
+ bool ignore_trailing_block_opcodes = false;
+
+ void parse(const Instruction &instr);
+ const uint32_t *stream(const Instruction &instr) const;
+
+ template <typename T, typename... P>
+ T &set(uint32_t id, P &&... args)
+ {
+ ir.add_typed_id(static_cast<Types>(T::type), id);
+ auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...);
+ var.self = id;
+ return var;
+ }
+
+ template <typename T>
+ T &get(uint32_t id)
+ {
+ return variant_get<T>(ir.ids[id]);
+ }
+
+ template <typename T>
+ T *maybe_get(uint32_t id)
+ {
+ if (ir.ids[id].get_type() == static_cast<Types>(T::type))
+ return &get<T>(id);
+ else
+ return nullptr;
+ }
+
+ template <typename T>
+ const T &get(uint32_t id) const
+ {
+ return variant_get<T>(ir.ids[id]);
+ }
+
+ template <typename T>
+ const T *maybe_get(uint32_t id) const
+ {
+ if (ir.ids[id].get_type() == T::type)
+ return &get<T>(id);
+ else
+ return nullptr;
+ }
+
+ // This must be an ordered data structure so we always pick the same type aliases.
+ SmallVector<uint32_t> global_struct_cache;
+ SmallVector<std::pair<uint32_t, uint32_t>> forward_pointer_fixups;
+
+ bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const;
+ bool variable_storage_is_aliased(const SPIRVariable &v) const;
+};
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif
diff --git a/thirdparty/spirv-cross/spirv_reflect.cpp b/thirdparty/spirv-cross/spirv_reflect.cpp
new file mode 100644
index 0000000000..633983bd30
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_reflect.cpp
@@ -0,0 +1,710 @@
+/*
+ * Copyright 2018-2021 Bradley Austin Davis
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_reflect.hpp"
+#include "spirv_glsl.hpp"
+#include <iomanip>
+
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+using namespace std;
+
+namespace simple_json
+{
+enum class Type
+{
+ Object,
+ Array,
+};
+
+using State = std::pair<Type, bool>;
+using Stack = std::stack<State>;
+
+class Stream
+{
+ Stack stack;
+ StringStream<> buffer;
+ uint32_t indent{ 0 };
+ char current_locale_radix_character = '.';
+
+public:
+ void set_current_locale_radix_character(char c)
+ {
+ current_locale_radix_character = c;
+ }
+
+ void begin_json_object();
+ void end_json_object();
+ void emit_json_key(const std::string &key);
+ void emit_json_key_value(const std::string &key, const std::string &value);
+ void emit_json_key_value(const std::string &key, bool value);
+ void emit_json_key_value(const std::string &key, uint32_t value);
+ void emit_json_key_value(const std::string &key, int32_t value);
+ void emit_json_key_value(const std::string &key, float value);
+ void emit_json_key_object(const std::string &key);
+ void emit_json_key_array(const std::string &key);
+
+ void begin_json_array();
+ void end_json_array();
+ void emit_json_array_value(const std::string &value);
+ void emit_json_array_value(uint32_t value);
+ void emit_json_array_value(bool value);
+
+ std::string str() const
+ {
+ return buffer.str();
+ }
+
+private:
+ inline void statement_indent()
+ {
+ for (uint32_t i = 0; i < indent; i++)
+ buffer << " ";
+ }
+
+ template <typename T>
+ inline void statement_inner(T &&t)
+ {
+ buffer << std::forward<T>(t);
+ }
+
+ template <typename T, typename... Ts>
+ inline void statement_inner(T &&t, Ts &&... ts)
+ {
+ buffer << std::forward<T>(t);
+ statement_inner(std::forward<Ts>(ts)...);
+ }
+
+ template <typename... Ts>
+ inline void statement(Ts &&... ts)
+ {
+ statement_indent();
+ statement_inner(std::forward<Ts>(ts)...);
+ buffer << '\n';
+ }
+
+ template <typename... Ts>
+ void statement_no_return(Ts &&... ts)
+ {
+ statement_indent();
+ statement_inner(std::forward<Ts>(ts)...);
+ }
+};
+} // namespace simple_json
+
+using namespace simple_json;
+
+// Hackery to emit JSON without using nlohmann/json C++ library (which requires a
+// higher level of compiler compliance than is required by SPIRV-Cross
+void Stream::begin_json_array()
+{
+ if (!stack.empty() && stack.top().second)
+ {
+ statement_inner(",\n");
+ }
+ statement("[");
+ ++indent;
+ stack.emplace(Type::Array, false);
+}
+
+void Stream::end_json_array()
+{
+ if (stack.empty() || stack.top().first != Type::Array)
+ SPIRV_CROSS_THROW("Invalid JSON state");
+ if (stack.top().second)
+ {
+ statement_inner("\n");
+ }
+ --indent;
+ statement_no_return("]");
+ stack.pop();
+ if (!stack.empty())
+ {
+ stack.top().second = true;
+ }
+}
+
+void Stream::emit_json_array_value(const std::string &value)
+{
+ if (stack.empty() || stack.top().first != Type::Array)
+ SPIRV_CROSS_THROW("Invalid JSON state");
+
+ if (stack.top().second)
+ statement_inner(",\n");
+
+ statement_no_return("\"", value, "\"");
+ stack.top().second = true;
+}
+
+void Stream::emit_json_array_value(uint32_t value)
+{
+ if (stack.empty() || stack.top().first != Type::Array)
+ SPIRV_CROSS_THROW("Invalid JSON state");
+ if (stack.top().second)
+ statement_inner(",\n");
+ statement_no_return(std::to_string(value));
+ stack.top().second = true;
+}
+
+void Stream::emit_json_array_value(bool value)
+{
+ if (stack.empty() || stack.top().first != Type::Array)
+ SPIRV_CROSS_THROW("Invalid JSON state");
+ if (stack.top().second)
+ statement_inner(",\n");
+ statement_no_return(value ? "true" : "false");
+ stack.top().second = true;
+}
+
+void Stream::begin_json_object()
+{
+ if (!stack.empty() && stack.top().second)
+ {
+ statement_inner(",\n");
+ }
+ statement("{");
+ ++indent;
+ stack.emplace(Type::Object, false);
+}
+
+void Stream::end_json_object()
+{
+ if (stack.empty() || stack.top().first != Type::Object)
+ SPIRV_CROSS_THROW("Invalid JSON state");
+ if (stack.top().second)
+ {
+ statement_inner("\n");
+ }
+ --indent;
+ statement_no_return("}");
+ stack.pop();
+ if (!stack.empty())
+ {
+ stack.top().second = true;
+ }
+}
+
+void Stream::emit_json_key(const std::string &key)
+{
+ if (stack.empty() || stack.top().first != Type::Object)
+ SPIRV_CROSS_THROW("Invalid JSON state");
+
+ if (stack.top().second)
+ statement_inner(",\n");
+ statement_no_return("\"", key, "\" : ");
+ stack.top().second = true;
+}
+
+void Stream::emit_json_key_value(const std::string &key, const std::string &value)
+{
+ emit_json_key(key);
+ statement_inner("\"", value, "\"");
+}
+
+void Stream::emit_json_key_value(const std::string &key, uint32_t value)
+{
+ emit_json_key(key);
+ statement_inner(value);
+}
+
+void Stream::emit_json_key_value(const std::string &key, int32_t value)
+{
+ emit_json_key(key);
+ statement_inner(value);
+}
+
+void Stream::emit_json_key_value(const std::string &key, float value)
+{
+ emit_json_key(key);
+ statement_inner(convert_to_string(value, current_locale_radix_character));
+}
+
+void Stream::emit_json_key_value(const std::string &key, bool value)
+{
+ emit_json_key(key);
+ statement_inner(value ? "true" : "false");
+}
+
+void Stream::emit_json_key_object(const std::string &key)
+{
+ emit_json_key(key);
+ statement_inner("{\n");
+ ++indent;
+ stack.emplace(Type::Object, false);
+}
+
+void Stream::emit_json_key_array(const std::string &key)
+{
+ emit_json_key(key);
+ statement_inner("[\n");
+ ++indent;
+ stack.emplace(Type::Array, false);
+}
+
+void CompilerReflection::set_format(const std::string &format)
+{
+ if (format != "json")
+ {
+ SPIRV_CROSS_THROW("Unsupported format");
+ }
+}
+
+string CompilerReflection::compile()
+{
+ json_stream = std::make_shared<simple_json::Stream>();
+ json_stream->set_current_locale_radix_character(current_locale_radix_character);
+ json_stream->begin_json_object();
+ reorder_type_alias();
+ emit_entry_points();
+ emit_types();
+ emit_resources();
+ emit_specialization_constants();
+ json_stream->end_json_object();
+ return json_stream->str();
+}
+
+static bool naturally_emit_type(const SPIRType &type)
+{
+ return type.basetype == SPIRType::Struct && !type.pointer && type.array.empty();
+}
+
+bool CompilerReflection::type_is_reference(const SPIRType &type) const
+{
+ // Physical pointers and arrays of physical pointers need to refer to the pointee's type.
+ return is_physical_pointer(type) ||
+ (type_is_array_of_pointers(type) && type.storage == StorageClassPhysicalStorageBuffer);
+}
+
+void CompilerReflection::emit_types()
+{
+ bool emitted_open_tag = false;
+
+ SmallVector<uint32_t> physical_pointee_types;
+
+ // If we have physical pointers or arrays of physical pointers, it's also helpful to emit the pointee type
+ // and chain the type hierarchy. For POD, arrays can emit the entire type in-place.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &type) {
+ if (naturally_emit_type(type))
+ {
+ emit_type(self, emitted_open_tag);
+ }
+ else if (type_is_reference(type))
+ {
+ if (!naturally_emit_type(this->get<SPIRType>(type.parent_type)) &&
+ find(physical_pointee_types.begin(), physical_pointee_types.end(), type.parent_type) ==
+ physical_pointee_types.end())
+ {
+ physical_pointee_types.push_back(type.parent_type);
+ }
+ }
+ });
+
+ for (uint32_t pointee_type : physical_pointee_types)
+ emit_type(pointee_type, emitted_open_tag);
+
+ if (emitted_open_tag)
+ {
+ json_stream->end_json_object();
+ }
+}
+
+void CompilerReflection::emit_type(uint32_t type_id, bool &emitted_open_tag)
+{
+ auto &type = get<SPIRType>(type_id);
+ auto name = type_to_glsl(type);
+
+ if (!emitted_open_tag)
+ {
+ json_stream->emit_json_key_object("types");
+ emitted_open_tag = true;
+ }
+ json_stream->emit_json_key_object("_" + std::to_string(type_id));
+ json_stream->emit_json_key_value("name", name);
+
+ if (is_physical_pointer(type))
+ {
+ json_stream->emit_json_key_value("type", "_" + std::to_string(type.parent_type));
+ json_stream->emit_json_key_value("physical_pointer", true);
+ }
+ else if (!type.array.empty())
+ {
+ emit_type_array(type);
+ json_stream->emit_json_key_value("type", "_" + std::to_string(type.parent_type));
+ json_stream->emit_json_key_value("array_stride", get_decoration(type_id, DecorationArrayStride));
+ }
+ else
+ {
+ json_stream->emit_json_key_array("members");
+ // FIXME ideally we'd like to emit the size of a structure as a
+ // convenience to people parsing the reflected JSON. The problem
+ // is that there's no implicit size for a type. It's final size
+ // will be determined by the top level declaration in which it's
+ // included. So there might be one size for the struct if it's
+ // included in a std140 uniform block and another if it's included
+ // in a std430 uniform block.
+ // The solution is to include *all* potential sizes as a map of
+ // layout type name to integer, but that will probably require
+ // some additional logic being written in this class, or in the
+ // parent CompilerGLSL class.
+ auto size = type.member_types.size();
+ for (uint32_t i = 0; i < size; ++i)
+ {
+ emit_type_member(type, i);
+ }
+ json_stream->end_json_array();
+ }
+
+ json_stream->end_json_object();
+}
+
+void CompilerReflection::emit_type_member(const SPIRType &type, uint32_t index)
+{
+ auto &membertype = get<SPIRType>(type.member_types[index]);
+ json_stream->begin_json_object();
+ auto name = to_member_name(type, index);
+ // FIXME we'd like to emit the offset of each member, but such offsets are
+ // context dependent. See the comment above regarding structure sizes
+ json_stream->emit_json_key_value("name", name);
+
+ if (type_is_reference(membertype))
+ {
+ json_stream->emit_json_key_value("type", "_" + std::to_string(membertype.parent_type));
+ }
+ else if (membertype.basetype == SPIRType::Struct)
+ {
+ json_stream->emit_json_key_value("type", "_" + std::to_string(membertype.self));
+ }
+ else
+ {
+ json_stream->emit_json_key_value("type", type_to_glsl(membertype));
+ }
+ emit_type_member_qualifiers(type, index);
+ json_stream->end_json_object();
+}
+
+void CompilerReflection::emit_type_array(const SPIRType &type)
+{
+ if (!is_physical_pointer(type) && !type.array.empty())
+ {
+ json_stream->emit_json_key_array("array");
+ // Note that we emit the zeros here as a means of identifying
+ // unbounded arrays. This is necessary as otherwise there would
+ // be no way of differentiating between float[4] and float[4][]
+ for (const auto &value : type.array)
+ json_stream->emit_json_array_value(value);
+ json_stream->end_json_array();
+
+ json_stream->emit_json_key_array("array_size_is_literal");
+ for (const auto &value : type.array_size_literal)
+ json_stream->emit_json_array_value(value);
+ json_stream->end_json_array();
+ }
+}
+
+void CompilerReflection::emit_type_member_qualifiers(const SPIRType &type, uint32_t index)
+{
+ auto &membertype = get<SPIRType>(type.member_types[index]);
+ emit_type_array(membertype);
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size())
+ {
+ auto &dec = memb[index];
+ if (dec.decoration_flags.get(DecorationLocation))
+ json_stream->emit_json_key_value("location", dec.location);
+ if (dec.decoration_flags.get(DecorationOffset))
+ json_stream->emit_json_key_value("offset", dec.offset);
+
+ // Array stride is a property of the array type, not the struct.
+ if (has_decoration(type.member_types[index], DecorationArrayStride))
+ json_stream->emit_json_key_value("array_stride",
+ get_decoration(type.member_types[index], DecorationArrayStride));
+
+ if (dec.decoration_flags.get(DecorationMatrixStride))
+ json_stream->emit_json_key_value("matrix_stride", dec.matrix_stride);
+ if (dec.decoration_flags.get(DecorationRowMajor))
+ json_stream->emit_json_key_value("row_major", true);
+
+ if (is_physical_pointer(membertype))
+ json_stream->emit_json_key_value("physical_pointer", true);
+ }
+}
+
+string CompilerReflection::execution_model_to_str(spv::ExecutionModel model)
+{
+ switch (model)
+ {
+ case ExecutionModelVertex:
+ return "vert";
+ case ExecutionModelTessellationControl:
+ return "tesc";
+ case ExecutionModelTessellationEvaluation:
+ return "tese";
+ case ExecutionModelGeometry:
+ return "geom";
+ case ExecutionModelFragment:
+ return "frag";
+ case ExecutionModelGLCompute:
+ return "comp";
+ case ExecutionModelRayGenerationNV:
+ return "rgen";
+ case ExecutionModelIntersectionNV:
+ return "rint";
+ case ExecutionModelAnyHitNV:
+ return "rahit";
+ case ExecutionModelClosestHitNV:
+ return "rchit";
+ case ExecutionModelMissNV:
+ return "rmiss";
+ case ExecutionModelCallableNV:
+ return "rcall";
+ default:
+ return "???";
+ }
+}
+
+// FIXME include things like the local_size dimensions, geometry output vertex count, etc
+void CompilerReflection::emit_entry_points()
+{
+ auto entries = get_entry_points_and_stages();
+ if (!entries.empty())
+ {
+ // Needed to make output deterministic.
+ sort(begin(entries), end(entries), [](const EntryPoint &a, const EntryPoint &b) -> bool {
+ if (a.execution_model < b.execution_model)
+ return true;
+ else if (a.execution_model > b.execution_model)
+ return false;
+ else
+ return a.name < b.name;
+ });
+
+ json_stream->emit_json_key_array("entryPoints");
+ for (auto &e : entries)
+ {
+ json_stream->begin_json_object();
+ json_stream->emit_json_key_value("name", e.name);
+ json_stream->emit_json_key_value("mode", execution_model_to_str(e.execution_model));
+ if (e.execution_model == ExecutionModelGLCompute)
+ {
+ const auto &spv_entry = get_entry_point(e.name, e.execution_model);
+
+ SpecializationConstant spec_x, spec_y, spec_z;
+ get_work_group_size_specialization_constants(spec_x, spec_y, spec_z);
+
+ json_stream->emit_json_key_array("workgroup_size");
+ json_stream->emit_json_array_value(spec_x.id != ID(0) ? spec_x.constant_id :
+ spv_entry.workgroup_size.x);
+ json_stream->emit_json_array_value(spec_y.id != ID(0) ? spec_y.constant_id :
+ spv_entry.workgroup_size.y);
+ json_stream->emit_json_array_value(spec_z.id != ID(0) ? spec_z.constant_id :
+ spv_entry.workgroup_size.z);
+ json_stream->end_json_array();
+
+ json_stream->emit_json_key_array("workgroup_size_is_spec_constant_id");
+ json_stream->emit_json_array_value(spec_x.id != ID(0));
+ json_stream->emit_json_array_value(spec_y.id != ID(0));
+ json_stream->emit_json_array_value(spec_z.id != ID(0));
+ json_stream->end_json_array();
+ }
+ json_stream->end_json_object();
+ }
+ json_stream->end_json_array();
+ }
+}
+
+void CompilerReflection::emit_resources()
+{
+ auto res = get_shader_resources();
+ emit_resources("subpass_inputs", res.subpass_inputs);
+ emit_resources("inputs", res.stage_inputs);
+ emit_resources("outputs", res.stage_outputs);
+ emit_resources("textures", res.sampled_images);
+ emit_resources("separate_images", res.separate_images);
+ emit_resources("separate_samplers", res.separate_samplers);
+ emit_resources("images", res.storage_images);
+ emit_resources("ssbos", res.storage_buffers);
+ emit_resources("ubos", res.uniform_buffers);
+ emit_resources("push_constants", res.push_constant_buffers);
+ emit_resources("counters", res.atomic_counters);
+ emit_resources("acceleration_structures", res.acceleration_structures);
+}
+
+void CompilerReflection::emit_resources(const char *tag, const SmallVector<Resource> &resources)
+{
+ if (resources.empty())
+ {
+ return;
+ }
+
+ json_stream->emit_json_key_array(tag);
+ for (auto &res : resources)
+ {
+ auto &type = get_type(res.type_id);
+ auto typeflags = ir.meta[type.self].decoration.decoration_flags;
+ auto &mask = get_decoration_bitset(res.id);
+
+ // If we don't have a name, use the fallback for the type instead of the variable
+ // for SSBOs and UBOs since those are the only meaningful names to use externally.
+ // Push constant blocks are still accessed by name and not block name, even though they are technically Blocks.
+ bool is_push_constant = get_storage_class(res.id) == StorageClassPushConstant;
+ bool is_block = get_decoration_bitset(type.self).get(DecorationBlock) ||
+ get_decoration_bitset(type.self).get(DecorationBufferBlock);
+
+ ID fallback_id = !is_push_constant && is_block ? ID(res.base_type_id) : ID(res.id);
+
+ json_stream->begin_json_object();
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ json_stream->emit_json_key_value("type", "_" + std::to_string(res.base_type_id));
+ }
+ else
+ {
+ json_stream->emit_json_key_value("type", type_to_glsl(type));
+ }
+
+ json_stream->emit_json_key_value("name", !res.name.empty() ? res.name : get_fallback_name(fallback_id));
+ {
+ bool ssbo_block = type.storage == StorageClassStorageBuffer ||
+ (type.storage == StorageClassUniform && typeflags.get(DecorationBufferBlock));
+ Bitset qualifier_mask = ssbo_block ? get_buffer_block_flags(res.id) : mask;
+
+ if (qualifier_mask.get(DecorationNonReadable))
+ json_stream->emit_json_key_value("writeonly", true);
+ if (qualifier_mask.get(DecorationNonWritable))
+ json_stream->emit_json_key_value("readonly", true);
+ if (qualifier_mask.get(DecorationRestrict))
+ json_stream->emit_json_key_value("restrict", true);
+ if (qualifier_mask.get(DecorationCoherent))
+ json_stream->emit_json_key_value("coherent", true);
+ if (qualifier_mask.get(DecorationVolatile))
+ json_stream->emit_json_key_value("volatile", true);
+ }
+
+ emit_type_array(type);
+
+ {
+ bool is_sized_block = is_block && (get_storage_class(res.id) == StorageClassUniform ||
+ get_storage_class(res.id) == StorageClassUniformConstant ||
+ get_storage_class(res.id) == StorageClassStorageBuffer);
+ if (is_sized_block)
+ {
+ uint32_t block_size = uint32_t(get_declared_struct_size(get_type(res.base_type_id)));
+ json_stream->emit_json_key_value("block_size", block_size);
+ }
+ }
+
+ if (type.storage == StorageClassPushConstant)
+ json_stream->emit_json_key_value("push_constant", true);
+ if (mask.get(DecorationLocation))
+ json_stream->emit_json_key_value("location", get_decoration(res.id, DecorationLocation));
+ if (mask.get(DecorationRowMajor))
+ json_stream->emit_json_key_value("row_major", true);
+ if (mask.get(DecorationColMajor))
+ json_stream->emit_json_key_value("column_major", true);
+ if (mask.get(DecorationIndex))
+ json_stream->emit_json_key_value("index", get_decoration(res.id, DecorationIndex));
+ if (type.storage != StorageClassPushConstant && mask.get(DecorationDescriptorSet))
+ json_stream->emit_json_key_value("set", get_decoration(res.id, DecorationDescriptorSet));
+ if (mask.get(DecorationBinding))
+ json_stream->emit_json_key_value("binding", get_decoration(res.id, DecorationBinding));
+ if (mask.get(DecorationInputAttachmentIndex))
+ json_stream->emit_json_key_value("input_attachment_index",
+ get_decoration(res.id, DecorationInputAttachmentIndex));
+ if (mask.get(DecorationOffset))
+ json_stream->emit_json_key_value("offset", get_decoration(res.id, DecorationOffset));
+ if (mask.get(DecorationWeightTextureQCOM))
+ json_stream->emit_json_key_value("WeightTextureQCOM", get_decoration(res.id, DecorationWeightTextureQCOM));
+ if (mask.get(DecorationBlockMatchTextureQCOM))
+ json_stream->emit_json_key_value("BlockMatchTextureQCOM", get_decoration(res.id, DecorationBlockMatchTextureQCOM));
+
+ // For images, the type itself adds a layout qualifer.
+ // Only emit the format for storage images.
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2)
+ {
+ const char *fmt = format_to_glsl(type.image.format);
+ if (fmt != nullptr)
+ json_stream->emit_json_key_value("format", std::string(fmt));
+ }
+ json_stream->end_json_object();
+ }
+ json_stream->end_json_array();
+}
+
+void CompilerReflection::emit_specialization_constants()
+{
+ auto specialization_constants = get_specialization_constants();
+ if (specialization_constants.empty())
+ return;
+
+ json_stream->emit_json_key_array("specialization_constants");
+ for (const auto &spec_const : specialization_constants)
+ {
+ auto &c = get<SPIRConstant>(spec_const.id);
+ auto type = get<SPIRType>(c.constant_type);
+ json_stream->begin_json_object();
+ json_stream->emit_json_key_value("name", get_name(spec_const.id));
+ json_stream->emit_json_key_value("id", spec_const.constant_id);
+ json_stream->emit_json_key_value("type", type_to_glsl(type));
+ json_stream->emit_json_key_value("variable_id", spec_const.id);
+ switch (type.basetype)
+ {
+ case SPIRType::UInt:
+ json_stream->emit_json_key_value("default_value", c.scalar());
+ break;
+
+ case SPIRType::Int:
+ json_stream->emit_json_key_value("default_value", c.scalar_i32());
+ break;
+
+ case SPIRType::Float:
+ json_stream->emit_json_key_value("default_value", c.scalar_f32());
+ break;
+
+ case SPIRType::Boolean:
+ json_stream->emit_json_key_value("default_value", c.scalar() != 0);
+ break;
+
+ default:
+ break;
+ }
+ json_stream->end_json_object();
+ }
+ json_stream->end_json_array();
+}
+
+string CompilerReflection::to_member_name(const SPIRType &type, uint32_t index) const
+{
+ auto *type_meta = ir.find_meta(type.self);
+
+ if (type_meta)
+ {
+ auto &memb = type_meta->members;
+ if (index < memb.size() && !memb[index].alias.empty())
+ return memb[index].alias;
+ else
+ return join("_m", index);
+ }
+ else
+ return join("_m", index);
+}
diff --git a/thirdparty/spirv-cross/spirv_reflect.hpp b/thirdparty/spirv-cross/spirv_reflect.hpp
new file mode 100644
index 0000000000..a129ba54da
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_reflect.hpp
@@ -0,0 +1,91 @@
+/*
+ * Copyright 2018-2021 Bradley Austin Davis
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#ifndef SPIRV_CROSS_REFLECT_HPP
+#define SPIRV_CROSS_REFLECT_HPP
+
+#include "spirv_glsl.hpp"
+#include <utility>
+
+namespace simple_json
+{
+class Stream;
+}
+
+namespace SPIRV_CROSS_NAMESPACE
+{
+class CompilerReflection : public CompilerGLSL
+{
+ using Parent = CompilerGLSL;
+
+public:
+ explicit CompilerReflection(std::vector<uint32_t> spirv_)
+ : Parent(std::move(spirv_))
+ {
+ options.vulkan_semantics = true;
+ }
+
+ CompilerReflection(const uint32_t *ir_, size_t word_count)
+ : Parent(ir_, word_count)
+ {
+ options.vulkan_semantics = true;
+ }
+
+ explicit CompilerReflection(const ParsedIR &ir_)
+ : CompilerGLSL(ir_)
+ {
+ options.vulkan_semantics = true;
+ }
+
+ explicit CompilerReflection(ParsedIR &&ir_)
+ : CompilerGLSL(std::move(ir_))
+ {
+ options.vulkan_semantics = true;
+ }
+
+ void set_format(const std::string &format);
+ std::string compile() override;
+
+private:
+ static std::string execution_model_to_str(spv::ExecutionModel model);
+
+ void emit_entry_points();
+ void emit_types();
+ void emit_resources();
+ void emit_specialization_constants();
+
+ void emit_type(uint32_t type_id, bool &emitted_open_tag);
+ void emit_type_member(const SPIRType &type, uint32_t index);
+ void emit_type_member_qualifiers(const SPIRType &type, uint32_t index);
+ void emit_type_array(const SPIRType &type);
+ void emit_resources(const char *tag, const SmallVector<Resource> &resources);
+ bool type_is_reference(const SPIRType &type) const;
+
+ std::string to_member_name(const SPIRType &type, uint32_t index) const;
+
+ std::shared_ptr<simple_json::Stream> json_stream;
+};
+
+} // namespace SPIRV_CROSS_NAMESPACE
+
+#endif