summaryrefslogtreecommitdiffstats
path: root/thirdparty
diff options
context:
space:
mode:
authorArseny Kapoulkine <arseny.kapoulkine@gmail.com>2024-10-25 10:41:51 -0700
committerArseny Kapoulkine <arseny.kapoulkine@gmail.com>2024-10-26 07:26:07 -0700
commite2cc0e484e309517d135858dda7d2817b0a9b66d (patch)
tree4c929c2c4b0faa0b378189783ae478584b5264d0 /thirdparty
parent1015a481ff43edb1126ab39a147fefda290131e5 (diff)
downloadredot-engine-e2cc0e484e309517d135858dda7d2817b0a9b66d.tar.gz
Update meshoptimizer to 0.22
The Godot-specific patch is just a single line now; removing this patch will likely require adjusting Godot importer code to handle error limits better. This also adds new SIMPLIFY_ options; Godot is currently not using any of these but might use SIMPLIFY_PRUNE and SIMPLIFY_SPARSE in the future.
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/README.md2
-rw-r--r--thirdparty/meshoptimizer/LICENSE.md2
-rw-r--r--thirdparty/meshoptimizer/allocator.cpp2
-rw-r--r--thirdparty/meshoptimizer/clusterizer.cpp137
-rw-r--r--thirdparty/meshoptimizer/indexcodec.cpp8
-rw-r--r--thirdparty/meshoptimizer/indexgenerator.cpp97
-rw-r--r--thirdparty/meshoptimizer/meshoptimizer.h143
-rw-r--r--thirdparty/meshoptimizer/overdrawanalyzer.cpp3
-rw-r--r--thirdparty/meshoptimizer/patches/distance-only-metric.patch40
-rw-r--r--thirdparty/meshoptimizer/quantization.cpp12
-rw-r--r--thirdparty/meshoptimizer/simplifier.cpp709
-rw-r--r--thirdparty/meshoptimizer/stripifier.cpp13
-rw-r--r--thirdparty/meshoptimizer/vcacheoptimizer.cpp13
-rw-r--r--thirdparty/meshoptimizer/vertexcodec.cpp83
-rw-r--r--thirdparty/meshoptimizer/vertexfilter.cpp17
15 files changed, 1011 insertions, 270 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md
index 2ce82e82df..081702f70f 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -565,7 +565,7 @@ File extracted from upstream release tarball:
## meshoptimizer
- Upstream: https://github.com/zeux/meshoptimizer
-- Version: 0.20 (c21d3be6ddf627f8ca852ba4b6db9903b0557858, 2023)
+- Version: 0.22 (4affad044571506a5724c9a6f15424f43e86f731, 2024)
- License: MIT
Files extracted from upstream repository:
diff --git a/thirdparty/meshoptimizer/LICENSE.md b/thirdparty/meshoptimizer/LICENSE.md
index 962ed41ffb..ef9f5919f2 100644
--- a/thirdparty/meshoptimizer/LICENSE.md
+++ b/thirdparty/meshoptimizer/LICENSE.md
@@ -1,6 +1,6 @@
MIT License
-Copyright (c) 2016-2023 Arseny Kapoulkine
+Copyright (c) 2016-2024 Arseny Kapoulkine
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
diff --git a/thirdparty/meshoptimizer/allocator.cpp b/thirdparty/meshoptimizer/allocator.cpp
index 072e8e51ac..b8cb33c280 100644
--- a/thirdparty/meshoptimizer/allocator.cpp
+++ b/thirdparty/meshoptimizer/allocator.cpp
@@ -1,7 +1,7 @@
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
-void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*))
+void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*))
{
meshopt_Allocator::Storage::allocate = allocate;
meshopt_Allocator::Storage::deallocate = deallocate;
diff --git a/thirdparty/meshoptimizer/clusterizer.cpp b/thirdparty/meshoptimizer/clusterizer.cpp
index c4672ad606..738add5f2f 100644
--- a/thirdparty/meshoptimizer/clusterizer.cpp
+++ b/thirdparty/meshoptimizer/clusterizer.cpp
@@ -238,7 +238,7 @@ static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int
bool result = false;
- unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
+ int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
{
@@ -283,10 +283,10 @@ static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int
return result;
}
-static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone* meshlet_cone, unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const unsigned char* used, float meshlet_expected_radius, float cone_weight, unsigned int* out_extra)
+static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone* meshlet_cone, unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const unsigned char* used, float meshlet_expected_radius, float cone_weight)
{
unsigned int best_triangle = ~0u;
- unsigned int best_extra = 5;
+ int best_priority = 5;
float best_score = FLT_MAX;
for (size_t i = 0; i < meshlet.vertex_count; ++i)
@@ -301,20 +301,26 @@ static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Co
unsigned int triangle = neighbors[j];
unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
- unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
+ int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
+ assert(extra <= 2);
- // triangles that don't add new vertices to meshlets are max. priority
- if (extra != 0)
- {
- // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
- if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
- extra = 0;
+ int priority = -1;
- extra++;
- }
+ // triangles that don't add new vertices to meshlets are max. priority
+ if (extra == 0)
+ priority = 0;
+ // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
+ else if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
+ priority = 1;
+ // if two vertices have live count of 2, removing this triangle will make another triangle dangling which is good for overall flow
+ else if ((live_triangles[a] == 2) + (live_triangles[b] == 2) + (live_triangles[c] == 2) >= 2)
+ priority = 1 + extra;
+ // otherwise adjust priority to be after the above cases, 3 or 4 based on used[] count
+ else
+ priority = 2 + extra;
// since topology-based priority is always more important than the score, we can skip scoring in some cases
- if (extra > best_extra)
+ if (priority > best_priority)
continue;
float score = 0;
@@ -341,18 +347,15 @@ static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Co
// note that topology-based priority is always more important than the score
// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
- if (extra < best_extra || score < best_score)
+ if (priority < best_priority || score < best_score)
{
best_triangle = triangle;
- best_extra = extra;
+ best_priority = priority;
best_score = score;
}
}
}
- if (out_extra)
- *out_extra = best_extra;
-
return best_triangle;
}
@@ -441,7 +444,7 @@ static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const
}
// split axis is one where the variance is largest
- unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1 : 2;
+ unsigned int axis = (vars[0] >= vars[1] && vars[0] >= vars[2]) ? 0 : (vars[1] >= vars[2] ? 1 : 2);
float split = mean[axis];
size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
@@ -588,13 +591,13 @@ size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_ve
{
Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
- unsigned int best_extra = 0;
- unsigned int best_triangle = getNeighborTriangle(meshlet, &meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight, &best_extra);
+ unsigned int best_triangle = getNeighborTriangle(meshlet, &meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight);
+ int best_extra = best_triangle == ~0u ? -1 : (used[indices[best_triangle * 3 + 0]] == 0xff) + (used[indices[best_triangle * 3 + 1]] == 0xff) + (used[indices[best_triangle * 3 + 2]] == 0xff);
// if the best triangle doesn't fit into current meshlet, the spatial scoring we've used is not very meaningful, so we re-select using topological scoring
if (best_triangle != ~0u && (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles))
{
- best_triangle = getNeighborTriangle(meshlet, NULL, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, 0.f, NULL);
+ best_triangle = getNeighborTriangle(meshlet, NULL, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, 0.f);
}
// when we run out of neighboring triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity
@@ -882,3 +885,93 @@ meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices
return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
}
+
+void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count)
+{
+ using namespace meshopt;
+
+ assert(triangle_count <= kMeshletMaxTriangles);
+ assert(vertex_count <= kMeshletMaxVertices);
+
+ unsigned char* indices = meshlet_triangles;
+ unsigned int* vertices = meshlet_vertices;
+
+ // cache tracks vertex timestamps (corresponding to triangle index! all 3 vertices are added at the same time and never removed)
+ unsigned char cache[kMeshletMaxVertices];
+ memset(cache, 0, vertex_count);
+
+ // note that we start from a value that means all vertices aren't in cache
+ unsigned char cache_last = 128;
+ const unsigned char cache_cutoff = 3; // 3 triangles = ~5..9 vertices depending on reuse
+
+ for (size_t i = 0; i < triangle_count; ++i)
+ {
+ int next = -1;
+ int next_match = -1;
+
+ for (size_t j = i; j < triangle_count; ++j)
+ {
+ unsigned char a = indices[j * 3 + 0], b = indices[j * 3 + 1], c = indices[j * 3 + 2];
+ assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+ // score each triangle by how many vertices are in cache
+ // note: the distance is computed using unsigned 8-bit values, so cache timestamp overflow is handled gracefully
+ int aok = (unsigned char)(cache_last - cache[a]) < cache_cutoff;
+ int bok = (unsigned char)(cache_last - cache[b]) < cache_cutoff;
+ int cok = (unsigned char)(cache_last - cache[c]) < cache_cutoff;
+
+ if (aok + bok + cok > next_match)
+ {
+ next = (int)j;
+ next_match = aok + bok + cok;
+
+ // note that we could end up with all 3 vertices in the cache, but 2 is enough for ~strip traversal
+ if (next_match >= 2)
+ break;
+ }
+ }
+
+ assert(next >= 0);
+
+ unsigned char a = indices[next * 3 + 0], b = indices[next * 3 + 1], c = indices[next * 3 + 2];
+
+ // shift triangles before the next one forward so that we always keep an ordered partition
+ // note: this could have swapped triangles [i] and [next] but that distorts the order and may skew the output sequence
+ memmove(indices + (i + 1) * 3, indices + i * 3, (next - i) * 3 * sizeof(unsigned char));
+
+ indices[i * 3 + 0] = a;
+ indices[i * 3 + 1] = b;
+ indices[i * 3 + 2] = c;
+
+ // cache timestamp is the same between all vertices of each triangle to reduce overflow
+ cache_last++;
+ cache[a] = cache_last;
+ cache[b] = cache_last;
+ cache[c] = cache_last;
+ }
+
+ // reorder meshlet vertices for access locality assuming index buffer is scanned sequentially
+ unsigned int order[kMeshletMaxVertices];
+
+ unsigned char remap[kMeshletMaxVertices];
+ memset(remap, -1, vertex_count);
+
+ size_t vertex_offset = 0;
+
+ for (size_t i = 0; i < triangle_count * 3; ++i)
+ {
+ unsigned char& r = remap[indices[i]];
+
+ if (r == 0xff)
+ {
+ r = (unsigned char)(vertex_offset);
+ order[vertex_offset] = vertices[indices[i]];
+ vertex_offset++;
+ }
+
+ indices[i] = r;
+ }
+
+ assert(vertex_offset <= vertex_count);
+ memcpy(vertices, order, vertex_offset * sizeof(unsigned int));
+}
diff --git a/thirdparty/meshoptimizer/indexcodec.cpp b/thirdparty/meshoptimizer/indexcodec.cpp
index 4cc2fea63a..b300460052 100644
--- a/thirdparty/meshoptimizer/indexcodec.cpp
+++ b/thirdparty/meshoptimizer/indexcodec.cpp
@@ -33,7 +33,7 @@ static int rotateTriangle(unsigned int a, unsigned int b, unsigned int c, unsign
{
(void)a;
- return (b == next) ? 1 : (c == next) ? 2 : 0;
+ return (b == next) ? 1 : (c == next ? 2 : 0);
}
static int getEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, unsigned int c, size_t offset)
@@ -217,7 +217,7 @@ size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, cons
int fe = fer >> 2;
int fc = getVertexFifo(vertexfifo, c, vertexfifooffset);
- int fec = (fc >= 1 && fc < fecmax) ? fc : (c == next) ? (next++, 0) : 15;
+ int fec = (fc >= 1 && fc < fecmax) ? fc : (c == next ? (next++, 0) : 15);
if (fec == 15 && version >= 1)
{
@@ -267,8 +267,8 @@ size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, cons
// after rotation, a is almost always equal to next, so we don't waste bits on FIFO encoding for a
int fea = (a == next) ? (next++, 0) : 15;
- int feb = (fb >= 0 && fb < 14) ? (fb + 1) : (b == next) ? (next++, 0) : 15;
- int fec = (fc >= 0 && fc < 14) ? (fc + 1) : (c == next) ? (next++, 0) : 15;
+ int feb = (fb >= 0 && fb < 14) ? fb + 1 : (b == next ? (next++, 0) : 15);
+ int fec = (fc >= 0 && fc < 14) ? fc + 1 : (c == next ? (next++, 0) : 15);
// we encode feb & fec in 4 bits using a table if possible, and as a full byte otherwise
unsigned char codeaux = (unsigned char)((feb << 4) | fec);
diff --git a/thirdparty/meshoptimizer/indexgenerator.cpp b/thirdparty/meshoptimizer/indexgenerator.cpp
index f6728345a9..0d53020e32 100644
--- a/thirdparty/meshoptimizer/indexgenerator.cpp
+++ b/thirdparty/meshoptimizer/indexgenerator.cpp
@@ -6,6 +6,7 @@
// This work is based on:
// John McDonald, Mark Kilgard. Crack-Free Point-Normal Triangles using Adjacent Edge Normals. 2010
+// John Hable. Variable Rate Shading with Visibility Buffer Rendering. 2024
namespace meshopt
{
@@ -576,3 +577,99 @@ void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const un
memcpy(destination + i * 4, patch, sizeof(patch));
}
}
+
+size_t meshopt_generateProvokingIndexBuffer(unsigned int* destination, unsigned int* reorder, const unsigned int* indices, size_t index_count, size_t vertex_count)
+{
+ assert(index_count % 3 == 0);
+
+ meshopt_Allocator allocator;
+
+ unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
+ memset(remap, -1, vertex_count * sizeof(unsigned int));
+
+ // compute vertex valence; this is used to prioritize least used corner
+ // note: we use 8-bit counters for performance; for outlier vertices the valence is incorrect but that just affects the heuristic
+ unsigned char* valence = allocator.allocate<unsigned char>(vertex_count);
+ memset(valence, 0, vertex_count);
+
+ for (size_t i = 0; i < index_count; ++i)
+ {
+ unsigned int index = indices[i];
+ assert(index < vertex_count);
+
+ valence[index]++;
+ }
+
+ unsigned int reorder_offset = 0;
+
+ // assign provoking vertices; leave the rest for the next pass
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
+ assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+ // try to rotate triangle such that provoking vertex hasn't been seen before
+ // if multiple vertices are new, prioritize the one with least valence
+ // this reduces the risk that a future triangle will have all three vertices seen
+ unsigned int va = remap[a] == ~0u ? valence[a] : ~0u;
+ unsigned int vb = remap[b] == ~0u ? valence[b] : ~0u;
+ unsigned int vc = remap[c] == ~0u ? valence[c] : ~0u;
+
+ if (vb != ~0u && vb <= va && vb <= vc)
+ {
+ // abc -> bca
+ unsigned int t = a;
+ a = b, b = c, c = t;
+ }
+ else if (vc != ~0u && vc <= va && vc <= vb)
+ {
+ // abc -> cab
+ unsigned int t = c;
+ c = b, b = a, a = t;
+ }
+
+ unsigned int newidx = reorder_offset;
+
+ // now remap[a] = ~0u or all three vertices are old
+ // recording remap[a] makes it possible to remap future references to the same index, conserving space
+ if (remap[a] == ~0u)
+ remap[a] = newidx;
+
+ // we need to clone the provoking vertex to get a unique index
+ // if all three are used the choice is arbitrary since no future triangle will be able to reuse any of these
+ reorder[reorder_offset++] = a;
+
+ // note: first vertex is final, the other two will be fixed up in next pass
+ destination[i + 0] = newidx;
+ destination[i + 1] = b;
+ destination[i + 2] = c;
+
+ // update vertex valences for corner heuristic
+ valence[a]--;
+ valence[b]--;
+ valence[c]--;
+ }
+
+ // remap or clone non-provoking vertices (iterating to skip provoking vertices)
+ int step = 1;
+
+ for (size_t i = 1; i < index_count; i += step, step ^= 3)
+ {
+ unsigned int index = destination[i];
+
+ if (remap[index] == ~0u)
+ {
+ // we haven't seen the vertex before as a provoking vertex
+ // to maintain the reference to the original vertex we need to clone it
+ unsigned int newidx = reorder_offset;
+
+ remap[index] = newidx;
+ reorder[reorder_offset++] = index;
+ }
+
+ destination[i] = remap[index];
+ }
+
+ assert(reorder_offset <= vertex_count + index_count / 3);
+ return reorder_offset;
+}
diff --git a/thirdparty/meshoptimizer/meshoptimizer.h b/thirdparty/meshoptimizer/meshoptimizer.h
index dbafd4e6e4..77be5371fc 100644
--- a/thirdparty/meshoptimizer/meshoptimizer.h
+++ b/thirdparty/meshoptimizer/meshoptimizer.h
@@ -1,7 +1,7 @@
/**
- * meshoptimizer - version 0.20
+ * meshoptimizer - version 0.22
*
- * Copyright (C) 2016-2023, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
+ * Copyright (C) 2016-2024, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at https://github.com/zeux/meshoptimizer
*
* This library is distributed under the MIT License. See notice at the end of this file.
@@ -12,7 +12,7 @@
#include <stddef.h>
/* Version macro; major * 1000 + minor * 10 + patch */
-#define MESHOPTIMIZER_VERSION 200 /* 0.20 */
+#define MESHOPTIMIZER_VERSION 220 /* 0.22 */
/* If no API is defined, assume default */
#ifndef MESHOPTIMIZER_API
@@ -29,11 +29,14 @@
#endif
/* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */
+#ifndef MESHOPTIMIZER_EXPERIMENTAL
#define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API
+#endif
/* C interface */
#ifdef __cplusplus
-extern "C" {
+extern "C"
+{
#endif
/**
@@ -138,6 +141,19 @@ MESHOPTIMIZER_API void meshopt_generateAdjacencyIndexBuffer(unsigned int* destin
MESHOPTIMIZER_API void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
+ * Experimental: Generate index buffer that can be used for visibility buffer rendering and returns the size of the reorder table
+ * Each triangle's provoking vertex index is equal to primitive id; this allows passing it to the fragment shader using nointerpolate attribute.
+ * This is important for performance on hardware where primitive id can't be accessed efficiently in fragment shader.
+ * The reorder table stores the original vertex id for each vertex in the new index buffer, and should be used in the vertex shader to load vertex data.
+ * The provoking vertex is assumed to be the first vertex in the triangle; if this is not the case (OpenGL), rotate each triangle (abc -> bca) before rendering.
+ * For maximum efficiency the input index buffer should be optimized for vertex cache first.
+ *
+ * destination must contain enough space for the resulting index buffer (index_count elements)
+ * reorder must contain enough space for the worst case reorder table (vertex_count + index_count/3 elements)
+ */
+MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_generateProvokingIndexBuffer(unsigned int* destination, unsigned int* reorder, const unsigned int* indices, size_t index_count, size_t vertex_count);
+
+/**
* Vertex transform cache optimizer
* Reorders indices to reduce the number of GPU vertex shader invocations
* If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually.
@@ -254,6 +270,7 @@ MESHOPTIMIZER_API int meshopt_decodeIndexSequence(void* destination, size_t inde
* Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space
* This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream.
* Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized.
+ * For maximum efficiency the vertex buffer being encoded has to be quantized and optimized for locality of reference (cache/fetch) first.
*
* buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size)
*/
@@ -289,9 +306,9 @@ MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t verte
* meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M.
* Each 32-bit component is decoded in isolation; stride must be divisible by 4.
*/
-MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride);
-MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride);
-MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride);
+MESHOPTIMIZER_API void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride);
+MESHOPTIMIZER_API void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride);
+MESHOPTIMIZER_API void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride);
/**
* Vertex buffer filter encoders
@@ -311,32 +328,40 @@ MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t cou
*/
enum meshopt_EncodeExpMode
{
- /* When encoding exponents, use separate values for each component (maximum quality) */
- meshopt_EncodeExpSeparate,
- /* When encoding exponents, use shared value for all components of each vector (better compression) */
- meshopt_EncodeExpSharedVector,
- /* When encoding exponents, use shared value for each component of all vectors (best compression) */
- meshopt_EncodeExpSharedComponent,
+ /* When encoding exponents, use separate values for each component (maximum quality) */
+ meshopt_EncodeExpSeparate,
+ /* When encoding exponents, use shared value for all components of each vector (better compression) */
+ meshopt_EncodeExpSharedVector,
+ /* When encoding exponents, use shared value for each component of all vectors (best compression) */
+ meshopt_EncodeExpSharedComponent,
+ /* Experimental: When encoding exponents, use separate values for each component, but clamp to 0 (good quality if very small values are not important) */
+ meshopt_EncodeExpClamped,
};
-MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data);
-MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data);
-MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data, enum meshopt_EncodeExpMode mode);
+MESHOPTIMIZER_API void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data);
+MESHOPTIMIZER_API void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data);
+MESHOPTIMIZER_API void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data, enum meshopt_EncodeExpMode mode);
/**
* Simplification options
*/
enum
{
- /* Do not move vertices that are located on the topological border (vertices on triangle edges that don't have a paired triangle). Useful for simplifying portions of the larger mesh. */
- meshopt_SimplifyLockBorder = 1 << 0,
+ /* Do not move vertices that are located on the topological border (vertices on triangle edges that don't have a paired triangle). Useful for simplifying portions of the larger mesh. */
+ meshopt_SimplifyLockBorder = 1 << 0,
+ /* Improve simplification performance assuming input indices are a sparse subset of the mesh. Note that error becomes relative to subset extents. */
+ meshopt_SimplifySparse = 1 << 1,
+ /* Treat error limit and resulting error as absolute instead of relative to mesh extents. */
+ meshopt_SimplifyErrorAbsolute = 1 << 2,
+ /* Experimental: remove disconnected parts of the mesh during simplification incrementally, regardless of the topological restrictions inside components. */
+ meshopt_SimplifyPrune = 1 << 3,
};
/**
* Mesh simplifier
* Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible
* The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error.
- * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification.
+ * If not all attributes from the input mesh are required, it's recommended to reindex the mesh without them prior to simplification.
* Returns the number of indices after simplification, with destination containing new index data
* The resulting index buffer references vertices from the original vertex buffer.
* If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended.
@@ -351,15 +376,15 @@ MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsig
/**
* Experimental: Mesh simplifier with attribute metric
- * The algorithm ehnahces meshopt_simplify by incorporating attribute values into the error metric used to prioritize simplification order; see meshopt_simplify documentation for details.
+ * The algorithm enhances meshopt_simplify by incorporating attribute values into the error metric used to prioritize simplification order; see meshopt_simplify documentation for details.
* Note that the number of attributes affects memory requirements and running time; this algorithm requires ~1.5x more memory and time compared to meshopt_simplify when using 4 scalar attributes.
*
* vertex_attributes should have attribute_count floats for each vertex
- * attribute_weights should have attribute_count floats in total; the weights determine relative priority of attributes between each other and wrt position. The recommended weight range is [1e-3..1e-1], assuming attribute data is in [0..1] range.
- * attribute_count must be <= 16
- * TODO target_error/result_error currently use combined distance+attribute error; this may change in the future
+ * attribute_weights should have attribute_count floats in total; the weights determine relative priority of attributes between each other and wrt position
+ * attribute_count must be <= 32
+ * vertex_lock can be NULL; when it's not NULL, it should have a value for each vertex; 1 denotes vertices that can't be moved
*/
-MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* result_error);
+MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error);
/**
* Experimental: Mesh simplifier (sloppy)
@@ -386,6 +411,7 @@ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destinati
* destination must contain enough space for the target index buffer (target_vertex_count elements)
* vertex_positions should have float3 position in the first 12 bytes of each vertex
* vertex_colors should can be NULL; when it's not NULL, it should have float3 color in the first 12 bytes of each vertex
+ * color_weight determines relative priority of color wrt position; 1.0 is a safe default
*/
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count);
@@ -464,6 +490,13 @@ struct meshopt_VertexFetchStatistics
*/
MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
+/**
+ * Meshlet is a small mesh cluster (subset) that consists of:
+ * - triangles, an 8-bit micro triangle (index) buffer, that for each triangle specifies three local vertices to use;
+ * - vertices, a 32-bit vertex indirection buffer, that for each local vertex specifies which mesh vertex to fetch vertex attributes from.
+ *
+ * For efficiency, meshlet triangles and vertices are packed into two large arrays; this structure contains offsets and counts to access the data.
+ */
struct meshopt_Meshlet
{
/* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */
@@ -479,6 +512,7 @@ struct meshopt_Meshlet
* Meshlet builder
* Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
* The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
+ * When targeting mesh shading hardware, for maximum efficiency meshlets should be further optimized using meshopt_optimizeMeshlet.
* When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
* When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
*
@@ -486,13 +520,23 @@ struct meshopt_Meshlet
* meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices
* meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3
* vertex_positions should have float3 position in the first 12 bytes of each vertex
- * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512)
+ * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512; max_triangles must be divisible by 4)
* cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
*/
MESHOPTIMIZER_API size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
MESHOPTIMIZER_API size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
MESHOPTIMIZER_API size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
+/**
+ * Experimental: Meshlet optimizer
+ * Reorders meshlet vertices and triangles to maximize locality to improve rasterizer throughput
+ *
+ * meshlet_triangles and meshlet_vertices must refer to meshlet triangle and vertex index data; when buildMeshlets* is used, these
+ * need to be computed from meshlet's vertex_offset and triangle_offset
+ * triangle_count and vertex_count must not exceed implementation limits (vertex_count <= 255 - not 256!, triangle_count <= 512)
+ */
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count);
+
struct meshopt_Bounds
{
/* bounding sphere, useful for frustum and occlusion culling */
@@ -529,7 +573,8 @@ struct meshopt_Bounds
* Real-Time Rendering 4th Edition, section 19.3).
*
* vertex_positions should have float3 position in the first 12 bytes of each vertex
- * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size)
+ * vertex_count should specify the number of vertices in the entire mesh, not cluster or meshlet
+ * index_count/3 and triangle_count must not exceed implementation limits (<= 512)
*/
MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
@@ -559,7 +604,7 @@ MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* desti
* Note that all algorithms only allocate memory for temporary use.
* allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first.
*/
-MESHOPTIMIZER_API void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*));
+MESHOPTIMIZER_API void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*));
#ifdef __cplusplus
} /* extern "C" */
@@ -627,6 +672,8 @@ inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indice
template <typename T>
inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
+inline size_t meshopt_generateProvokingIndexBuffer(T* destination, unsigned int* reorder, const T* indices, size_t index_count, size_t vertex_count);
+template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
template <typename T>
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
@@ -649,7 +696,7 @@ inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const
template <typename T>
inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
template <typename T>
-inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
+inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL);
template <typename T>
inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = NULL);
template <typename T>
@@ -705,15 +752,15 @@ public:
template <typename T>
struct StorageT
{
- static void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t);
- static void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*);
+ static void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t);
+ static void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*);
};
typedef StorageT<void> Storage;
meshopt_Allocator()
- : blocks()
- , count(0)
+ : blocks()
+ , count(0)
{
}
@@ -723,7 +770,8 @@ public:
Storage::deallocate(blocks[i - 1]);
}
- template <typename T> T* allocate(size_t size)
+ template <typename T>
+ T* allocate(size_t size)
{
assert(count < sizeof(blocks) / sizeof(blocks[0]));
T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T)));
@@ -744,8 +792,10 @@ private:
};
// This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker
-template <typename T> void* (MESHOPTIMIZER_ALLOC_CALLCONV *meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new;
-template <typename T> void (MESHOPTIMIZER_ALLOC_CALLCONV *meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete;
+template <typename T>
+void* (MESHOPTIMIZER_ALLOC_CALLCONV* meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new;
+template <typename T>
+void (MESHOPTIMIZER_ALLOC_CALLCONV* meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete;
#endif
/* Inline implementation for C++ templated wrappers */
@@ -861,6 +911,19 @@ inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* ind
}
template <typename T>
+inline size_t meshopt_generateProvokingIndexBuffer(T* destination, unsigned int* reorder, const T* indices, size_t index_count, size_t vertex_count)
+{
+ meshopt_IndexAdapter<T> in(NULL, indices, index_count);
+ meshopt_IndexAdapter<T> out(destination, NULL, index_count);
+
+ size_t bound = vertex_count + (index_count / 3);
+ assert(size_t(T(bound - 1)) == bound - 1); // bound - 1 must fit in T
+ (void)bound;
+
+ return meshopt_generateProvokingIndexBuffer(out.data, reorder, in.data, index_count, vertex_count);
+}
+
+template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
meshopt_IndexAdapter<T> in(NULL, indices, index_count);
@@ -956,12 +1019,12 @@ inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_co
}
template <typename T>
-inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* result_error)
+inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error)
{
- meshopt_IndexAdapter<T> in(NULL, indices, index_count);
- meshopt_IndexAdapter<T> out(destination, NULL, index_count);
+ meshopt_IndexAdapter<T> in(NULL, indices, index_count);
+ meshopt_IndexAdapter<T> out(destination, NULL, index_count);
- return meshopt_simplifyWithAttributes(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_attributes, vertex_attributes_stride, attribute_weights, attribute_count, target_index_count, target_error, options, result_error);
+ return meshopt_simplifyWithAttributes(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_attributes, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, result_error);
}
template <typename T>
@@ -1050,7 +1113,7 @@ inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_
#endif
/**
- * Copyright (c) 2016-2023 Arseny Kapoulkine
+ * Copyright (c) 2016-2024 Arseny Kapoulkine
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
diff --git a/thirdparty/meshoptimizer/overdrawanalyzer.cpp b/thirdparty/meshoptimizer/overdrawanalyzer.cpp
index 8b6f254134..31cf6f146a 100644
--- a/thirdparty/meshoptimizer/overdrawanalyzer.cpp
+++ b/thirdparty/meshoptimizer/overdrawanalyzer.cpp
@@ -53,11 +53,10 @@ static void rasterize(OverdrawBuffer* buffer, float v1x, float v1y, float v1z, f
// flip backfacing triangles to simplify rasterization logic
if (sign)
{
- // flipping v2 & v3 preserves depth gradients since they're based on v1
+ // flipping v2 & v3 preserves depth gradients since they're based on v1; only v1z is used below
float t;
t = v2x, v2x = v3x, v3x = t;
t = v2y, v2y = v3y, v3y = t;
- t = v2z, v2z = v3z, v3z = t;
// flip depth since we rasterize backfacing triangles to second buffer with reverse Z; only v1z is used below
v1z = kViewport - v1z;
diff --git a/thirdparty/meshoptimizer/patches/distance-only-metric.patch b/thirdparty/meshoptimizer/patches/distance-only-metric.patch
index 651bdba5ef..ce16f4ab9c 100644
--- a/thirdparty/meshoptimizer/patches/distance-only-metric.patch
+++ b/thirdparty/meshoptimizer/patches/distance-only-metric.patch
@@ -1,39 +1,13 @@
diff --git a/thirdparty/meshoptimizer/simplifier.cpp b/thirdparty/meshoptimizer/simplifier.cpp
-index 5ba8570076..6f8b0e520e 100644
+index af64cbda49..8a7072fe4e 100644
--- a/thirdparty/meshoptimizer/simplifier.cpp
+++ b/thirdparty/meshoptimizer/simplifier.cpp
-@@ -476,6 +476,8 @@ struct Collapse
- float error;
- unsigned int errorui;
- };
-+
-+ float distance_error;
- };
+@@ -2048,7 +2048,7 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
- static float normalize(Vector3& v)
-@@ -941,6 +943,8 @@ static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const
- float ei = quadricError(vertex_quadrics[remap[i0]], vertex_positions[i1]);
- float ej = quadricError(vertex_quadrics[remap[j0]], vertex_positions[j1]);
+ // result_error is quadratic; we need to remap it back to linear
+ if (out_result_error)
+- *out_result_error = sqrtf(result_error) * error_scale;
++ *out_result_error = sqrtf(vertex_error) * error_scale;
-+ float dei = ei, dej = ej;
-+
- if (attribute_count)
- {
- ei += quadricError(attribute_quadrics[remap[i0]], &attribute_gradients[remap[i0] * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]);
-@@ -951,6 +955,7 @@ static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const
- c.v0 = ei <= ej ? i0 : j0;
- c.v1 = ei <= ej ? i1 : j1;
- c.error = ei <= ej ? ei : ej;
-+ c.distance_error = ei <= ej ? dei : dej;
- }
+ return result_count;
}
-
-@@ -1097,7 +1102,7 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
- triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
- edge_collapses++;
-
-- result_error = result_error < c.error ? c.error : result_error;
-+ result_error = result_error < c.distance_error ? c.distance_error : result_error;
- }
-
- #if TRACE
diff --git a/thirdparty/meshoptimizer/quantization.cpp b/thirdparty/meshoptimizer/quantization.cpp
index 09a314d602..149835f501 100644
--- a/thirdparty/meshoptimizer/quantization.cpp
+++ b/thirdparty/meshoptimizer/quantization.cpp
@@ -3,9 +3,15 @@
#include <assert.h>
+union FloatBits
+{
+ float f;
+ unsigned int ui;
+};
+
unsigned short meshopt_quantizeHalf(float v)
{
- union { float f; unsigned int ui; } u = {v};
+ FloatBits u = {v};
unsigned int ui = u.ui;
int s = (ui >> 16) & 0x8000;
@@ -30,7 +36,7 @@ float meshopt_quantizeFloat(float v, int N)
{
assert(N >= 0 && N <= 23);
- union { float f; unsigned int ui; } u = {v};
+ FloatBits u = {v};
unsigned int ui = u.ui;
const int mask = (1 << (23 - N)) - 1;
@@ -64,7 +70,7 @@ float meshopt_dequantizeHalf(unsigned short h)
// 112 is an exponent bias fixup; since we already applied it once, applying it twice converts 31 to 255
r += (em >= (31 << 10)) ? (112 << 23) : 0;
- union { float f; unsigned int ui; } u;
+ FloatBits u;
u.ui = s | r;
return u.f;
}
diff --git a/thirdparty/meshoptimizer/simplifier.cpp b/thirdparty/meshoptimizer/simplifier.cpp
index 6f8b0e520e..8a7072fe4e 100644
--- a/thirdparty/meshoptimizer/simplifier.cpp
+++ b/thirdparty/meshoptimizer/simplifier.cpp
@@ -111,10 +111,12 @@ struct PositionHasher
{
const float* vertex_positions;
size_t vertex_stride_float;
+ const unsigned int* sparse_remap;
size_t hash(unsigned int index) const
{
- const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + index * vertex_stride_float);
+ unsigned int ri = sparse_remap ? sparse_remap[index] : index;
+ const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + ri * vertex_stride_float);
// scramble bits to make sure that integer coordinates have entropy in lower bits
unsigned int x = key[0] ^ (key[0] >> 17);
@@ -127,7 +129,25 @@ struct PositionHasher
bool equal(unsigned int lhs, unsigned int rhs) const
{
- return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0;
+ unsigned int li = sparse_remap ? sparse_remap[lhs] : lhs;
+ unsigned int ri = sparse_remap ? sparse_remap[rhs] : rhs;
+
+ return memcmp(vertex_positions + li * vertex_stride_float, vertex_positions + ri * vertex_stride_float, sizeof(float) * 3) == 0;
+ }
+};
+
+struct RemapHasher
+{
+ unsigned int* remap;
+
+ size_t hash(unsigned int id) const
+ {
+ return id * 0x5bd1e995;
+ }
+
+ bool equal(unsigned int lhs, unsigned int rhs) const
+ {
+ return remap[lhs] == rhs;
}
};
@@ -167,9 +187,9 @@ static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key,
return NULL;
}
-static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
+static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned int* sparse_remap, meshopt_Allocator& allocator)
{
- PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)};
+ PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float), sparse_remap};
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
@@ -205,6 +225,57 @@ static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const f
allocator.deallocate(table);
}
+static unsigned int* buildSparseRemap(unsigned int* indices, size_t index_count, size_t vertex_count, size_t* out_vertex_count, meshopt_Allocator& allocator)
+{
+ // use a bit set to compute the precise number of unique vertices
+ unsigned char* filter = allocator.allocate<unsigned char>((vertex_count + 7) / 8);
+ memset(filter, 0, (vertex_count + 7) / 8);
+
+ size_t unique = 0;
+ for (size_t i = 0; i < index_count; ++i)
+ {
+ unsigned int index = indices[i];
+ assert(index < vertex_count);
+
+ unique += (filter[index / 8] & (1 << (index % 8))) == 0;
+ filter[index / 8] |= 1 << (index % 8);
+ }
+
+ unsigned int* remap = allocator.allocate<unsigned int>(unique);
+ size_t offset = 0;
+
+ // temporary map dense => sparse; we allocate it last so that we can deallocate it
+ size_t revremap_size = hashBuckets2(unique);
+ unsigned int* revremap = allocator.allocate<unsigned int>(revremap_size);
+ memset(revremap, -1, revremap_size * sizeof(unsigned int));
+
+ // fill remap, using revremap as a helper, and rewrite indices in the same pass
+ RemapHasher hasher = {remap};
+
+ for (size_t i = 0; i < index_count; ++i)
+ {
+ unsigned int index = indices[i];
+
+ unsigned int* entry = hashLookup2(revremap, revremap_size, hasher, index, ~0u);
+
+ if (*entry == ~0u)
+ {
+ remap[offset] = index;
+ *entry = unsigned(offset);
+ offset++;
+ }
+
+ indices[i] = *entry;
+ }
+
+ allocator.deallocate(revremap);
+
+ assert(offset == unique);
+ *out_vertex_count = unique;
+
+ return remap;
+}
+
enum VertexKind
{
Kind_Manifold, // not on an attribute seam, not on any boundary
@@ -217,14 +288,14 @@ enum VertexKind
};
// manifold vertices can collapse onto anything
-// border/seam vertices can only be collapsed onto border/seam respectively
+// border/seam vertices can collapse onto border/seam respectively, or locked
// complex vertices can collapse onto complex/locked
// a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex
// for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore
const unsigned char kCanCollapse[Kind_Count][Kind_Count] = {
{1, 1, 1, 1, 1},
- {0, 1, 0, 0, 0},
- {0, 0, 1, 0, 0},
+ {0, 1, 0, 0, 1},
+ {0, 0, 1, 0, 1},
{0, 0, 0, 1, 1},
{0, 0, 0, 0, 0},
};
@@ -252,7 +323,7 @@ static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int
return false;
}
-static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge, unsigned int options)
+static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_lock, const unsigned int* sparse_remap, unsigned int options)
{
memset(loop, -1, vertex_count * sizeof(unsigned int));
memset(loopback, -1, vertex_count * sizeof(unsigned int));
@@ -331,7 +402,7 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
if (openiv != ~0u && openiv != i && openov != ~0u && openov != i &&
openiw != ~0u && openiw != w && openow != ~0u && openow != w)
{
- if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw])
+ if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw] && remap[openiv] != remap[openov])
{
result[i] = Kind_Seam;
}
@@ -362,6 +433,18 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
}
}
+ if (vertex_lock)
+ {
+ // vertex_lock may lock any wedge, not just the primary vertex, so we need to lock the primary vertex and relock any wedges
+ for (size_t i = 0; i < vertex_count; ++i)
+ if (vertex_lock[sparse_remap ? sparse_remap[i] : i])
+ result[remap[i]] = Kind_Locked;
+
+ for (size_t i = 0; i < vertex_count; ++i)
+ if (result[remap[i]] == Kind_Locked)
+ result[i] = Kind_Locked;
+ }
+
if (options & meshopt_SimplifyLockBorder)
for (size_t i = 0; i < vertex_count; ++i)
if (result[i] == Kind_Border)
@@ -378,7 +461,7 @@ struct Vector3
float x, y, z;
};
-static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
+static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned int* sparse_remap = NULL)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
@@ -387,7 +470,8 @@ static float rescalePositions(Vector3* result, const float* vertex_positions_dat
for (size_t i = 0; i < vertex_count; ++i)
{
- const float* v = vertex_positions_data + i * vertex_stride_float;
+ unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i);
+ const float* v = vertex_positions_data + ri * vertex_stride_float;
if (result)
{
@@ -426,22 +510,25 @@ static float rescalePositions(Vector3* result, const float* vertex_positions_dat
return extent;
}
-static void rescaleAttributes(float* result, const float* vertex_attributes_data, size_t vertex_count, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count)
+static void rescaleAttributes(float* result, const float* vertex_attributes_data, size_t vertex_count, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned int* attribute_remap, const unsigned int* sparse_remap)
{
size_t vertex_attributes_stride_float = vertex_attributes_stride / sizeof(float);
for (size_t i = 0; i < vertex_count; ++i)
{
+ unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i);
+
for (size_t k = 0; k < attribute_count; ++k)
{
- float a = vertex_attributes_data[i * vertex_attributes_stride_float + k];
+ unsigned int rk = attribute_remap[k];
+ float a = vertex_attributes_data[ri * vertex_attributes_stride_float + rk];
- result[i * attribute_count + k] = a * attribute_weights[k];
+ result[i * attribute_count + k] = a * attribute_weights[rk];
}
}
}
-static const size_t kMaxAttributes = 16;
+static const size_t kMaxAttributes = 32;
struct Quadric
{
@@ -476,8 +563,6 @@ struct Collapse
float error;
unsigned int errorui;
};
-
- float distance_error;
};
static float normalize(Vector3& v)
@@ -520,7 +605,7 @@ static void quadricAdd(QuadricGrad* G, const QuadricGrad* R, size_t attribute_co
}
}
-static float quadricError(const Quadric& Q, const Vector3& v)
+static float quadricEval(const Quadric& Q, const Vector3& v)
{
float rx = Q.b0;
float ry = Q.b1;
@@ -543,6 +628,12 @@ static float quadricError(const Quadric& Q, const Vector3& v)
r += ry * v.y;
r += rz * v.z;
+ return r;
+}
+
+static float quadricError(const Quadric& Q, const Vector3& v)
+{
+ float r = quadricEval(Q, v);
float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
return fabsf(r) * s;
@@ -550,26 +641,7 @@ static float quadricError(const Quadric& Q, const Vector3& v)
static float quadricError(const Quadric& Q, const QuadricGrad* G, size_t attribute_count, const Vector3& v, const float* va)
{
- float rx = Q.b0;
- float ry = Q.b1;
- float rz = Q.b2;
-
- rx += Q.a10 * v.y;
- ry += Q.a21 * v.z;
- rz += Q.a20 * v.x;
-
- rx *= 2;
- ry *= 2;
- rz *= 2;
-
- rx += Q.a00 * v.x;
- ry += Q.a11 * v.y;
- rz += Q.a22 * v.z;
-
- float r = Q.c;
- r += rx * v.x;
- r += ry * v.y;
- r += rz * v.z;
+ float r = quadricEval(Q, v);
// see quadricFromAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr
for (size_t k = 0; k < attribute_count; ++k)
@@ -577,14 +649,11 @@ static float quadricError(const Quadric& Q, const QuadricGrad* G, size_t attribu
float a = va[k];
float g = v.x * G[k].gx + v.y * G[k].gy + v.z * G[k].gz + G[k].gw;
- r += a * a * Q.w;
- r -= 2 * a * g;
+ r += a * (a * Q.w - 2 * g);
}
- // TODO: weight normalization is breaking attribute error somehow
- float s = 1;// Q.w == 0.f ? 0.f : 1.f / Q.w;
-
- return fabsf(r) * s;
+ // note: unlike position error, we do not normalize by Q.w to retain edge scaling as described in quadricFromAttributes
+ return fabsf(r);
}
static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w)
@@ -625,20 +694,24 @@ static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1
static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
- float length = normalize(p10);
- // p20p = length of projection of p2-p0 onto normalize(p1 - p0)
+ // edge length; keep squared length around for projection correction
+ float lengthsq = p10.x * p10.x + p10.y * p10.y + p10.z * p10.z;
+ float length = sqrtf(lengthsq);
+
+ // p20p = length of projection of p2-p0 onto p1-p0; note that p10 is unnormalized so we need to correct it later
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z;
- // normal = altitude of triangle from point p2 onto edge p1-p0
- Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p};
- normalize(normal);
+ // perp = perpendicular vector from p2 to line segment p1-p0
+ // note: since p10 is unnormalized we need to correct the projection; we scale p20 instead to take advantage of normalize below
+ Vector3 perp = {p20.x * lengthsq - p10.x * p20p, p20.y * lengthsq - p10.y * p20p, p20.z * lengthsq - p10.z * p20p};
+ normalize(perp);
- float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
+ float distance = perp.x * p0.x + perp.y * p0.y + perp.z * p0.z;
// note: the weight is scaled linearly with edge length; this has to match the triangle weight
- quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight);
+ quadricFromPlane(Q, perp.x, perp.y, perp.z, -distance, length * weight);
}
static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0, const Vector3& p1, const Vector3& p2, const float* va0, const float* va1, const float* va2, size_t attribute_count)
@@ -651,16 +724,21 @@ static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0,
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
- // weight is scaled linearly with edge length
+ // normal = cross(p1 - p0, p2 - p0)
Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
- float area = sqrtf(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z);
- float w = sqrtf(area); // TODO this needs more experimentation
+ float area = sqrtf(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z) * 0.5f;
+
+ // quadric is weighted with the square of edge length (= area)
+ // this equalizes the units with the positional error (which, after normalization, is a square of distance)
+ // as a result, a change in weighted attribute of 1 along distance d is approximately equivalent to a change in position of d
+ float w = area;
// we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows:
// v = (d11 * d20 - d01 * d21) / denom
// w = (d00 * d21 - d01 * d20) / denom
// u = 1 - v - w
// here v0, v1 are triangle edge vectors, v2 is a vector from point to triangle corner, and dij = dot(vi, vj)
+ // note: v2 and d20/d21 can not be evaluated here as v2 is effectively an unknown variable; we need these only as variables for derivation of gradients
const Vector3& v0 = p10;
const Vector3& v1 = p20;
float d00 = v0.x * v0.x + v0.y * v0.y + v0.z * v0.z;
@@ -670,7 +748,7 @@ static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0,
float denomr = denom == 0 ? 0.f : 1.f / denom;
// precompute gradient factors
- // these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out common factors that are shared between attributes
+ // these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out expressions that are shared between attributes
float gx1 = (d11 * v0.x - d01 * v1.x) * denomr;
float gx2 = (d00 * v1.x - d01 * v0.x) * denomr;
float gy1 = (d11 * v0.y - d01 * v1.y) * denomr;
@@ -695,6 +773,7 @@ static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0,
// quadric encodes (eval(pos)-attr)^2; this means that the resulting expansion needs to compute, for example, pos.x * pos.y * K
// since quadrics already encode factors for pos.x * pos.y, we can accumulate almost everything in basic quadric fields
+ // note: for simplicity we scale all factors by weight here instead of outside the loop
Q.a00 += w * (gx * gx);
Q.a11 += w * (gy * gy);
Q.a22 += w * (gz * gz);
@@ -782,7 +861,7 @@ static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indic
}
}
-static void fillAttributeQuadrics(Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const float* vertex_attributes, size_t attribute_count, const unsigned int* remap)
+static void fillAttributeQuadrics(Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const float* vertex_attributes, size_t attribute_count)
{
for (size_t i = 0; i < index_count; i += 3)
{
@@ -794,14 +873,13 @@ static void fillAttributeQuadrics(Quadric* attribute_quadrics, QuadricGrad* attr
QuadricGrad G[kMaxAttributes];
quadricFromAttributes(QA, G, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], &vertex_attributes[i0 * attribute_count], &vertex_attributes[i1 * attribute_count], &vertex_attributes[i2 * attribute_count], attribute_count);
- // TODO: This blends together attribute weights across attribute discontinuities, which is probably not a great idea
- quadricAdd(attribute_quadrics[remap[i0]], QA);
- quadricAdd(attribute_quadrics[remap[i1]], QA);
- quadricAdd(attribute_quadrics[remap[i2]], QA);
+ quadricAdd(attribute_quadrics[i0], QA);
+ quadricAdd(attribute_quadrics[i1], QA);
+ quadricAdd(attribute_quadrics[i2], QA);
- quadricAdd(&attribute_gradients[remap[i0] * attribute_count], G, attribute_count);
- quadricAdd(&attribute_gradients[remap[i1] * attribute_count], G, attribute_count);
- quadricAdd(&attribute_gradients[remap[i2] * attribute_count], G, attribute_count);
+ quadricAdd(&attribute_gradients[i0 * attribute_count], G, attribute_count);
+ quadricAdd(&attribute_gradients[i1 * attribute_count], G, attribute_count);
+ quadricAdd(&attribute_gradients[i2 * attribute_count], G, attribute_count);
}
}
@@ -815,7 +893,13 @@ static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c
Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x};
Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x};
- return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z <= 0;
+ float ndp = nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z;
+ float abc = nbc.x * nbc.x + nbc.y * nbc.y + nbc.z * nbc.z;
+ float abd = nbd.x * nbd.x + nbd.y * nbd.y + nbd.z * nbd.z;
+
+ // scale is cos(angle); somewhat arbitrarily set to ~75 degrees
+ // note that the "pure" check is ndp <= 0 (90 degree cutoff) but that allows flipping through a series of close-to-90 collapses
+ return ndp <= 0.25f * sqrtf(abc * abd);
}
static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1)
@@ -840,7 +924,13 @@ static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vert
// early-out when at least one triangle flips due to a collapse
if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1))
+ {
+#if TRACE >= 2
+ printf("edge block %d -> %d: flip welded %d %d %d\n", i0, i1, a, i0, b);
+#endif
+
return true;
+ }
}
return false;
@@ -864,7 +954,7 @@ static size_t boundEdgeCollapses(const EdgeAdjacency& adjacency, size_t vertex_c
return (index_count - dual_count / 2) + 3;
}
-static size_t pickEdgeCollapses(Collapse* collapses, size_t collapse_capacity, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
+static size_t pickEdgeCollapses(Collapse* collapses, size_t collapse_capacity, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
{
size_t collapse_count = 0;
@@ -904,6 +994,16 @@ static size_t pickEdgeCollapses(Collapse* collapses, size_t collapse_capacity, c
if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
continue;
+ if (k0 == Kind_Locked || k1 == Kind_Locked)
+ {
+ // the same check as above, but for border/seam -> locked collapses
+ // loop[] and loopback[] track half edges so we only need to check one of them
+ if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
+ continue;
+ if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0)
+ continue;
+ }
+
// edge can be collapsed in either direction - we will pick the one with minimum error
// note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0])
@@ -943,34 +1043,52 @@ static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const
float ei = quadricError(vertex_quadrics[remap[i0]], vertex_positions[i1]);
float ej = quadricError(vertex_quadrics[remap[j0]], vertex_positions[j1]);
- float dei = ei, dej = ej;
+#if TRACE >= 3
+ float di = ei, dj = ej;
+#endif
if (attribute_count)
{
- ei += quadricError(attribute_quadrics[remap[i0]], &attribute_gradients[remap[i0] * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]);
- ej += quadricError(attribute_quadrics[remap[j0]], &attribute_gradients[remap[j0] * attribute_count], attribute_count, vertex_positions[j1], &vertex_attributes[j1 * attribute_count]);
+ // note: ideally we would evaluate max/avg of attribute errors for seam edges, but it's not clear if it's worth the extra cost
+ ei += quadricError(attribute_quadrics[i0], &attribute_gradients[i0 * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]);
+ ej += quadricError(attribute_quadrics[j0], &attribute_gradients[j0 * attribute_count], attribute_count, vertex_positions[j1], &vertex_attributes[j1 * attribute_count]);
}
// pick edge direction with minimal error
c.v0 = ei <= ej ? i0 : j0;
c.v1 = ei <= ej ? i1 : j1;
c.error = ei <= ej ? ei : ej;
- c.distance_error = ei <= ej ? dei : dej;
+
+#if TRACE >= 3
+ if (i0 == j0) // c.bidi has been overwritten
+ printf("edge eval %d -> %d: error %f (pos %f, attr %f)\n", c.v0, c.v1,
+ sqrtf(c.error), sqrtf(ei <= ej ? di : dj), sqrtf(ei <= ej ? ei - di : ej - dj));
+ else
+ printf("edge eval %d -> %d: error %f (pos %f, attr %f); reverse %f (pos %f, attr %f)\n", c.v0, c.v1,
+ sqrtf(ei <= ej ? ei : ej), sqrtf(ei <= ej ? di : dj), sqrtf(ei <= ej ? ei - di : ej - dj),
+ sqrtf(ei <= ej ? ej : ei), sqrtf(ei <= ej ? dj : di), sqrtf(ei <= ej ? ej - dj : ei - di));
+#endif
}
}
static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
{
- const int sort_bits = 11;
+ // we use counting sort to order collapses by error; since the exact sort order is not as critical,
+ // only top 12 bits of exponent+mantissa (8 bits of exponent and 4 bits of mantissa) are used.
+ // to avoid excessive stack usage, we clamp the exponent range as collapses with errors much higher than 1 are not useful.
+ const unsigned int sort_bits = 12;
+ const unsigned int sort_bins = 2048 + 512; // exponent range [-127, 32)
// fill histogram for counting sort
- unsigned int histogram[1 << sort_bits];
+ unsigned int histogram[sort_bins];
memset(histogram, 0, sizeof(histogram));
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
- unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
+ unsigned int error = collapses[i].errorui;
+ unsigned int key = (error << 1) >> (32 - sort_bits);
+ key = key < sort_bins ? key : sort_bins - 1;
histogram[key]++;
}
@@ -978,7 +1096,7 @@ static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapse
// compute offsets based on histogram data
size_t histogram_sum = 0;
- for (size_t i = 0; i < 1 << sort_bits; ++i)
+ for (size_t i = 0; i < sort_bins; ++i)
{
size_t count = histogram[i];
histogram[i] = unsigned(histogram_sum);
@@ -991,13 +1109,15 @@ static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapse
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
- unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
+ unsigned int error = collapses[i].errorui;
+ unsigned int key = (error << 1) >> (32 - sort_bits);
+ key = key < sort_bins ? key : sort_bins - 1;
sort_order[histogram[key]++] = unsigned(i);
}
}
-static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, size_t attribute_count, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
+static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
{
size_t edge_collapses = 0;
size_t triangle_collapses = 0;
@@ -1007,7 +1127,7 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
size_t edge_collapse_goal = triangle_collapse_goal / 2;
#if TRACE
- size_t stats[4] = {};
+ size_t stats[7] = {};
#endif
for (size_t i = 0; i < collapse_count; ++i)
@@ -1017,10 +1137,16 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
TRACESTATS(0);
if (c.error > error_limit)
+ {
+ TRACESTATS(4);
break;
+ }
if (triangle_collapses >= triangle_collapse_goal)
+ {
+ TRACESTATS(5);
break;
+ }
// we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
// as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor
@@ -1028,8 +1154,11 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
// on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd
// topology, we only abort if we got over 1/6 collapses accordingly.
- if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 6)
+ if (c.error > error_goal && c.error > result_error && triangle_collapses > triangle_collapse_goal / 6)
+ {
+ TRACESTATS(6);
break;
+ }
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
@@ -1037,6 +1166,8 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
unsigned int r0 = remap[i0];
unsigned int r1 = remap[i1];
+ unsigned char kind = vertex_kind[i0];
+
// we don't collapse vertices that had source or target vertex involved in a collapse
// it's important to not move the vertices twice since it complicates the tracking/remapping logic
// it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
@@ -1055,35 +1186,39 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
continue;
}
+#if TRACE >= 2
+ printf("edge commit %d -> %d: kind %d->%d, error %f\n", i0, i1, vertex_kind[i0], vertex_kind[i1], sqrtf(c.error));
+#endif
+
assert(collapse_remap[r0] == r0);
assert(collapse_remap[r1] == r1);
- quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
-
- if (attribute_count)
- {
- quadricAdd(attribute_quadrics[r1], attribute_quadrics[r0]);
- quadricAdd(&attribute_gradients[r1 * attribute_count], &attribute_gradients[r0 * attribute_count], attribute_count);
- }
-
- if (vertex_kind[i0] == Kind_Complex)
+ if (kind == Kind_Complex)
{
+ // remap all vertices in the complex to the target vertex
unsigned int v = i0;
do
{
- collapse_remap[v] = r1;
+ collapse_remap[v] = i1;
v = wedge[v];
} while (v != i0);
}
- else if (vertex_kind[i0] == Kind_Seam)
+ else if (kind == Kind_Seam)
{
- // remap v0 to v1 and seam pair of v0 to seam pair of v1
+ // for seam collapses we need to move the seam pair together; this is a bit tricky to compute since we need to rely on edge loops as target vertex may be locked (and thus have more than two wedges)
unsigned int s0 = wedge[i0];
- unsigned int s1 = wedge[i1];
+ unsigned int s1 = loop[i0] == i1 ? loopback[s0] : loop[s0];
+ assert(s0 != i0 && wedge[s0] == i0);
+ assert(s1 != ~0u && remap[s1] == r1);
+
+ // additional asserts to verify that the seam pair is consistent
+ assert(kind != vertex_kind[i1] || s1 == wedge[i1]);
+ assert(loop[i0] == i1 || loopback[i0] == i1);
+ assert(loop[s0] == s1 || loopback[s0] == s1);
- assert(s0 != i0 && s1 != i1);
- assert(wedge[s0] == i0 && wedge[s1] == i1);
+ // note: this should never happen due to the assertion above, but when disabled if we ever hit this case we'll get a memory safety issue; for now play it safe
+ s1 = (s1 != ~0u) ? s1 : wedge[i1];
collapse_remap[i0] = i1;
collapse_remap[s0] = s1;
@@ -1095,27 +1230,63 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
collapse_remap[i0] = i1;
}
+ // note: we technically don't need to lock r1 if it's a locked vertex, as it can't move and its quadric won't be used
+ // however, this results in slightly worse error on some meshes because the locked collapses get an unfair advantage wrt scheduling
collapse_locked[r0] = 1;
collapse_locked[r1] = 1;
// border edges collapse 1 triangle, other edges collapse 2 or more
- triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
+ triangle_collapses += (kind == Kind_Border) ? 1 : 2;
edge_collapses++;
- result_error = result_error < c.distance_error ? c.distance_error : result_error;
+ result_error = result_error < c.error ? c.error : result_error;
}
#if TRACE
- float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f;
+ float error_goal_last = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX;
+ float error_goal_limit = error_goal_last < error_limit ? error_goal_last : error_limit;
- printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n",
- int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect),
- int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]));
+ printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d); %s\n",
+ int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_limit),
+ int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]),
+ stats[4] ? "error limit" : (stats[5] ? "count limit" : (stats[6] ? "error goal" : "out of collapses")));
#endif
return edge_collapses;
}
+static void updateQuadrics(const unsigned int* collapse_remap, size_t vertex_count, Quadric* vertex_quadrics, Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, size_t attribute_count, const Vector3* vertex_positions, const unsigned int* remap, float& vertex_error)
+{
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ if (collapse_remap[i] == i)
+ continue;
+
+ unsigned int i0 = unsigned(i);
+ unsigned int i1 = collapse_remap[i];
+
+ unsigned int r0 = remap[i0];
+ unsigned int r1 = remap[i1];
+
+ // ensure we only update vertex_quadrics once: primary vertex must be moved if any wedge is moved
+ if (i0 == r0)
+ quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
+
+ if (attribute_count)
+ {
+ quadricAdd(attribute_quadrics[i1], attribute_quadrics[i0]);
+ quadricAdd(&attribute_gradients[i1 * attribute_count], &attribute_gradients[i0 * attribute_count], attribute_count);
+
+ if (i0 == r0)
+ {
+ // when attributes are used, distance error needs to be recomputed as collapses don't track it; it is safe to do this after the quadric adjustment
+ float derr = quadricError(vertex_quadrics[r0], vertex_positions[r1]);
+ vertex_error = vertex_error < derr ? derr : vertex_error;
+ }
+ }
+ }
+}
+
static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap)
{
size_t write = 0;
@@ -1147,15 +1318,179 @@ static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsign
{
for (size_t i = 0; i < vertex_count; ++i)
{
+ // note: this is a no-op for vertices that were remapped
+ // ideally we would clear the loop entries for those for consistency, even though they aren't going to be used
+ // however, the remapping process needs loop information for remapped vertices, so this would require a separate pass
if (loop[i] != ~0u)
{
unsigned int l = loop[i];
unsigned int r = collapse_remap[l];
// i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
- loop[i] = (i == r) ? loop[l] : r;
+ if (i == r)
+ loop[i] = (loop[l] != ~0u) ? collapse_remap[loop[l]] : ~0u;
+ else
+ loop[i] = r;
+ }
+ }
+}
+
+static unsigned int follow(unsigned int* parents, unsigned int index)
+{
+ while (index != parents[index])
+ {
+ unsigned int parent = parents[index];
+ parents[index] = parents[parent];
+ index = parent;
+ }
+
+ return index;
+}
+
+static size_t buildComponents(unsigned int* components, size_t vertex_count, const unsigned int* indices, size_t index_count, const unsigned int* remap)
+{
+ for (size_t i = 0; i < vertex_count; ++i)
+ components[i] = unsigned(i);
+
+ // compute a unique (but not sequential!) index for each component via union-find
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ static const int next[4] = {1, 2, 0, 1};
+
+ for (int e = 0; e < 3; ++e)
+ {
+ unsigned int i0 = indices[i + e];
+ unsigned int i1 = indices[i + next[e]];
+
+ unsigned int r0 = remap[i0];
+ unsigned int r1 = remap[i1];
+
+ r0 = follow(components, r0);
+ r1 = follow(components, r1);
+
+ // merge components with larger indices into components with smaller indices
+ // this guarantees that the root of the component is always the one with the smallest index
+ if (r0 != r1)
+ components[r0 < r1 ? r1 : r0] = r0 < r1 ? r0 : r1;
}
}
+
+ // make sure each element points to the component root *before* we renumber the components
+ for (size_t i = 0; i < vertex_count; ++i)
+ if (remap[i] == i)
+ components[i] = follow(components, unsigned(i));
+
+ unsigned int next_component = 0;
+
+ // renumber components using sequential indices
+ // a sequential pass is sufficient because component root always has the smallest index
+ // note: it is unsafe to use follow() in this pass because we're replacing component links with sequential indices inplace
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ if (remap[i] == i)
+ {
+ unsigned int root = components[i];
+ assert(root <= i); // make sure we already computed the component for non-roots
+ components[i] = (root == i) ? next_component++ : components[root];
+ }
+ else
+ {
+ assert(remap[i] < i); // make sure we already computed the component
+ components[i] = components[remap[i]];
+ }
+ }
+
+ return next_component;
+}
+
+static void measureComponents(float* component_errors, size_t component_count, const unsigned int* components, const Vector3* vertex_positions, size_t vertex_count)
+{
+ memset(component_errors, 0, component_count * 4 * sizeof(float));
+
+ // compute approximate sphere center for each component as an average
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ unsigned int c = components[i];
+ assert(components[i] < component_count);
+
+ Vector3 v = vertex_positions[i]; // copy avoids aliasing issues
+
+ component_errors[c * 4 + 0] += v.x;
+ component_errors[c * 4 + 1] += v.y;
+ component_errors[c * 4 + 2] += v.z;
+ component_errors[c * 4 + 3] += 1; // weight
+ }
+
+ // complete the center computation, and reinitialize [3] as a radius
+ for (size_t i = 0; i < component_count; ++i)
+ {
+ float w = component_errors[i * 4 + 3];
+ float iw = w == 0.f ? 0.f : 1.f / w;
+
+ component_errors[i * 4 + 0] *= iw;
+ component_errors[i * 4 + 1] *= iw;
+ component_errors[i * 4 + 2] *= iw;
+ component_errors[i * 4 + 3] = 0; // radius
+ }
+
+ // compute squared radius for each component
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ unsigned int c = components[i];
+
+ float dx = vertex_positions[i].x - component_errors[c * 4 + 0];
+ float dy = vertex_positions[i].y - component_errors[c * 4 + 1];
+ float dz = vertex_positions[i].z - component_errors[c * 4 + 2];
+ float r = dx * dx + dy * dy + dz * dz;
+
+ component_errors[c * 4 + 3] = component_errors[c * 4 + 3] < r ? r : component_errors[c * 4 + 3];
+ }
+
+ // we've used the output buffer as scratch space, so we need to move the results to proper indices
+ for (size_t i = 0; i < component_count; ++i)
+ {
+#if TRACE >= 2
+ printf("component %d: center %f %f %f, error %e\n", int(i),
+ component_errors[i * 4 + 0], component_errors[i * 4 + 1], component_errors[i * 4 + 2], sqrtf(component_errors[i * 4 + 3]));
+#endif
+ // note: we keep the squared error to make it match quadric error metric
+ component_errors[i] = component_errors[i * 4 + 3];
+ }
+}
+
+static size_t pruneComponents(unsigned int* indices, size_t index_count, const unsigned int* components, const float* component_errors, size_t component_count, float error_cutoff, float& nexterror)
+{
+ size_t write = 0;
+
+ for (size_t i = 0; i < index_count; i += 3)
+ {
+ unsigned int c = components[indices[i]];
+ assert(c == components[indices[i + 1]] && c == components[indices[i + 2]]);
+
+ if (component_errors[c] > error_cutoff)
+ {
+ indices[write + 0] = indices[i + 0];
+ indices[write + 1] = indices[i + 1];
+ indices[write + 2] = indices[i + 2];
+ write += 3;
+ }
+ }
+
+#if TRACE
+ size_t pruned_components = 0;
+ for (size_t i = 0; i < component_count; ++i)
+ pruned_components += (component_errors[i] >= nexterror && component_errors[i] <= error_cutoff);
+
+ printf("pruned %d triangles in %d components (goal %e)\n", int((index_count - write) / 3), int(pruned_components), sqrtf(error_cutoff));
+#endif
+
+ // update next error with the smallest error of the remaining components for future pruning
+ nexterror = FLT_MAX;
+ for (size_t i = 0; i < component_count; ++i)
+ if (component_errors[i] > error_cutoff)
+ nexterror = nexterror > component_errors[i] ? component_errors[i] : nexterror;
+
+ return write;
}
struct CellHasher
@@ -1310,7 +1645,7 @@ static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices
unsigned int c1 = vertex_cells[i1];
unsigned int c2 = vertex_cells[i2];
- bool single_cell = (c0 == c1) & (c0 == c2);
+ int single_cell = (c0 == c1) & (c0 == c2);
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f);
@@ -1330,7 +1665,7 @@ static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices
static void fillCellReservoirs(Reservoir* cell_reservoirs, size_t cell_count, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, size_t vertex_count, const unsigned int* vertex_cells)
{
- static const float dummy_color[] = { 0.f, 0.f, 0.f };
+ static const float dummy_color[] = {0.f, 0.f, 0.f};
size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float);
@@ -1385,7 +1720,7 @@ static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t c
static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Reservoir* cell_reservoirs, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t vertex_count)
{
- static const float dummy_color[] = { 0.f, 0.f, 0.f };
+ static const float dummy_color[] = {0.f, 0.f, 0.f};
size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float);
@@ -1466,14 +1801,13 @@ static float interpolate(float y, float x0, float y0, float x1, float y1, float
} // namespace meshopt
-#ifndef NDEBUG
-// Note: this is only exposed for debug visualization purposes; do *not* use these in debug builds
-MESHOPTIMIZER_API unsigned char* meshopt_simplifyDebugKind = NULL;
-MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoop = NULL;
-MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoopBack = NULL;
-#endif
+// Note: this is only exposed for debug visualization purposes; do *not* use
+enum
+{
+ meshopt_SimplifyInternalDebug = 1 << 30
+};
-size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
+size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
using namespace meshopt;
@@ -1481,30 +1815,41 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_index_count <= index_count);
- assert((options & ~(meshopt_SimplifyLockBorder)) == 0);
+ assert(target_error >= 0);
+ assert((options & ~(meshopt_SimplifyLockBorder | meshopt_SimplifySparse | meshopt_SimplifyErrorAbsolute | meshopt_SimplifyPrune | meshopt_SimplifyInternalDebug)) == 0);
assert(vertex_attributes_stride >= attribute_count * sizeof(float) && vertex_attributes_stride <= 256);
assert(vertex_attributes_stride % sizeof(float) == 0);
assert(attribute_count <= kMaxAttributes);
+ for (size_t i = 0; i < attribute_count; ++i)
+ assert(attribute_weights[i] >= 0);
meshopt_Allocator allocator;
unsigned int* result = destination;
+ if (result != indices)
+ memcpy(result, indices, index_count * sizeof(unsigned int));
+
+ // build an index remap and update indices/vertex_count to minimize the subsequent work
+ // note: as a consequence, errors will be computed relative to the subset extent
+ unsigned int* sparse_remap = NULL;
+ if (options & meshopt_SimplifySparse)
+ sparse_remap = buildSparseRemap(result, index_count, vertex_count, &vertex_count, allocator);
// build adjacency information
EdgeAdjacency adjacency = {};
prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator);
- updateEdgeAdjacency(adjacency, indices, index_count, vertex_count, NULL);
+ updateEdgeAdjacency(adjacency, result, index_count, vertex_count, NULL);
// build position remap that maps each vertex to the one with identical position
unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count);
- buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, allocator);
+ buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, sparse_remap, allocator);
// classify vertices; vertex kind determines collapse rules, see kCanCollapse
unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count);
unsigned int* loop = allocator.allocate<unsigned int>(vertex_count);
unsigned int* loopback = allocator.allocate<unsigned int>(vertex_count);
- classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge, options);
+ classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge, vertex_lock, sparse_remap, options);
#if TRACE
size_t unique_positions = 0;
@@ -1522,14 +1867,23 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
#endif
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
- rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
+ float vertex_scale = rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride, sparse_remap);
float* vertex_attributes = NULL;
if (attribute_count)
{
+ unsigned int attribute_remap[kMaxAttributes];
+
+ // remap attributes to only include ones with weight > 0 to minimize memory/compute overhead for quadrics
+ size_t attributes_used = 0;
+ for (size_t i = 0; i < attribute_count; ++i)
+ if (attribute_weights[i] > 0)
+ attribute_remap[attributes_used++] = unsigned(i);
+
+ attribute_count = attributes_used;
vertex_attributes = allocator.allocate<float>(vertex_count * attribute_count);
- rescaleAttributes(vertex_attributes, vertex_attributes_data, vertex_count, vertex_attributes_stride, attribute_weights, attribute_count);
+ rescaleAttributes(vertex_attributes, vertex_attributes_data, vertex_count, vertex_attributes_stride, attribute_weights, attribute_count, attribute_remap, sparse_remap);
}
Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
@@ -1547,14 +1901,33 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
memset(attribute_gradients, 0, vertex_count * attribute_count * sizeof(QuadricGrad));
}
- fillFaceQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap);
- fillEdgeQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
+ fillFaceQuadrics(vertex_quadrics, result, index_count, vertex_positions, remap);
+ fillEdgeQuadrics(vertex_quadrics, result, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
if (attribute_count)
- fillAttributeQuadrics(attribute_quadrics, attribute_gradients, indices, index_count, vertex_positions, vertex_attributes, attribute_count, remap);
+ fillAttributeQuadrics(attribute_quadrics, attribute_gradients, result, index_count, vertex_positions, vertex_attributes, attribute_count);
- if (result != indices)
- memcpy(result, indices, index_count * sizeof(unsigned int));
+ unsigned int* components = NULL;
+ float* component_errors = NULL;
+ size_t component_count = 0;
+ float component_nexterror = 0;
+
+ if (options & meshopt_SimplifyPrune)
+ {
+ components = allocator.allocate<unsigned int>(vertex_count);
+ component_count = buildComponents(components, vertex_count, result, index_count, remap);
+
+ component_errors = allocator.allocate<float>(component_count * 4); // overallocate for temporary use inside measureComponents
+ measureComponents(component_errors, component_count, components, vertex_positions, vertex_count);
+
+ component_nexterror = FLT_MAX;
+ for (size_t i = 0; i < component_count; ++i)
+ component_nexterror = component_nexterror > component_errors[i] ? component_errors[i] : component_nexterror;
+
+#if TRACE
+ printf("components: %d (min error %e)\n", int(component_count), sqrtf(component_nexterror));
+#endif
+ }
#if TRACE
size_t pass_count = 0;
@@ -1569,22 +1942,28 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
size_t result_count = index_count;
float result_error = 0;
+ float vertex_error = 0;
// target_error input is linear; we need to adjust it to match quadricError units
- float error_limit = target_error * target_error;
+ float error_scale = (options & meshopt_SimplifyErrorAbsolute) ? vertex_scale : 1.f;
+ float error_limit = (target_error * target_error) / (error_scale * error_scale);
while (result_count > target_index_count)
{
// note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap);
- size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, collapse_capacity, result, result_count, remap, vertex_kind, loop);
+ size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, collapse_capacity, result, result_count, remap, vertex_kind, loop, loopback);
assert(edge_collapse_count <= collapse_capacity);
// no edges can be collapsed any more due to topology restrictions
if (edge_collapse_count == 0)
break;
+#if TRACE
+ printf("pass %d:%c", int(pass_count++), TRACE >= 2 ? '\n' : ' ');
+#endif
+
rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_attributes, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, remap);
sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
@@ -1596,16 +1975,17 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
memset(collapse_locked, 0, vertex_count);
-#if TRACE
- printf("pass %d: ", int(pass_count++));
-#endif
-
- size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
+ size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, loop, loopback, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
// no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
if (collapses == 0)
break;
+ updateQuadrics(collapse_remap, vertex_count, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, vertex_positions, remap, vertex_error);
+
+ // updateQuadrics will update vertex error if we use attributes, but if we don't then result_error and vertex_error are equivalent
+ vertex_error = attribute_count == 0 ? result_error : vertex_error;
+
remapEdgeLoops(loop, vertex_count, collapse_remap);
remapEdgeLoops(loopback, vertex_count, collapse_remap);
@@ -1613,38 +1993,74 @@ size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indic
assert(new_count < result_count);
result_count = new_count;
+
+ if ((options & meshopt_SimplifyPrune) && result_count > target_index_count && component_nexterror <= vertex_error)
+ result_count = pruneComponents(result, result_count, components, component_errors, component_count, vertex_error, component_nexterror);
}
+ // we're done with the regular simplification but we're still short of the target; try pruning more aggressively towards error_limit
+ while ((options & meshopt_SimplifyPrune) && result_count > target_index_count && component_nexterror <= error_limit)
+ {
#if TRACE
- printf("result: %d triangles, error: %e; total %d passes\n", int(result_count), sqrtf(result_error), int(pass_count));
+ printf("pass %d: cleanup; ", int(pass_count++));
#endif
-#ifndef NDEBUG
- if (meshopt_simplifyDebugKind)
- memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count);
+ float component_cutoff = component_nexterror * 1.5f < error_limit ? component_nexterror * 1.5f : error_limit;
- if (meshopt_simplifyDebugLoop)
- memcpy(meshopt_simplifyDebugLoop, loop, vertex_count * sizeof(unsigned int));
+ // track maximum error in eligible components as we are increasing resulting error
+ float component_maxerror = 0;
+ for (size_t i = 0; i < component_count; ++i)
+ if (component_errors[i] > component_maxerror && component_errors[i] <= component_cutoff)
+ component_maxerror = component_errors[i];
- if (meshopt_simplifyDebugLoopBack)
- memcpy(meshopt_simplifyDebugLoopBack, loopback, vertex_count * sizeof(unsigned int));
+ size_t new_count = pruneComponents(result, result_count, components, component_errors, component_count, component_cutoff, component_nexterror);
+ if (new_count == result_count)
+ break;
+
+ result_count = new_count;
+ result_error = result_error < component_maxerror ? component_maxerror : result_error;
+ vertex_error = vertex_error < component_maxerror ? component_maxerror : vertex_error;
+ }
+
+#if TRACE
+ printf("result: %d triangles, error: %e; total %d passes\n", int(result_count / 3), sqrtf(result_error), int(pass_count));
#endif
+ // if debug visualization data is requested, fill it instead of index data; for simplicity, this doesn't work with sparsity
+ if ((options & meshopt_SimplifyInternalDebug) && !sparse_remap)
+ {
+ assert(Kind_Count <= 8 && vertex_count < (1 << 28)); // 3 bit kind, 1 bit loop
+
+ for (size_t i = 0; i < result_count; i += 3)
+ {
+ unsigned int a = result[i + 0], b = result[i + 1], c = result[i + 2];
+
+ result[i + 0] |= (vertex_kind[a] << 28) | (unsigned(loop[a] == b || loopback[b] == a) << 31);
+ result[i + 1] |= (vertex_kind[b] << 28) | (unsigned(loop[b] == c || loopback[c] == b) << 31);
+ result[i + 2] |= (vertex_kind[c] << 28) | (unsigned(loop[c] == a || loopback[a] == c) << 31);
+ }
+ }
+
+ // convert resulting indices back into the dense space of the larger mesh
+ if (sparse_remap)
+ for (size_t i = 0; i < result_count; ++i)
+ result[i] = sparse_remap[result[i]];
+
// result_error is quadratic; we need to remap it back to linear
if (out_result_error)
- *out_result_error = sqrtf(result_error);
+ *out_result_error = sqrtf(vertex_error) * error_scale;
return result_count;
}
size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
- return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, NULL, 0, NULL, 0, target_index_count, target_error, options, out_result_error);
+ return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, NULL, 0, NULL, 0, NULL, target_index_count, target_error, options, out_result_error);
}
-size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
+size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
{
- return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, vertex_attributes_data, vertex_attributes_stride, attribute_weights, attribute_count, target_index_count, target_error, options, out_result_error);
+ return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, vertex_attributes_data, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, out_result_error);
}
size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
@@ -1697,19 +2113,19 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size;
- grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
+ grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid ? max_grid - 1 : grid_size);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
size_t triangles = countTriangles(vertex_ids, indices, index_count);
#if TRACE
printf("pass %d (%s): grid size %d, triangles %d, %s\n",
- pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
+ pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses ? "lerp" : "binary"),
grid_size, int(triangles),
(triangles <= target_index_count / 3) ? "under" : "over");
#endif
- float tip = interpolate(float(target_index_count / 3), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles));
+ float tip = interpolate(float(size_t(target_index_count / 3)), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles));
if (triangles <= target_index_count / 3)
{
@@ -1829,14 +2245,14 @@ size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_pos
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size;
- grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
+ grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid ? max_grid - 1 : grid_size);
computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count);
#if TRACE
printf("pass %d (%s): grid size %d, vertices %d, %s\n",
- pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
+ pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses ? "lerp" : "binary"),
grid_size, int(vertices),
(vertices <= target_vertex_count) ? "under" : "over");
#endif
@@ -1881,7 +2297,10 @@ size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_pos
unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
float* cell_errors = allocator.allocate<float>(cell_count);
- fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_reservoirs, vertex_positions, vertex_colors, vertex_colors_stride, color_weight * color_weight, vertex_count);
+ // we scale the color weight to bring it to the same scale as position so that error addition makes sense
+ float color_weight_scaled = color_weight * (min_grid == 1 ? 1.f : 1.f / (min_grid - 1));
+
+ fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_reservoirs, vertex_positions, vertex_colors, vertex_colors_stride, color_weight_scaled * color_weight_scaled, vertex_count);
// copy results to the output
assert(cell_count <= target_vertex_count);
diff --git a/thirdparty/meshoptimizer/stripifier.cpp b/thirdparty/meshoptimizer/stripifier.cpp
index 8ce17ef3dc..4043195aeb 100644
--- a/thirdparty/meshoptimizer/stripifier.cpp
+++ b/thirdparty/meshoptimizer/stripifier.cpp
@@ -10,15 +10,15 @@
namespace meshopt
{
-static unsigned int findStripFirst(const unsigned int buffer[][3], unsigned int buffer_size, const unsigned int* valence)
+static unsigned int findStripFirst(const unsigned int buffer[][3], unsigned int buffer_size, const unsigned char* valence)
{
unsigned int index = 0;
unsigned int iv = ~0u;
for (size_t i = 0; i < buffer_size; ++i)
{
- unsigned int va = valence[buffer[i][0]], vb = valence[buffer[i][1]], vc = valence[buffer[i][2]];
- unsigned int v = (va < vb && va < vc) ? va : (vb < vc) ? vb : vc;
+ unsigned char va = valence[buffer[i][0]], vb = valence[buffer[i][1]], vc = valence[buffer[i][2]];
+ unsigned int v = (va < vb && va < vc) ? va : (vb < vc ? vb : vc);
if (v < iv)
{
@@ -71,8 +71,9 @@ size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices,
size_t strip_size = 0;
// compute vertex valence; this is used to prioritize starting triangle for strips
- unsigned int* valence = allocator.allocate<unsigned int>(vertex_count);
- memset(valence, 0, vertex_count * sizeof(unsigned int));
+ // note: we use 8-bit counters for performance; for outlier vertices the valence is incorrect but that just affects the heuristic
+ unsigned char* valence = allocator.allocate<unsigned char>(vertex_count);
+ memset(valence, 0, vertex_count);
for (size_t i = 0; i < index_count; ++i)
{
@@ -151,7 +152,7 @@ size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices,
{
// if we didn't find anything, we need to find the next new triangle
// we use a heuristic to maximize the strip length
- unsigned int i = findStripFirst(buffer, buffer_size, &valence[0]);
+ unsigned int i = findStripFirst(buffer, buffer_size, valence);
unsigned int a = buffer[i][0], b = buffer[i][1], c = buffer[i][2];
// ordered removal from the buffer
diff --git a/thirdparty/meshoptimizer/vcacheoptimizer.cpp b/thirdparty/meshoptimizer/vcacheoptimizer.cpp
index d4b08ba340..e4ecc71d36 100644
--- a/thirdparty/meshoptimizer/vcacheoptimizer.cpp
+++ b/thirdparty/meshoptimizer/vcacheoptimizer.cpp
@@ -195,9 +195,8 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
TriangleAdjacency adjacency = {};
buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
- // live triangle counts
- unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
- memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
+ // live triangle counts; note, we alias adjacency.counts as we remove triangles after emitting them so the counts always match
+ unsigned int* live_triangles = adjacency.counts;
// emitted flags
unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
@@ -261,20 +260,16 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
unsigned int index = cache[i];
cache_new[cache_write] = index;
- cache_write += (index != a && index != b && index != c);
+ cache_write += (index != a) & (index != b) & (index != c);
}
unsigned int* cache_temp = cache;
cache = cache_new, cache_new = cache_temp;
cache_count = cache_write > cache_size ? cache_size : cache_write;
- // update live triangle counts
- live_triangles[a]--;
- live_triangles[b]--;
- live_triangles[c]--;
-
// remove emitted triangle from adjacency data
// this makes sure that we spend less time traversing these lists on subsequent iterations
+ // live triangle counts are updated as a byproduct of these adjustments
for (size_t k = 0; k < 3; ++k)
{
unsigned int index = indices[current_triangle * 3 + k];
diff --git a/thirdparty/meshoptimizer/vertexcodec.cpp b/thirdparty/meshoptimizer/vertexcodec.cpp
index 8ab0662d88..1dbd2e35f8 100644
--- a/thirdparty/meshoptimizer/vertexcodec.cpp
+++ b/thirdparty/meshoptimizer/vertexcodec.cpp
@@ -90,6 +90,14 @@
#include <wasm_simd128.h>
#endif
+#ifndef TRACE
+#define TRACE 0
+#endif
+
+#if TRACE
+#include <stdio.h>
+#endif
+
#ifdef SIMD_WASM
#define wasmx_splat_v32x4(v, i) wasm_i32x4_shuffle(v, v, i, i, i, i)
#define wasmx_unpacklo_v8x16(a, b) wasm_i8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
@@ -135,6 +143,19 @@ inline unsigned char unzigzag8(unsigned char v)
return -(v & 1) ^ (v >> 1);
}
+#if TRACE
+struct Stats
+{
+ size_t size;
+ size_t header; // bytes for header
+ size_t bitg[4]; // bytes for bit groups
+ size_t bitc[8]; // bit consistency: how many bits are shared between all bytes in a group
+};
+
+static Stats* bytestats = NULL;
+static Stats vertexstats[256];
+#endif
+
static bool encodeBytesGroupZero(const unsigned char* buffer)
{
for (size_t i = 0; i < kByteGroupSize; ++i)
@@ -245,7 +266,7 @@ static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end,
}
}
- int bitslog2 = (best_bits == 1) ? 0 : (best_bits == 2) ? 1 : (best_bits == 4) ? 2 : 3;
+ int bitslog2 = (best_bits == 1) ? 0 : (best_bits == 2 ? 1 : (best_bits == 4 ? 2 : 3));
assert((1 << bitslog2) == best_bits);
size_t header_offset = i / kByteGroupSize;
@@ -256,8 +277,16 @@ static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end,
assert(data + best_size == next);
data = next;
+
+#if TRACE
+ bytestats->bitg[bitslog2] += best_size;
+#endif
}
+#if TRACE
+ bytestats->header += header_size;
+#endif
+
return data;
}
@@ -286,9 +315,31 @@ static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data
vertex_offset += vertex_size;
}
+#if TRACE
+ const unsigned char* olddata = data;
+ bytestats = &vertexstats[k];
+
+ for (size_t ig = 0; ig < vertex_count; ig += kByteGroupSize)
+ {
+ unsigned char last = (ig == 0) ? last_vertex[k] : vertex_data[vertex_size * (ig - 1) + k];
+ unsigned char delta = 0xff;
+
+ for (size_t i = ig; i < ig + kByteGroupSize && i < vertex_count; ++i)
+ delta &= ~(vertex_data[vertex_size * i + k] ^ last);
+
+ for (int j = 0; j < 8; ++j)
+ bytestats->bitc[j] += (vertex_count - ig < kByteGroupSize ? vertex_count - ig : kByteGroupSize) * ((delta >> j) & 1);
+ }
+#endif
+
data = encodeBytes(data, data_end, buffer, (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1));
if (!data)
return NULL;
+
+#if TRACE
+ bytestats = NULL;
+ vertexstats[k].size += data - olddata;
+#endif
}
memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size);
@@ -383,6 +434,7 @@ static const unsigned char* decodeVertexBlock(const unsigned char* data, const u
unsigned char transposed[kVertexBlockSizeBytes];
size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
+ assert(vertex_count <= vertex_count_aligned);
for (size_t k = 0; k < vertex_size; ++k)
{
@@ -1095,6 +1147,10 @@ size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, con
assert(vertex_size > 0 && vertex_size <= 256);
assert(vertex_size % 4 == 0);
+#if TRACE
+ memset(vertexstats, 0, sizeof(vertexstats));
+#endif
+
const unsigned char* vertex_data = static_cast<const unsigned char*>(vertices);
unsigned char* data = buffer;
@@ -1147,6 +1203,30 @@ size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, con
assert(data >= buffer + tail_size);
assert(data <= buffer + buffer_size);
+#if TRACE
+ size_t total_size = data - buffer;
+
+ for (size_t k = 0; k < vertex_size; ++k)
+ {
+ const Stats& vsk = vertexstats[k];
+
+ printf("%2d: %7d bytes [%4.1f%%] %.1f bpv", int(k), int(vsk.size), double(vsk.size) / double(total_size) * 100, double(vsk.size) / double(vertex_count) * 8);
+
+ size_t total_k = vsk.header + vsk.bitg[0] + vsk.bitg[1] + vsk.bitg[2] + vsk.bitg[3];
+
+ printf(" |\thdr [%5.1f%%] bitg 1-3 [%4.1f%% %4.1f%% %4.1f%%]",
+ double(vsk.header) / double(total_k) * 100, double(vsk.bitg[1]) / double(total_k) * 100,
+ double(vsk.bitg[2]) / double(total_k) * 100, double(vsk.bitg[3]) / double(total_k) * 100);
+
+ printf(" |\tbitc [%3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%%]",
+ double(vsk.bitc[0]) / double(vertex_count) * 100, double(vsk.bitc[1]) / double(vertex_count) * 100,
+ double(vsk.bitc[2]) / double(vertex_count) * 100, double(vsk.bitc[3]) / double(vertex_count) * 100,
+ double(vsk.bitc[4]) / double(vertex_count) * 100, double(vsk.bitc[5]) / double(vertex_count) * 100,
+ double(vsk.bitc[6]) / double(vertex_count) * 100, double(vsk.bitc[7]) / double(vertex_count) * 100);
+ printf("\n");
+ }
+#endif
+
return data - buffer;
}
@@ -1246,3 +1326,4 @@ int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t ve
#undef SIMD_WASM
#undef SIMD_FALLBACK
#undef SIMD_TARGET
+#undef SIMD_LATENCYOPT
diff --git a/thirdparty/meshoptimizer/vertexfilter.cpp b/thirdparty/meshoptimizer/vertexfilter.cpp
index 4b5f444f04..1f456bb9de 100644
--- a/thirdparty/meshoptimizer/vertexfilter.cpp
+++ b/thirdparty/meshoptimizer/vertexfilter.cpp
@@ -807,7 +807,7 @@ inline int optlog2(float v)
u.f = v;
// +1 accounts for implicit 1. in mantissa; denormalized numbers will end up clamped to min_exp by calling code
- return u.ui == 0 ? 0 : int((u.ui >> 23) & 0xff) - 127 + 1;
+ return v == 0 ? 0 : int((u.ui >> 23) & 0xff) - 127 + 1;
}
// optimized variant of ldexp
@@ -1010,6 +1010,20 @@ void meshopt_encodeFilterExp(void* destination_, size_t count, size_t stride, in
component_exp[j] = (min_exp < e) ? e : min_exp;
}
}
+ else if (mode == meshopt_EncodeExpClamped)
+ {
+ for (size_t j = 0; j < stride_float; ++j)
+ {
+ int e = optlog2(v[j]);
+
+ component_exp[j] = (0 < e) ? e : 0;
+ }
+ }
+ else
+ {
+ // the code below assumes component_exp is initialized outside of the loop
+ assert(mode == meshopt_EncodeExpSharedComponent);
+ }
for (size_t j = 0; j < stride_float; ++j)
{
@@ -1020,7 +1034,6 @@ void meshopt_encodeFilterExp(void* destination_, size_t count, size_t stride, in
// compute renormalized rounded mantissa for each component
int mmask = (1 << 24) - 1;
-
int m = int(v[j] * optexp2(-exp) + (v[j] >= 0 ? 0.5f : -0.5f));
d[j] = (m & mmask) | (unsigned(exp) << 24);