summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--thirdparty/README.md2
-rw-r--r--thirdparty/zstd/common/allocations.h2
-rw-r--r--thirdparty/zstd/common/bitstream.h78
-rw-r--r--thirdparty/zstd/common/compiler.h136
-rw-r--r--thirdparty/zstd/common/cpu.h36
-rw-r--r--thirdparty/zstd/common/debug.c6
-rw-r--r--thirdparty/zstd/common/debug.h31
-rw-r--r--thirdparty/zstd/common/error_private.h81
-rw-r--r--thirdparty/zstd/common/fse.h5
-rw-r--r--thirdparty/zstd/common/fse_decompress.c36
-rw-r--r--thirdparty/zstd/common/huf.h15
-rw-r--r--thirdparty/zstd/common/mem.h9
-rw-r--r--thirdparty/zstd/common/pool.c2
-rw-r--r--thirdparty/zstd/common/pool.h2
-rw-r--r--thirdparty/zstd/common/portability_macros.h2
-rw-r--r--thirdparty/zstd/common/threading.c10
-rw-r--r--thirdparty/zstd/common/xxhash.c16
-rw-r--r--thirdparty/zstd/common/xxhash.h3300
-rw-r--r--thirdparty/zstd/common/zstd_internal.h10
-rw-r--r--thirdparty/zstd/compress/fse_compress.c15
-rw-r--r--thirdparty/zstd/compress/huf_compress.c79
-rw-r--r--thirdparty/zstd/compress/zstd_compress.c443
-rw-r--r--thirdparty/zstd/compress/zstd_compress_internal.h56
-rw-r--r--thirdparty/zstd/compress/zstd_compress_superblock.c337
-rw-r--r--thirdparty/zstd/compress/zstd_cwksp.h32
-rw-r--r--thirdparty/zstd/compress/zstd_double_fast.c22
-rw-r--r--thirdparty/zstd/compress/zstd_double_fast.h11
-rw-r--r--thirdparty/zstd/compress/zstd_fast.c20
-rw-r--r--thirdparty/zstd/compress/zstd_lazy.c216
-rw-r--r--thirdparty/zstd/compress/zstd_lazy.h131
-rw-r--r--thirdparty/zstd/compress/zstd_ldm.c10
-rw-r--r--thirdparty/zstd/compress/zstd_opt.c328
-rw-r--r--thirdparty/zstd/compress/zstd_opt.h38
-rw-r--r--thirdparty/zstd/compress/zstdmt_compress.c173
-rw-r--r--thirdparty/zstd/decompress/huf_decompress.c314
-rw-r--r--thirdparty/zstd/decompress/huf_decompress_amd64.S57
-rw-r--r--thirdparty/zstd/decompress/zstd_decompress.c116
-rw-r--r--thirdparty/zstd/decompress/zstd_decompress_block.c439
-rw-r--r--thirdparty/zstd/decompress/zstd_decompress_block.h2
-rw-r--r--thirdparty/zstd/decompress/zstd_decompress_internal.h2
-rw-r--r--thirdparty/zstd/zstd.h189
41 files changed, 4559 insertions, 2250 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md
index be386a3920..3da9896247 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -1034,7 +1034,7 @@ Files extracted from upstream source:
## zstd
- Upstream: https://github.com/facebook/zstd
-- Version: 1.5.5 (63779c798237346c2b245c546c40b72a5a5913fe, 2023)
+- Version: 1.5.6 (794ea1b0afca0f020f4e57b6732332231fb23c70, 2024)
- License: BSD-3-Clause
Files extracted from upstream source:
diff --git a/thirdparty/zstd/common/allocations.h b/thirdparty/zstd/common/allocations.h
index a3153c4bac..5e89955010 100644
--- a/thirdparty/zstd/common/allocations.h
+++ b/thirdparty/zstd/common/allocations.h
@@ -14,7 +14,7 @@
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
-#include "mem.h" /* MEM_STATIC */
+#include "compiler.h" /* MEM_STATIC */
#define ZSTD_STATIC_LINKING_ONLY
#include "../zstd.h" /* ZSTD_customMem */
diff --git a/thirdparty/zstd/common/bitstream.h b/thirdparty/zstd/common/bitstream.h
index 72b0b3df22..676044989c 100644
--- a/thirdparty/zstd/common/bitstream.h
+++ b/thirdparty/zstd/common/bitstream.h
@@ -90,19 +90,20 @@ MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
+typedef size_t BitContainerType;
typedef struct {
- size_t bitContainer;
+ BitContainerType bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
-typedef enum { BIT_DStream_unfinished = 0,
- BIT_DStream_endOfBuffer = 1,
- BIT_DStream_completed = 2,
- BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
- /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+typedef enum { BIT_DStream_unfinished = 0, /* fully refilled */
+ BIT_DStream_endOfBuffer = 1, /* still some bits left in bitstream */
+ BIT_DStream_completed = 2, /* bitstream entirely consumed, bit-exact */
+ BIT_DStream_overflow = 3 /* user requested more bits than present in bitstream */
+ } BIT_DStream_status; /* result of BIT_reloadDStream() */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
@@ -112,7 +113,7 @@ MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
-* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (BitContainerType).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
@@ -162,7 +163,7 @@ MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
return 0;
}
-MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
+FORCE_INLINE_TEMPLATE size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1 && !defined(ZSTD_NO_INTRINSICS)
return _bzhi_u64(bitContainer, nbBits);
@@ -267,22 +268,22 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
- case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
+ case 7: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
ZSTD_FALLTHROUGH;
- case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
+ case 6: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
ZSTD_FALLTHROUGH;
- case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
+ case 5: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
ZSTD_FALLTHROUGH;
- case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
+ case 4: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[3]) << 24;
ZSTD_FALLTHROUGH;
- case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
+ case 3: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[2]) << 16;
ZSTD_FALLTHROUGH;
- case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
+ case 2: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[1]) << 8;
ZSTD_FALLTHROUGH;
default: break;
@@ -297,12 +298,12 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
return srcSize;
}
-MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
+FORCE_INLINE_TEMPLATE size_t BIT_getUpperBits(BitContainerType bitContainer, U32 const start)
{
return bitContainer >> start;
}
-MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
+FORCE_INLINE_TEMPLATE size_t BIT_getMiddleBits(BitContainerType bitContainer, U32 const start, U32 const nbBits)
{
U32 const regMask = sizeof(bitContainer)*8 - 1;
/* if start > regMask, bitstream is corrupted, and result is undefined */
@@ -325,7 +326,7 @@ MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 c
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
-MEM_STATIC FORCE_INLINE_ATTR size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
+FORCE_INLINE_TEMPLATE size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
/* arbitrate between double-shift and shift+mask */
#if 1
@@ -348,7 +349,7 @@ MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
-MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+FORCE_INLINE_TEMPLATE void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
@@ -357,7 +358,7 @@ MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
-MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
+FORCE_INLINE_TEMPLATE size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
@@ -374,6 +375,21 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
return value;
}
+/*! BIT_reloadDStream_internal() :
+ * Simple variant of BIT_reloadDStream(), with two conditions:
+ * 1. bitstream is valid : bitsConsumed <= sizeof(bitD->bitContainer)*8
+ * 2. look window is valid after shifted down : bitD->ptr >= bitD->start
+ */
+MEM_STATIC BIT_DStream_status BIT_reloadDStream_internal(BIT_DStream_t* bitD)
+{
+ assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
+ bitD->ptr -= bitD->bitsConsumed >> 3;
+ assert(bitD->ptr >= bitD->start);
+ bitD->bitsConsumed &= 7;
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
+ return BIT_DStream_unfinished;
+}
+
/*! BIT_reloadDStreamFast() :
* Similar to BIT_reloadDStream(), but with two differences:
* 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
@@ -384,31 +400,35 @@ MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
{
if (UNLIKELY(bitD->ptr < bitD->limitPtr))
return BIT_DStream_overflow;
- assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
- bitD->ptr -= bitD->bitsConsumed >> 3;
- bitD->bitsConsumed &= 7;
- bitD->bitContainer = MEM_readLEST(bitD->ptr);
- return BIT_DStream_unfinished;
+ return BIT_reloadDStream_internal(bitD);
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
- * This function is safe, it guarantees it will not read beyond src buffer.
+ * This function is safe, it guarantees it will not never beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
-MEM_STATIC FORCE_INLINE_ATTR BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+FORCE_INLINE_TEMPLATE BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
- if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
+ /* note : once in overflow mode, a bitstream remains in this mode until it's reset */
+ if (UNLIKELY(bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))) {
+ static const BitContainerType zeroFilled = 0;
+ bitD->ptr = (const char*)&zeroFilled; /* aliasing is allowed for char */
+ /* overflow detected, erroneous scenario or end of stream: no update */
return BIT_DStream_overflow;
+ }
+
+ assert(bitD->ptr >= bitD->start);
if (bitD->ptr >= bitD->limitPtr) {
- return BIT_reloadDStreamFast(bitD);
+ return BIT_reloadDStream_internal(bitD);
}
if (bitD->ptr == bitD->start) {
+ /* reached end of bitStream => no update */
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
- /* start < ptr < limitPtr */
+ /* start < ptr < limitPtr => cautious update */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
diff --git a/thirdparty/zstd/common/compiler.h b/thirdparty/zstd/common/compiler.h
index 73f8d01998..31880ecbe1 100644
--- a/thirdparty/zstd/common/compiler.h
+++ b/thirdparty/zstd/common/compiler.h
@@ -11,6 +11,8 @@
#ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H
+#include <stddef.h>
+
#include "portability_macros.h"
/*-*******************************************************
@@ -51,12 +53,19 @@
# define WIN_CDECL
#endif
+/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
+#if defined(__GNUC__)
+# define UNUSED_ATTR __attribute__((unused))
+#else
+# define UNUSED_ATTR
+#endif
+
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to eliminate the constant
* branches.
*/
-#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
+#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR UNUSED_ATTR
/**
* HINT_INLINE is used to help the compiler generate better code. It is *not*
* used for "templates", so it can be tweaked based on the compilers
@@ -71,14 +80,28 @@
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
# define HINT_INLINE static INLINE_KEYWORD
#else
-# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
+# define HINT_INLINE FORCE_INLINE_TEMPLATE
#endif
-/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
+/* "soft" inline :
+ * The compiler is free to select if it's a good idea to inline or not.
+ * The main objective is to silence compiler warnings
+ * when a defined function in included but not used.
+ *
+ * Note : this macro is prefixed `MEM_` because it used to be provided by `mem.h` unit.
+ * Updating the prefix is probably preferable, but requires a fairly large codemod,
+ * since this name is used everywhere.
+ */
+#ifndef MEM_STATIC /* already defined in Linux Kernel mem.h */
#if defined(__GNUC__)
-# define UNUSED_ATTR __attribute__((unused))
+# define MEM_STATIC static __inline UNUSED_ATTR
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+# define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+# define MEM_STATIC static __inline
#else
-# define UNUSED_ATTR
+# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
#endif
/* force no inlining */
@@ -109,10 +132,10 @@
/* prefetch
* can be disabled, by declaring NO_PREFETCH build macro */
#if defined(NO_PREFETCH)
-# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
-# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
+# define PREFETCH_L1(ptr) do { (void)(ptr); } while (0) /* disabled */
+# define PREFETCH_L2(ptr) do { (void)(ptr); } while (0) /* disabled */
#else
-# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
+# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) && !defined(_M_ARM64EC) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1)
@@ -120,24 +143,25 @@
# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
# elif defined(__aarch64__)
-# define PREFETCH_L1(ptr) __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr)))
-# define PREFETCH_L2(ptr) __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr)))
+# define PREFETCH_L1(ptr) do { __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr))); } while (0)
+# define PREFETCH_L2(ptr) do { __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr))); } while (0)
# else
-# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
-# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
+# define PREFETCH_L1(ptr) do { (void)(ptr); } while (0) /* disabled */
+# define PREFETCH_L2(ptr) do { (void)(ptr); } while (0) /* disabled */
# endif
#endif /* NO_PREFETCH */
#define CACHELINE_SIZE 64
-#define PREFETCH_AREA(p, s) { \
- const char* const _ptr = (const char*)(p); \
- size_t const _size = (size_t)(s); \
- size_t _pos; \
- for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
- PREFETCH_L2(_ptr + _pos); \
- } \
-}
+#define PREFETCH_AREA(p, s) \
+ do { \
+ const char* const _ptr = (const char*)(p); \
+ size_t const _size = (size_t)(s); \
+ size_t _pos; \
+ for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
+ PREFETCH_L2(_ptr + _pos); \
+ } \
+ } while (0)
/* vectorization
* older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax,
@@ -166,9 +190,9 @@
#endif
#if __has_builtin(__builtin_unreachable) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)))
-# define ZSTD_UNREACHABLE { assert(0), __builtin_unreachable(); }
+# define ZSTD_UNREACHABLE do { assert(0), __builtin_unreachable(); } while (0)
#else
-# define ZSTD_UNREACHABLE { assert(0); }
+# define ZSTD_UNREACHABLE do { assert(0); } while (0)
#endif
/* disable warnings */
@@ -281,6 +305,74 @@
* Sanitizer
*****************************************************************/
+/**
+ * Zstd relies on pointer overflow in its decompressor.
+ * We add this attribute to functions that rely on pointer overflow.
+ */
+#ifndef ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+# if __has_attribute(no_sanitize)
+# if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 8
+ /* gcc < 8 only has signed-integer-overlow which triggers on pointer overflow */
+# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR __attribute__((no_sanitize("signed-integer-overflow")))
+# else
+ /* older versions of clang [3.7, 5.0) will warn that pointer-overflow is ignored. */
+# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR __attribute__((no_sanitize("pointer-overflow")))
+# endif
+# else
+# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+# endif
+#endif
+
+/**
+ * Helper function to perform a wrapped pointer difference without trigging
+ * UBSAN.
+ *
+ * @returns lhs - rhs with wrapping
+ */
+MEM_STATIC
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+ptrdiff_t ZSTD_wrappedPtrDiff(unsigned char const* lhs, unsigned char const* rhs)
+{
+ return lhs - rhs;
+}
+
+/**
+ * Helper function to perform a wrapped pointer add without triggering UBSAN.
+ *
+ * @return ptr + add with wrapping
+ */
+MEM_STATIC
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+unsigned char const* ZSTD_wrappedPtrAdd(unsigned char const* ptr, ptrdiff_t add)
+{
+ return ptr + add;
+}
+
+/**
+ * Helper function to perform a wrapped pointer subtraction without triggering
+ * UBSAN.
+ *
+ * @return ptr - sub with wrapping
+ */
+MEM_STATIC
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+unsigned char const* ZSTD_wrappedPtrSub(unsigned char const* ptr, ptrdiff_t sub)
+{
+ return ptr - sub;
+}
+
+/**
+ * Helper function to add to a pointer that works around C's undefined behavior
+ * of adding 0 to NULL.
+ *
+ * @returns `ptr + add` except it defines `NULL + 0 == NULL`.
+ */
+MEM_STATIC
+unsigned char* ZSTD_maybeNullPtrAdd(unsigned char* ptr, ptrdiff_t add)
+{
+ return add > 0 ? ptr + add : ptr;
+}
+
/* Issue #3240 reports an ASAN failure on an llvm-mingw build. Out of an
* abundance of caution, disable our custom poisoning on mingw. */
#ifdef __MINGW32__
diff --git a/thirdparty/zstd/common/cpu.h b/thirdparty/zstd/common/cpu.h
index 8bc34a36da..0e684d9ad8 100644
--- a/thirdparty/zstd/common/cpu.h
+++ b/thirdparty/zstd/common/cpu.h
@@ -35,6 +35,7 @@ MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
U32 f7b = 0;
U32 f7c = 0;
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
+#if !defined(__clang__)
int reg[4];
__cpuid((int*)reg, 0);
{
@@ -50,6 +51,41 @@ MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
f7c = (U32)reg[2];
}
}
+#else
+ /* Clang compiler has a bug (fixed in https://reviews.llvm.org/D101338) in
+ * which the `__cpuid` intrinsic does not save and restore `rbx` as it needs
+ * to due to being a reserved register. So in that case, do the `cpuid`
+ * ourselves. Clang supports inline assembly anyway.
+ */
+ U32 n;
+ __asm__(
+ "pushq %%rbx\n\t"
+ "cpuid\n\t"
+ "popq %%rbx\n\t"
+ : "=a"(n)
+ : "a"(0)
+ : "rcx", "rdx");
+ if (n >= 1) {
+ U32 f1a;
+ __asm__(
+ "pushq %%rbx\n\t"
+ "cpuid\n\t"
+ "popq %%rbx\n\t"
+ : "=a"(f1a), "=c"(f1c), "=d"(f1d)
+ : "a"(1)
+ :);
+ }
+ if (n >= 7) {
+ __asm__(
+ "pushq %%rbx\n\t"
+ "cpuid\n\t"
+ "movq %%rbx, %%rax\n\t"
+ "popq %%rbx"
+ : "=a"(f7b), "=c"(f7c)
+ : "a"(7), "c"(0)
+ : "rdx");
+ }
+#endif
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
/* The following block like the normal cpuid branch below, but gcc
* reserves ebx for use of its pic register so we must specially
diff --git a/thirdparty/zstd/common/debug.c b/thirdparty/zstd/common/debug.c
index ebf7bfccfa..9d0b7d229c 100644
--- a/thirdparty/zstd/common/debug.c
+++ b/thirdparty/zstd/common/debug.c
@@ -21,4 +21,10 @@
#include "debug.h"
+#if !defined(ZSTD_LINUX_KERNEL) || (DEBUGLEVEL>=2)
+/* We only use this when DEBUGLEVEL>=2, but we get -Werror=pedantic errors if a
+ * translation unit is empty. So remove this from Linux kernel builds, but
+ * otherwise just leave it in.
+ */
int g_debuglevel = DEBUGLEVEL;
+#endif
diff --git a/thirdparty/zstd/common/debug.h b/thirdparty/zstd/common/debug.h
index 0e9817ea6d..a16b69e574 100644
--- a/thirdparty/zstd/common/debug.h
+++ b/thirdparty/zstd/common/debug.h
@@ -85,18 +85,27 @@ extern int g_debuglevel; /* the variable is only declared,
It's useful when enabling very verbose levels
on selective conditions (such as position in src) */
-# define RAWLOG(l, ...) { \
- if (l<=g_debuglevel) { \
- ZSTD_DEBUG_PRINT(__VA_ARGS__); \
- } }
-# define DEBUGLOG(l, ...) { \
- if (l<=g_debuglevel) { \
- ZSTD_DEBUG_PRINT(__FILE__ ": " __VA_ARGS__); \
- ZSTD_DEBUG_PRINT(" \n"); \
- } }
+# define RAWLOG(l, ...) \
+ do { \
+ if (l<=g_debuglevel) { \
+ ZSTD_DEBUG_PRINT(__VA_ARGS__); \
+ } \
+ } while (0)
+
+#define STRINGIFY(x) #x
+#define TOSTRING(x) STRINGIFY(x)
+#define LINE_AS_STRING TOSTRING(__LINE__)
+
+# define DEBUGLOG(l, ...) \
+ do { \
+ if (l<=g_debuglevel) { \
+ ZSTD_DEBUG_PRINT(__FILE__ ":" LINE_AS_STRING ": " __VA_ARGS__); \
+ ZSTD_DEBUG_PRINT(" \n"); \
+ } \
+ } while (0)
#else
-# define RAWLOG(l, ...) {} /* disabled */
-# define DEBUGLOG(l, ...) {} /* disabled */
+# define RAWLOG(l, ...) do { } while (0) /* disabled */
+# define DEBUGLOG(l, ...) do { } while (0) /* disabled */
#endif
diff --git a/thirdparty/zstd/common/error_private.h b/thirdparty/zstd/common/error_private.h
index 325daad404..0156010c74 100644
--- a/thirdparty/zstd/common/error_private.h
+++ b/thirdparty/zstd/common/error_private.h
@@ -60,8 +60,13 @@ ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
/* check and forward error code */
-#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
-#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
+#define CHECK_V_F(e, f) \
+ size_t const e = f; \
+ do { \
+ if (ERR_isError(e)) \
+ return e; \
+ } while (0)
+#define CHECK_F(f) do { CHECK_V_F(_var_err__, f); } while (0)
/*-****************************************
@@ -95,10 +100,12 @@ void _force_has_format_string(const char *format, ...) {
* We want to force this function invocation to be syntactically correct, but
* we don't want to force runtime evaluation of its arguments.
*/
-#define _FORCE_HAS_FORMAT_STRING(...) \
- if (0) { \
- _force_has_format_string(__VA_ARGS__); \
- }
+#define _FORCE_HAS_FORMAT_STRING(...) \
+ do { \
+ if (0) { \
+ _force_has_format_string(__VA_ARGS__); \
+ } \
+ } while (0)
#define ERR_QUOTE(str) #str
@@ -109,48 +116,50 @@ void _force_has_format_string(const char *format, ...) {
* In order to do that (particularly, printing the conditional that failed),
* this can't just wrap RETURN_ERROR().
*/
-#define RETURN_ERROR_IF(cond, err, ...) \
- if (cond) { \
- RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
- __FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \
- _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
- RAWLOG(3, ": " __VA_ARGS__); \
- RAWLOG(3, "\n"); \
- return ERROR(err); \
- }
+#define RETURN_ERROR_IF(cond, err, ...) \
+ do { \
+ if (cond) { \
+ RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
+ __FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ } \
+ } while (0)
/**
* Unconditionally return the specified error.
*
* In debug modes, prints additional information.
*/
-#define RETURN_ERROR(err, ...) \
- do { \
- RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
- __FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \
- _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
- RAWLOG(3, ": " __VA_ARGS__); \
- RAWLOG(3, "\n"); \
- return ERROR(err); \
- } while(0);
+#define RETURN_ERROR(err, ...) \
+ do { \
+ RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
+ __FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return ERROR(err); \
+ } while(0)
/**
* If the provided expression evaluates to an error code, returns that error code.
*
* In debug modes, prints additional information.
*/
-#define FORWARD_IF_ERROR(err, ...) \
- do { \
- size_t const err_code = (err); \
- if (ERR_isError(err_code)) { \
- RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
- __FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \
- _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
- RAWLOG(3, ": " __VA_ARGS__); \
- RAWLOG(3, "\n"); \
- return err_code; \
- } \
- } while(0);
+#define FORWARD_IF_ERROR(err, ...) \
+ do { \
+ size_t const err_code = (err); \
+ if (ERR_isError(err_code)) { \
+ RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
+ __FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \
+ _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
+ RAWLOG(3, ": " __VA_ARGS__); \
+ RAWLOG(3, "\n"); \
+ return err_code; \
+ } \
+ } while(0)
#if defined (__cplusplus)
}
diff --git a/thirdparty/zstd/common/fse.h b/thirdparty/zstd/common/fse.h
index 02a1f0bc53..2ae128e60d 100644
--- a/thirdparty/zstd/common/fse.h
+++ b/thirdparty/zstd/common/fse.h
@@ -229,6 +229,7 @@ If there is an error, the function will return an error code, which can be teste
#endif /* FSE_H */
+
#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
#define FSE_H_FSE_STATIC_LINKING_ONLY
@@ -464,13 +465,13 @@ MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, un
FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
- BIT_addBits(bitC, statePtr->value, nbBitsOut);
+ BIT_addBits(bitC, (size_t)statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
{
- BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
+ BIT_addBits(bitC, (size_t)statePtr->value, statePtr->stateLog);
BIT_flushBits(bitC);
}
diff --git a/thirdparty/zstd/common/fse_decompress.c b/thirdparty/zstd/common/fse_decompress.c
index 1e1c9f92d6..0dcc4640d0 100644
--- a/thirdparty/zstd/common/fse_decompress.c
+++ b/thirdparty/zstd/common/fse_decompress.c
@@ -22,8 +22,7 @@
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
-#define ZSTD_DEPS_NEED_MALLOC
-#include "zstd_deps.h"
+#include "zstd_deps.h" /* ZSTD_memcpy */
#include "bits.h" /* ZSTD_highbit32 */
@@ -84,7 +83,7 @@ static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCo
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
- symbolNext[s] = normalizedCounter[s];
+ symbolNext[s] = (U16)normalizedCounter[s];
} } }
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
}
@@ -99,8 +98,7 @@ static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCo
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
* our buffer to handle the over-write.
*/
- {
- U64 const add = 0x0101010101010101ull;
+ { U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
@@ -111,9 +109,8 @@ static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCo
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
- pos += n;
- }
- }
+ pos += (size_t)n;
+ } }
/* Now we spread those positions across the table.
* The benefit of doing it in two stages is that we avoid the
* variable size inner loop, which caused lots of branch misses.
@@ -232,12 +229,12 @@ FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
break;
} }
- return op-ostart;
+ assert(op >= ostart);
+ return (size_t)(op-ostart);
}
typedef struct {
short ncount[FSE_MAX_SYMBOL_VALUE + 1];
- FSE_DTable dtable[1]; /* Dynamically sized */
} FSE_DecompressWksp;
@@ -252,13 +249,18 @@ FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace;
+ size_t const dtablePos = sizeof(FSE_DecompressWksp) / sizeof(FSE_DTable);
+ FSE_DTable* const dtable = (FSE_DTable*)workSpace + dtablePos;
- DEBUG_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
+ FSE_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC);
+ /* correct offset to dtable depends on this property */
+ FSE_STATIC_ASSERT(sizeof(FSE_DecompressWksp) % sizeof(FSE_DTable) == 0);
+
/* normal FSE decoding mode */
- {
- size_t const NCountLength = FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
+ { size_t const NCountLength =
+ FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
if (FSE_isError(NCountLength)) return NCountLength;
if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
assert(NCountLength <= cSrcSize);
@@ -271,16 +273,16 @@ FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
workSpace = (BYTE*)workSpace + sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
- CHECK_F( FSE_buildDTable_internal(wksp->dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
+ CHECK_F( FSE_buildDTable_internal(dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
{
- const void* ptr = wksp->dtable;
+ const void* ptr = dtable;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
- if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 1);
- return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 0);
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 1);
+ return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 0);
}
}
diff --git a/thirdparty/zstd/common/huf.h b/thirdparty/zstd/common/huf.h
index 73d1ee5654..99bf85d6f4 100644
--- a/thirdparty/zstd/common/huf.h
+++ b/thirdparty/zstd/common/huf.h
@@ -197,9 +197,22 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
/** HUF_getNbBitsFromCTable() :
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
- * Note 1 : is not inlined, as HUF_CElt definition is private */
+ * Note 1 : If symbolValue > HUF_readCTableHeader(symbolTable).maxSymbolValue, returns 0
+ * Note 2 : is not inlined, as HUF_CElt definition is private
+ */
U32 HUF_getNbBitsFromCTable(const HUF_CElt* symbolTable, U32 symbolValue);
+typedef struct {
+ BYTE tableLog;
+ BYTE maxSymbolValue;
+ BYTE unused[sizeof(size_t) - 2];
+} HUF_CTableHeader;
+
+/** HUF_readCTableHeader() :
+ * @returns The header from the CTable specifying the tableLog and the maxSymbolValue.
+ */
+HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable);
+
/*
* HUF_decompress() does the following:
* 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
diff --git a/thirdparty/zstd/common/mem.h b/thirdparty/zstd/common/mem.h
index 98dd47a047..096f4be519 100644
--- a/thirdparty/zstd/common/mem.h
+++ b/thirdparty/zstd/common/mem.h
@@ -31,15 +31,6 @@ extern "C" {
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
-#if defined(__GNUC__)
-# define MEM_STATIC static __inline __attribute__((unused))
-#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
-# define MEM_STATIC static inline
-#elif defined(_MSC_VER)
-# define MEM_STATIC static __inline
-#else
-# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
-#endif
/*-**************************************************************
* Basic Types
diff --git a/thirdparty/zstd/common/pool.c b/thirdparty/zstd/common/pool.c
index d5ca5a7808..3adcefc9a5 100644
--- a/thirdparty/zstd/common/pool.c
+++ b/thirdparty/zstd/common/pool.c
@@ -223,7 +223,7 @@ static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
if (!threadPool) return 1;
/* replace existing thread pool */
- ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
+ ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(ZSTD_pthread_t));
ZSTD_customFree(ctx->threads, ctx->customMem);
ctx->threads = threadPool;
/* Initialize additional threads */
diff --git a/thirdparty/zstd/common/pool.h b/thirdparty/zstd/common/pool.h
index eb22ff509f..cca4de73a8 100644
--- a/thirdparty/zstd/common/pool.h
+++ b/thirdparty/zstd/common/pool.h
@@ -47,7 +47,7 @@ void POOL_joinJobs(POOL_ctx* ctx);
/*! POOL_resize() :
* Expands or shrinks pool's number of threads.
* This is more efficient than releasing + creating a new context,
- * since it tries to preserve and re-use existing threads.
+ * since it tries to preserve and reuse existing threads.
* `numThreads` must be at least 1.
* @return : 0 when resize was successful,
* !0 (typically 1) if there is an error.
diff --git a/thirdparty/zstd/common/portability_macros.h b/thirdparty/zstd/common/portability_macros.h
index 8fd6ea82d1..e50314a78e 100644
--- a/thirdparty/zstd/common/portability_macros.h
+++ b/thirdparty/zstd/common/portability_macros.h
@@ -68,6 +68,8 @@
/* Mark the internal assembly functions as hidden */
#ifdef __ELF__
# define ZSTD_HIDE_ASM_FUNCTION(func) .hidden func
+#elif defined(__APPLE__)
+# define ZSTD_HIDE_ASM_FUNCTION(func) .private_extern func
#else
# define ZSTD_HIDE_ASM_FUNCTION(func)
#endif
diff --git a/thirdparty/zstd/common/threading.c b/thirdparty/zstd/common/threading.c
index ca155b9b9d..25bb8b9810 100644
--- a/thirdparty/zstd/common/threading.c
+++ b/thirdparty/zstd/common/threading.c
@@ -73,10 +73,12 @@ int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
ZSTD_thread_params_t thread_param;
(void)unused;
+ if (thread==NULL) return -1;
+ *thread = NULL;
+
thread_param.start_routine = start_routine;
thread_param.arg = arg;
thread_param.initialized = 0;
- *thread = NULL;
/* Setup thread initialization synchronization */
if(ZSTD_pthread_cond_init(&thread_param.initialized_cond, NULL)) {
@@ -91,7 +93,7 @@ int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
/* Spawn thread */
*thread = (HANDLE)_beginthreadex(NULL, 0, worker, &thread_param, 0, NULL);
- if (!thread) {
+ if (*thread==NULL) {
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return errno;
@@ -137,6 +139,7 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread)
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr)
{
+ assert(mutex != NULL);
*mutex = (pthread_mutex_t*)ZSTD_malloc(sizeof(pthread_mutex_t));
if (!*mutex)
return 1;
@@ -145,6 +148,7 @@ int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t con
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex)
{
+ assert(mutex != NULL);
if (!*mutex)
return 0;
{
@@ -156,6 +160,7 @@ int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex)
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr)
{
+ assert(cond != NULL);
*cond = (pthread_cond_t*)ZSTD_malloc(sizeof(pthread_cond_t));
if (!*cond)
return 1;
@@ -164,6 +169,7 @@ int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const*
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond)
{
+ assert(cond != NULL);
if (!*cond)
return 0;
{
diff --git a/thirdparty/zstd/common/xxhash.c b/thirdparty/zstd/common/xxhash.c
index fd237c9062..052cd52282 100644
--- a/thirdparty/zstd/common/xxhash.c
+++ b/thirdparty/zstd/common/xxhash.c
@@ -1,24 +1,18 @@
/*
- * xxHash - Fast Hash algorithm
- * Copyright (c) Meta Platforms, Inc. and affiliates.
- *
- * You can contact the author at :
- * - xxHash homepage: https://cyan4973.github.io/xxHash/
- * - xxHash source repository : https://github.com/Cyan4973/xxHash
+ * xxHash - Extremely Fast Hash algorithm
+ * Copyright (c) Yann Collet - Meta Platforms, Inc
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
-*/
-
-
+ */
/*
* xxhash.c instantiates functions defined in xxhash.h
*/
-#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
-#define XXH_IMPLEMENTATION /* access definitions */
+#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
+#define XXH_IMPLEMENTATION /* access definitions */
#include "xxhash.h"
diff --git a/thirdparty/zstd/common/xxhash.h b/thirdparty/zstd/common/xxhash.h
index b8b73290bb..e59e44267c 100644
--- a/thirdparty/zstd/common/xxhash.h
+++ b/thirdparty/zstd/common/xxhash.h
@@ -1,17 +1,15 @@
/*
- * xxHash - Fast Hash algorithm
- * Copyright (c) Meta Platforms, Inc. and affiliates.
- *
- * You can contact the author at :
- * - xxHash homepage: https://cyan4973.github.io/xxHash/
- * - xxHash source repository : https://github.com/Cyan4973/xxHash
+ * xxHash - Extremely Fast Hash algorithm
+ * Header File
+ * Copyright (c) Yann Collet - Meta Platforms, Inc
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
-*/
+ */
+/* Local adaptations for Zstandard */
#ifndef XXH_NO_XXH3
# define XXH_NO_XXH3
@@ -24,46 +22,210 @@
/*!
* @mainpage xxHash
*
+ * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
+ * limits.
+ *
+ * It is proposed in four flavors, in three families:
+ * 1. @ref XXH32_family
+ * - Classic 32-bit hash function. Simple, compact, and runs on almost all
+ * 32-bit and 64-bit systems.
+ * 2. @ref XXH64_family
+ * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
+ * 64-bit systems (but _not_ 32-bit systems).
+ * 3. @ref XXH3_family
+ * - Modern 64-bit and 128-bit hash function family which features improved
+ * strength and performance across the board, especially on smaller data.
+ * It benefits greatly from SIMD and 64-bit without requiring it.
+ *
+ * Benchmarks
+ * ---
+ * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
+ * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
+ *
+ * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity |
+ * | -------------------- | ------- | ----: | ---------------: | ------------------: |
+ * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 |
+ * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 |
+ * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 |
+ * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 |
+ * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 |
+ * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 |
+ * | RAM sequential read | | N/A | 28.0 GB/s | N/A |
+ * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 |
+ * | City64 | | 64 | 22.0 GB/s | 76.6 |
+ * | T1ha2 | | 64 | 22.0 GB/s | 99.0 |
+ * | City128 | | 128 | 21.7 GB/s | 57.7 |
+ * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 |
+ * | XXH64() | | 64 | 19.4 GB/s | 71.0 |
+ * | SpookyHash | | 64 | 19.3 GB/s | 53.2 |
+ * | Mum | | 64 | 18.0 GB/s | 67.0 |
+ * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 |
+ * | XXH32() | | 32 | 9.7 GB/s | 71.9 |
+ * | City32 | | 32 | 9.1 GB/s | 66.0 |
+ * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 |
+ * | Murmur3 | | 32 | 3.9 GB/s | 56.1 |
+ * | SipHash* | | 64 | 3.0 GB/s | 43.2 |
+ * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 |
+ * | HighwayHash | | 64 | 1.4 GB/s | 6.0 |
+ * | FNV64 | | 64 | 1.2 GB/s | 62.7 |
+ * | Blake2* | | 256 | 1.1 GB/s | 5.1 |
+ * | SHA1* | | 160 | 0.8 GB/s | 5.6 |
+ * | MD5* | | 128 | 0.6 GB/s | 7.8 |
+ * @note
+ * - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
+ * even though it is mandatory on x64.
+ * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
+ * by modern standards.
+ * - Small data velocity is a rough average of algorithm's efficiency for small
+ * data. For more accurate information, see the wiki.
+ * - More benchmarks and strength tests are found on the wiki:
+ * https://github.com/Cyan4973/xxHash/wiki
+ *
+ * Usage
+ * ------
+ * All xxHash variants use a similar API. Changing the algorithm is a trivial
+ * substitution.
+ *
+ * @pre
+ * For functions which take an input and length parameter, the following
+ * requirements are assumed:
+ * - The range from [`input`, `input + length`) is valid, readable memory.
+ * - The only exception is if the `length` is `0`, `input` may be `NULL`.
+ * - For C++, the objects must have the *TriviallyCopyable* property, as the
+ * functions access bytes directly as if it was an array of `unsigned char`.
+ *
+ * @anchor single_shot_example
+ * **Single Shot**
+ *
+ * These functions are stateless functions which hash a contiguous block of memory,
+ * immediately returning the result. They are the easiest and usually the fastest
+ * option.
+ *
+ * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
+ *
+ * @code{.c}
+ * #include <string.h>
+ * #include "xxhash.h"
+ *
+ * // Example for a function which hashes a null terminated string with XXH32().
+ * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
+ * {
+ * // NULL pointers are only valid if the length is zero
+ * size_t length = (string == NULL) ? 0 : strlen(string);
+ * return XXH32(string, length, seed);
+ * }
+ * @endcode
+ *
+ *
+ * @anchor streaming_example
+ * **Streaming**
+ *
+ * These groups of functions allow incremental hashing of unknown size, even
+ * more than what would fit in a size_t.
+ *
+ * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
+ *
+ * @code{.c}
+ * #include <stdio.h>
+ * #include <assert.h>
+ * #include "xxhash.h"
+ * // Example for a function which hashes a FILE incrementally with XXH3_64bits().
+ * XXH64_hash_t hashFile(FILE* f)
+ * {
+ * // Allocate a state struct. Do not just use malloc() or new.
+ * XXH3_state_t* state = XXH3_createState();
+ * assert(state != NULL && "Out of memory!");
+ * // Reset the state to start a new hashing session.
+ * XXH3_64bits_reset(state);
+ * char buffer[4096];
+ * size_t count;
+ * // Read the file in chunks
+ * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
+ * // Run update() as many times as necessary to process the data
+ * XXH3_64bits_update(state, buffer, count);
+ * }
+ * // Retrieve the finalized hash. This will not change the state.
+ * XXH64_hash_t result = XXH3_64bits_digest(state);
+ * // Free the state. Do not use free().
+ * XXH3_freeState(state);
+ * return result;
+ * }
+ * @endcode
+ *
+ * Streaming functions generate the xxHash value from an incremental input.
+ * This method is slower than single-call functions, due to state management.
+ * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
+ *
+ * An XXH state must first be allocated using `XXH*_createState()`.
+ *
+ * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
+ *
+ * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
+ *
+ * The function returns an error code, with 0 meaning OK, and any other value
+ * meaning there is an error.
+ *
+ * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
+ * This function returns the nn-bits hash as an int or long long.
+ *
+ * It's still possible to continue inserting input into the hash state after a
+ * digest, and generate new hash values later on by invoking `XXH*_digest()`.
+ *
+ * When done, release the state using `XXH*_freeState()`.
+ *
+ *
+ * @anchor canonical_representation_example
+ * **Canonical Representation**
+ *
+ * The default return values from XXH functions are unsigned 32, 64 and 128 bit
+ * integers.
+ * This the simplest and fastest format for further post-processing.
+ *
+ * However, this leaves open the question of what is the order on the byte level,
+ * since little and big endian conventions will store the same number differently.
+ *
+ * The canonical representation settles this issue by mandating big-endian
+ * convention, the same convention as human-readable numbers (large digits first).
+ *
+ * When writing hash values to storage, sending them over a network, or printing
+ * them, it's highly recommended to use the canonical representation to ensure
+ * portability across a wider range of systems, present and future.
+ *
+ * The following functions allow transformation of hash values to and from
+ * canonical format.
+ *
+ * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
+ * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
+ * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
+ *
+ * @code{.c}
+ * #include <stdio.h>
+ * #include "xxhash.h"
+ *
+ * // Example for a function which prints XXH32_hash_t in human readable format
+ * void printXxh32(XXH32_hash_t hash)
+ * {
+ * XXH32_canonical_t cano;
+ * XXH32_canonicalFromHash(&cano, hash);
+ * size_t i;
+ * for(i = 0; i < sizeof(cano.digest); ++i) {
+ * printf("%02x", cano.digest[i]);
+ * }
+ * printf("\n");
+ * }
+ *
+ * // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
+ * XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
+ * {
+ * XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
+ * return hash;
+ * }
+ * @endcode
+ *
+ *
* @file xxhash.h
* xxHash prototypes and implementation
*/
-/* TODO: update */
-/* Notice extracted from xxHash homepage:
-
-xxHash is an extremely fast hash algorithm, running at RAM speed limits.
-It also successfully passes all tests from the SMHasher suite.
-
-Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
-
-Name Speed Q.Score Author
-xxHash 5.4 GB/s 10
-CrapWow 3.2 GB/s 2 Andrew
-MurmurHash 3a 2.7 GB/s 10 Austin Appleby
-SpookyHash 2.0 GB/s 10 Bob Jenkins
-SBox 1.4 GB/s 9 Bret Mulvey
-Lookup3 1.2 GB/s 9 Bob Jenkins
-SuperFastHash 1.2 GB/s 1 Paul Hsieh
-CityHash64 1.05 GB/s 10 Pike & Alakuijala
-FNV 0.55 GB/s 5 Fowler, Noll, Vo
-CRC32 0.43 GB/s 9
-MD5-32 0.33 GB/s 10 Ronald L. Rivest
-SHA1-32 0.28 GB/s 10
-
-Q.Score is a measure of quality of the hash function.
-It depends on successfully passing SMHasher test set.
-10 is a perfect score.
-
-Note: SMHasher's CRC32 implementation is not the fastest one.
-Other speed-oriented implementations can be faster,
-especially in combination with PCLMUL instruction:
-https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
-
-A 64-bit version, named XXH64, is available since r35.
-It offers much better speed, but for 64-bit applications only.
-Name Speed on 64 bits Speed on 32 bits
-XXH64 13.8 GB/s 1.9 GB/s
-XXH32 6.8 GB/s 6.0 GB/s
-*/
#if defined (__cplusplus)
extern "C" {
@@ -73,21 +235,80 @@ extern "C" {
* INLINE mode
******************************/
/*!
- * XXH_INLINE_ALL (and XXH_PRIVATE_API)
+ * @defgroup public Public API
+ * Contains details on the public xxHash functions.
+ * @{
+ */
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Gives access to internal state declaration, required for static allocation.
+ *
+ * Incompatible with dynamic linking, due to risks of ABI changes.
+ *
+ * Usage:
+ * @code{.c}
+ * #define XXH_STATIC_LINKING_ONLY
+ * #include "xxhash.h"
+ * @endcode
+ */
+# define XXH_STATIC_LINKING_ONLY
+/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
+
+/*!
+ * @brief Gives access to internal definitions.
+ *
+ * Usage:
+ * @code{.c}
+ * #define XXH_STATIC_LINKING_ONLY
+ * #define XXH_IMPLEMENTATION
+ * #include "xxhash.h"
+ * @endcode
+ */
+# define XXH_IMPLEMENTATION
+/* Do not undef XXH_IMPLEMENTATION for Doxygen */
+
+/*!
+ * @brief Exposes the implementation and marks all functions as `inline`.
+ *
* Use these build macros to inline xxhash into the target unit.
* Inlining improves performance on small inputs, especially when the length is
* expressed as a compile-time constant:
*
- * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
+ * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
*
* It also keeps xxHash symbols private to the unit, so they are not exported.
*
* Usage:
+ * @code{.c}
* #define XXH_INLINE_ALL
* #include "xxhash.h"
- *
+ * @endcode
* Do not compile and link xxhash.o as a separate object, as it is not useful.
*/
+# define XXH_INLINE_ALL
+# undef XXH_INLINE_ALL
+/*!
+ * @brief Exposes the implementation without marking functions as inline.
+ */
+# define XXH_PRIVATE_API
+# undef XXH_PRIVATE_API
+/*!
+ * @brief Emulate a namespace by transparently prefixing all symbols.
+ *
+ * If you want to include _and expose_ xxHash functions from within your own
+ * library, but also want to avoid symbol collisions with other libraries which
+ * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
+ * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
+ * (therefore, avoid empty or numeric values).
+ *
+ * Note that no change is required within the calling program as long as it
+ * includes `xxhash.h`: Regular symbol names will be automatically translated
+ * by this header.
+ */
+# define XXH_NAMESPACE /* YOUR NAME HERE */
+# undef XXH_NAMESPACE
+#endif
+
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
&& !defined(XXH_INLINE_ALL_31684351384)
/* this section should be traversed only once */
@@ -202,21 +423,13 @@ extern "C" {
# undef XXHASH_H_STATIC_13879238742
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
-
-
/* ****************************************************************
* Stable API
*****************************************************************/
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
-
-/*!
- * @defgroup public Public API
- * Contains details on the public xxHash functions.
- * @{
- */
-/* specific declaration modes for Windows */
+/*! @brief Marks a global symbol. */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
# ifdef XXH_EXPORT
@@ -229,24 +442,6 @@ extern "C" {
# endif
#endif
-#ifdef XXH_DOXYGEN
-/*!
- * @brief Emulate a namespace by transparently prefixing all symbols.
- *
- * If you want to include _and expose_ xxHash functions from within your own
- * library, but also want to avoid symbol collisions with other libraries which
- * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
- * any public symbol from xxhash library with the value of XXH_NAMESPACE
- * (therefore, avoid empty or numeric values).
- *
- * Note that no change is required within the calling program as long as it
- * includes `xxhash.h`: Regular symbol names will be automatically translated
- * by this header.
- */
-# define XXH_NAMESPACE /* YOUR NAME HERE */
-# undef XXH_NAMESPACE
-#endif
-
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
@@ -307,11 +502,39 @@ extern "C" {
/* *************************************
+* Compiler specifics
+***************************************/
+
+/* specific declaration modes for Windows */
+#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
+# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
+# ifdef XXH_EXPORT
+# define XXH_PUBLIC_API __declspec(dllexport)
+# elif XXH_IMPORT
+# define XXH_PUBLIC_API __declspec(dllimport)
+# endif
+# else
+# define XXH_PUBLIC_API /* do nothing */
+# endif
+#endif
+
+#if defined (__GNUC__)
+# define XXH_CONSTF __attribute__((const))
+# define XXH_PUREF __attribute__((pure))
+# define XXH_MALLOCF __attribute__((malloc))
+#else
+# define XXH_CONSTF /* disable */
+# define XXH_PUREF
+# define XXH_MALLOCF
+#endif
+
+/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
#define XXH_VERSION_MINOR 8
-#define XXH_VERSION_RELEASE 1
+#define XXH_VERSION_RELEASE 2
+/*! @brief Version number, encoded as two digits each */
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
/*!
@@ -320,16 +543,22 @@ extern "C" {
* This is mostly useful when xxHash is compiled as a shared library,
* since the returned value comes from the library, as opposed to header file.
*
- * @return `XXH_VERSION_NUMBER` of the invoked library.
+ * @return @ref XXH_VERSION_NUMBER of the invoked library.
*/
-XXH_PUBLIC_API unsigned XXH_versionNumber (void);
+XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
/* ****************************
* Common basic types
******************************/
#include <stddef.h> /* size_t */
-typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
+/*!
+ * @brief Exit code for the streaming API.
+ */
+typedef enum {
+ XXH_OK = 0, /*!< OK */
+ XXH_ERROR /*!< Error */
+} XXH_errorcode;
/*-**********************************************************************
@@ -346,44 +575,44 @@ typedef uint32_t XXH32_hash_t;
#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-# include <stdint.h>
+# ifdef _AIX
+# include <inttypes.h>
+# else
+# include <stdint.h>
+# endif
typedef uint32_t XXH32_hash_t;
#else
# include <limits.h>
# if UINT_MAX == 0xFFFFFFFFUL
typedef unsigned int XXH32_hash_t;
+# elif ULONG_MAX == 0xFFFFFFFFUL
+ typedef unsigned long XXH32_hash_t;
# else
-# if ULONG_MAX == 0xFFFFFFFFUL
- typedef unsigned long XXH32_hash_t;
-# else
-# error "unsupported platform: need a 32-bit type"
-# endif
+# error "unsupported platform: need a 32-bit type"
# endif
#endif
/*!
* @}
*
- * @defgroup xxh32_family XXH32 family
+ * @defgroup XXH32_family XXH32 family
* @ingroup public
* Contains functions used in the classic 32-bit xxHash algorithm.
*
* @note
* XXH32 is useful for older platforms, with no or poor 64-bit performance.
- * Note that @ref xxh3_family provides competitive speed
- * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
+ * Note that the @ref XXH3_family provides competitive speed for both 32-bit
+ * and 64-bit systems, and offers true 64/128 bit hash results.
*
- * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
- * @see @ref xxh32_impl for implementation details
+ * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
+ * @see @ref XXH32_impl for implementation details
* @{
*/
/*!
* @brief Calculates the 32-bit hash of @p input using xxHash32.
*
- * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
- *
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 32-bit seed to alter the hash's output predictably.
@@ -393,66 +622,13 @@ typedef uint32_t XXH32_hash_t;
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
- * @return The calculated 32-bit hash value.
- *
- * @see
- * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
- * Direct equivalents for the other variants of xxHash.
- * @see
- * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
- */
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
-
-/*!
- * Streaming functions generate the xxHash value from an incremental input.
- * This method is slower than single-call functions, due to state management.
- * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
- *
- * An XXH state must first be allocated using `XXH*_createState()`.
- *
- * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
- *
- * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
- *
- * The function returns an error code, with 0 meaning OK, and any other value
- * meaning there is an error.
- *
- * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
- * This function returns the nn-bits hash as an int or long long.
- *
- * It's still possible to continue inserting input into the hash state after a
- * digest, and generate new hash values later on by invoking `XXH*_digest()`.
- *
- * When done, release the state using `XXH*_freeState()`.
- *
- * Example code for incrementally hashing a file:
- * @code{.c}
- * #include <stdio.h>
- * #include <xxhash.h>
- * #define BUFFER_SIZE 256
+ * @return The calculated 32-bit xxHash32 value.
*
- * // Note: XXH64 and XXH3 use the same interface.
- * XXH32_hash_t
- * hashFile(FILE* stream)
- * {
- * XXH32_state_t* state;
- * unsigned char buf[BUFFER_SIZE];
- * size_t amt;
- * XXH32_hash_t hash;
- *
- * state = XXH32_createState(); // Create a state
- * assert(state != NULL); // Error check here
- * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
- * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
- * XXH32_update(state, buf, amt); // Hash the file in chunks
- * }
- * hash = XXH32_digest(state); // Finalize the hash
- * XXH32_freeState(state); // Clean up
- * return hash;
- * }
- * @endcode
+ * @see @ref single_shot_example "Single Shot Example" for an example.
*/
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
+#ifndef XXH_NO_STREAM
/*!
* @typedef struct XXH32_state_s XXH32_state_t
* @brief The opaque state struct for the XXH32 streaming API.
@@ -464,16 +640,21 @@ typedef struct XXH32_state_s XXH32_state_t;
/*!
* @brief Allocates an @ref XXH32_state_t.
*
- * Must be freed with XXH32_freeState().
- * @return An allocated XXH32_state_t on success, `NULL` on failure.
+ * @return An allocated pointer of @ref XXH32_state_t on success.
+ * @return `NULL` on failure.
+ *
+ * @note Must be freed with XXH32_freeState().
*/
-XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
+XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
/*!
* @brief Frees an @ref XXH32_state_t.
*
- * Must be allocated with XXH32_createState().
* @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
- * @return XXH_OK.
+ *
+ * @return @ref XXH_OK.
+ *
+ * @note @p statePtr must be allocated with XXH32_createState().
+ *
*/
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
/*!
@@ -489,23 +670,22 @@ XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_
/*!
* @brief Resets an @ref XXH32_state_t to begin a new hash.
*
- * This function resets and seeds a state. Call it before @ref XXH32_update().
- *
* @param statePtr The state struct to reset.
* @param seed The 32-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
- * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note This function resets and seeds a state. Call it before @ref XXH32_update().
*/
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
/*!
* @brief Consumes a block of @p input to an @ref XXH32_state_t.
*
- * Call this to incrementally consume blocks of data.
- *
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
@@ -517,47 +697,32 @@ XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
- * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note Call this to incrementally consume blocks of data.
*/
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
/*!
* @brief Returns the calculated hash value from an @ref XXH32_state_t.
*
- * @note
- * Calling XXH32_digest() will not affect @p statePtr, so you can update,
- * digest, and update again.
- *
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
- * @return The calculated xxHash32 value from that state.
+ * @return The calculated 32-bit xxHash32 value from that state.
+ *
+ * @note
+ * Calling XXH32_digest() will not affect @p statePtr, so you can update,
+ * digest, and update again.
*/
-XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
-/*
- * The default return values from XXH functions are unsigned 32 and 64 bit
- * integers.
- * This the simplest and fastest format for further post-processing.
- *
- * However, this leaves open the question of what is the order on the byte level,
- * since little and big endian conventions will store the same number differently.
- *
- * The canonical representation settles this issue by mandating big-endian
- * convention, the same convention as human-readable numbers (large digits first).
- *
- * When writing hash values to storage, sending them over a network, or printing
- * them, it's highly recommended to use the canonical representation to ensure
- * portability across a wider range of systems, present and future.
- *
- * The following functions allow transformation of hash values to and from
- * canonical format.
- */
-
/*!
* @brief Canonical (big endian) representation of @ref XXH32_hash_t.
*/
@@ -568,11 +733,13 @@ typedef struct {
/*!
* @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
*
- * @param dst The @ref XXH32_canonical_t pointer to be stored to.
+ * @param dst The @ref XXH32_canonical_t pointer to be stored to.
* @param hash The @ref XXH32_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
@@ -585,44 +752,75 @@ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t
* @p src must not be `NULL`.
*
* @return The converted hash.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
*/
-XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+/*! @cond Doxygen ignores this part */
#ifdef __has_attribute
# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
#else
# define XXH_HAS_ATTRIBUTE(x) 0
#endif
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+/*
+ * C23 __STDC_VERSION__ number hasn't been specified yet. For now
+ * leave as `201711L` (C17 + 1).
+ * TODO: Update to correct value when its been specified.
+ */
+#define XXH_C23_VN 201711L
+/*! @endcond */
+/*! @cond Doxygen ignores this part */
/* C-language Attributes are added in C23. */
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define XXH_HAS_C_ATTRIBUTE(x) 0
#endif
+/*! @endcond */
+/*! @cond Doxygen ignores this part */
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define XXH_HAS_CPP_ATTRIBUTE(x) 0
#endif
+/*! @endcond */
+/*! @cond Doxygen ignores this part */
/*
-Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
-introduced in CPP17 and C23.
-CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
-C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
-*/
-#if XXH_HAS_C_ATTRIBUTE(x)
-# define XXH_FALLTHROUGH [[fallthrough]]
-#elif XXH_HAS_CPP_ATTRIBUTE(x)
+ * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
+ * introduced in CPP17 and C23.
+ * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
+ * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
+ */
+#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
# define XXH_FALLTHROUGH [[fallthrough]]
#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
-# define XXH_FALLTHROUGH __attribute__ ((fallthrough))
+# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
#else
-# define XXH_FALLTHROUGH
+# define XXH_FALLTHROUGH /* fallthrough */
#endif
+/*! @endcond */
+
+/*! @cond Doxygen ignores this part */
+/*
+ * Define XXH_NOESCAPE for annotated pointers in public API.
+ * https://clang.llvm.org/docs/AttributeReference.html#noescape
+ * As of writing this, only supported by clang.
+ */
+#if XXH_HAS_ATTRIBUTE(noescape)
+# define XXH_NOESCAPE __attribute__((noescape))
+#else
+# define XXH_NOESCAPE
+#endif
+/*! @endcond */
+
/*!
* @}
@@ -644,7 +842,11 @@ typedef uint64_t XXH64_hash_t;
#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-# include <stdint.h>
+# ifdef _AIX
+# include <inttypes.h>
+# else
+# include <stdint.h>
+# endif
typedef uint64_t XXH64_hash_t;
#else
# include <limits.h>
@@ -660,7 +862,7 @@ typedef uint64_t XXH64_hash_t;
/*!
* @}
*
- * @defgroup xxh64_family XXH64 family
+ * @defgroup XXH64_family XXH64 family
* @ingroup public
* @{
* Contains functions used in the classic 64-bit xxHash algorithm.
@@ -671,13 +873,9 @@ typedef uint64_t XXH64_hash_t;
* It provides better speed for systems with vector processing capabilities.
*/
-
/*!
* @brief Calculates the 64-bit hash of @p input using xxHash64.
*
- * This function usually runs faster on 64-bit systems, but slower on 32-bit
- * systems (see benchmark).
- *
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 64-bit seed to alter the hash's output predictably.
@@ -687,41 +885,145 @@ typedef uint64_t XXH64_hash_t;
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
- * @return The calculated 64-bit hash.
+ * @return The calculated 64-bit xxHash64 value.
*
- * @see
- * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
- * Direct equivalents for the other variants of xxHash.
- * @see
- * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
+ * @see @ref single_shot_example "Single Shot Example" for an example.
*/
-XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
/******* Streaming *******/
+#ifndef XXH_NO_STREAM
/*!
* @brief The opaque state struct for the XXH64 streaming API.
*
* @see XXH64_state_s for details.
*/
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
-XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
+
+/*!
+ * @brief Allocates an @ref XXH64_state_t.
+ *
+ * @return An allocated pointer of @ref XXH64_state_t on success.
+ * @return `NULL` on failure.
+ *
+ * @note Must be freed with XXH64_freeState().
+ */
+XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
+
+/*!
+ * @brief Frees an @ref XXH64_state_t.
+ *
+ * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
+ *
+ * @return @ref XXH_OK.
+ *
+ * @note @p statePtr must be allocated with XXH64_createState().
+ */
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
-XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
-XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
+/*!
+ * @brief Copies one @ref XXH64_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
+ */
+XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
+
+/*!
+ * @brief Resets an @ref XXH64_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note This function resets and seeds a state. Call it before @ref XXH64_update().
+ */
+XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH64_state_t.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note Call this to incrementally consume blocks of data.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated hash value from an @ref XXH64_state_t.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return The calculated 64-bit xxHash64 value from that state.
+ *
+ * @note
+ * Calling XXH64_digest() will not affect @p statePtr, so you can update,
+ * digest, and update again.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
+
+/*!
+ * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
+ */
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
+
+/*!
+ * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
+ *
+ * @param dst The @ref XXH64_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH64_hash_t to be converted.
+ *
+ * @pre
+ * @p dst must not be `NULL`.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
+
+/*!
+ * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
+ *
+ * @param src The @ref XXH64_canonical_t to convert.
+ *
+ * @pre
+ * @p src must not be `NULL`.
+ *
+ * @return The converted hash.
+ *
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
#ifndef XXH_NO_XXH3
+
/*!
* @}
* ************************************************************************
- * @defgroup xxh3_family XXH3 family
+ * @defgroup XXH3_family XXH3 family
* @ingroup public
* @{
*
@@ -741,16 +1043,26 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src
*
* XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
* but does not require it.
- * Any 32-bit and 64-bit targets that can run XXH32 smoothly
- * can run XXH3 at competitive speeds, even without vector support.
- * Further details are explained in the implementation.
- *
- * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
- * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
+ * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
+ * at competitive speeds, even without vector support. Further details are
+ * explained in the implementation.
+ *
+ * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
+ * implementations for many common platforms:
+ * - AVX512
+ * - AVX2
+ * - SSE2
+ * - ARM NEON
+ * - WebAssembly SIMD128
+ * - POWER8 VSX
+ * - s390x ZVector
+ * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
+ * selects the best version according to predefined macros. For the x86 family, an
+ * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
*
* XXH3 implementation is portable:
* it has a generic C90 formulation that can be compiled on any platform,
- * all implementations generage exactly the same hash value on all platforms.
+ * all implementations generate exactly the same hash value on all platforms.
* Starting from v0.8.0, it's also labelled "stable", meaning that
* any future version will also generate the same hash value.
*
@@ -762,24 +1074,59 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src
*
* The API supports one-shot hashing, streaming mode, and custom secrets.
*/
-
/*-**********************************************************************
* XXH3 64-bit variant
************************************************************************/
-/* XXH3_64bits():
- * default 64-bit variant, using default secret and default seed of 0.
- * It's the fastest variant. */
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
+/*!
+ * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit XXH3 hash value.
+ *
+ * @note
+ * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
+ * it may have slightly better performance due to constant propagation of the
+ * defaults.
+ *
+ * @see
+ * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
-/*
- * XXH3_64bits_withSeed():
- * This variant generates a custom secret on the fly
- * based on default secret altered using the `seed` value.
+/*!
+ * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit XXH3 hash value.
+ *
+ * @note
+ * seed == 0 produces the same results as @ref XXH3_64bits().
+ *
+ * This variant generates a custom secret on the fly based on default secret
+ * altered using the @p seed value.
+ *
* While this operation is decently fast, note that it's not completely free.
- * Note: seed==0 produces the same results as XXH3_64bits().
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
*/
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
/*!
* The bare minimum size for a custom secret.
@@ -790,27 +1137,43 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, X
*/
#define XXH3_SECRET_SIZE_MIN 136
-/*
- * XXH3_64bits_withSecret():
+/*!
+ * @brief Calculates 64-bit variant of XXH3 with a custom "secret".
+ *
+ * @param data The block of data to be hashed, at least @p len bytes in size.
+ * @param len The length of @p data, in bytes.
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @return The calculated 64-bit XXH3 hash value.
+ *
+ * @pre
+ * The memory between @p data and @p data + @p len must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p data may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
* This makes it more difficult for an external actor to prepare an intentional collision.
- * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
+ * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
* However, the quality of the secret impacts the dispersion of the hash algorithm.
* Therefore, the secret _must_ look like a bunch of random bytes.
* Avoid "trivial" or structured data such as repeated sequences or a text document.
* Whenever in doubt about the "randomness" of the blob of bytes,
- * consider employing "XXH3_generateSecret()" instead (see below).
+ * consider employing @ref XXH3_generateSecret() instead (see below).
* It will generate a proper high entropy secret derived from the blob of bytes.
* Another advantage of using XXH3_generateSecret() is that
* it guarantees that all bits within the initial blob of bytes
* will impact every bit of the output.
* This is not necessarily the case when using the blob of bytes directly
* because, when hashing _small_ inputs, only a portion of the secret is employed.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
*/
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
/******* Streaming *******/
+#ifndef XXH_NO_STREAM
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
@@ -819,40 +1182,124 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len,
*/
/*!
- * @brief The state struct for the XXH3 streaming API.
+ * @brief The opaque state struct for the XXH3 streaming API.
*
* @see XXH3_state_s for details.
*/
typedef struct XXH3_state_s XXH3_state_t;
-XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
+XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
-XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
-/*
- * XXH3_64bits_reset():
- * Initialize with default parameters.
- * digest will be equivalent to `XXH3_64bits()`.
+/*!
+ * @brief Copies one @ref XXH3_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
-/*
- * XXH3_64bits_reset_withSeed():
- * Generate a custom secret from `seed`, and store it into `statePtr`.
- * digest will be equivalent to `XXH3_64bits_withSeed()`.
+XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ * - This function resets `statePtr` and generate a secret with default parameters.
+ * - Call this function before @ref XXH3_64bits_update().
+ * - Digest will be equivalent to `XXH3_64bits()`.
+ *
*/
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
-/*
- * XXH3_64bits_reset_withSecret():
- * `secret` is referenced, it _must outlive_ the hash streaming session.
- * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ * - This function resets `statePtr` and generate a secret from `seed`.
+ * - Call this function before @ref XXH3_64bits_update().
+ * - Digest will be equivalent to `XXH3_64bits_withSeed()`.
+ *
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
+ *
+ * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
* and the quality of produced hash values depends on secret's entropy
* (secret's content should look like a bunch of random bytes).
* When in doubt about the randomness of a candidate `secret`,
* consider employing `XXH3_generateSecret()` instead (see below).
*/
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH3_state_t.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note Call this to incrementally consume blocks of data.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return The calculated XXH3 64-bit hash value from that state.
+ *
+ * @note
+ * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
+ * digest, and update again.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
/* note : canonical representation of XXH3 is the same as XXH64
* since they both produce XXH64_hash_t values */
@@ -873,11 +1320,76 @@ typedef struct {
XXH64_hash_t high64; /*!< `value >> 64` */
} XXH128_hash_t;
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+/*!
+ * @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
+ *
+ * @param data The block of data to be hashed, at least @p length bytes in size.
+ * @param len The length of @p data, in bytes.
+ *
+ * @return The calculated 128-bit variant of XXH3 value.
+ *
+ * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
+ * for shorter inputs.
+ *
+ * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
+ * it may have slightly better performance due to constant propagation of the
+ * defaults.
+ *
+ * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
+/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
+ *
+ * @param data The block of data to be hashed, at least @p length bytes in size.
+ * @param len The length of @p data, in bytes.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @return The calculated 128-bit variant of XXH3 value.
+ *
+ * @note
+ * seed == 0 produces the same results as @ref XXH3_64bits().
+ *
+ * This variant generates a custom secret on the fly based on default secret
+ * altered using the @p seed value.
+ *
+ * While this operation is decently fast, note that it's not completely free.
+ *
+ * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
+/*!
+ * @brief Calculates 128-bit variant of XXH3 with a custom "secret".
+ *
+ * @param data The block of data to be hashed, at least @p len bytes in size.
+ * @param len The length of @p data, in bytes.
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @return The calculated 128-bit variant of XXH3 value.
+ *
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
+ * This makes it more difficult for an external actor to prepare an intentional collision.
+ * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
+ * Therefore, the secret _must_ look like a bunch of random bytes.
+ * Avoid "trivial" or structured data such as repeated sequences or a text document.
+ * Whenever in doubt about the "randomness" of the blob of bytes,
+ * consider employing @ref XXH3_generateSecret() instead (see below).
+ * It will generate a proper high entropy secret derived from the blob of bytes.
+ * Another advantage of using XXH3_generateSecret() is that
+ * it guarantees that all bits within the initial blob of bytes
+ * will impact every bit of the output.
+ * This is not necessarily the case when using the blob of bytes directly
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
/******* Streaming *******/
+#ifndef XXH_NO_STREAM
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
@@ -890,39 +1402,163 @@ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t le
* All reset and streaming functions have same meaning as their 64-bit counterpart.
*/
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+/*!
+ * @brief Resets an @ref XXH3_state_t to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ * - This function resets `statePtr` and generate a secret with default parameters.
+ * - Call it before @ref XXH3_128bits_update().
+ * - Digest will be equivalent to `XXH3_128bits()`.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
+
+/*!
+ * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ * - This function resets `statePtr` and generate a secret from `seed`.
+ * - Call it before @ref XXH3_128bits_update().
+ * - Digest will be equivalent to `XXH3_128bits_withSeed()`.
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr The state struct to reset.
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
+ * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
+ * and the quality of produced hash values depends on secret's entropy
+ * (secret's content should look like a bunch of random bytes).
+ * When in doubt about the randomness of a candidate `secret`,
+ * consider employing `XXH3_generateSecret()` instead (see below).
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
+
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH3_state_t.
+ *
+ * Call this to incrementally consume blocks of data.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @note
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ */
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
+/*!
+ * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return The calculated XXH3 128-bit hash value from that state.
+ *
+ * @note
+ * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
+ * digest, and update again.
+ *
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
+#endif /* !XXH_NO_STREAM */
/* Following helper functions make it possible to compare XXH128_hast_t values.
* Since XXH128_hash_t is a structure, this capability is not offered by the language.
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
/*!
- * XXH128_isEqual():
- * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
+ * @brief Check equality of two XXH128_hash_t values
+ *
+ * @param h1 The 128-bit hash value.
+ * @param h2 Another 128-bit hash value.
+ *
+ * @return `1` if `h1` and `h2` are equal.
+ * @return `0` if they are not.
*/
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
+XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
/*!
- * XXH128_cmp():
+ * @brief Compares two @ref XXH128_hash_t
*
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
*
- * return: >0 if *h128_1 > *h128_2
- * =0 if *h128_1 == *h128_2
- * <0 if *h128_1 < *h128_2
+ * @param h128_1 Left-hand side value
+ * @param h128_2 Right-hand side value
+ *
+ * @return >0 if @p h128_1 > @p h128_2
+ * @return =0 if @p h128_1 == @p h128_2
+ * @return <0 if @p h128_1 < @p h128_2
*/
-XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
+XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
/******* Canonical representation *******/
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
-XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
-XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
+
+
+/*!
+ * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
+ *
+ * @param dst The @ref XXH128_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH128_hash_t to be converted.
+ *
+ * @pre
+ * @p dst must not be `NULL`.
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
+
+/*!
+ * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
+ *
+ * @param src The @ref XXH128_canonical_t to convert.
+ *
+ * @pre
+ * @p src must not be `NULL`.
+ *
+ * @return The converted hash.
+ * @see @ref canonical_representation_example "Canonical Representation Example"
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
#endif /* !XXH_NO_XXH3 */
@@ -996,7 +1632,6 @@ struct XXH64_state_s {
XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */
}; /* typedef'd to XXH64_state_t */
-
#ifndef XXH_NO_XXH3
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
@@ -1032,6 +1667,7 @@ struct XXH64_state_s {
#define XXH3_INTERNALBUFFER_SIZE 256
/*!
+ * @internal
* @brief Default size of the secret buffer (and @ref XXH3_kSecret).
*
* This is the size used in @ref XXH3_kSecret and the seeded functions.
@@ -1064,7 +1700,7 @@ struct XXH64_state_s {
*/
struct XXH3_state_s {
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
- /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
+ /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
/*!< Used to store a custom secret generated from a seed. */
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
@@ -1104,69 +1740,148 @@ struct XXH3_state_s {
* Note that this doesn't prepare the state for a streaming operation,
* it's still necessary to use XXH3_NNbits_reset*() afterwards.
*/
-#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
+#define XXH3_INITSTATE(XXH3_state_ptr) \
+ do { \
+ XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
+ tmp_xxh3_state_ptr->seed = 0; \
+ tmp_xxh3_state_ptr->extSecret = NULL; \
+ } while(0)
-/* XXH128() :
- * simple alias to pre-selected XXH3_128bits variant
+/*!
+ * @brief Calculates the 128-bit hash of @p data using XXH3.
+ *
+ * @param data The block of data to be hashed, at least @p len bytes in size.
+ * @param len The length of @p data, in bytes.
+ * @param seed The 64-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ * The memory between @p data and @p data + @p len must be valid,
+ * readable, contiguous memory. However, if @p len is `0`, @p data may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 128-bit XXH3 value.
+ *
+ * @see @ref single_shot_example "Single Shot Example" for an example.
*/
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
/* === Experimental API === */
/* Symbols defined below must be considered tied to a specific library version. */
-/*
- * XXH3_generateSecret():
+/*!
+ * @brief Derive a high-entropy secret from any user-defined content, named customSeed.
+ *
+ * @param secretBuffer A writable buffer for derived high-entropy secret data.
+ * @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_DEFAULT_SIZE.
+ * @param customSeed A user-defined content.
+ * @param customSeedSize Size of customSeed, in bytes.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
*
- * Derive a high-entropy secret from any user-defined content, named customSeed.
* The generated secret can be used in combination with `*_withSecret()` functions.
- * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
- * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
+ * The `_withSecret()` variants are useful to provide a higher level of protection
+ * than 64-bit seed, as it becomes much more difficult for an external actor to
+ * guess how to impact the calculation logic.
*
* The function accepts as input a custom seed of any length and any content,
- * and derives from it a high-entropy secret of length @secretSize
- * into an already allocated buffer @secretBuffer.
- * @secretSize must be >= XXH3_SECRET_SIZE_MIN
+ * and derives from it a high-entropy secret of length @p secretSize into an
+ * already allocated buffer @p secretBuffer.
*
* The generated secret can then be used with any `*_withSecret()` variant.
- * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
- * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
+ * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
+ * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
* are part of this list. They all accept a `secret` parameter
- * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
+ * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
* _and_ feature very high entropy (consist of random-looking bytes).
- * These conditions can be a high bar to meet, so
- * XXH3_generateSecret() can be employed to ensure proper quality.
+ * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
+ * be employed to ensure proper quality.
+ *
+ * @p customSeed can be anything. It can have any size, even small ones,
+ * and its content can be anything, even "poor entropy" sources such as a bunch
+ * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
*
- * customSeed can be anything. It can have any size, even small ones,
- * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
- * The resulting `secret` will nonetheless provide all required qualities.
+ * @pre
+ * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
+ * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
*
- * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
+ * Example code:
+ * @code{.c}
+ * #include <stdio.h>
+ * #include <stdlib.h>
+ * #include <string.h>
+ * #define XXH_STATIC_LINKING_ONLY // expose unstable API
+ * #include "xxhash.h"
+ * // Hashes argv[2] using the entropy from argv[1].
+ * int main(int argc, char* argv[])
+ * {
+ * char secret[XXH3_SECRET_SIZE_MIN];
+ * if (argv != 3) { return 1; }
+ * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
+ * XXH64_hash_t h = XXH3_64bits_withSecret(
+ * argv[2], strlen(argv[2]),
+ * secret, sizeof(secret)
+ * );
+ * printf("%016llx\n", (unsigned long long) h);
+ * }
+ * @endcode
*/
-XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
+XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
-
-/*
- * XXH3_generateSecret_fromSeed():
- *
- * Generate the same secret as the _withSeed() variants.
+/*!
+ * @brief Generate the same secret as the _withSeed() variants.
*
- * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
- * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
+ * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes
+ * @param seed The 64-bit seed to alter the hash result predictably.
*
* The generated secret can be used in combination with
*`*_withSecret()` and `_withSecretandSeed()` variants.
- * This generator is notably useful in combination with `_withSecretandSeed()`,
- * as a way to emulate a faster `_withSeed()` variant.
+ *
+ * Example C++ `std::string` hash class:
+ * @code{.cpp}
+ * #include <string>
+ * #define XXH_STATIC_LINKING_ONLY // expose unstable API
+ * #include "xxhash.h"
+ * // Slow, seeds each time
+ * class HashSlow {
+ * XXH64_hash_t seed;
+ * public:
+ * HashSlow(XXH64_hash_t s) : seed{s} {}
+ * size_t operator()(const std::string& x) const {
+ * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
+ * }
+ * };
+ * // Fast, caches the seeded secret for future uses.
+ * class HashFast {
+ * unsigned char secret[XXH3_SECRET_SIZE_MIN];
+ * public:
+ * HashFast(XXH64_hash_t s) {
+ * XXH3_generateSecret_fromSeed(secret, seed);
+ * }
+ * size_t operator()(const std::string& x) const {
+ * return size_t{
+ * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
+ * };
+ * }
+ * };
+ * @endcode
*/
-XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
+XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
-/*
- * *_withSecretandSeed() :
+/*!
+ * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
+ *
+ * @param data The block of data to be hashed, at least @p len bytes in size.
+ * @param len The length of @p data, in bytes.
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed The 64-bit seed to alter the hash result predictably.
+ *
* These variants generate hash values using either
- * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
- * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
+ * @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
+ * or @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
*
* This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
* `_withSeed()` has to generate the secret on the fly for "large" keys.
@@ -1175,7 +1890,7 @@ XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_
* which requires more instructions than _withSeed() variants.
* Therefore, _withSecretandSeed variant combines the best of both worlds.
*
- * When @secret has been generated by XXH3_generateSecret_fromSeed(),
+ * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
* this variant produces *exactly* the same results as `_withSeed()` variant,
* hence offering only a pure speed benefit on "large" input,
* by skipping the need to regenerate the secret for every large input.
@@ -1184,33 +1899,71 @@ XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_
* for example with XXH3_64bits(), which then becomes the seed,
* and then employ both the seed and the secret in _withSecretandSeed().
* On top of speed, an added benefit is that each bit in the secret
- * has a 50% chance to swap each bit in the output,
- * via its impact to the seed.
+ * has a 50% chance to swap each bit in the output, via its impact to the seed.
+ *
* This is not guaranteed when using the secret directly in "small data" scenarios,
* because only portions of the secret are employed for small data.
*/
-XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSecretandSeed(const void* data, size_t len,
- const void* secret, size_t secretSize,
+XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
+XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
+ XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed);
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSecretandSeed(const void* data, size_t len,
- const void* secret, size_t secretSize,
+/*!
+ * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
+ *
+ * @param input The block of data to be hashed, at least @p len bytes in size.
+ * @param length The length of @p data, in bytes.
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed64 The 64-bit seed to alter the hash result predictably.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @see XXH3_64bits_withSecretandSeed()
+ */
+XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
+XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
+ XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
-
+#ifndef XXH_NO_STREAM
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed64 The 64-bit seed to alter the hash result predictably.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @see XXH3_64bits_withSecretandSeed()
+ */
XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
- const void* secret, size_t secretSize,
+XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
+ XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
-
+/*!
+ * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
+ *
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
+ * @param secret The secret data.
+ * @param secretSize The length of @p secret, in bytes.
+ * @param seed64 The 64-bit seed to alter the hash result predictably.
+ *
+ * @return @ref XXH_OK on success.
+ * @return @ref XXH_ERROR on failure.
+ *
+ * @see XXH3_64bits_withSecretandSeed()
+ */
XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
- const void* secret, size_t secretSize,
+XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
+ XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
+#endif /* !XXH_NO_STREAM */
-
-#endif /* XXH_NO_XXH3 */
+#endif /* !XXH_NO_XXH3 */
#endif /* XXH_NO_LONG_LONG */
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
# define XXH_IMPLEMENTATION
@@ -1264,7 +2017,7 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
/*!
* @brief Define this to disable 64-bit code.
*
- * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
+ * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
*/
# define XXH_NO_LONG_LONG
# undef XXH_NO_LONG_LONG /* don't actually */
@@ -1287,7 +2040,7 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
* Use `memcpy()`. Safe and portable. Note that most modern compilers will
* eliminate the function call and treat it as an unaligned access.
*
- * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
+ * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
* @par
* Depends on compiler extensions and is therefore not portable.
* This method is safe _if_ your compiler supports it,
@@ -1307,7 +2060,7 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
* inline small `memcpy()` calls, and it might also be faster on big-endian
* systems which lack a native byteswap instruction. However, some compilers
* will emit literal byteshifts even if the target supports unaligned access.
- * .
+ *
*
* @warning
* Methods 1 and 2 rely on implementation-defined behavior. Use these with
@@ -1321,6 +2074,34 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
# define XXH_FORCE_MEMORY_ACCESS 0
/*!
+ * @def XXH_SIZE_OPT
+ * @brief Controls how much xxHash optimizes for size.
+ *
+ * xxHash, when compiled, tends to result in a rather large binary size. This
+ * is mostly due to heavy usage to forced inlining and constant folding of the
+ * @ref XXH3_family to increase performance.
+ *
+ * However, some developers prefer size over speed. This option can
+ * significantly reduce the size of the generated code. When using the `-Os`
+ * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
+ * otherwise it is defined to 0.
+ *
+ * Most of these size optimizations can be controlled manually.
+ *
+ * This is a number from 0-2.
+ * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
+ * comes first.
+ * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
+ * conservative and disables hacks that increase code size. It implies the
+ * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
+ * and @ref XXH3_NEON_LANES == 8 if they are not already defined.
+ * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
+ * Performance may cry. For example, the single shot functions just use the
+ * streaming API.
+ */
+# define XXH_SIZE_OPT 0
+
+/*!
* @def XXH_FORCE_ALIGN_CHECK
* @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
* and XXH64() only).
@@ -1341,9 +2122,11 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
*
* In these cases, the alignment check can be removed by setting this macro to 0.
* Then the code will always use unaligned memory access.
- * Align check is automatically disabled on x86, x64 & arm64,
+ * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
* which are platforms known to offer good unaligned memory accesses performance.
*
+ * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
+ *
* This option does not affect XXH3 (only XXH32 and XXH64).
*/
# define XXH_FORCE_ALIGN_CHECK 0
@@ -1365,12 +2148,29 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
* compiler full control on whether to inline or not.
*
- * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
- * -fno-inline with GCC or Clang, this will automatically be defined.
+ * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
+ * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
*/
# define XXH_NO_INLINE_HINTS 0
/*!
+ * @def XXH3_INLINE_SECRET
+ * @brief Determines whether to inline the XXH3 withSecret code.
+ *
+ * When the secret size is known, the compiler can improve the performance
+ * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
+ *
+ * However, if the secret size is not known, it doesn't have any benefit. This
+ * happens when xxHash is compiled into a global symbol. Therefore, if
+ * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
+ *
+ * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
+ * that are *sometimes* force inline on -Og, and it is impossible to automatically
+ * detect this optimization level.
+ */
+# define XXH3_INLINE_SECRET 0
+
+/*!
* @def XXH32_ENDJMP
* @brief Whether to use a jump for `XXH32_finalize`.
*
@@ -1391,34 +2191,45 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
*/
# define XXH_OLD_NAMES
# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
+
+/*!
+ * @def XXH_NO_STREAM
+ * @brief Disables the streaming API.
+ *
+ * When xxHash is not inlined and the streaming functions are not used, disabling
+ * the streaming functions can improve code size significantly, especially with
+ * the @ref XXH3_family which tends to make constant folded copies of itself.
+ */
+# define XXH_NO_STREAM
+# undef XXH_NO_STREAM /* don't actually */
#endif /* XXH_DOXYGEN */
/*!
* @}
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
- /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
-# if !defined(__clang__) && \
-( \
- (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
- ( \
- defined(__GNUC__) && ( \
- (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
- ( \
- defined(__mips__) && \
- (__mips <= 5 || __mips_isa_rev < 6) && \
- (!defined(__mips16) || defined(__mips_mips16e2)) \
- ) \
- ) \
- ) \
-)
+ /* prefer __packed__ structures (method 1) for GCC
+ * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
+ * which for some reason does unaligned loads. */
+# if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
+#ifndef XXH_SIZE_OPT
+ /* default to 1 for -Os or -Oz */
+# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
+# define XXH_SIZE_OPT 1
+# else
+# define XXH_SIZE_OPT 0
+# endif
+#endif
+
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
-# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
- || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
+ /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
+# if XXH_SIZE_OPT >= 1 || \
+ defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
+ || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
@@ -1426,14 +2237,22 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
#endif
#ifndef XXH_NO_INLINE_HINTS
-# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
- || defined(__NO_INLINE__) /* -O0, -fno-inline */
+# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */
# define XXH_NO_INLINE_HINTS 1
# else
# define XXH_NO_INLINE_HINTS 0
# endif
#endif
+#ifndef XXH3_INLINE_SECRET
+# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
+ || !defined(XXH_INLINE_ALL)
+# define XXH3_INLINE_SECRET 0
+# else
+# define XXH3_INLINE_SECRET 1
+# endif
+#endif
+
#ifndef XXH32_ENDJMP
/* generally preferable for performance */
# define XXH32_ENDJMP 0
@@ -1448,13 +2267,56 @@ XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
/* *************************************
* Includes & Memory related functions
***************************************/
-/* Modify the local functions below should you wish to use some other memory routines */
-/* for ZSTD_malloc(), ZSTD_free() */
-#define ZSTD_DEPS_NEED_MALLOC
-#include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
-static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
-static void XXH_free (void* p) { ZSTD_free(p); }
-static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
+#if defined(XXH_NO_STREAM)
+/* nothing */
+#elif defined(XXH_NO_STDLIB)
+
+/* When requesting to disable any mention of stdlib,
+ * the library loses the ability to invoked malloc / free.
+ * In practice, it means that functions like `XXH*_createState()`
+ * will always fail, and return NULL.
+ * This flag is useful in situations where
+ * xxhash.h is integrated into some kernel, embedded or limited environment
+ * without access to dynamic allocation.
+ */
+
+static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
+static void XXH_free(void* p) { (void)p; }
+
+#else
+
+/*
+ * Modify the local functions below should you wish to use
+ * different memory routines for malloc() and free()
+ */
+#include <stdlib.h>
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than malloc().
+ */
+static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than free().
+ */
+static void XXH_free(void* p) { free(p); }
+
+#endif /* XXH_NO_STDLIB */
+
+#include <string.h>
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than memcpy().
+ */
+static void* XXH_memcpy(void* dest, const void* src, size_t size)
+{
+ return memcpy(dest,src,size);
+}
+
+#include <limits.h> /* ULLONG_MAX */
/* *************************************
@@ -1487,6 +2349,11 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_
# define XXH_NO_INLINE static
#endif
+#if XXH3_INLINE_SECRET
+# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
+#else
+# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
+#endif
/* *************************************
@@ -1512,14 +2379,17 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_
# include <assert.h> /* note: can still be disabled with NDEBUG */
# define XXH_ASSERT(c) assert(c)
#else
-# define XXH_ASSERT(c) ((void)0)
+# if defined(__INTEL_COMPILER)
+# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c))
+# else
+# define XXH_ASSERT(c) XXH_ASSUME(c)
+# endif
#endif
/* note: use after variable declarations */
#ifndef XXH_STATIC_ASSERT
# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
-# include <assert.h>
-# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
# else
@@ -1534,7 +2404,7 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_
* @brief Used to prevent unwanted optimizations for @p var.
*
* It uses an empty GCC inline assembly statement with a register constraint
- * which forces @p var into a general purpose register (e.g. eax, ebx, ecx
+ * which forces @p var into a general purpose register (eg eax, ebx, ecx
* on x86) and marks it as modified.
*
* This is used in a few places to avoid unwanted autovectorization (e.g.
@@ -1545,18 +2415,30 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_
* XXH3_initCustomSecret_scalar().
*/
#if defined(__GNUC__) || defined(__clang__)
-# define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
+# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
#else
# define XXH_COMPILER_GUARD(var) ((void)0)
#endif
+/* Specifically for NEON vectors which use the "w" constraint, on
+ * Clang. */
+#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
+# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
+#else
+# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
+#endif
+
/* *************************************
* Basic Types
***************************************/
#if !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-# include <stdint.h>
+# ifdef _AIX
+# include <inttypes.h>
+# else
+# include <stdint.h>
+# endif
typedef uint8_t xxh_u8;
#else
typedef unsigned char xxh_u8;
@@ -1564,6 +2446,7 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_
typedef XXH32_hash_t xxh_u32;
#ifdef XXH_OLD_NAMES
+# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
# define BYTE xxh_u8
# define U8 xxh_u8
# define U32 xxh_u32
@@ -1637,18 +2520,19 @@ static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr;
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/*
- * __pack instructions are safer but compiler specific, hence potentially
- * problematic for some compilers.
- *
- * Currently only defined for GCC and ICC.
+ * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
+ * documentation claimed that it only increased the alignment, but actually it
+ * can decrease it on gcc, clang, and icc:
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
+ * https://gcc.godbolt.org/z/xYez1j67Y.
*/
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
#endif
static xxh_u32 XXH_read32(const void* ptr)
{
- typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
- return ((const xxh_unalign*)ptr)->u32;
+ typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32;
+ return *((const xxh_unalign32*)ptr);
}
#else
@@ -1731,6 +2615,51 @@ static int XXH_isLittleEndian(void)
# define XXH_HAS_BUILTIN(x) 0
#endif
+
+
+/*
+ * C23 and future versions have standard "unreachable()".
+ * Once it has been implemented reliably we can add it as an
+ * additional case:
+ *
+ * ```
+ * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
+ * # include <stddef.h>
+ * # ifdef unreachable
+ * # define XXH_UNREACHABLE() unreachable()
+ * # endif
+ * #endif
+ * ```
+ *
+ * Note C++23 also has std::unreachable() which can be detected
+ * as follows:
+ * ```
+ * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
+ * # include <utility>
+ * # define XXH_UNREACHABLE() std::unreachable()
+ * #endif
+ * ```
+ * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
+ * We don't use that as including `<utility>` in `extern "C"` blocks
+ * doesn't work on GCC12
+ */
+
+#if XXH_HAS_BUILTIN(__builtin_unreachable)
+# define XXH_UNREACHABLE() __builtin_unreachable()
+
+#elif defined(_MSC_VER)
+# define XXH_UNREACHABLE() __assume(0)
+
+#else
+# define XXH_UNREACHABLE()
+#endif
+
+#if XXH_HAS_BUILTIN(__builtin_assume)
+# define XXH_ASSUME(c) __builtin_assume(c)
+#else
+# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
+#endif
+
/*!
* @internal
* @def XXH_rotl32(x,r)
@@ -1853,8 +2782,10 @@ XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
*********************************************************************/
/*!
* @}
- * @defgroup xxh32_impl XXH32 implementation
+ * @defgroup XXH32_impl XXH32 implementation
* @ingroup impl
+ *
+ * Details on the XXH32 implementation.
* @{
*/
/* #define instead of static const, to be used as initializers */
@@ -1888,7 +2819,7 @@ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
acc += input * XXH_PRIME32_2;
acc = XXH_rotl32(acc, 13);
acc *= XXH_PRIME32_1;
-#if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
/*
* UGLY HACK:
* A compiler fence is the only thing that prevents GCC and Clang from
@@ -1918,9 +2849,12 @@ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
* can load data, while v3 can multiply. SSE forces them to operate
* together.
*
- * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
- * and it is pointless writing a NEON implementation that is basically the
- * same speed as scalar for XXH32.
+ * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
+ * the loop. NEON is only faster on the A53, and with the newer cores, it is less
+ * than half the speed.
+ *
+ * Additionally, this is used on WASM SIMD128 because it JITs to the same
+ * SIMD instructions and has the same issue.
*/
XXH_COMPILER_GUARD(acc);
#endif
@@ -1934,17 +2868,17 @@ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
* The final mix ensures that all input bits have a chance to impact any bit in
* the output digest, resulting in an unbiased distribution.
*
- * @param h32 The hash to avalanche.
+ * @param hash The hash to avalanche.
* @return The avalanched hash.
*/
-static xxh_u32 XXH32_avalanche(xxh_u32 h32)
+static xxh_u32 XXH32_avalanche(xxh_u32 hash)
{
- h32 ^= h32 >> 15;
- h32 *= XXH_PRIME32_2;
- h32 ^= h32 >> 13;
- h32 *= XXH_PRIME32_3;
- h32 ^= h32 >> 16;
- return(h32);
+ hash ^= hash >> 15;
+ hash *= XXH_PRIME32_2;
+ hash ^= hash >> 13;
+ hash *= XXH_PRIME32_3;
+ hash ^= hash >> 16;
+ return hash;
}
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
@@ -1957,24 +2891,25 @@ static xxh_u32 XXH32_avalanche(xxh_u32 h32)
* This final stage will digest them to ensure that all input bytes are present
* in the final mix.
*
- * @param h32 The hash to finalize.
+ * @param hash The hash to finalize.
* @param ptr The pointer to the remaining input.
* @param len The remaining length, modulo 16.
* @param align Whether @p ptr is aligned.
* @return The finalized hash.
+ * @see XXH64_finalize().
*/
-static xxh_u32
-XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
+static XXH_PUREF xxh_u32
+XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
-#define XXH_PROCESS1 do { \
- h32 += (*ptr++) * XXH_PRIME32_5; \
- h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
+#define XXH_PROCESS1 do { \
+ hash += (*ptr++) * XXH_PRIME32_5; \
+ hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \
} while (0)
-#define XXH_PROCESS4 do { \
- h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
- ptr += 4; \
- h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
+#define XXH_PROCESS4 do { \
+ hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \
+ ptr += 4; \
+ hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \
} while (0)
if (ptr==NULL) XXH_ASSERT(len == 0);
@@ -1990,49 +2925,49 @@ XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
XXH_PROCESS1;
--len;
}
- return XXH32_avalanche(h32);
+ return XXH32_avalanche(hash);
} else {
switch(len&15) /* or switch(bEnd - p) */ {
case 12: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 8: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 4: XXH_PROCESS4;
- return XXH32_avalanche(h32);
+ return XXH32_avalanche(hash);
case 13: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 9: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 5: XXH_PROCESS4;
XXH_PROCESS1;
- return XXH32_avalanche(h32);
+ return XXH32_avalanche(hash);
case 14: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 10: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 6: XXH_PROCESS4;
XXH_PROCESS1;
XXH_PROCESS1;
- return XXH32_avalanche(h32);
+ return XXH32_avalanche(hash);
case 15: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 11: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 7: XXH_PROCESS4;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 3: XXH_PROCESS1;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 2: XXH_PROCESS1;
- XXH_FALLTHROUGH;
+ XXH_FALLTHROUGH; /* fallthrough */
case 1: XXH_PROCESS1;
- XXH_FALLTHROUGH;
- case 0: return XXH32_avalanche(h32);
+ XXH_FALLTHROUGH; /* fallthrough */
+ case 0: return XXH32_avalanche(hash);
}
XXH_ASSERT(0);
- return h32; /* reaching this point is deemed impossible */
+ return hash; /* reaching this point is deemed impossible */
}
}
@@ -2052,7 +2987,7 @@ XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
* @param align Whether @p input is aligned.
* @return The calculated hash.
*/
-XXH_FORCE_INLINE xxh_u32
+XXH_FORCE_INLINE XXH_PUREF xxh_u32
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
{
xxh_u32 h32;
@@ -2085,10 +3020,10 @@ XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment
return XXH32_finalize(h32, input, len&15, align);
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
{
-#if 0
+#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_state_t state;
XXH32_reset(&state, seed);
@@ -2107,27 +3042,26 @@ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t s
/******* Hash streaming *******/
-/*!
- * @ingroup xxh32_family
- */
+#ifndef XXH_NO_STREAM
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
{
XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
{
XXH_ASSERT(statePtr != NULL);
@@ -2140,7 +3074,7 @@ XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t s
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
{
@@ -2195,7 +3129,7 @@ XXH32_update(XXH32_state_t* state, const void* input, size_t len)
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
{
xxh_u32 h32;
@@ -2213,31 +3147,18 @@ XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
}
-
+#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
-/*!
- * @ingroup xxh32_family
- * The default return values from XXH functions are unsigned 32 and 64 bit
- * integers.
- *
- * The canonical representation uses big endian convention, the same convention
- * as human-readable numbers (large digits first).
- *
- * This way, hash values can be written into a file or buffer, remaining
- * comparable across different systems.
- *
- * The following functions allow transformation of hash values to and from their
- * canonical format.
- */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
- /* XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); */
+ XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
XXH_memcpy(dst, &hash, sizeof(*dst));
}
-/*! @ingroup xxh32_family */
+/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
@@ -2278,18 +3199,19 @@ static xxh_u64 XXH_read64(const void* memPtr)
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/*
- * __pack instructions are safer, but compiler specific, hence potentially
- * problematic for some compilers.
- *
- * Currently only defined for GCC and ICC.
+ * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
+ * documentation claimed that it only increased the alignment, but actually it
+ * can decrease it on gcc, clang, and icc:
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
+ * https://gcc.godbolt.org/z/xYez1j67Y.
*/
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
#endif
static xxh_u64 XXH_read64(const void* ptr)
{
- typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
- return ((const xxh_unalign64*)ptr)->u64;
+ typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64;
+ return *((const xxh_unalign64*)ptr);
}
#else
@@ -2380,8 +3302,10 @@ XXH_readLE64_align(const void* ptr, XXH_alignment align)
/******* xxh64 *******/
/*!
* @}
- * @defgroup xxh64_impl XXH64 implementation
+ * @defgroup XXH64_impl XXH64 implementation
* @ingroup impl
+ *
+ * Details on the XXH64 implementation.
* @{
*/
/* #define rather that static const, to be used as initializers */
@@ -2399,11 +3323,29 @@ XXH_readLE64_align(const void* ptr, XXH_alignment align)
# define PRIME64_5 XXH_PRIME64_5
#endif
+/*! @copydoc XXH32_round */
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
{
acc += input * XXH_PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= XXH_PRIME64_1;
+#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+ /*
+ * DISABLE AUTOVECTORIZATION:
+ * A compiler fence is used to prevent GCC and Clang from
+ * autovectorizing the XXH64 loop (pragmas and attributes don't work for some
+ * reason) without globally disabling AVX512.
+ *
+ * Autovectorization of XXH64 tends to be detrimental,
+ * though the exact outcome may change depending on exact cpu and compiler version.
+ * For information, it has been reported as detrimental for Skylake-X,
+ * but possibly beneficial for Zen4.
+ *
+ * The default is to disable auto-vectorization,
+ * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
+ */
+ XXH_COMPILER_GUARD(acc);
+#endif
return acc;
}
@@ -2415,43 +3357,59 @@ static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
return acc;
}
-static xxh_u64 XXH64_avalanche(xxh_u64 h64)
+/*! @copydoc XXH32_avalanche */
+static xxh_u64 XXH64_avalanche(xxh_u64 hash)
{
- h64 ^= h64 >> 33;
- h64 *= XXH_PRIME64_2;
- h64 ^= h64 >> 29;
- h64 *= XXH_PRIME64_3;
- h64 ^= h64 >> 32;
- return h64;
+ hash ^= hash >> 33;
+ hash *= XXH_PRIME64_2;
+ hash ^= hash >> 29;
+ hash *= XXH_PRIME64_3;
+ hash ^= hash >> 32;
+ return hash;
}
#define XXH_get64bits(p) XXH_readLE64_align(p, align)
-static xxh_u64
-XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
+/*!
+ * @internal
+ * @brief Processes the last 0-31 bytes of @p ptr.
+ *
+ * There may be up to 31 bytes remaining to consume from the input.
+ * This final stage will digest them to ensure that all input bytes are present
+ * in the final mix.
+ *
+ * @param hash The hash to finalize.
+ * @param ptr The pointer to the remaining input.
+ * @param len The remaining length, modulo 32.
+ * @param align Whether @p ptr is aligned.
+ * @return The finalized hash
+ * @see XXH32_finalize().
+ */
+static XXH_PUREF xxh_u64
+XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
if (ptr==NULL) XXH_ASSERT(len == 0);
len &= 31;
while (len >= 8) {
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
ptr += 8;
- h64 ^= k1;
- h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
+ hash ^= k1;
+ hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
len -= 8;
}
if (len >= 4) {
- h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
+ hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
ptr += 4;
- h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
+ hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
len -= 4;
}
while (len > 0) {
- h64 ^= (*ptr++) * XXH_PRIME64_5;
- h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
+ hash ^= (*ptr++) * XXH_PRIME64_5;
+ hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
--len;
}
- return XXH64_avalanche(h64);
+ return XXH64_avalanche(hash);
}
#ifdef XXH_OLD_NAMES
@@ -2464,7 +3422,15 @@ XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
# undef XXH_PROCESS8_64
#endif
-XXH_FORCE_INLINE xxh_u64
+/*!
+ * @internal
+ * @brief The implementation for @ref XXH64().
+ *
+ * @param input , len , seed Directly passed from @ref XXH64().
+ * @param align Whether @p input is aligned.
+ * @return The calculated hash.
+ */
+XXH_FORCE_INLINE XXH_PUREF xxh_u64
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
{
xxh_u64 h64;
@@ -2501,10 +3467,10 @@ XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment
}
-/*! @ingroup xxh64_family */
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
-#if 0
+#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_state_t state;
XXH64_reset(&state, seed);
@@ -2522,27 +3488,27 @@ XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t s
}
/******* Hash Streaming *******/
-
-/*! @ingroup xxh64_family*/
+#ifndef XXH_NO_STREAM
+/*! @ingroup XXH64_family*/
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
-/*! @ingroup xxh64_family */
+/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
-/*! @ingroup xxh64_family */
-XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
{
XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
-/*! @ingroup xxh64_family */
-XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
{
XXH_ASSERT(statePtr != NULL);
memset(statePtr, 0, sizeof(*statePtr));
@@ -2553,9 +3519,9 @@ XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t s
return XXH_OK;
}
-/*! @ingroup xxh64_family */
+/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode
-XXH64_update (XXH64_state_t* state, const void* input, size_t len)
+XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
@@ -2605,8 +3571,8 @@ XXH64_update (XXH64_state_t* state, const void* input, size_t len)
}
-/*! @ingroup xxh64_family */
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
{
xxh_u64 h64;
@@ -2624,20 +3590,20 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
}
-
+#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
-/*! @ingroup xxh64_family */
-XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
{
- /* XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); */
+ XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
XXH_memcpy(dst, &hash, sizeof(*dst));
}
-/*! @ingroup xxh64_family */
-XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
+/*! @ingroup XXH64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}
@@ -2650,7 +3616,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src
************************************************************************ */
/*!
* @}
- * @defgroup xxh3_impl XXH3 implementation
+ * @defgroup XXH3_impl XXH3 implementation
* @ingroup impl
* @{
*/
@@ -2658,11 +3624,19 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src
/* === Compiler specifics === */
#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
-# define XXH_RESTRICT /* disable */
+# define XXH_RESTRICT /* disable */
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
# define XXH_RESTRICT restrict
+#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
+ || (defined (__clang__)) \
+ || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
+ || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
+/*
+ * There are a LOT more compilers that recognize __restrict but this
+ * covers the major ones.
+ */
+# define XXH_RESTRICT __restrict
#else
-/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
# define XXH_RESTRICT /* disable */
#endif
@@ -2676,10 +3650,26 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src
# define XXH_unlikely(x) (x)
#endif
+#ifndef XXH_HAS_INCLUDE
+# ifdef __has_include
+/*
+ * Not defined as XXH_HAS_INCLUDE(x) (function-like) because
+ * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
+ */
+# define XXH_HAS_INCLUDE __has_include
+# else
+# define XXH_HAS_INCLUDE(x) 0
+# endif
+#endif
+
#if defined(__GNUC__) || defined(__clang__)
+# if defined(__ARM_FEATURE_SVE)
+# include <arm_sve.h>
+# endif
# if defined(__ARM_NEON__) || defined(__ARM_NEON) \
- || defined(__aarch64__) || defined(_M_ARM) \
- || defined(_M_ARM64) || defined(_M_ARM64EC)
+ || (defined(_M_ARM) && _M_ARM >= 7) \
+ || defined(_M_ARM64) || defined(_M_ARM64EC) \
+ || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
# define inline __inline__ /* circumvent a clang bug */
# include <arm_neon.h>
# undef inline
@@ -2790,7 +3780,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src
* Note that these are actually implemented as macros.
*
* If this is not defined, it is detected automatically.
- * @ref XXH_X86DISPATCH overrides this.
+ * internal macro XXH_X86DISPATCH overrides this.
*/
enum XXH_VECTOR_TYPE /* fake enum */ {
XXH_SCALAR = 0, /*!< Portable scalar version */
@@ -2802,8 +3792,13 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
*/
XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
- XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
+ XXH_NEON = 4, /*!<
+ * NEON for most ARMv7-A, all AArch64, and WASM SIMD128
+ * via the SIMDeverywhere polyfill provided with the
+ * Emscripten SDK.
+ */
XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
+ XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */
};
/*!
* @ingroup tuning
@@ -2825,12 +3820,16 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
# define XXH_AVX512 3
# define XXH_NEON 4
# define XXH_VSX 5
+# define XXH_SVE 6
#endif
#ifndef XXH_VECTOR /* can be defined on command line */
-# if ( \
+# if defined(__ARM_FEATURE_SVE)
+# define XXH_VECTOR XXH_SVE
+# elif ( \
defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
|| defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
+ || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
) && ( \
defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
@@ -2851,6 +3850,17 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
# endif
#endif
+/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
+#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
+# ifdef _MSC_VER
+# pragma warning(once : 4606)
+# else
+# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
+# endif
+# undef XXH_VECTOR
+# define XXH_VECTOR XXH_SCALAR
+#endif
+
/*
* Controls the alignment of the accumulator,
* for compatibility with aligned vector loads, which are usually faster.
@@ -2870,16 +3880,26 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
# define XXH_ACC_ALIGN 64
+# elif XXH_VECTOR == XXH_SVE /* sve */
+# define XXH_ACC_ALIGN 64
# endif
#endif
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
|| XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
+#elif XXH_VECTOR == XXH_SVE
+# define XXH_SEC_ALIGN XXH_ACC_ALIGN
#else
# define XXH_SEC_ALIGN 8
#endif
+#if defined(__GNUC__) || defined(__clang__)
+# define XXH_ALIASING __attribute__((may_alias))
+#else
+# define XXH_ALIASING /* nothing */
+#endif
+
/*
* UGLY HACK:
* GCC usually generates the best code with -O3 for xxHash.
@@ -2903,153 +3923,126 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
*/
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+ && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
# pragma GCC push_options
# pragma GCC optimize("-O2")
#endif
-
#if XXH_VECTOR == XXH_NEON
+
/*
- * NEON's setup for vmlal_u32 is a little more complicated than it is on
- * SSE2, AVX2, and VSX.
- *
- * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
- *
- * To do the same operation, the 128-bit 'Q' register needs to be split into
- * two 64-bit 'D' registers, performing this operation::
- *
- * [ a | b ]
- * | '---------. .--------' |
- * | x |
- * | .---------' '--------. |
- * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
- *
- * Due to significant changes in aarch64, the fastest method for aarch64 is
- * completely different than the fastest method for ARMv7-A.
+ * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
+ * optimizes out the entire hashLong loop because of the aliasing violation.
*
- * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
- * D11 will modify the high half of Q5. This is similar to how modifying AH
- * will only affect bits 8-15 of AX on x86.
- *
- * VZIP takes two registers, and puts even lanes in one register and odd lanes
- * in the other.
- *
- * On ARMv7-A, this strangely modifies both parameters in place instead of
- * taking the usual 3-operand form.
- *
- * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
- * lower and upper halves of the Q register to end up with the high and low
- * halves where we want - all in one instruction.
- *
- * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
- *
- * Unfortunately we need inline assembly for this: Instructions modifying two
- * registers at once is not possible in GCC or Clang's IR, and they have to
- * create a copy.
- *
- * aarch64 requires a different approach.
- *
- * In order to make it easier to write a decent compiler for aarch64, many
- * quirks were removed, such as conditional execution.
- *
- * NEON was also affected by this.
- *
- * aarch64 cannot access the high bits of a Q-form register, and writes to a
- * D-form register zero the high bits, similar to how writes to W-form scalar
- * registers (or DWORD registers on x86_64) work.
- *
- * The formerly free vget_high intrinsics now require a vext (with a few
- * exceptions)
- *
- * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
- * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
- * operand.
- *
- * The equivalent of the VZIP.32 on the lower and upper halves would be this
- * mess:
- *
- * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
- * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
- * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
+ * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
+ * so the only option is to mark it as aliasing.
+ */
+typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
+
+/*!
+ * @internal
+ * @brief `vld1q_u64` but faster and alignment-safe.
*
- * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
+ * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
+ * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
*
- * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
- * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
+ * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
+ * prohibits load-store optimizations. Therefore, a direct dereference is used.
*
- * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
+ * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
+ * unaligned load.
*/
+#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
+XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
+{
+ return *(xxh_aliasing_uint64x2_t const *)ptr;
+}
+#else
+XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
+{
+ return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
+}
+#endif
/*!
- * Function-like macro:
- * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
- * {
- * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
- * outHi = (uint32x2_t)(in >> 32);
- * in = UNDEFINED;
- * }
+ * @internal
+ * @brief `vmlal_u32` on low and high halves of a vector.
+ *
+ * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
+ * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
+ * with `vmlal_u32`.
*/
-# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
- && (defined(__GNUC__) || defined(__clang__)) \
- && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM))
-# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
- do { \
- /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
- /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
- /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
- __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
- (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
- (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
- } while (0)
-# else
-# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
- do { \
- (outLo) = vmovn_u64 (in); \
- (outHi) = vshrn_n_u64 ((in), 32); \
- } while (0)
-# endif
+#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+ /* Inline assembly is the only way */
+ __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
+ return acc;
+}
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+ /* This intrinsic works as expected */
+ return vmlal_high_u32(acc, lhs, rhs);
+}
+#else
+/* Portable intrinsic versions */
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+ return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
+}
+/*! @copydoc XXH_vmlal_low_u32
+ * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
+XXH_FORCE_INLINE uint64x2_t
+XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
+{
+ return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
+}
+#endif
/*!
* @ingroup tuning
* @brief Controls the NEON to scalar ratio for XXH3
*
- * On AArch64 when not optimizing for size, XXH3 will run 6 lanes using NEON and
- * 2 lanes on scalar by default.
+ * This can be set to 2, 4, 6, or 8.
*
- * This can be set to 2, 4, 6, or 8. ARMv7 will default to all 8 NEON lanes, as the
- * emulated 64-bit arithmetic is too slow.
+ * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
*
- * Modern ARM CPUs are _very_ sensitive to how their pipelines are used.
+ * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
+ * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
+ * bandwidth.
*
- * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but it can't
- * have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions,
- * you are only using 2/3 of the CPU bandwidth.
- *
- * This is even more noticeable on the more advanced cores like the A76 which
+ * This is even more noticeable on the more advanced cores like the Cortex-A76 which
* can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
*
- * Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the
- * remaining lanes will use scalar instructions. This improves the bandwidth
- * and also gives the integer pipelines something to do besides twiddling loop
- * counters and pointers.
+ * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
+ * and 2 scalar lanes, which is chosen by default.
+ *
+ * This does not apply to Apple processors or 32-bit processors, which run better with
+ * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
*
* This change benefits CPUs with large micro-op buffers without negatively affecting
- * other CPUs:
+ * most other CPUs:
*
* | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. |
* |:----------------------|:--------------------|----------:|-----------:|------:|
* | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% |
* | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% |
* | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% |
+ * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% |
*
* It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
*
+ * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
+ * it effectively becomes worse 4.
+ *
* @see XXH3_accumulate_512_neon()
*/
# ifndef XXH3_NEON_LANES
# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
- && !defined(__OPTIMIZE_SIZE__)
+ && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
# define XXH3_NEON_LANES 6
# else
# define XXH3_NEON_LANES XXH_ACC_NB
@@ -3066,27 +4059,42 @@ enum XXH_VECTOR_TYPE /* fake enum */ {
* inconsistent intrinsics, spotty coverage, and multiple endiannesses.
*/
#if XXH_VECTOR == XXH_VSX
+/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
+ * and `pixel`. This is a problem for obvious reasons.
+ *
+ * These keywords are unnecessary; the spec literally says they are
+ * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
+ * after including the header.
+ *
+ * We use pragma push_macro/pop_macro to keep the namespace clean. */
+# pragma push_macro("bool")
+# pragma push_macro("vector")
+# pragma push_macro("pixel")
+/* silence potential macro redefined warnings */
+# undef bool
+# undef vector
+# undef pixel
+
# if defined(__s390x__)
# include <s390intrin.h>
# else
-/* gcc's altivec.h can have the unwanted consequence to unconditionally
- * #define bool, vector, and pixel keywords,
- * with bad consequences for programs already using these keywords for other purposes.
- * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
- * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
- * but it seems that, in some cases, it isn't.
- * Force the build macro to be defined, so that keywords are not altered.
- */
-# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
-# define __APPLE_ALTIVEC__
-# endif
# include <altivec.h>
# endif
+/* Restore the original macro values, if applicable. */
+# pragma pop_macro("pixel")
+# pragma pop_macro("vector")
+# pragma pop_macro("bool")
+
typedef __vector unsigned long long xxh_u64x2;
typedef __vector unsigned char xxh_u8x16;
typedef __vector unsigned xxh_u32x4;
+/*
+ * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
+ */
+typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
+
# ifndef XXH_VSX_BE
# if defined(__BIG_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
@@ -3138,8 +4146,9 @@ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
/* s390x is always big endian, no issue on this platform */
# define XXH_vec_mulo vec_mulo
# define XXH_vec_mule vec_mule
-# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
+# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
+ /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
# define XXH_vec_mulo __builtin_altivec_vmulouw
# define XXH_vec_mule __builtin_altivec_vmuleuw
# else
@@ -3160,13 +4169,28 @@ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
# endif /* XXH_vec_mulo, XXH_vec_mule */
#endif /* XXH_VECTOR == XXH_VSX */
+#if XXH_VECTOR == XXH_SVE
+#define ACCRND(acc, offset) \
+do { \
+ svuint64_t input_vec = svld1_u64(mask, xinput + offset); \
+ svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \
+ svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \
+ svuint64_t swapped = svtbl_u64(input_vec, kSwap); \
+ svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \
+ svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \
+ svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
+ acc = svadd_u64_x(mask, acc, mul); \
+} while (0)
+#endif /* XXH_VECTOR == XXH_SVE */
/* prefetch
* can be disabled, by declaring XXH_NO_PREFETCH build macro */
#if defined(XXH_NO_PREFETCH)
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
#else
-# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
+# if XXH_SIZE_OPT >= 1
+# define XXH_PREFETCH(ptr) (void)(ptr)
+# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
@@ -3203,6 +4227,8 @@ XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
+static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
+static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
#ifdef XXH_OLD_NAMES
# define kSecret XXH3_kSecret
@@ -3394,7 +4420,7 @@ XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
}
/*! Seems to produce slightly better code on GCC for some reason. */
-XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
+XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
{
XXH_ASSERT(0 <= shift && shift < 64);
return v64 ^ (v64 >> shift);
@@ -3407,7 +4433,7 @@ XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
{
h64 = XXH_xorshift64(h64, 37);
- h64 *= 0x165667919E3779F9ULL;
+ h64 *= PRIME_MX1;
h64 = XXH_xorshift64(h64, 32);
return h64;
}
@@ -3421,9 +4447,9 @@ static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
{
/* this mix is inspired by Pelle Evensen's rrmxmx */
h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
- h64 *= 0x9FB21C651E98DF25ULL;
+ h64 *= PRIME_MX2;
h64 ^= (h64 >> 35) + len ;
- h64 *= 0x9FB21C651E98DF25ULL;
+ h64 *= PRIME_MX2;
return XXH_xorshift64(h64, 28);
}
@@ -3461,7 +4487,7 @@ static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
*
* This adds an extra layer of strength for custom secrets.
*/
-XXH_FORCE_INLINE XXH64_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
@@ -3483,7 +4509,7 @@ XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_h
}
}
-XXH_FORCE_INLINE XXH64_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
@@ -3499,7 +4525,7 @@ XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_h
}
}
-XXH_FORCE_INLINE XXH64_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
@@ -3516,7 +4542,7 @@ XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_
}
}
-XXH_FORCE_INLINE XXH64_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
@@ -3586,7 +4612,7 @@ XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
-XXH_FORCE_INLINE XXH64_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
@@ -3595,6 +4621,14 @@ XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
XXH_ASSERT(16 < len && len <= 128);
{ xxh_u64 acc = len * XXH_PRIME64_1;
+#if XXH_SIZE_OPT >= 1
+ /* Smaller and cleaner, but slightly slower. */
+ unsigned int i = (unsigned int)(len - 1) / 32;
+ do {
+ acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
+ acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
+ } while (i-- != 0);
+#else
if (len > 32) {
if (len > 64) {
if (len > 96) {
@@ -3609,14 +4643,17 @@ XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
}
acc += XXH3_mix16B(input+0, secret+0, seed);
acc += XXH3_mix16B(input+len-16, secret+16, seed);
-
+#endif
return XXH3_avalanche(acc);
}
}
+/*!
+ * @brief Maximum size of "short" key in bytes.
+ */
#define XXH3_MIDSIZE_MAX 240
-XXH_NO_INLINE XXH64_hash_t
+XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
@@ -3628,13 +4665,17 @@ XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
#define XXH3_MIDSIZE_LASTOFFSET 17
{ xxh_u64 acc = len * XXH_PRIME64_1;
- int const nbRounds = (int)len / 16;
- int i;
+ xxh_u64 acc_end;
+ unsigned int const nbRounds = (unsigned int)len / 16;
+ unsigned int i;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
for (i=0; i<8; i++) {
acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
}
- acc = XXH3_avalanche(acc);
+ /* last bytes */
+ acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
XXH_ASSERT(nbRounds >= 8);
+ acc = XXH3_avalanche(acc);
#if defined(__clang__) /* Clang */ \
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
@@ -3661,11 +4702,13 @@ XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
#pragma clang loop vectorize(disable)
#endif
for (i=8 ; i < nbRounds; i++) {
- acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
+ /*
+ * Prevents clang for unrolling the acc loop and interleaving with this one.
+ */
+ XXH_COMPILER_GUARD(acc);
+ acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
- /* last bytes */
- acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
- return XXH3_avalanche(acc);
+ return XXH3_avalanche(acc + acc_end);
}
}
@@ -3681,6 +4724,47 @@ XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
# define ACC_NB XXH_ACC_NB
#endif
+#ifndef XXH_PREFETCH_DIST
+# ifdef __clang__
+# define XXH_PREFETCH_DIST 320
+# else
+# if (XXH_VECTOR == XXH_AVX512)
+# define XXH_PREFETCH_DIST 512
+# else
+# define XXH_PREFETCH_DIST 384
+# endif
+# endif /* __clang__ */
+#endif /* XXH_PREFETCH_DIST */
+
+/*
+ * These macros are to generate an XXH3_accumulate() function.
+ * The two arguments select the name suffix and target attribute.
+ *
+ * The name of this symbol is XXH3_accumulate_<name>() and it calls
+ * XXH3_accumulate_512_<name>().
+ *
+ * It may be useful to hand implement this function if the compiler fails to
+ * optimize the inline function.
+ */
+#define XXH3_ACCUMULATE_TEMPLATE(name) \
+void \
+XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \
+ const xxh_u8* XXH_RESTRICT input, \
+ const xxh_u8* XXH_RESTRICT secret, \
+ size_t nbStripes) \
+{ \
+ size_t n; \
+ for (n = 0; n < nbStripes; n++ ) { \
+ const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \
+ XXH_PREFETCH(in + XXH_PREFETCH_DIST); \
+ XXH3_accumulate_512_##name( \
+ acc, \
+ in, \
+ secret + n*XXH_SECRET_CONSUME_RATE); \
+ } \
+}
+
+
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
{
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
@@ -3749,7 +4833,7 @@ XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
/* data_key = data_vec ^ key_vec; */
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
- __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
/* xacc[0] += swap(data_vec); */
@@ -3759,6 +4843,7 @@ XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
*xacc = _mm512_add_epi64(product, sum);
}
}
+XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
/*
* XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
@@ -3792,13 +4877,12 @@ XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
/* xacc[0] ^= (xacc[0] >> 47) */
__m512i const acc_vec = *xacc;
__m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
- __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
/* xacc[0] ^= secret; */
__m512i const key_vec = _mm512_loadu_si512 (secret);
- __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
+ __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
/* xacc[0] *= XXH_PRIME32_1; */
- __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
__m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
__m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
*xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
@@ -3813,7 +4897,8 @@ XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
XXH_ASSERT(((size_t)customSecret & 63) == 0);
(void)(&XXH_writeLE64);
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
- __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
+ __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
+ __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
__m512i* const dest = ( __m512i*) customSecret;
@@ -3821,14 +4906,7 @@ XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
XXH_ASSERT(((size_t)dest & 63) == 0);
for (i=0; i < nbRounds; ++i) {
- /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
- * this will warn "discards 'const' qualifier". */
- union {
- const __m512i* cp;
- void* p;
- } remote_const_void;
- remote_const_void.cp = src + i;
- dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
+ dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
} }
}
@@ -3864,7 +4942,7 @@ XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
/* data_key = data_vec ^ key_vec; */
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
- __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
@@ -3874,6 +4952,7 @@ XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
xacc[i] = _mm256_add_epi64(product, sum);
} }
}
+XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
@@ -3896,7 +4975,7 @@ XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
- __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
@@ -3928,12 +5007,12 @@ XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTR
XXH_ASSERT(((size_t)dest & 31) == 0);
/* GCC -O2 need unroll loop manually */
- dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
- dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
- dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
- dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
- dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
- dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
+ dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
+ dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
+ dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
+ dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
+ dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
+ dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
}
}
@@ -3980,6 +5059,7 @@ XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
xacc[i] = _mm_add_epi64(product, sum);
} }
}
+XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
@@ -4058,14 +5138,28 @@ XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
/*!
* @internal
- * @brief The bulk processing loop for NEON.
+ * @brief The bulk processing loop for NEON and WASM SIMD128.
*
* The NEON code path is actually partially scalar when running on AArch64. This
* is to optimize the pipelining and can have up to 15% speedup depending on the
* CPU, and it also mitigates some GCC codegen issues.
*
* @see XXH3_NEON_LANES for configuring this and details about this optimization.
+ *
+ * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
+ * integers instead of the other platforms which mask full 64-bit vectors,
+ * so the setup is more complicated than just shifting right.
+ *
+ * Additionally, there is an optimization for 4 lanes at once noted below.
+ *
+ * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
+ * there needs to be *three* versions of the accumulate operation used
+ * for the remaining 2 lanes.
+ *
+ * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
+ * nearly perfectly.
*/
+
XXH_FORCE_INLINE void
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
@@ -4073,101 +5167,182 @@ XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
- {
- uint64x2_t* const xacc = (uint64x2_t *) acc;
+ { /* GCC for darwin arm64 does not like aliasing here */
+ xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
- uint8_t const* const xinput = (const uint8_t *) input;
- uint8_t const* const xsecret = (const uint8_t *) secret;
+ uint8_t const* xinput = (const uint8_t *) input;
+ uint8_t const* xsecret = (const uint8_t *) secret;
size_t i;
- /* NEON for the first few lanes (these loops are normally interleaved) */
- for (i=0; i < XXH3_NEON_LANES / 2; i++) {
+#ifdef __wasm_simd128__
+ /*
+ * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
+ * is constant propagated, which results in it converting it to this
+ * inside the loop:
+ *
+ * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0)
+ * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
+ * ...
+ *
+ * This requires a full 32-bit address immediate (and therefore a 6 byte
+ * instruction) as well as an add for each offset.
+ *
+ * Putting an asm guard prevents it from folding (at the cost of losing
+ * the alignment hint), and uses the free offset in `v128.load` instead
+ * of adding secret_offset each time which overall reduces code size by
+ * about a kilobyte and improves performance.
+ */
+ XXH_COMPILER_GUARD(xsecret);
+#endif
+ /* Scalar lanes use the normal scalarRound routine */
+ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
+ XXH3_scalarRound(acc, input, secret, i);
+ }
+ i = 0;
+ /* 4 NEON lanes at a time. */
+ for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
/* data_vec = xinput[i]; */
- uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
+ uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16));
+ uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16));
/* key_vec = xsecret[i]; */
- uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
- uint64x2_t data_key;
- uint32x2_t data_key_lo, data_key_hi;
- /* xacc[i] += swap(data_vec); */
- uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
- uint64x2_t const swapped = vextq_u64(data64, data64, 1);
- xacc[i] = vaddq_u64 (xacc[i], swapped);
+ uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16));
+ uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16));
+ /* data_swap = swap(data_vec) */
+ uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
+ uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
/* data_key = data_vec ^ key_vec; */
- data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
- /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
- * data_key_hi = (uint32x2_t) (data_key >> 32);
- * data_key = UNDEFINED; */
- XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
- /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
- xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
+ uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
+ uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
+ /*
+ * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
+ * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
+ * get one vector with the low 32 bits of each lane, and one vector
+ * with the high 32 bits of each lane.
+ *
+ * The intrinsic returns a double vector because the original ARMv7-a
+ * instruction modified both arguments in place. AArch64 and SIMD128 emit
+ * two instructions from this intrinsic.
+ *
+ * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
+ * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
+ */
+ uint32x4x2_t unzipped = vuzpq_u32(
+ vreinterpretq_u32_u64(data_key_1),
+ vreinterpretq_u32_u64(data_key_2)
+ );
+ /* data_key_lo = data_key & 0xFFFFFFFF */
+ uint32x4_t data_key_lo = unzipped.val[0];
+ /* data_key_hi = data_key >> 32 */
+ uint32x4_t data_key_hi = unzipped.val[1];
+ /*
+ * Then, we can split the vectors horizontally and multiply which, as for most
+ * widening intrinsics, have a variant that works on both high half vectors
+ * for free on AArch64. A similar instruction is available on SIMD128.
+ *
+ * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
+ */
+ uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
+ uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
+ /*
+ * Clang reorders
+ * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s
+ * c += a; // add acc.2d, acc.2d, swap.2d
+ * to
+ * c += a; // add acc.2d, acc.2d, swap.2d
+ * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s
+ *
+ * While it would make sense in theory since the addition is faster,
+ * for reasons likely related to umlal being limited to certain NEON
+ * pipelines, this is worse. A compiler guard fixes this.
+ */
+ XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
+ XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
+ /* xacc[i] = acc_vec + sum; */
+ xacc[i] = vaddq_u64(xacc[i], sum_1);
+ xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
}
- /* Scalar for the remainder. This may be a zero iteration loop. */
- for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
- XXH3_scalarRound(acc, input, secret, i);
+ /* Operate on the remaining NEON lanes 2 at a time. */
+ for (; i < XXH3_NEON_LANES / 2; i++) {
+ /* data_vec = xinput[i]; */
+ uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16));
+ /* key_vec = xsecret[i]; */
+ uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
+ /* acc_vec_2 = swap(data_vec) */
+ uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
+ /* data_key = data_vec ^ key_vec; */
+ uint64x2_t data_key = veorq_u64(data_vec, key_vec);
+ /* For two lanes, just use VMOVN and VSHRN. */
+ /* data_key_lo = data_key & 0xFFFFFFFF; */
+ uint32x2_t data_key_lo = vmovn_u64(data_key);
+ /* data_key_hi = data_key >> 32; */
+ uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
+ /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
+ uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
+ /* Same Clang workaround as before */
+ XXH_COMPILER_GUARD_CLANG_NEON(sum);
+ /* xacc[i] = acc_vec + sum; */
+ xacc[i] = vaddq_u64 (xacc[i], sum);
}
}
}
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
- { uint64x2_t* xacc = (uint64x2_t*) acc;
+ { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc;
uint8_t const* xsecret = (uint8_t const*) secret;
- uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
size_t i;
- /* NEON for the first few lanes (these loops are normally interleaved) */
+ /* WASM uses operator overloads and doesn't need these. */
+#ifndef __wasm_simd128__
+ /* { prime32_1, prime32_1 } */
+ uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
+ /* { 0, prime32_1, 0, prime32_1 } */
+ uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
+#endif
+
+ /* AArch64 uses both scalar and neon at the same time */
+ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
+ XXH3_scalarScrambleRound(acc, secret, i);
+ }
for (i=0; i < XXH3_NEON_LANES / 2; i++) {
/* xacc[i] ^= (xacc[i] >> 47); */
uint64x2_t acc_vec = xacc[i];
- uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
- uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
+ uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
+ uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
- uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16));
- uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec));
-
+ uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
+ uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1 */
- uint32x2_t data_key_lo, data_key_hi;
- /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
- * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
- * xacc[i] = UNDEFINED; */
- XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
- { /*
- * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
- *
- * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
- * incorrectly "optimize" this:
- * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
- * shifted = vshll_n_u32(tmp, 32);
- * to this:
- * tmp = "vmulq_u64"(a, b); // no such thing!
- * shifted = vshlq_n_u64(tmp, 32);
- *
- * However, unlike SSE, Clang lacks a 64-bit multiply routine
- * for NEON, and it scalarizes two 64-bit multiplies instead.
- *
- * vmull_u32 has the same timing as vmul_u32, and it avoids
- * this bug completely.
- * See https://bugs.llvm.org/show_bug.cgi?id=39967
- */
- uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
- /* xacc[i] = prod_hi << 32; */
- xacc[i] = vshlq_n_u64(prod_hi, 32);
- /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
- xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
- }
- }
- /* Scalar for the remainder. This may be a zero iteration loop. */
- for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
- XXH3_scalarScrambleRound(acc, secret, i);
+#ifdef __wasm_simd128__
+ /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
+ xacc[i] = data_key * XXH_PRIME32_1;
+#else
+ /*
+ * Expanded version with portable NEON intrinsics
+ *
+ * lo(x) * lo(y) + (hi(x) * lo(y) << 32)
+ *
+ * prod_hi = hi(data_key) * lo(prime) << 32
+ *
+ * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
+ * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
+ * and avoid the shift.
+ */
+ uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
+ /* Extract low bits for vmlal_u32 */
+ uint32x2_t data_key_lo = vmovn_u64(data_key);
+ /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
+ xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
+#endif
}
}
}
-
#endif
#if (XXH_VECTOR == XXH_VSX)
@@ -4178,23 +5353,23 @@ XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT secret)
{
/* presumed aligned */
- unsigned int* const xacc = (unsigned int*) acc;
- xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
- xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
+ xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
+ xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */
+ xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */
xxh_u64x2 const v32 = { 32, 32 };
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* data_vec = xinput[i]; */
- xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
+ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
/* key_vec = xsecret[i]; */
- xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* shuffled = (data_key << 32) | (data_key >> 32); */
xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
/* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
/* acc_vec = xacc[i]; */
- xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i);
+ xxh_u64x2 acc_vec = xacc[i];
acc_vec += product;
/* swap high and low halves */
@@ -4203,18 +5378,18 @@ XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
#else
acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
#endif
- /* xacc[i] = acc_vec; */
- vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i);
+ xacc[i] = acc_vec;
}
}
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
- { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
- const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
+ { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
+ const xxh_u8* const xsecret = (const xxh_u8*) secret;
/* constants */
xxh_u64x2 const v32 = { 32, 32 };
xxh_u64x2 const v47 = { 47, 47 };
@@ -4226,7 +5401,7 @@ XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
/* xacc[i] ^= xsecret[i]; */
- xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* xacc[i] *= XXH_PRIME32_1 */
@@ -4240,8 +5415,148 @@ XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
#endif
+#if (XXH_VECTOR == XXH_SVE)
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ uint64_t *xacc = (uint64_t *)acc;
+ const uint64_t *xinput = (const uint64_t *)(const void *)input;
+ const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
+ svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
+ uint64_t element_count = svcntd();
+ if (element_count >= 8) {
+ svbool_t mask = svptrue_pat_b64(SV_VL8);
+ svuint64_t vacc = svld1_u64(mask, xacc);
+ ACCRND(vacc, 0);
+ svst1_u64(mask, xacc, vacc);
+ } else if (element_count == 2) { /* sve128 */
+ svbool_t mask = svptrue_pat_b64(SV_VL2);
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+ svuint64_t acc1 = svld1_u64(mask, xacc + 2);
+ svuint64_t acc2 = svld1_u64(mask, xacc + 4);
+ svuint64_t acc3 = svld1_u64(mask, xacc + 6);
+ ACCRND(acc0, 0);
+ ACCRND(acc1, 2);
+ ACCRND(acc2, 4);
+ ACCRND(acc3, 6);
+ svst1_u64(mask, xacc + 0, acc0);
+ svst1_u64(mask, xacc + 2, acc1);
+ svst1_u64(mask, xacc + 4, acc2);
+ svst1_u64(mask, xacc + 6, acc3);
+ } else {
+ svbool_t mask = svptrue_pat_b64(SV_VL4);
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+ svuint64_t acc1 = svld1_u64(mask, xacc + 4);
+ ACCRND(acc0, 0);
+ ACCRND(acc1, 4);
+ svst1_u64(mask, xacc + 0, acc0);
+ svst1_u64(mask, xacc + 4, acc1);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
+ const xxh_u8* XXH_RESTRICT input,
+ const xxh_u8* XXH_RESTRICT secret,
+ size_t nbStripes)
+{
+ if (nbStripes != 0) {
+ uint64_t *xacc = (uint64_t *)acc;
+ const uint64_t *xinput = (const uint64_t *)(const void *)input;
+ const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
+ svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
+ uint64_t element_count = svcntd();
+ if (element_count >= 8) {
+ svbool_t mask = svptrue_pat_b64(SV_VL8);
+ svuint64_t vacc = svld1_u64(mask, xacc + 0);
+ do {
+ /* svprfd(svbool_t, void *, enum svfprop); */
+ svprfd(mask, xinput + 128, SV_PLDL1STRM);
+ ACCRND(vacc, 0);
+ xinput += 8;
+ xsecret += 1;
+ nbStripes--;
+ } while (nbStripes != 0);
+
+ svst1_u64(mask, xacc + 0, vacc);
+ } else if (element_count == 2) { /* sve128 */
+ svbool_t mask = svptrue_pat_b64(SV_VL2);
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+ svuint64_t acc1 = svld1_u64(mask, xacc + 2);
+ svuint64_t acc2 = svld1_u64(mask, xacc + 4);
+ svuint64_t acc3 = svld1_u64(mask, xacc + 6);
+ do {
+ svprfd(mask, xinput + 128, SV_PLDL1STRM);
+ ACCRND(acc0, 0);
+ ACCRND(acc1, 2);
+ ACCRND(acc2, 4);
+ ACCRND(acc3, 6);
+ xinput += 8;
+ xsecret += 1;
+ nbStripes--;
+ } while (nbStripes != 0);
+
+ svst1_u64(mask, xacc + 0, acc0);
+ svst1_u64(mask, xacc + 2, acc1);
+ svst1_u64(mask, xacc + 4, acc2);
+ svst1_u64(mask, xacc + 6, acc3);
+ } else {
+ svbool_t mask = svptrue_pat_b64(SV_VL4);
+ svuint64_t acc0 = svld1_u64(mask, xacc + 0);
+ svuint64_t acc1 = svld1_u64(mask, xacc + 4);
+ do {
+ svprfd(mask, xinput + 128, SV_PLDL1STRM);
+ ACCRND(acc0, 0);
+ ACCRND(acc1, 4);
+ xinput += 8;
+ xsecret += 1;
+ nbStripes--;
+ } while (nbStripes != 0);
+
+ svst1_u64(mask, xacc + 0, acc0);
+ svst1_u64(mask, xacc + 4, acc1);
+ }
+ }
+}
+
+#endif
+
/* scalar variants - universal */
+#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
+/*
+ * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
+ * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
+ *
+ * While this might not seem like much, as AArch64 is a 64-bit architecture, only
+ * big Cortex designs have a full 64-bit multiplier.
+ *
+ * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
+ * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
+ * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
+ *
+ * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
+ * not have this penalty and does the mask automatically.
+ */
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
+{
+ xxh_u64 ret;
+ /* note: %x = 64-bit register, %w = 32-bit register */
+ __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
+ return ret;
+}
+#else
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
+{
+ return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
+}
+#endif
+
/*!
* @internal
* @brief Scalar round for @ref XXH3_accumulate_512_scalar().
@@ -4264,7 +5579,7 @@ XXH3_scalarRound(void* XXH_RESTRICT acc,
xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
- xacc[lane] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
+ xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
}
}
@@ -4278,10 +5593,18 @@ XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
const void* XXH_RESTRICT secret)
{
size_t i;
+ /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
+#if defined(__GNUC__) && !defined(__clang__) \
+ && (defined(__arm__) || defined(__thumb2__)) \
+ && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
+ && XXH_SIZE_OPT <= 0
+# pragma GCC unroll 8
+#endif
for (i=0; i < XXH_ACC_NB; i++) {
XXH3_scalarRound(acc, input, secret, i);
}
}
+XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
/*!
* @internal
@@ -4333,10 +5656,10 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
const xxh_u8* kSecretPtr = XXH3_kSecret;
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
-#if defined(__clang__) && defined(__aarch64__)
+#if defined(__GNUC__) && defined(__aarch64__)
/*
* UGLY HACK:
- * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
+ * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
* placed sequentially, in order, at the top of the unrolled loop.
*
* While MOVK is great for generating constants (2 cycles for a 64-bit
@@ -4351,7 +5674,7 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
* ADD
* SUB STR
* STR
- * By forcing loads from memory (as the asm line causes Clang to assume
+ * By forcing loads from memory (as the asm line causes the compiler to assume
* that XXH3_kSecretPtr has been changed), the pipelines are used more
* efficiently:
* I L S
@@ -4368,17 +5691,11 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
*/
XXH_COMPILER_GUARD(kSecretPtr);
#endif
- /*
- * Note: in debug mode, this overrides the asm optimization
- * and Clang will emit MOVK chains again.
- */
- XXH_ASSERT(kSecretPtr == XXH3_kSecret);
-
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
int i;
for (i=0; i < nbRounds; i++) {
/*
- * The asm hack causes Clang to assume that kSecretPtr aliases with
+ * The asm hack causes the compiler to assume that kSecretPtr aliases with
* customSecret, and on aarch64, this prevented LDP from merging two
* loads together for free. Putting the loads together before the stores
* properly generates LDP.
@@ -4391,7 +5708,7 @@ XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
}
-typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
+typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
@@ -4399,82 +5716,63 @@ typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
#if (XXH_VECTOR == XXH_AVX512)
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
+#define XXH3_accumulate XXH3_accumulate_avx512
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
#elif (XXH_VECTOR == XXH_AVX2)
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
+#define XXH3_accumulate XXH3_accumulate_avx2
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
#elif (XXH_VECTOR == XXH_SSE2)
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
+#define XXH3_accumulate XXH3_accumulate_sse2
#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
#elif (XXH_VECTOR == XXH_NEON)
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
+#define XXH3_accumulate XXH3_accumulate_neon
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_VSX)
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
+#define XXH3_accumulate XXH3_accumulate_vsx
#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+#elif (XXH_VECTOR == XXH_SVE)
+#define XXH3_accumulate_512 XXH3_accumulate_512_sve
+#define XXH3_accumulate XXH3_accumulate_sve
+#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
#else /* scalar */
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
+#define XXH3_accumulate XXH3_accumulate_scalar
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#endif
-
-
-#ifndef XXH_PREFETCH_DIST
-# ifdef __clang__
-# define XXH_PREFETCH_DIST 320
-# else
-# if (XXH_VECTOR == XXH_AVX512)
-# define XXH_PREFETCH_DIST 512
-# else
-# define XXH_PREFETCH_DIST 384
-# endif
-# endif /* __clang__ */
-#endif /* XXH_PREFETCH_DIST */
-
-/*
- * XXH3_accumulate()
- * Loops over XXH3_accumulate_512().
- * Assumption: nbStripes will not overflow the secret size
- */
-XXH_FORCE_INLINE void
-XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
- const xxh_u8* XXH_RESTRICT input,
- const xxh_u8* XXH_RESTRICT secret,
- size_t nbStripes,
- XXH3_f_accumulate_512 f_acc512)
-{
- size_t n;
- for (n = 0; n < nbStripes; n++ ) {
- const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
- XXH_PREFETCH(in + XXH_PREFETCH_DIST);
- f_acc512(acc,
- in,
- secret + n*XXH_SECRET_CONSUME_RATE);
- }
-}
+#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
+# undef XXH3_initCustomSecret
+# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+#endif
XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
@@ -4486,7 +5784,7 @@ XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
for (n = 0; n < nb_blocks; n++) {
- XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
+ f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
}
@@ -4494,12 +5792,12 @@ XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
XXH_ASSERT(len > XXH_STRIPE_LEN);
{ size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
- XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
+ f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
/* last stripe */
{ const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
- f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
+ XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
} }
}
@@ -4544,12 +5842,12 @@ XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secre
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
const void* XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
- XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
@@ -4563,13 +5861,15 @@ XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
* It's important for performance to transmit secret's size (when it's static)
* so that the compiler can properly optimize the vectorized loop.
* This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
+ * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
+ * breaks -Og, this is XXH_NO_INLINE.
*/
-XXH_FORCE_INLINE XXH64_hash_t
+XXH3_WITH_SECRET_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64;
- return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
+ return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
}
/*
@@ -4578,12 +5878,12 @@ XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
* Note that inside this no_inline function, we do inline the internal loop,
* and provide a statically defined secret size to allow optimization of vector loop.
*/
-XXH_NO_INLINE XXH64_hash_t
+XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
- return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
+ return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
}
/*
@@ -4600,18 +5900,20 @@ XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
XXH64_hash_t seed,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble,
XXH3_f_initCustomSecret f_initSec)
{
+#if XXH_SIZE_OPT <= 0
if (seed == 0)
return XXH3_hashLong_64b_internal(input, len,
XXH3_kSecret, sizeof(XXH3_kSecret),
- f_acc512, f_scramble);
+ f_acc, f_scramble);
+#endif
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
f_initSec(secret, seed);
return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
- f_acc512, f_scramble);
+ f_acc, f_scramble);
}
}
@@ -4619,12 +5921,12 @@ XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
* It's important for performance that XXH3_hashLong is not inlined.
*/
XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_withSeed(const void* input, size_t len,
- XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
+XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)secret; (void)secretLen;
return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
- XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
+ XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}
@@ -4656,37 +5958,37 @@ XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
/* === Public entry point === */
-/*! @ingroup xxh3_family */
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
{
- return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
+ return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
{
- return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
+ return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
{
- return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
+ return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
}
XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
+XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
- if (len <= XXH3_MIDSIZE_MAX)
- return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
- return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
+ if (length <= XXH3_MIDSIZE_MAX)
+ return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+ return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
}
/* === XXH3 streaming === */
-
+#ifndef XXH_NO_STREAM
/*
* Malloc's a pointer that is always aligned to align.
*
@@ -4710,7 +6012,7 @@ XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret,
*
* Align must be a power of 2 and 8 <= align <= 128.
*/
-static void* XXH_alignedMalloc(size_t s, size_t align)
+static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
{
XXH_ASSERT(align <= 128 && align >= 8); /* range check */
XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
@@ -4752,7 +6054,15 @@ static void XXH_alignedFree(void* p)
XXH_free(base);
}
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
+/*!
+ * @brief Allocate an @ref XXH3_state_t.
+ *
+ * @return An allocated pointer of @ref XXH3_state_t on success.
+ * @return `NULL` on failure.
+ *
+ * @note Must be freed with XXH3_freeState().
+ */
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
{
XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
@@ -4761,16 +6071,25 @@ XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
return state;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
+/*!
+ * @brief Frees an @ref XXH3_state_t.
+ *
+ * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
+ *
+ * @return @ref XXH_OK.
+ *
+ * @note Must be allocated with XXH3_createState().
+ */
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
{
XXH_alignedFree(statePtr);
return XXH_OK;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
-XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
+XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
{
XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
}
@@ -4802,18 +6121,18 @@ XXH3_reset_internal(XXH3_state_t* statePtr,
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset(XXH3_state_t* statePtr)
+XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_reset_internal(statePtr, 0, secret, secretSize);
@@ -4822,9 +6141,9 @@ XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t
return XXH_OK;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
if (statePtr == NULL) return XXH_ERROR;
if (seed==0) return XXH3_64bits_reset(statePtr);
@@ -4834,9 +6153,9 @@ XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
return XXH_OK;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
+XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
{
if (statePtr == NULL) return XXH_ERROR;
if (secret == NULL) return XXH_ERROR;
@@ -4846,35 +6165,61 @@ XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret,
return XXH_OK;
}
-/* Note : when XXH3_consumeStripes() is invoked,
- * there must be a guarantee that at least one more byte must be consumed from input
- * so that the function can blindly consume all stripes using the "normal" secret segment */
-XXH_FORCE_INLINE void
+/*!
+ * @internal
+ * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
+ *
+ * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
+ *
+ * @param acc Pointer to the 8 accumulator lanes
+ * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block*
+ * @param nbStripesPerBlock Number of stripes in a block
+ * @param input Input pointer
+ * @param nbStripes Number of stripes to process
+ * @param secret Secret pointer
+ * @param secretLimit Offset of the last block in @p secret
+ * @param f_acc Pointer to an XXH3_accumulate implementation
+ * @param f_scramble Pointer to an XXH3_scrambleAcc implementation
+ * @return Pointer past the end of @p input after processing
+ */
+XXH_FORCE_INLINE const xxh_u8 *
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
- XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
- XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
- if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
- /* need a scrambling operation */
- size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
- size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
- XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
- f_scramble(acc, secret + secretLimit);
- XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
- *nbStripesSoFarPtr = nbStripesAfterBlock;
- } else {
- XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
+ const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
+ /* Process full blocks */
+ if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
+ /* Process the initial partial block... */
+ size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
+
+ do {
+ /* Accumulate and scramble */
+ f_acc(acc, input, initialSecret, nbStripesThisIter);
+ f_scramble(acc, secret + secretLimit);
+ input += nbStripesThisIter * XXH_STRIPE_LEN;
+ nbStripes -= nbStripesThisIter;
+ /* Then continue the loop with the full block size */
+ nbStripesThisIter = nbStripesPerBlock;
+ initialSecret = secret;
+ } while (nbStripes >= nbStripesPerBlock);
+ *nbStripesSoFarPtr = 0;
+ }
+ /* Process a partial block */
+ if (nbStripes > 0) {
+ f_acc(acc, input, initialSecret, nbStripes);
+ input += nbStripes * XXH_STRIPE_LEN;
*nbStripesSoFarPtr += nbStripes;
}
+ /* Return end pointer */
+ return input;
}
#ifndef XXH3_STREAM_USE_STACK
-# ifndef __clang__ /* clang doesn't need additional stack space */
+# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
# define XXH3_STREAM_USE_STACK 1
# endif
#endif
@@ -4884,7 +6229,7 @@ XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
const xxh_u8* XXH_RESTRICT input, size_t len,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
if (input==NULL) {
@@ -4900,7 +6245,8 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
* when operating accumulators directly into state.
* Operating into stack space seems to enable proper optimization.
* clang, on the other hand, doesn't seem to need this trick */
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
+ XXH_memcpy(acc, state->acc, sizeof(acc));
#else
xxh_u64* XXH_RESTRICT const acc = state->acc;
#endif
@@ -4908,7 +6254,7 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
/* small input : just fill in tmp buffer */
- if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
+ if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
@@ -4930,57 +6276,20 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
&state->nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
secret, state->secretLimit,
- f_acc512, f_scramble);
+ f_acc, f_scramble);
state->bufferedSize = 0;
}
XXH_ASSERT(input < bEnd);
-
- /* large input to consume : ingest per full block */
- if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
+ if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
- XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
- /* join to current block's end */
- { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
- XXH_ASSERT(nbStripesToEnd <= nbStripes);
- XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
- f_scramble(acc, secret + state->secretLimit);
- state->nbStripesSoFar = 0;
- input += nbStripesToEnd * XXH_STRIPE_LEN;
- nbStripes -= nbStripesToEnd;
- }
- /* consume per entire blocks */
- while(nbStripes >= state->nbStripesPerBlock) {
- XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
- f_scramble(acc, secret + state->secretLimit);
- input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
- nbStripes -= state->nbStripesPerBlock;
- }
- /* consume last partial block */
- XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
- input += nbStripes * XXH_STRIPE_LEN;
- XXH_ASSERT(input < bEnd); /* at least some bytes left */
- state->nbStripesSoFar = nbStripes;
- /* buffer predecessor of last partial stripe */
- XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
- XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
- } else {
- /* content to consume <= block size */
- /* Consume input by a multiple of internal buffer size */
- if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
- const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
- do {
- XXH3_consumeStripes(acc,
+ input = XXH3_consumeStripes(acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
- input, XXH3_INTERNALBUFFER_STRIPES,
- secret, state->secretLimit,
- f_acc512, f_scramble);
- input += XXH3_INTERNALBUFFER_SIZE;
- } while (input<limit);
- /* buffer predecessor of last partial stripe */
- XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
- }
- }
+ input, nbStripes,
+ secret, state->secretLimit,
+ f_acc, f_scramble);
+ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
+ }
/* Some remaining input (always) : buffer it */
XXH_ASSERT(input < bEnd);
XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
@@ -4989,19 +6298,19 @@ XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
state->bufferedSize = (XXH32_hash_t)(bEnd-input);
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
/* save stack accumulators into state */
- memcpy(state->acc, acc, sizeof(acc));
+ XXH_memcpy(state->acc, acc, sizeof(acc));
#endif
}
return XXH_OK;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
+XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_update(state, (const xxh_u8*)input, len,
- XXH3_accumulate_512, XXH3_scrambleAcc);
+ XXH3_accumulate, XXH3_scrambleAcc);
}
@@ -5010,37 +6319,40 @@ XXH3_digest_long (XXH64_hash_t* acc,
const XXH3_state_t* state,
const unsigned char* secret)
{
+ xxh_u8 lastStripe[XXH_STRIPE_LEN];
+ const xxh_u8* lastStripePtr;
+
/*
* Digest on a local copy. This way, the state remains unaltered, and it can
* continue ingesting more input afterwards.
*/
XXH_memcpy(acc, state->acc, sizeof(state->acc));
if (state->bufferedSize >= XXH_STRIPE_LEN) {
+ /* Consume remaining stripes then point to remaining data in buffer */
size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
size_t nbStripesSoFar = state->nbStripesSoFar;
XXH3_consumeStripes(acc,
&nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, nbStripes,
secret, state->secretLimit,
- XXH3_accumulate_512, XXH3_scrambleAcc);
- /* last stripe */
- XXH3_accumulate_512(acc,
- state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
- secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+ XXH3_accumulate, XXH3_scrambleAcc);
+ lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
} else { /* bufferedSize < XXH_STRIPE_LEN */
- xxh_u8 lastStripe[XXH_STRIPE_LEN];
+ /* Copy to temp buffer */
size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
- XXH3_accumulate_512(acc,
- lastStripe,
- secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+ lastStripePtr = lastStripe;
}
+ /* Last stripe */
+ XXH3_accumulate_512(acc,
+ lastStripePtr,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
}
-/*! @ingroup xxh3_family */
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
if (state->totalLen > XXH3_MIDSIZE_MAX) {
@@ -5056,7 +6368,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
secret, state->secretLimit + XXH_STRIPE_LEN);
}
-
+#endif /* !XXH_NO_STREAM */
/* ==========================================
@@ -5076,7 +6388,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
*/
-XXH_FORCE_INLINE XXH128_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
/* A doubled version of 1to3_64b with different constants. */
@@ -5105,7 +6417,7 @@ XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_
}
}
-XXH_FORCE_INLINE XXH128_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
@@ -5125,14 +6437,14 @@ XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = XXH_xorshift64(m128.low64, 35);
- m128.low64 *= 0x9FB21C651E98DF25ULL;
+ m128.low64 *= PRIME_MX2;
m128.low64 = XXH_xorshift64(m128.low64, 28);
m128.high64 = XXH3_avalanche(m128.high64);
return m128;
}
}
-XXH_FORCE_INLINE XXH128_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
@@ -5207,7 +6519,7 @@ XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64
/*
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
*/
-XXH_FORCE_INLINE XXH128_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
@@ -5238,7 +6550,7 @@ XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
}
-XXH_FORCE_INLINE XXH128_hash_t
+XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
@@ -5249,6 +6561,16 @@ XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
{ XXH128_hash_t acc;
acc.low64 = len * XXH_PRIME64_1;
acc.high64 = 0;
+
+#if XXH_SIZE_OPT >= 1
+ {
+ /* Smaller, but slightly slower. */
+ unsigned int i = (unsigned int)(len - 1) / 32;
+ do {
+ acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
+ } while (i-- != 0);
+ }
+#else
if (len > 32) {
if (len > 64) {
if (len > 96) {
@@ -5259,6 +6581,7 @@ XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
}
acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
+#endif
{ XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
@@ -5271,7 +6594,7 @@ XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
}
}
-XXH_NO_INLINE XXH128_hash_t
+XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
@@ -5280,25 +6603,34 @@ XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
{ XXH128_hash_t acc;
- int const nbRounds = (int)len / 32;
- int i;
+ unsigned i;
acc.low64 = len * XXH_PRIME64_1;
acc.high64 = 0;
- for (i=0; i<4; i++) {
+ /*
+ * We set as `i` as offset + 32. We do this so that unchanged
+ * `len` can be used as upper bound. This reaches a sweet spot
+ * where both x86 and aarch64 get simple agen and good codegen
+ * for the loop.
+ */
+ for (i = 32; i < 160; i += 32) {
acc = XXH128_mix32B(acc,
- input + (32 * i),
- input + (32 * i) + 16,
- secret + (32 * i),
+ input + i - 32,
+ input + i - 16,
+ secret + i - 32,
seed);
}
acc.low64 = XXH3_avalanche(acc.low64);
acc.high64 = XXH3_avalanche(acc.high64);
- XXH_ASSERT(nbRounds >= 4);
- for (i=4 ; i < nbRounds; i++) {
+ /*
+ * NB: `i <= len` will duplicate the last 32-bytes if
+ * len % 32 was zero. This is an unfortunate necessity to keep
+ * the hash result stable.
+ */
+ for (i=160; i <= len; i += 32) {
acc = XXH128_mix32B(acc,
- input + (32 * i),
- input + (32 * i) + 16,
- secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
+ input + i - 32,
+ input + i - 16,
+ secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
seed);
}
/* last bytes */
@@ -5306,7 +6638,7 @@ XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
input + len - 16,
input + len - 32,
secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
- 0ULL - seed);
+ (XXH64_hash_t)0 - seed);
{ XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
@@ -5323,12 +6655,12 @@ XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
- XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
@@ -5346,47 +6678,50 @@ XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
}
/*
- * It's important for performance that XXH3_hashLong is not inlined.
+ * It's important for performance that XXH3_hashLong() is not inlined.
*/
-XXH_NO_INLINE XXH128_hash_t
+XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
- XXH3_accumulate_512, XXH3_scrambleAcc);
+ XXH3_accumulate, XXH3_scrambleAcc);
}
/*
- * It's important for performance to pass @secretLen (when it's static)
+ * It's important for performance to pass @p secretLen (when it's static)
* to the compiler, so that it can properly optimize the vectorized loop.
+ *
+ * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
+ * breaks -Og, this is XXH_NO_INLINE.
*/
-XXH_FORCE_INLINE XXH128_hash_t
+XXH3_WITH_SECRET_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64;
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
- XXH3_accumulate_512, XXH3_scrambleAcc);
+ XXH3_accumulate, XXH3_scrambleAcc);
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
- XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble,
XXH3_f_initCustomSecret f_initSec)
{
if (seed64 == 0)
return XXH3_hashLong_128b_internal(input, len,
XXH3_kSecret, sizeof(XXH3_kSecret),
- f_acc512, f_scramble);
+ f_acc, f_scramble);
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
f_initSec(secret, seed64);
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
- f_acc512, f_scramble);
+ f_acc, f_scramble);
}
}
@@ -5399,7 +6734,7 @@ XXH3_hashLong_128b_withSeed(const void* input, size_t len,
{
(void)secret; (void)secretLen;
return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
- XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
+ XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
@@ -5429,94 +6764,93 @@ XXH3_128bits_internal(const void* input, size_t len,
/* === Public XXH128 API === */
-/*! @ingroup xxh3_family */
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_128bits_internal(input, len, 0,
XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_hashLong_128b_default);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_128bits_internal(input, len, 0,
(const xxh_u8*)secret, secretSize,
XXH3_hashLong_128b_withSecret);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_internal(input, len, seed,
XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_hashLong_128b_withSeed);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
+XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
-XXH128(const void* input, size_t len, XXH64_hash_t seed)
+XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_withSeed(input, len, seed);
}
/* === XXH3 128-bit streaming === */
-
+#ifndef XXH_NO_STREAM
/*
* All initialization and update functions are identical to 64-bit streaming variant.
* The only difference is the finalization routine.
*/
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset(XXH3_state_t* statePtr)
+XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
return XXH3_64bits_reset(statePtr);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
return XXH3_64bits_reset_withSeed(statePtr, seed);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
+XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
+XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
- return XXH3_update(state, (const xxh_u8*)input, len,
- XXH3_accumulate_512, XXH3_scrambleAcc);
+ return XXH3_64bits_update(state, input, len);
}
-/*! @ingroup xxh3_family */
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
if (state->totalLen > XXH3_MIDSIZE_MAX) {
@@ -5540,13 +6874,13 @@ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
secret, state->secretLimit + XXH_STRIPE_LEN);
}
-
+#endif /* !XXH_NO_STREAM */
/* 128-bit utility functions */
#include <string.h> /* memcmp, memcpy */
/* return : 1 is equal, 0 if different */
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
{
/* note : XXH128_hash_t is compact, it has no padding byte */
@@ -5554,11 +6888,11 @@ XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
}
/* This prototype is compatible with stdlib's qsort().
- * return : >0 if *h128_1 > *h128_2
- * <0 if *h128_1 < *h128_2
- * =0 if *h128_1 == *h128_2 */
-/*! @ingroup xxh3_family */
-XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
+ * @return : >0 if *h128_1 > *h128_2
+ * <0 if *h128_1 < *h128_2
+ * =0 if *h128_1 == *h128_2 */
+/*! @ingroup XXH3_family */
+XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
{
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
@@ -5570,9 +6904,9 @@ XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
/*====== Canonical representation ======*/
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
-XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
+XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) {
@@ -5583,9 +6917,9 @@ XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
-XXH128_hashFromCanonical(const XXH128_canonical_t* src)
+XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
{
XXH128_hash_t h;
h.high64 = XXH_readBE64(src);
@@ -5607,9 +6941,9 @@ XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
-XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
+XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
{
#if (XXH_DEBUGLEVEL >= 1)
XXH_ASSERT(secretBuffer != NULL);
@@ -5652,9 +6986,9 @@ XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSee
return XXH_OK;
}
-/*! @ingroup xxh3_family */
+/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
-XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
+XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
{
XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
XXH3_initCustomSecret(secret, seed);
@@ -5667,7 +7001,7 @@ XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
/* Pop our optimization override from above */
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+ && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
# pragma GCC pop_options
#endif
@@ -5682,5 +7016,5 @@ XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
#if defined (__cplusplus)
-}
+} /* extern "C" */
#endif
diff --git a/thirdparty/zstd/common/zstd_internal.h b/thirdparty/zstd/common/zstd_internal.h
index 1f942f27bf..ecb9cfba87 100644
--- a/thirdparty/zstd/common/zstd_internal.h
+++ b/thirdparty/zstd/common/zstd_internal.h
@@ -178,7 +178,7 @@ static void ZSTD_copy8(void* dst, const void* src) {
ZSTD_memcpy(dst, src, 8);
#endif
}
-#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+#define COPY8(d,s) do { ZSTD_copy8(d,s); d+=8; s+=8; } while (0)
/* Need to use memmove here since the literal buffer can now be located within
the dst buffer. In circumstances where the op "catches up" to where the
@@ -198,7 +198,7 @@ static void ZSTD_copy16(void* dst, const void* src) {
ZSTD_memcpy(dst, copy16_buf, 16);
#endif
}
-#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
+#define COPY16(d,s) do { ZSTD_copy16(d,s); d+=16; s+=16; } while (0)
#define WILDCOPY_OVERLENGTH 32
#define WILDCOPY_VECLEN 16
@@ -227,7 +227,7 @@ void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e
if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
/* Handle short offset copies. */
do {
- COPY8(op, ip)
+ COPY8(op, ip);
} while (op < oend);
} else {
assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN);
@@ -366,13 +366,13 @@ typedef struct {
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
-/* Used by: decompress, fullbench (does not get its definition from here) */
+/* Used by: decompress, fullbench */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr);
/*! ZSTD_decodeSeqHeaders() :
* decode sequence header from src */
-/* Used by: decompress, fullbench (does not get its definition from here) */
+/* Used by: zstd_decompress_block, fullbench */
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize);
diff --git a/thirdparty/zstd/compress/fse_compress.c b/thirdparty/zstd/compress/fse_compress.c
index 5d3770808d..1ce3cf16ac 100644
--- a/thirdparty/zstd/compress/fse_compress.c
+++ b/thirdparty/zstd/compress/fse_compress.c
@@ -25,7 +25,7 @@
#include "../common/error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#define ZSTD_DEPS_NEED_MATH64
-#include "../common/zstd_deps.h" /* ZSTD_malloc, ZSTD_free, ZSTD_memcpy, ZSTD_memset */
+#include "../common/zstd_deps.h" /* ZSTD_memset */
#include "../common/bits.h" /* ZSTD_highbit32 */
@@ -225,8 +225,8 @@ size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog
+ 4 /* bitCount initialized at 4 */
+ 2 /* first two symbols may use one additional bit each */) / 8)
- + 1 /* round up to whole nb bytes */
- + 2 /* additional two bytes for bitstream flush */;
+ + 1 /* round up to whole nb bytes */
+ + 2 /* additional two bytes for bitstream flush */;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}
@@ -255,7 +255,7 @@ FSE_writeNCount_generic (void* header, size_t headerBufferSize,
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
- nbBits = tableLog+1;
+ nbBits = (int)tableLog+1;
while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
if (previousIs0) {
@@ -274,7 +274,7 @@ FSE_writeNCount_generic (void* header, size_t headerBufferSize,
}
while (symbol >= start+3) {
start+=3;
- bitStream += 3 << bitCount;
+ bitStream += 3U << bitCount;
bitCount += 2;
}
bitStream += (symbol-start) << bitCount;
@@ -294,7 +294,7 @@ FSE_writeNCount_generic (void* header, size_t headerBufferSize,
count++; /* +1 for extra accuracy */
if (count>=threshold)
count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
- bitStream += count << bitCount;
+ bitStream += (U32)count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previousIs0 = (count==1);
@@ -322,7 +322,8 @@ FSE_writeNCount_generic (void* header, size_t headerBufferSize,
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
- return (out-ostart);
+ assert(out >= ostart);
+ return (size_t)(out-ostart);
}
diff --git a/thirdparty/zstd/compress/huf_compress.c b/thirdparty/zstd/compress/huf_compress.c
index 29871877a7..ea00072320 100644
--- a/thirdparty/zstd/compress/huf_compress.c
+++ b/thirdparty/zstd/compress/huf_compress.c
@@ -220,6 +220,25 @@ static void HUF_setValue(HUF_CElt* elt, size_t value)
}
}
+HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable)
+{
+ HUF_CTableHeader header;
+ ZSTD_memcpy(&header, ctable, sizeof(header));
+ return header;
+}
+
+static void HUF_writeCTableHeader(HUF_CElt* ctable, U32 tableLog, U32 maxSymbolValue)
+{
+ HUF_CTableHeader header;
+ HUF_STATIC_ASSERT(sizeof(ctable[0]) == sizeof(header));
+ ZSTD_memset(&header, 0, sizeof(header));
+ assert(tableLog < 256);
+ header.tableLog = (BYTE)tableLog;
+ assert(maxSymbolValue < 256);
+ header.maxSymbolValue = (BYTE)maxSymbolValue;
+ ZSTD_memcpy(ctable, &header, sizeof(header));
+}
+
typedef struct {
HUF_CompressWeightsWksp wksp;
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
@@ -237,6 +256,9 @@ size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp));
+ assert(HUF_readCTableHeader(CTable).maxSymbolValue == maxSymbolValue);
+ assert(HUF_readCTableHeader(CTable).tableLog == huffLog);
+
/* check conditions */
if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
@@ -283,7 +305,9 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
- CTable[0] = tableLog;
+ *maxSymbolValuePtr = nbSymbols - 1;
+
+ HUF_writeCTableHeader(CTable, tableLog, *maxSymbolValuePtr);
/* Prepare base value per rank */
{ U32 n, nextRankStart = 0;
@@ -315,7 +339,6 @@ size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void
{ U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
}
- *maxSymbolValuePtr = nbSymbols - 1;
return readSize;
}
@@ -323,6 +346,8 @@ U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
{
const HUF_CElt* const ct = CTable + 1;
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
+ if (symbolValue > HUF_readCTableHeader(CTable).maxSymbolValue)
+ return 0;
return (U32)HUF_getNbBits(ct[symbolValue]);
}
@@ -723,7 +748,8 @@ static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, i
HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
for (n=0; n<alphabetSize; n++)
HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
- CTable[0] = maxNbBits;
+
+ HUF_writeCTableHeader(CTable, maxNbBits, maxSymbolValue);
}
size_t
@@ -776,13 +802,20 @@ size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count,
}
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
- HUF_CElt const* ct = CTable + 1;
- int bad = 0;
- int s;
- for (s = 0; s <= (int)maxSymbolValue; ++s) {
- bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
- }
- return !bad;
+ HUF_CTableHeader header = HUF_readCTableHeader(CTable);
+ HUF_CElt const* ct = CTable + 1;
+ int bad = 0;
+ int s;
+
+ assert(header.tableLog <= HUF_TABLELOG_ABSOLUTEMAX);
+
+ if (header.maxSymbolValue < maxSymbolValue)
+ return 0;
+
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
+ bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
+ }
+ return !bad;
}
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
@@ -1024,17 +1057,17 @@ HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
- U32 const tableLog = (U32)CTable[0];
+ U32 const tableLog = HUF_readCTableHeader(CTable).tableLog;
HUF_CElt const* ct = CTable + 1;
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
- BYTE* op = ostart;
HUF_CStream_t bitC;
/* init */
if (dstSize < 8) return 0; /* not enough space to compress */
- { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
+ { BYTE* op = ostart;
+ size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
if (HUF_isError(initErr)) return 0; }
if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
@@ -1255,7 +1288,7 @@ unsigned HUF_optimalTableLog(
{ BYTE* dst = (BYTE*)workSpace + sizeof(HUF_WriteCTableWksp);
size_t dstSize = wkspSize - sizeof(HUF_WriteCTableWksp);
- size_t maxBits, hSize, newSize;
+ size_t hSize, newSize;
const unsigned symbolCardinality = HUF_cardinality(count, maxSymbolValue);
const unsigned minTableLog = HUF_minTableLog(symbolCardinality);
size_t optSize = ((size_t) ~0) - 1;
@@ -1266,12 +1299,14 @@ unsigned HUF_optimalTableLog(
/* Search until size increases */
for (optLogGuess = minTableLog; optLogGuess <= maxTableLog; optLogGuess++) {
DEBUGLOG(7, "checking for huffLog=%u", optLogGuess);
- maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize);
- if (ERR_isError(maxBits)) continue;
- if (maxBits < optLogGuess && optLogGuess > minTableLog) break;
+ { size_t maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize);
+ if (ERR_isError(maxBits)) continue;
+
+ if (maxBits < optLogGuess && optLogGuess > minTableLog) break;
- hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize);
+ hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize);
+ }
if (ERR_isError(hSize)) continue;
@@ -1372,12 +1407,6 @@ HUF_compress_internal (void* dst, size_t dstSize,
huffLog = (U32)maxBits;
DEBUGLOG(6, "bit distribution completed (%zu symbols)", showCTableBits(table->CTable + 1, maxSymbolValue+1));
}
- /* Zero unused symbols in CTable, so we can check it for validity */
- {
- size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
- size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
- ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
- }
/* Write table description header */
{ CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
@@ -1420,7 +1449,7 @@ size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* consider skipping quickly
- * re-use an existing huffman compression table */
+ * reuse an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
diff --git a/thirdparty/zstd/compress/zstd_compress.c b/thirdparty/zstd/compress/zstd_compress.c
index d6133e70b4..9284e2a480 100644
--- a/thirdparty/zstd/compress/zstd_compress.c
+++ b/thirdparty/zstd/compress/zstd_compress.c
@@ -178,6 +178,7 @@ static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx)
size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
{
+ DEBUGLOG(3, "ZSTD_freeCCtx (address: %p)", (void*)cctx);
if (cctx==NULL) return 0; /* support free on NULL */
RETURN_ERROR_IF(cctx->staticSize, memory_allocation,
"not compatible with static CCtx");
@@ -649,10 +650,11 @@ static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value)
return 0;
}
-#define BOUNDCHECK(cParam, val) { \
- RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \
- parameter_outOfBound, "Param out of bounds"); \
-}
+#define BOUNDCHECK(cParam, val) \
+ do { \
+ RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \
+ parameter_outOfBound, "Param out of bounds"); \
+ } while (0)
static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param)
@@ -868,7 +870,7 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
#else
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), "");
CCtxParams->nbWorkers = value;
- return CCtxParams->nbWorkers;
+ return (size_t)(CCtxParams->nbWorkers);
#endif
case ZSTD_c_jobSize :
@@ -892,7 +894,7 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
#else
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), "");
CCtxParams->overlapLog = value;
- return CCtxParams->overlapLog;
+ return (size_t)CCtxParams->overlapLog;
#endif
case ZSTD_c_rsyncable :
@@ -902,7 +904,7 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
#else
FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), "");
CCtxParams->rsyncable = value;
- return CCtxParams->rsyncable;
+ return (size_t)CCtxParams->rsyncable;
#endif
case ZSTD_c_enableDedicatedDictSearch :
@@ -939,8 +941,10 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
return CCtxParams->ldmParams.hashRateLog;
case ZSTD_c_targetCBlockSize :
- if (value!=0) /* 0 ==> default */
+ if (value!=0) { /* 0 ==> default */
+ value = MAX(value, ZSTD_TARGETCBLOCKSIZE_MIN);
BOUNDCHECK(ZSTD_c_targetCBlockSize, value);
+ }
CCtxParams->targetCBlockSize = (U32)value;
return CCtxParams->targetCBlockSize;
@@ -968,7 +972,7 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
case ZSTD_c_validateSequences:
BOUNDCHECK(ZSTD_c_validateSequences, value);
CCtxParams->validateSequences = value;
- return CCtxParams->validateSequences;
+ return (size_t)CCtxParams->validateSequences;
case ZSTD_c_useBlockSplitter:
BOUNDCHECK(ZSTD_c_useBlockSplitter, value);
@@ -983,7 +987,7 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
case ZSTD_c_deterministicRefPrefix:
BOUNDCHECK(ZSTD_c_deterministicRefPrefix, value);
CCtxParams->deterministicRefPrefix = !!value;
- return CCtxParams->deterministicRefPrefix;
+ return (size_t)CCtxParams->deterministicRefPrefix;
case ZSTD_c_prefetchCDictTables:
BOUNDCHECK(ZSTD_c_prefetchCDictTables, value);
@@ -993,7 +997,7 @@ size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams,
case ZSTD_c_enableSeqProducerFallback:
BOUNDCHECK(ZSTD_c_enableSeqProducerFallback, value);
CCtxParams->enableMatchFinderFallback = value;
- return CCtxParams->enableMatchFinderFallback;
+ return (size_t)CCtxParams->enableMatchFinderFallback;
case ZSTD_c_maxBlockSize:
if (value!=0) /* 0 ==> default */
@@ -1363,7 +1367,6 @@ size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset)
RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong,
"Reset parameters is only possible during init stage.");
ZSTD_clearAllDicts(cctx);
- ZSTD_memset(&cctx->externalMatchCtx, 0, sizeof(cctx->externalMatchCtx));
return ZSTD_CCtxParams_reset(&cctx->requestedParams);
}
return 0;
@@ -1391,11 +1394,12 @@ size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
static ZSTD_compressionParameters
ZSTD_clampCParams(ZSTD_compressionParameters cParams)
{
-# define CLAMP_TYPE(cParam, val, type) { \
- ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \
- if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \
- else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \
- }
+# define CLAMP_TYPE(cParam, val, type) \
+ do { \
+ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \
+ if ((int)val<bounds.lowerBound) val=(type)bounds.lowerBound; \
+ else if ((int)val>bounds.upperBound) val=(type)bounds.upperBound; \
+ } while (0)
# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned)
CLAMP(ZSTD_c_windowLog, cParams.windowLog);
CLAMP(ZSTD_c_chainLog, cParams.chainLog);
@@ -1467,6 +1471,48 @@ ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar,
const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
assert(ZSTD_checkCParams(cPar)==0);
+ /* Cascade the selected strategy down to the next-highest one built into
+ * this binary. */
+#ifdef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_btultra2) {
+ cPar.strategy = ZSTD_btultra;
+ }
+ if (cPar.strategy == ZSTD_btultra) {
+ cPar.strategy = ZSTD_btopt;
+ }
+#endif
+#ifdef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_btopt) {
+ cPar.strategy = ZSTD_btlazy2;
+ }
+#endif
+#ifdef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_btlazy2) {
+ cPar.strategy = ZSTD_lazy2;
+ }
+#endif
+#ifdef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_lazy2) {
+ cPar.strategy = ZSTD_lazy;
+ }
+#endif
+#ifdef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_lazy) {
+ cPar.strategy = ZSTD_greedy;
+ }
+#endif
+#ifdef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_greedy) {
+ cPar.strategy = ZSTD_dfast;
+ }
+#endif
+#ifdef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
+ if (cPar.strategy == ZSTD_dfast) {
+ cPar.strategy = ZSTD_fast;
+ cPar.targetLength = 0;
+ }
+#endif
+
switch (mode) {
case ZSTD_cpm_unknown:
case ZSTD_cpm_noAttachDict:
@@ -1617,8 +1663,8 @@ ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams,
+ ZSTD_cwksp_aligned_alloc_size((MaxLL+1) * sizeof(U32))
+ ZSTD_cwksp_aligned_alloc_size((MaxOff+1) * sizeof(U32))
+ ZSTD_cwksp_aligned_alloc_size((1<<Litbits) * sizeof(U32))
- + ZSTD_cwksp_aligned_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t))
- + ZSTD_cwksp_aligned_alloc_size((ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
+ + ZSTD_cwksp_aligned_alloc_size(ZSTD_OPT_SIZE * sizeof(ZSTD_match_t))
+ + ZSTD_cwksp_aligned_alloc_size(ZSTD_OPT_SIZE * sizeof(ZSTD_optimal_t));
size_t const lazyAdditionalSpace = ZSTD_rowMatchFinderUsed(cParams->strategy, useRowMatchFinder)
? ZSTD_cwksp_aligned_alloc_size(hSize)
: 0;
@@ -1707,7 +1753,7 @@ size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
* be needed. However, we still allocate two 0-sized buffers, which can
* take space under ASAN. */
return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
- &cParams, &params->ldmParams, 1, useRowMatchFinder, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN, params->useSequenceProducer, params->maxBlockSize);
+ &cParams, &params->ldmParams, 1, useRowMatchFinder, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN, ZSTD_hasExtSeqProd(params), params->maxBlockSize);
}
size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
@@ -1768,7 +1814,7 @@ size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
return ZSTD_estimateCCtxSize_usingCCtxParams_internal(
&cParams, &params->ldmParams, 1, useRowMatchFinder, inBuffSize, outBuffSize,
- ZSTD_CONTENTSIZE_UNKNOWN, params->useSequenceProducer, params->maxBlockSize);
+ ZSTD_CONTENTSIZE_UNKNOWN, ZSTD_hasExtSeqProd(params), params->maxBlockSize);
}
}
@@ -2001,8 +2047,8 @@ ZSTD_reset_matchState(ZSTD_matchState_t* ms,
ms->opt.litLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxLL+1) * sizeof(unsigned));
ms->opt.matchLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxML+1) * sizeof(unsigned));
ms->opt.offCodeFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxOff+1) * sizeof(unsigned));
- ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t));
- ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t));
+ ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned(ws, ZSTD_OPT_SIZE * sizeof(ZSTD_match_t));
+ ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned(ws, ZSTD_OPT_SIZE * sizeof(ZSTD_optimal_t));
}
ms->cParams = *cParams;
@@ -2074,7 +2120,7 @@ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
{ size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params->cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(params->maxBlockSize, windowSize);
- size_t const maxNbSeq = ZSTD_maxNbSeq(blockSize, params->cParams.minMatch, params->useSequenceProducer);
+ size_t const maxNbSeq = ZSTD_maxNbSeq(blockSize, params->cParams.minMatch, ZSTD_hasExtSeqProd(params));
size_t const buffOutSize = (zbuff == ZSTDb_buffered && params->outBufferMode == ZSTD_bm_buffered)
? ZSTD_compressBound(blockSize) + 1
: 0;
@@ -2091,8 +2137,7 @@ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
size_t const neededSpace =
ZSTD_estimateCCtxSize_usingCCtxParams_internal(
&params->cParams, &params->ldmParams, zc->staticSize != 0, params->useRowMatchFinder,
- buffInSize, buffOutSize, pledgedSrcSize, params->useSequenceProducer, params->maxBlockSize);
- int resizeWorkspace;
+ buffInSize, buffOutSize, pledgedSrcSize, ZSTD_hasExtSeqProd(params), params->maxBlockSize);
FORWARD_IF_ERROR(neededSpace, "cctx size estimate failed!");
@@ -2101,7 +2146,7 @@ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
{ /* Check if workspace is large enough, alloc a new one if needed */
int const workspaceTooSmall = ZSTD_cwksp_sizeof(ws) < neededSpace;
int const workspaceWasteful = ZSTD_cwksp_check_wasteful(ws, neededSpace);
- resizeWorkspace = workspaceTooSmall || workspaceWasteful;
+ int resizeWorkspace = workspaceTooSmall || workspaceWasteful;
DEBUGLOG(4, "Need %zu B workspace", neededSpace);
DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize);
@@ -2176,10 +2221,10 @@ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
}
/* reserve space for block-level external sequences */
- if (params->useSequenceProducer) {
+ if (ZSTD_hasExtSeqProd(params)) {
size_t const maxNbExternalSeq = ZSTD_sequenceBound(blockSize);
- zc->externalMatchCtx.seqBufferCapacity = maxNbExternalSeq;
- zc->externalMatchCtx.seqBuffer =
+ zc->extSeqBufCapacity = maxNbExternalSeq;
+ zc->extSeqBuf =
(ZSTD_Sequence*)ZSTD_cwksp_reserve_aligned(ws, maxNbExternalSeq * sizeof(ZSTD_Sequence));
}
@@ -2564,7 +2609,7 @@ ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerVa
assert(size < (1U<<31)); /* can be casted to int */
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
- /* To validate that the table re-use logic is sound, and that we don't
+ /* To validate that the table reuse logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty.
*
@@ -2992,40 +3037,43 @@ ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramS
static const ZSTD_blockCompressor blockCompressor[4][ZSTD_STRATEGY_MAX+1] = {
{ ZSTD_compressBlock_fast /* default for 0 */,
ZSTD_compressBlock_fast,
- ZSTD_compressBlock_doubleFast,
- ZSTD_compressBlock_greedy,
- ZSTD_compressBlock_lazy,
- ZSTD_compressBlock_lazy2,
- ZSTD_compressBlock_btlazy2,
- ZSTD_compressBlock_btopt,
- ZSTD_compressBlock_btultra,
- ZSTD_compressBlock_btultra2 },
+ ZSTD_COMPRESSBLOCK_DOUBLEFAST,
+ ZSTD_COMPRESSBLOCK_GREEDY,
+ ZSTD_COMPRESSBLOCK_LAZY,
+ ZSTD_COMPRESSBLOCK_LAZY2,
+ ZSTD_COMPRESSBLOCK_BTLAZY2,
+ ZSTD_COMPRESSBLOCK_BTOPT,
+ ZSTD_COMPRESSBLOCK_BTULTRA,
+ ZSTD_COMPRESSBLOCK_BTULTRA2
+ },
{ ZSTD_compressBlock_fast_extDict /* default for 0 */,
ZSTD_compressBlock_fast_extDict,
- ZSTD_compressBlock_doubleFast_extDict,
- ZSTD_compressBlock_greedy_extDict,
- ZSTD_compressBlock_lazy_extDict,
- ZSTD_compressBlock_lazy2_extDict,
- ZSTD_compressBlock_btlazy2_extDict,
- ZSTD_compressBlock_btopt_extDict,
- ZSTD_compressBlock_btultra_extDict,
- ZSTD_compressBlock_btultra_extDict },
+ ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT,
+ ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT,
+ ZSTD_COMPRESSBLOCK_LAZY_EXTDICT,
+ ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT,
+ ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT,
+ ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT,
+ ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT,
+ ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT
+ },
{ ZSTD_compressBlock_fast_dictMatchState /* default for 0 */,
ZSTD_compressBlock_fast_dictMatchState,
- ZSTD_compressBlock_doubleFast_dictMatchState,
- ZSTD_compressBlock_greedy_dictMatchState,
- ZSTD_compressBlock_lazy_dictMatchState,
- ZSTD_compressBlock_lazy2_dictMatchState,
- ZSTD_compressBlock_btlazy2_dictMatchState,
- ZSTD_compressBlock_btopt_dictMatchState,
- ZSTD_compressBlock_btultra_dictMatchState,
- ZSTD_compressBlock_btultra_dictMatchState },
+ ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE,
+ ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE
+ },
{ NULL /* default for 0 */,
NULL,
NULL,
- ZSTD_compressBlock_greedy_dedicatedDictSearch,
- ZSTD_compressBlock_lazy_dedicatedDictSearch,
- ZSTD_compressBlock_lazy2_dedicatedDictSearch,
+ ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH,
+ ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH,
+ ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH,
NULL,
NULL,
NULL,
@@ -3038,18 +3086,26 @@ ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramS
DEBUGLOG(4, "Selected block compressor: dictMode=%d strat=%d rowMatchfinder=%d", (int)dictMode, (int)strat, (int)useRowMatchFinder);
if (ZSTD_rowMatchFinderUsed(strat, useRowMatchFinder)) {
static const ZSTD_blockCompressor rowBasedBlockCompressors[4][3] = {
- { ZSTD_compressBlock_greedy_row,
- ZSTD_compressBlock_lazy_row,
- ZSTD_compressBlock_lazy2_row },
- { ZSTD_compressBlock_greedy_extDict_row,
- ZSTD_compressBlock_lazy_extDict_row,
- ZSTD_compressBlock_lazy2_extDict_row },
- { ZSTD_compressBlock_greedy_dictMatchState_row,
- ZSTD_compressBlock_lazy_dictMatchState_row,
- ZSTD_compressBlock_lazy2_dictMatchState_row },
- { ZSTD_compressBlock_greedy_dedicatedDictSearch_row,
- ZSTD_compressBlock_lazy_dedicatedDictSearch_row,
- ZSTD_compressBlock_lazy2_dedicatedDictSearch_row }
+ {
+ ZSTD_COMPRESSBLOCK_GREEDY_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY2_ROW
+ },
+ {
+ ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW
+ },
+ {
+ ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW
+ },
+ {
+ ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW,
+ ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW
+ }
};
DEBUGLOG(4, "Selecting a row-based matchfinder");
assert(useRowMatchFinder != ZSTD_ps_auto);
@@ -3192,7 +3248,7 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
/* External matchfinder + LDM is technically possible, just not implemented yet.
* We need to revisit soon and implement it. */
RETURN_ERROR_IF(
- zc->appliedParams.useSequenceProducer,
+ ZSTD_hasExtSeqProd(&zc->appliedParams),
parameter_combination_unsupported,
"Long-distance matching with external sequence producer enabled is not currently supported."
);
@@ -3211,7 +3267,7 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
/* External matchfinder + LDM is technically possible, just not implemented yet.
* We need to revisit soon and implement it. */
RETURN_ERROR_IF(
- zc->appliedParams.useSequenceProducer,
+ ZSTD_hasExtSeqProd(&zc->appliedParams),
parameter_combination_unsupported,
"Long-distance matching with external sequence producer enabled is not currently supported."
);
@@ -3230,18 +3286,18 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
zc->appliedParams.useRowMatchFinder,
src, srcSize);
assert(ldmSeqStore.pos == ldmSeqStore.size);
- } else if (zc->appliedParams.useSequenceProducer) {
+ } else if (ZSTD_hasExtSeqProd(&zc->appliedParams)) {
assert(
- zc->externalMatchCtx.seqBufferCapacity >= ZSTD_sequenceBound(srcSize)
+ zc->extSeqBufCapacity >= ZSTD_sequenceBound(srcSize)
);
- assert(zc->externalMatchCtx.mFinder != NULL);
+ assert(zc->appliedParams.extSeqProdFunc != NULL);
{ U32 const windowSize = (U32)1 << zc->appliedParams.cParams.windowLog;
- size_t const nbExternalSeqs = (zc->externalMatchCtx.mFinder)(
- zc->externalMatchCtx.mState,
- zc->externalMatchCtx.seqBuffer,
- zc->externalMatchCtx.seqBufferCapacity,
+ size_t const nbExternalSeqs = (zc->appliedParams.extSeqProdFunc)(
+ zc->appliedParams.extSeqProdState,
+ zc->extSeqBuf,
+ zc->extSeqBufCapacity,
src, srcSize,
NULL, 0, /* dict and dictSize, currently not supported */
zc->appliedParams.compressionLevel,
@@ -3249,21 +3305,21 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
);
size_t const nbPostProcessedSeqs = ZSTD_postProcessSequenceProducerResult(
- zc->externalMatchCtx.seqBuffer,
+ zc->extSeqBuf,
nbExternalSeqs,
- zc->externalMatchCtx.seqBufferCapacity,
+ zc->extSeqBufCapacity,
srcSize
);
/* Return early if there is no error, since we don't need to worry about last literals */
if (!ZSTD_isError(nbPostProcessedSeqs)) {
ZSTD_sequencePosition seqPos = {0,0,0};
- size_t const seqLenSum = ZSTD_fastSequenceLengthSum(zc->externalMatchCtx.seqBuffer, nbPostProcessedSeqs);
+ size_t const seqLenSum = ZSTD_fastSequenceLengthSum(zc->extSeqBuf, nbPostProcessedSeqs);
RETURN_ERROR_IF(seqLenSum > srcSize, externalSequences_invalid, "External sequences imply too large a block!");
FORWARD_IF_ERROR(
ZSTD_copySequencesToSeqStoreExplicitBlockDelim(
zc, &seqPos,
- zc->externalMatchCtx.seqBuffer, nbPostProcessedSeqs,
+ zc->extSeqBuf, nbPostProcessedSeqs,
src, srcSize,
zc->appliedParams.searchForExternalRepcodes
),
@@ -3280,9 +3336,11 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
}
/* Fallback to software matchfinder */
- { ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy,
- zc->appliedParams.useRowMatchFinder,
- dictMode);
+ { ZSTD_blockCompressor const blockCompressor =
+ ZSTD_selectBlockCompressor(
+ zc->appliedParams.cParams.strategy,
+ zc->appliedParams.useRowMatchFinder,
+ dictMode);
ms->ldmSeqStore = NULL;
DEBUGLOG(
5,
@@ -3292,9 +3350,10 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize);
} }
} else { /* not long range mode and no external matchfinder */
- ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy,
- zc->appliedParams.useRowMatchFinder,
- dictMode);
+ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(
+ zc->appliedParams.cParams.strategy,
+ zc->appliedParams.useRowMatchFinder,
+ dictMode);
ms->ldmSeqStore = NULL;
lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize);
}
@@ -3304,29 +3363,38 @@ static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize)
return ZSTDbss_compress;
}
-static void ZSTD_copyBlockSequences(ZSTD_CCtx* zc)
+static size_t ZSTD_copyBlockSequences(SeqCollector* seqCollector, const seqStore_t* seqStore, const U32 prevRepcodes[ZSTD_REP_NUM])
{
- const seqStore_t* seqStore = ZSTD_getSeqStore(zc);
- const seqDef* seqStoreSeqs = seqStore->sequencesStart;
- size_t seqStoreSeqSize = seqStore->sequences - seqStoreSeqs;
- size_t seqStoreLiteralsSize = (size_t)(seqStore->lit - seqStore->litStart);
- size_t literalsRead = 0;
- size_t lastLLSize;
+ const seqDef* inSeqs = seqStore->sequencesStart;
+ const size_t nbInSequences = seqStore->sequences - inSeqs;
+ const size_t nbInLiterals = (size_t)(seqStore->lit - seqStore->litStart);
- ZSTD_Sequence* outSeqs = &zc->seqCollector.seqStart[zc->seqCollector.seqIndex];
+ ZSTD_Sequence* outSeqs = seqCollector->seqIndex == 0 ? seqCollector->seqStart : seqCollector->seqStart + seqCollector->seqIndex;
+ const size_t nbOutSequences = nbInSequences + 1;
+ size_t nbOutLiterals = 0;
+ repcodes_t repcodes;
size_t i;
- repcodes_t updatedRepcodes;
- assert(zc->seqCollector.seqIndex + 1 < zc->seqCollector.maxSequences);
- /* Ensure we have enough space for last literals "sequence" */
- assert(zc->seqCollector.maxSequences >= seqStoreSeqSize + 1);
- ZSTD_memcpy(updatedRepcodes.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t));
- for (i = 0; i < seqStoreSeqSize; ++i) {
- U32 rawOffset = seqStoreSeqs[i].offBase - ZSTD_REP_NUM;
- outSeqs[i].litLength = seqStoreSeqs[i].litLength;
- outSeqs[i].matchLength = seqStoreSeqs[i].mlBase + MINMATCH;
+ /* Bounds check that we have enough space for every input sequence
+ * and the block delimiter
+ */
+ assert(seqCollector->seqIndex <= seqCollector->maxSequences);
+ RETURN_ERROR_IF(
+ nbOutSequences > (size_t)(seqCollector->maxSequences - seqCollector->seqIndex),
+ dstSize_tooSmall,
+ "Not enough space to copy sequences");
+
+ ZSTD_memcpy(&repcodes, prevRepcodes, sizeof(repcodes));
+ for (i = 0; i < nbInSequences; ++i) {
+ U32 rawOffset;
+ outSeqs[i].litLength = inSeqs[i].litLength;
+ outSeqs[i].matchLength = inSeqs[i].mlBase + MINMATCH;
outSeqs[i].rep = 0;
+ /* Handle the possible single length >= 64K
+ * There can only be one because we add MINMATCH to every match length,
+ * and blocks are at most 128K.
+ */
if (i == seqStore->longLengthPos) {
if (seqStore->longLengthType == ZSTD_llt_literalLength) {
outSeqs[i].litLength += 0x10000;
@@ -3335,41 +3403,55 @@ static void ZSTD_copyBlockSequences(ZSTD_CCtx* zc)
}
}
- if (seqStoreSeqs[i].offBase <= ZSTD_REP_NUM) {
- /* Derive the correct offset corresponding to a repcode */
- outSeqs[i].rep = seqStoreSeqs[i].offBase;
+ /* Determine the raw offset given the offBase, which may be a repcode. */
+ if (OFFBASE_IS_REPCODE(inSeqs[i].offBase)) {
+ const U32 repcode = OFFBASE_TO_REPCODE(inSeqs[i].offBase);
+ assert(repcode > 0);
+ outSeqs[i].rep = repcode;
if (outSeqs[i].litLength != 0) {
- rawOffset = updatedRepcodes.rep[outSeqs[i].rep - 1];
+ rawOffset = repcodes.rep[repcode - 1];
} else {
- if (outSeqs[i].rep == 3) {
- rawOffset = updatedRepcodes.rep[0] - 1;
+ if (repcode == 3) {
+ assert(repcodes.rep[0] > 1);
+ rawOffset = repcodes.rep[0] - 1;
} else {
- rawOffset = updatedRepcodes.rep[outSeqs[i].rep];
+ rawOffset = repcodes.rep[repcode];
}
}
+ } else {
+ rawOffset = OFFBASE_TO_OFFSET(inSeqs[i].offBase);
}
outSeqs[i].offset = rawOffset;
- /* seqStoreSeqs[i].offset == offCode+1, and ZSTD_updateRep() expects offCode
- so we provide seqStoreSeqs[i].offset - 1 */
- ZSTD_updateRep(updatedRepcodes.rep,
- seqStoreSeqs[i].offBase,
- seqStoreSeqs[i].litLength == 0);
- literalsRead += outSeqs[i].litLength;
+
+ /* Update repcode history for the sequence */
+ ZSTD_updateRep(repcodes.rep,
+ inSeqs[i].offBase,
+ inSeqs[i].litLength == 0);
+
+ nbOutLiterals += outSeqs[i].litLength;
}
/* Insert last literals (if any exist) in the block as a sequence with ml == off == 0.
* If there are no last literals, then we'll emit (of: 0, ml: 0, ll: 0), which is a marker
* for the block boundary, according to the API.
*/
- assert(seqStoreLiteralsSize >= literalsRead);
- lastLLSize = seqStoreLiteralsSize - literalsRead;
- outSeqs[i].litLength = (U32)lastLLSize;
- outSeqs[i].matchLength = outSeqs[i].offset = outSeqs[i].rep = 0;
- seqStoreSeqSize++;
- zc->seqCollector.seqIndex += seqStoreSeqSize;
+ assert(nbInLiterals >= nbOutLiterals);
+ {
+ const size_t lastLLSize = nbInLiterals - nbOutLiterals;
+ outSeqs[nbInSequences].litLength = (U32)lastLLSize;
+ outSeqs[nbInSequences].matchLength = 0;
+ outSeqs[nbInSequences].offset = 0;
+ assert(nbOutSequences == nbInSequences + 1);
+ }
+ seqCollector->seqIndex += nbOutSequences;
+ assert(seqCollector->seqIndex <= seqCollector->maxSequences);
+
+ return 0;
}
size_t ZSTD_sequenceBound(size_t srcSize) {
- return (srcSize / ZSTD_MINMATCH_MIN) + 1;
+ const size_t maxNbSeq = (srcSize / ZSTD_MINMATCH_MIN) + 1;
+ const size_t maxNbDelims = (srcSize / ZSTD_BLOCKSIZE_MAX_MIN) + 1;
+ return maxNbSeq + maxNbDelims;
}
size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
@@ -3378,6 +3460,16 @@ size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
const size_t dstCapacity = ZSTD_compressBound(srcSize);
void* dst = ZSTD_customMalloc(dstCapacity, ZSTD_defaultCMem);
SeqCollector seqCollector;
+ {
+ int targetCBlockSize;
+ FORWARD_IF_ERROR(ZSTD_CCtx_getParameter(zc, ZSTD_c_targetCBlockSize, &targetCBlockSize), "");
+ RETURN_ERROR_IF(targetCBlockSize != 0, parameter_unsupported, "targetCBlockSize != 0");
+ }
+ {
+ int nbWorkers;
+ FORWARD_IF_ERROR(ZSTD_CCtx_getParameter(zc, ZSTD_c_nbWorkers, &nbWorkers), "");
+ RETURN_ERROR_IF(nbWorkers != 0, parameter_unsupported, "nbWorkers != 0");
+ }
RETURN_ERROR_IF(dst == NULL, memory_allocation, "NULL pointer!");
@@ -3387,8 +3479,12 @@ size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs,
seqCollector.maxSequences = outSeqsSize;
zc->seqCollector = seqCollector;
- ZSTD_compress2(zc, dst, dstCapacity, src, srcSize);
- ZSTD_customFree(dst, ZSTD_defaultCMem);
+ {
+ const size_t ret = ZSTD_compress2(zc, dst, dstCapacity, src, srcSize);
+ ZSTD_customFree(dst, ZSTD_defaultCMem);
+ FORWARD_IF_ERROR(ret, "ZSTD_compress2 failed");
+ }
+ assert(zc->seqCollector.seqIndex <= ZSTD_sequenceBound(srcSize));
return zc->seqCollector.seqIndex;
}
@@ -3981,8 +4077,9 @@ ZSTD_compressSeqStore_singleBlock(ZSTD_CCtx* zc,
cSeqsSize = 1;
}
+ /* Sequence collection not supported when block splitting */
if (zc->seqCollector.collectSequences) {
- ZSTD_copyBlockSequences(zc);
+ FORWARD_IF_ERROR(ZSTD_copyBlockSequences(&zc->seqCollector, seqStore, dRepOriginal.rep), "copyBlockSequences failed");
ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
return 0;
}
@@ -4204,6 +4301,7 @@ ZSTD_compressBlock_splitBlock(ZSTD_CCtx* zc,
if (bss == ZSTDbss_noCompress) {
if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid)
zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check;
+ RETURN_ERROR_IF(zc->seqCollector.collectSequences, sequenceProducer_failed, "Uncompressible block");
cSize = ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
DEBUGLOG(4, "ZSTD_compressBlock_splitBlock: Nocompress block");
@@ -4236,11 +4334,15 @@ ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
{ const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize);
FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed");
- if (bss == ZSTDbss_noCompress) { cSize = 0; goto out; }
+ if (bss == ZSTDbss_noCompress) {
+ RETURN_ERROR_IF(zc->seqCollector.collectSequences, sequenceProducer_failed, "Uncompressible block");
+ cSize = 0;
+ goto out;
+ }
}
if (zc->seqCollector.collectSequences) {
- ZSTD_copyBlockSequences(zc);
+ FORWARD_IF_ERROR(ZSTD_copyBlockSequences(&zc->seqCollector, ZSTD_getSeqStore(zc), zc->blockState.prevCBlock->rep), "copyBlockSequences failed");
ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState);
return 0;
}
@@ -4553,19 +4655,15 @@ size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity)
}
}
-size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
+void ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
{
- RETURN_ERROR_IF(cctx->stage != ZSTDcs_init, stage_wrong,
- "wrong cctx stage");
- RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable,
- parameter_unsupported,
- "incompatible with ldm");
+ assert(cctx->stage == ZSTDcs_init);
+ assert(nbSeq == 0 || cctx->appliedParams.ldmParams.enableLdm != ZSTD_ps_enable);
cctx->externSeqStore.seq = seq;
cctx->externSeqStore.size = nbSeq;
cctx->externSeqStore.capacity = nbSeq;
cctx->externSeqStore.pos = 0;
cctx->externSeqStore.posInSequence = 0;
- return 0;
}
@@ -4760,12 +4858,19 @@ static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms,
ZSTD_fillHashTable(ms, iend, dtlm, tfp);
break;
case ZSTD_dfast:
+#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
ZSTD_fillDoubleHashTable(ms, iend, dtlm, tfp);
+#else
+ assert(0); /* shouldn't be called: cparams should've been adjusted. */
+#endif
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
+#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR)
assert(srcSize >= HASH_READ_SIZE);
if (ms->dedicatedDictSearch) {
assert(ms->chainTable != NULL);
@@ -4782,14 +4887,23 @@ static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms,
DEBUGLOG(4, "Using chain-based hash table for lazy dict");
}
}
+#else
+ assert(0); /* shouldn't be called: cparams should've been adjusted. */
+#endif
break;
case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
+#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR)
assert(srcSize >= HASH_READ_SIZE);
ZSTD_updateTree(ms, iend-HASH_READ_SIZE, iend);
+#else
+ assert(0); /* shouldn't be called: cparams should've been adjusted. */
+#endif
break;
default:
@@ -4836,11 +4950,10 @@ size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
/* We only set the loaded table as valid if it contains all non-zero
* weights. Otherwise, we set it to check */
- if (!hasZeroWeights)
+ if (!hasZeroWeights && maxSymbolValue == 255)
bs->entropy.huf.repeatMode = HUF_repeat_valid;
RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted, "");
- RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted, "");
dictPtr += hufHeaderSize;
}
@@ -5107,14 +5220,13 @@ static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
- size_t fhSize = 0;
DEBUGLOG(4, "ZSTD_writeEpilogue");
RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing");
/* special case : empty frame */
if (cctx->stage == ZSTDcs_init) {
- fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0);
+ size_t fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0);
FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed");
dstCapacity -= fhSize;
op += fhSize;
@@ -5124,8 +5236,9 @@ static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
if (cctx->stage != ZSTDcs_ending) {
/* write one last empty block, make it the "last" block */
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
- RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for epilogue");
- MEM_writeLE32(op, cBlockHeader24);
+ ZSTD_STATIC_ASSERT(ZSTD_BLOCKHEADERSIZE == 3);
+ RETURN_ERROR_IF(dstCapacity<3, dstSize_tooSmall, "no room for epilogue");
+ MEM_writeLE24(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
}
@@ -5455,7 +5568,7 @@ ZSTD_CDict* ZSTD_createCDict_advanced2(
cctxParams.useRowMatchFinder, cctxParams.enableDedicatedDictSearch,
customMem);
- if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
+ if (!cdict || ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
dictLoadMethod, dictContentType,
cctxParams) )) {
@@ -5879,7 +5992,7 @@ static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
if (zcs->appliedParams.inBufferMode == ZSTD_bm_stable) {
assert(input->pos >= zcs->stableIn_notConsumed);
input->pos -= zcs->stableIn_notConsumed;
- ip -= zcs->stableIn_notConsumed;
+ if (ip) ip -= zcs->stableIn_notConsumed;
zcs->stableIn_notConsumed = 0;
}
if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) {
@@ -6138,7 +6251,7 @@ static size_t ZSTD_CCtx_init_compressStream2(ZSTD_CCtx* cctx,
#ifdef ZSTD_MULTITHREAD
/* If external matchfinder is enabled, make sure to fail before checking job size (for consistency) */
RETURN_ERROR_IF(
- params.useSequenceProducer == 1 && params.nbWorkers >= 1,
+ ZSTD_hasExtSeqProd(&params) && params.nbWorkers >= 1,
parameter_combination_unsupported,
"External sequence producer isn't supported with nbWorkers >= 1"
);
@@ -6430,7 +6543,7 @@ ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx,
if (cctx->appliedParams.validateSequences) {
seqPos->posInSrc += litLength + matchLength;
FORWARD_IF_ERROR(ZSTD_validateSequence(offBase, matchLength, cctx->appliedParams.cParams.minMatch, seqPos->posInSrc,
- cctx->appliedParams.cParams.windowLog, dictSize, cctx->appliedParams.useSequenceProducer),
+ cctx->appliedParams.cParams.windowLog, dictSize, ZSTD_hasExtSeqProd(&cctx->appliedParams)),
"Sequence validation failed");
}
RETURN_ERROR_IF(idx - seqPos->idx >= cctx->seqStore.maxNbSeq, externalSequences_invalid,
@@ -6568,7 +6681,7 @@ ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition*
if (cctx->appliedParams.validateSequences) {
seqPos->posInSrc += litLength + matchLength;
FORWARD_IF_ERROR(ZSTD_validateSequence(offBase, matchLength, cctx->appliedParams.cParams.minMatch, seqPos->posInSrc,
- cctx->appliedParams.cParams.windowLog, dictSize, cctx->appliedParams.useSequenceProducer),
+ cctx->appliedParams.cParams.windowLog, dictSize, ZSTD_hasExtSeqProd(&cctx->appliedParams)),
"Sequence validation failed");
}
DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offBase, matchLength, litLength);
@@ -7014,19 +7127,27 @@ ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeH
}
void ZSTD_registerSequenceProducer(
- ZSTD_CCtx* zc, void* mState,
- ZSTD_sequenceProducer_F* mFinder
+ ZSTD_CCtx* zc,
+ void* extSeqProdState,
+ ZSTD_sequenceProducer_F extSeqProdFunc
+) {
+ assert(zc != NULL);
+ ZSTD_CCtxParams_registerSequenceProducer(
+ &zc->requestedParams, extSeqProdState, extSeqProdFunc
+ );
+}
+
+void ZSTD_CCtxParams_registerSequenceProducer(
+ ZSTD_CCtx_params* params,
+ void* extSeqProdState,
+ ZSTD_sequenceProducer_F extSeqProdFunc
) {
- if (mFinder != NULL) {
- ZSTD_externalMatchCtx emctx;
- emctx.mState = mState;
- emctx.mFinder = mFinder;
- emctx.seqBuffer = NULL;
- emctx.seqBufferCapacity = 0;
- zc->externalMatchCtx = emctx;
- zc->requestedParams.useSequenceProducer = 1;
+ assert(params != NULL);
+ if (extSeqProdFunc != NULL) {
+ params->extSeqProdFunc = extSeqProdFunc;
+ params->extSeqProdState = extSeqProdState;
} else {
- ZSTD_memset(&zc->externalMatchCtx, 0, sizeof(zc->externalMatchCtx));
- zc->requestedParams.useSequenceProducer = 0;
+ params->extSeqProdFunc = NULL;
+ params->extSeqProdState = NULL;
}
}
diff --git a/thirdparty/zstd/compress/zstd_compress_internal.h b/thirdparty/zstd/compress/zstd_compress_internal.h
index 10f68d010e..e41d7b78ec 100644
--- a/thirdparty/zstd/compress/zstd_compress_internal.h
+++ b/thirdparty/zstd/compress/zstd_compress_internal.h
@@ -39,7 +39,7 @@ extern "C" {
It's not a big deal though : candidate will just be sorted again.
Additionally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
- The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
+ The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table reuse with a different strategy.
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
@@ -159,23 +159,24 @@ typedef struct {
UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
typedef struct {
- int price;
- U32 off;
- U32 mlen;
- U32 litlen;
- U32 rep[ZSTD_REP_NUM];
+ int price; /* price from beginning of segment to this position */
+ U32 off; /* offset of previous match */
+ U32 mlen; /* length of previous match */
+ U32 litlen; /* nb of literals since previous match */
+ U32 rep[ZSTD_REP_NUM]; /* offset history after previous match */
} ZSTD_optimal_t;
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
+#define ZSTD_OPT_SIZE (ZSTD_OPT_NUM+3)
typedef struct {
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
unsigned* litFreq; /* table of literals statistics, of size 256 */
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
- ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
- ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
+ ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_SIZE */
+ ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_SIZE */
U32 litSum; /* nb of literals */
U32 litLengthSum; /* nb of litLength codes */
@@ -228,7 +229,7 @@ struct ZSTD_matchState_t {
U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
BYTE* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */
U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */
- U64 hashSalt; /* For row-based matchFinder: salts the hash for re-use of tag table */
+ U64 hashSalt; /* For row-based matchFinder: salts the hash for reuse of tag table */
U32 hashSaltEntropy; /* For row-based matchFinder: collects entropy for salt generation */
U32* hashTable;
@@ -360,10 +361,11 @@ struct ZSTD_CCtx_params_s {
* if the external matchfinder returns an error code. */
int enableMatchFinderFallback;
- /* Indicates whether an external matchfinder has been referenced.
- * Users can't set this externally.
- * It is set internally in ZSTD_registerSequenceProducer(). */
- int useSequenceProducer;
+ /* Parameters for the external sequence producer API.
+ * Users set these parameters through ZSTD_registerSequenceProducer().
+ * It is not possible to set these parameters individually through the public API. */
+ void* extSeqProdState;
+ ZSTD_sequenceProducer_F extSeqProdFunc;
/* Adjust the max block size*/
size_t maxBlockSize;
@@ -401,14 +403,6 @@ typedef struct {
ZSTD_entropyCTablesMetadata_t entropyMetadata;
} ZSTD_blockSplitCtx;
-/* Context for block-level external matchfinder API */
-typedef struct {
- void* mState;
- ZSTD_sequenceProducer_F* mFinder;
- ZSTD_Sequence* seqBuffer;
- size_t seqBufferCapacity;
-} ZSTD_externalMatchCtx;
-
struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
@@ -479,8 +473,9 @@ struct ZSTD_CCtx_s {
/* Workspace for block splitter */
ZSTD_blockSplitCtx blockSplitCtx;
- /* Workspace for external matchfinder */
- ZSTD_externalMatchCtx externalMatchCtx;
+ /* Buffer for output from external sequence producer */
+ ZSTD_Sequence* extSeqBuf;
+ size_t extSeqBufCapacity;
};
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
@@ -1053,7 +1048,9 @@ MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
*/
-MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
+MEM_STATIC
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
@@ -1246,7 +1243,9 @@ MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
-MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
+MEM_STATIC
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_window_update(ZSTD_window_t* window,
void const* src, size_t srcSize,
int forceNonContiguous)
{
@@ -1467,11 +1466,10 @@ size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
- * @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
-size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
+void ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
@@ -1509,6 +1507,10 @@ ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition*
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch);
+/* Returns 1 if an external sequence producer is registered, otherwise returns 0. */
+MEM_STATIC int ZSTD_hasExtSeqProd(const ZSTD_CCtx_params* params) {
+ return params->extSeqProdFunc != NULL;
+}
/* ===============================================================
* Deprecated definitions that are still used internally to avoid
diff --git a/thirdparty/zstd/compress/zstd_compress_superblock.c b/thirdparty/zstd/compress/zstd_compress_superblock.c
index 638c4acbe7..628a2dccd0 100644
--- a/thirdparty/zstd/compress/zstd_compress_superblock.c
+++ b/thirdparty/zstd/compress/zstd_compress_superblock.c
@@ -76,8 +76,8 @@ ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
}
{ int const flags = bmi2 ? HUF_flags_bmi2 : 0;
- const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, oend-op, literals, litSize, hufTable, flags)
- : HUF_compress4X_usingCTable(op, oend-op, literals, litSize, hufTable, flags);
+ const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, (size_t)(oend-op), literals, litSize, hufTable, flags)
+ : HUF_compress4X_usingCTable(op, (size_t)(oend-op), literals, litSize, hufTable, flags);
op += cSize;
cLitSize += cSize;
if (cSize == 0 || ERR_isError(cSize)) {
@@ -102,7 +102,7 @@ ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
- { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14);
+ { U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
@@ -122,30 +122,30 @@ ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
}
*entropyWritten = 1;
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)litSize, (U32)(op-ostart));
- return op-ostart;
+ return (size_t)(op-ostart);
}
static size_t
ZSTD_seqDecompressedSize(seqStore_t const* seqStore,
- const seqDef* sequences, size_t nbSeq,
- size_t litSize, int lastSequence)
+ const seqDef* sequences, size_t nbSeqs,
+ size_t litSize, int lastSubBlock)
{
- const seqDef* const sstart = sequences;
- const seqDef* const send = sequences + nbSeq;
- const seqDef* sp = sstart;
size_t matchLengthSum = 0;
size_t litLengthSum = 0;
- (void)(litLengthSum); /* suppress unused variable warning on some environments */
- while (send-sp > 0) {
- ZSTD_sequenceLength const seqLen = ZSTD_getSequenceLength(seqStore, sp);
+ size_t n;
+ for (n=0; n<nbSeqs; n++) {
+ const ZSTD_sequenceLength seqLen = ZSTD_getSequenceLength(seqStore, sequences+n);
litLengthSum += seqLen.litLength;
matchLengthSum += seqLen.matchLength;
- sp++;
}
- assert(litLengthSum <= litSize);
- if (!lastSequence) {
+ DEBUGLOG(5, "ZSTD_seqDecompressedSize: %u sequences from %p: %u literals + %u matchlength",
+ (unsigned)nbSeqs, (const void*)sequences,
+ (unsigned)litLengthSum, (unsigned)matchLengthSum);
+ if (!lastSubBlock)
assert(litLengthSum == litSize);
- }
+ else
+ assert(litLengthSum <= litSize);
+ (void)litLengthSum;
return matchLengthSum + litSize;
}
@@ -180,14 +180,14 @@ ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
/* Sequences Header */
RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
dstSize_tooSmall, "");
- if (nbSeq < 0x7F)
+ if (nbSeq < 128)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
else
op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
if (nbSeq==0) {
- return op - ostart;
+ return (size_t)(op - ostart);
}
/* seqHead : flags for FSE encoding type */
@@ -209,7 +209,7 @@ ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
}
{ size_t const bitstreamSize = ZSTD_encodeSequences(
- op, oend - op,
+ op, (size_t)(oend - op),
fseTables->matchlengthCTable, mlCode,
fseTables->offcodeCTable, ofCode,
fseTables->litlengthCTable, llCode,
@@ -253,7 +253,7 @@ ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
#endif
*entropyWritten = 1;
- return op - ostart;
+ return (size_t)(op - ostart);
}
/** ZSTD_compressSubBlock() :
@@ -279,7 +279,8 @@ static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy,
litSize, nbSeq, writeLitEntropy, writeSeqEntropy, lastBlock);
{ size_t cLitSize = ZSTD_compressSubBlock_literal((const HUF_CElt*)entropy->huf.CTable,
&entropyMetadata->hufMetadata, literals, litSize,
- op, oend-op, bmi2, writeLitEntropy, litEntropyWritten);
+ op, (size_t)(oend-op),
+ bmi2, writeLitEntropy, litEntropyWritten);
FORWARD_IF_ERROR(cLitSize, "ZSTD_compressSubBlock_literal failed");
if (cLitSize == 0) return 0;
op += cLitSize;
@@ -289,18 +290,18 @@ static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy,
sequences, nbSeq,
llCode, mlCode, ofCode,
cctxParams,
- op, oend-op,
+ op, (size_t)(oend-op),
bmi2, writeSeqEntropy, seqEntropyWritten);
FORWARD_IF_ERROR(cSeqSize, "ZSTD_compressSubBlock_sequences failed");
if (cSeqSize == 0) return 0;
op += cSeqSize;
}
/* Write block header */
- { size_t cSize = (op-ostart)-ZSTD_blockHeaderSize;
+ { size_t cSize = (size_t)(op-ostart) - ZSTD_blockHeaderSize;
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(ostart, cBlockHeader24);
}
- return op-ostart;
+ return (size_t)(op-ostart);
}
static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t litSize,
@@ -389,7 +390,11 @@ static size_t ZSTD_estimateSubBlockSize_sequences(const BYTE* ofCodeTable,
return cSeqSizeEstimate + sequencesSectionHeaderSize;
}
-static size_t ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
+typedef struct {
+ size_t estLitSize;
+ size_t estBlockSize;
+} EstimatedBlockSize;
+static EstimatedBlockSize ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
@@ -397,15 +402,17 @@ static size_t ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
void* workspace, size_t wkspSize,
- int writeLitEntropy, int writeSeqEntropy) {
- size_t cSizeEstimate = 0;
- cSizeEstimate += ZSTD_estimateSubBlockSize_literal(literals, litSize,
- &entropy->huf, &entropyMetadata->hufMetadata,
- workspace, wkspSize, writeLitEntropy);
- cSizeEstimate += ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
+ int writeLitEntropy, int writeSeqEntropy)
+{
+ EstimatedBlockSize ebs;
+ ebs.estLitSize = ZSTD_estimateSubBlockSize_literal(literals, litSize,
+ &entropy->huf, &entropyMetadata->hufMetadata,
+ workspace, wkspSize, writeLitEntropy);
+ ebs.estBlockSize = ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
nbSeq, &entropy->fse, &entropyMetadata->fseMetadata,
workspace, wkspSize, writeSeqEntropy);
- return cSizeEstimate + ZSTD_blockHeaderSize;
+ ebs.estBlockSize += ebs.estLitSize + ZSTD_blockHeaderSize;
+ return ebs;
}
static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMetadata)
@@ -419,13 +426,56 @@ static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMe
return 0;
}
+static size_t countLiterals(seqStore_t const* seqStore, const seqDef* sp, size_t seqCount)
+{
+ size_t n, total = 0;
+ assert(sp != NULL);
+ for (n=0; n<seqCount; n++) {
+ total += ZSTD_getSequenceLength(seqStore, sp+n).litLength;
+ }
+ DEBUGLOG(6, "countLiterals for %zu sequences from %p => %zu bytes", seqCount, (const void*)sp, total);
+ return total;
+}
+
+#define BYTESCALE 256
+
+static size_t sizeBlockSequences(const seqDef* sp, size_t nbSeqs,
+ size_t targetBudget, size_t avgLitCost, size_t avgSeqCost,
+ int firstSubBlock)
+{
+ size_t n, budget = 0, inSize=0;
+ /* entropy headers */
+ size_t const headerSize = (size_t)firstSubBlock * 120 * BYTESCALE; /* generous estimate */
+ assert(firstSubBlock==0 || firstSubBlock==1);
+ budget += headerSize;
+
+ /* first sequence => at least one sequence*/
+ budget += sp[0].litLength * avgLitCost + avgSeqCost;
+ if (budget > targetBudget) return 1;
+ inSize = sp[0].litLength + (sp[0].mlBase+MINMATCH);
+
+ /* loop over sequences */
+ for (n=1; n<nbSeqs; n++) {
+ size_t currentCost = sp[n].litLength * avgLitCost + avgSeqCost;
+ budget += currentCost;
+ inSize += sp[n].litLength + (sp[n].mlBase+MINMATCH);
+ /* stop when sub-block budget is reached */
+ if ( (budget > targetBudget)
+ /* though continue to expand until the sub-block is deemed compressible */
+ && (budget < inSize * BYTESCALE) )
+ break;
+ }
+
+ return n;
+}
+
/** ZSTD_compressSubBlock_multi() :
* Breaks super-block into multiple sub-blocks and compresses them.
- * Entropy will be written to the first block.
- * The following blocks will use repeat mode to compress.
- * All sub-blocks are compressed blocks (no raw or rle blocks).
- * @return : compressed size of the super block (which is multiple ZSTD blocks)
- * Or 0 if it failed to compress. */
+ * Entropy will be written into the first block.
+ * The following blocks use repeat_mode to compress.
+ * Sub-blocks are all compressed, except the last one when beneficial.
+ * @return : compressed size of the super block (which features multiple ZSTD blocks)
+ * or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
const ZSTD_compressedBlockState_t* prevCBlock,
ZSTD_compressedBlockState_t* nextCBlock,
@@ -438,10 +488,12 @@ static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
{
const seqDef* const sstart = seqStorePtr->sequencesStart;
const seqDef* const send = seqStorePtr->sequences;
- const seqDef* sp = sstart;
+ const seqDef* sp = sstart; /* tracks progresses within seqStorePtr->sequences */
+ size_t const nbSeqs = (size_t)(send - sstart);
const BYTE* const lstart = seqStorePtr->litStart;
const BYTE* const lend = seqStorePtr->lit;
const BYTE* lp = lstart;
+ size_t const nbLiterals = (size_t)(lend - lstart);
BYTE const* ip = (BYTE const*)src;
BYTE const* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*)dst;
@@ -450,96 +502,152 @@ static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
const BYTE* llCodePtr = seqStorePtr->llCode;
const BYTE* mlCodePtr = seqStorePtr->mlCode;
const BYTE* ofCodePtr = seqStorePtr->ofCode;
- size_t targetCBlockSize = cctxParams->targetCBlockSize;
- size_t litSize, seqCount;
- int writeLitEntropy = entropyMetadata->hufMetadata.hType == set_compressed;
+ size_t const minTarget = ZSTD_TARGETCBLOCKSIZE_MIN; /* enforce minimum size, to reduce undesirable side effects */
+ size_t const targetCBlockSize = MAX(minTarget, cctxParams->targetCBlockSize);
+ int writeLitEntropy = (entropyMetadata->hufMetadata.hType == set_compressed);
int writeSeqEntropy = 1;
- int lastSequence = 0;
-
- DEBUGLOG(5, "ZSTD_compressSubBlock_multi (litSize=%u, nbSeq=%u)",
- (unsigned)(lend-lp), (unsigned)(send-sstart));
-
- litSize = 0;
- seqCount = 0;
- do {
- size_t cBlockSizeEstimate = 0;
- if (sstart == send) {
- lastSequence = 1;
- } else {
- const seqDef* const sequence = sp + seqCount;
- lastSequence = sequence == send - 1;
- litSize += ZSTD_getSequenceLength(seqStorePtr, sequence).litLength;
- seqCount++;
- }
- if (lastSequence) {
- assert(lp <= lend);
- assert(litSize <= (size_t)(lend - lp));
- litSize = (size_t)(lend - lp);
+
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi (srcSize=%u, litSize=%u, nbSeq=%u)",
+ (unsigned)srcSize, (unsigned)(lend-lstart), (unsigned)(send-sstart));
+
+ /* let's start by a general estimation for the full block */
+ if (nbSeqs > 0) {
+ EstimatedBlockSize const ebs =
+ ZSTD_estimateSubBlockSize(lp, nbLiterals,
+ ofCodePtr, llCodePtr, mlCodePtr, nbSeqs,
+ &nextCBlock->entropy, entropyMetadata,
+ workspace, wkspSize,
+ writeLitEntropy, writeSeqEntropy);
+ /* quick estimation */
+ size_t const avgLitCost = nbLiterals ? (ebs.estLitSize * BYTESCALE) / nbLiterals : BYTESCALE;
+ size_t const avgSeqCost = ((ebs.estBlockSize - ebs.estLitSize) * BYTESCALE) / nbSeqs;
+ const size_t nbSubBlocks = MAX((ebs.estBlockSize + (targetCBlockSize/2)) / targetCBlockSize, 1);
+ size_t n, avgBlockBudget, blockBudgetSupp=0;
+ avgBlockBudget = (ebs.estBlockSize * BYTESCALE) / nbSubBlocks;
+ DEBUGLOG(5, "estimated fullblock size=%u bytes ; avgLitCost=%.2f ; avgSeqCost=%.2f ; targetCBlockSize=%u, nbSubBlocks=%u ; avgBlockBudget=%.0f bytes",
+ (unsigned)ebs.estBlockSize, (double)avgLitCost/BYTESCALE, (double)avgSeqCost/BYTESCALE,
+ (unsigned)targetCBlockSize, (unsigned)nbSubBlocks, (double)avgBlockBudget/BYTESCALE);
+ /* simplification: if estimates states that the full superblock doesn't compress, just bail out immediately
+ * this will result in the production of a single uncompressed block covering @srcSize.*/
+ if (ebs.estBlockSize > srcSize) return 0;
+
+ /* compress and write sub-blocks */
+ assert(nbSubBlocks>0);
+ for (n=0; n < nbSubBlocks-1; n++) {
+ /* determine nb of sequences for current sub-block + nbLiterals from next sequence */
+ size_t const seqCount = sizeBlockSequences(sp, (size_t)(send-sp),
+ avgBlockBudget + blockBudgetSupp, avgLitCost, avgSeqCost, n==0);
+ /* if reached last sequence : break to last sub-block (simplification) */
+ assert(seqCount <= (size_t)(send-sp));
+ if (sp + seqCount == send) break;
+ assert(seqCount > 0);
+ /* compress sub-block */
+ { int litEntropyWritten = 0;
+ int seqEntropyWritten = 0;
+ size_t litSize = countLiterals(seqStorePtr, sp, seqCount);
+ const size_t decompressedSize =
+ ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, 0);
+ size_t const cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
+ sp, seqCount,
+ lp, litSize,
+ llCodePtr, mlCodePtr, ofCodePtr,
+ cctxParams,
+ op, (size_t)(oend-op),
+ bmi2, writeLitEntropy, writeSeqEntropy,
+ &litEntropyWritten, &seqEntropyWritten,
+ 0);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
+
+ /* check compressibility, update state components */
+ if (cSize > 0 && cSize < decompressedSize) {
+ DEBUGLOG(5, "Committed sub-block compressing %u bytes => %u bytes",
+ (unsigned)decompressedSize, (unsigned)cSize);
+ assert(ip + decompressedSize <= iend);
+ ip += decompressedSize;
+ lp += litSize;
+ op += cSize;
+ llCodePtr += seqCount;
+ mlCodePtr += seqCount;
+ ofCodePtr += seqCount;
+ /* Entropy only needs to be written once */
+ if (litEntropyWritten) {
+ writeLitEntropy = 0;
+ }
+ if (seqEntropyWritten) {
+ writeSeqEntropy = 0;
+ }
+ sp += seqCount;
+ blockBudgetSupp = 0;
+ } }
+ /* otherwise : do not compress yet, coalesce current sub-block with following one */
}
- /* I think there is an optimization opportunity here.
- * Calling ZSTD_estimateSubBlockSize for every sequence can be wasteful
- * since it recalculates estimate from scratch.
- * For example, it would recount literal distribution and symbol codes every time.
- */
- cBlockSizeEstimate = ZSTD_estimateSubBlockSize(lp, litSize, ofCodePtr, llCodePtr, mlCodePtr, seqCount,
- &nextCBlock->entropy, entropyMetadata,
- workspace, wkspSize, writeLitEntropy, writeSeqEntropy);
- if (cBlockSizeEstimate > targetCBlockSize || lastSequence) {
- int litEntropyWritten = 0;
- int seqEntropyWritten = 0;
- const size_t decompressedSize = ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, lastSequence);
- const size_t cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
- sp, seqCount,
- lp, litSize,
- llCodePtr, mlCodePtr, ofCodePtr,
- cctxParams,
- op, oend-op,
- bmi2, writeLitEntropy, writeSeqEntropy,
- &litEntropyWritten, &seqEntropyWritten,
- lastBlock && lastSequence);
- FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
- if (cSize > 0 && cSize < decompressedSize) {
- DEBUGLOG(5, "Committed the sub-block");
- assert(ip + decompressedSize <= iend);
- ip += decompressedSize;
- sp += seqCount;
- lp += litSize;
- op += cSize;
- llCodePtr += seqCount;
- mlCodePtr += seqCount;
- ofCodePtr += seqCount;
- litSize = 0;
- seqCount = 0;
- /* Entropy only needs to be written once */
- if (litEntropyWritten) {
- writeLitEntropy = 0;
- }
- if (seqEntropyWritten) {
- writeSeqEntropy = 0;
- }
+ } /* if (nbSeqs > 0) */
+
+ /* write last block */
+ DEBUGLOG(5, "Generate last sub-block: %u sequences remaining", (unsigned)(send - sp));
+ { int litEntropyWritten = 0;
+ int seqEntropyWritten = 0;
+ size_t litSize = (size_t)(lend - lp);
+ size_t seqCount = (size_t)(send - sp);
+ const size_t decompressedSize =
+ ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, 1);
+ size_t const cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
+ sp, seqCount,
+ lp, litSize,
+ llCodePtr, mlCodePtr, ofCodePtr,
+ cctxParams,
+ op, (size_t)(oend-op),
+ bmi2, writeLitEntropy, writeSeqEntropy,
+ &litEntropyWritten, &seqEntropyWritten,
+ lastBlock);
+ FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
+
+ /* update pointers, the nb of literals borrowed from next sequence must be preserved */
+ if (cSize > 0 && cSize < decompressedSize) {
+ DEBUGLOG(5, "Last sub-block compressed %u bytes => %u bytes",
+ (unsigned)decompressedSize, (unsigned)cSize);
+ assert(ip + decompressedSize <= iend);
+ ip += decompressedSize;
+ lp += litSize;
+ op += cSize;
+ llCodePtr += seqCount;
+ mlCodePtr += seqCount;
+ ofCodePtr += seqCount;
+ /* Entropy only needs to be written once */
+ if (litEntropyWritten) {
+ writeLitEntropy = 0;
+ }
+ if (seqEntropyWritten) {
+ writeSeqEntropy = 0;
}
+ sp += seqCount;
}
- } while (!lastSequence);
+ }
+
+
if (writeLitEntropy) {
- DEBUGLOG(5, "ZSTD_compressSubBlock_multi has literal entropy tables unwritten");
+ DEBUGLOG(5, "Literal entropy tables were never written");
ZSTD_memcpy(&nextCBlock->entropy.huf, &prevCBlock->entropy.huf, sizeof(prevCBlock->entropy.huf));
}
if (writeSeqEntropy && ZSTD_needSequenceEntropyTables(&entropyMetadata->fseMetadata)) {
/* If we haven't written our entropy tables, then we've violated our contract and
* must emit an uncompressed block.
*/
- DEBUGLOG(5, "ZSTD_compressSubBlock_multi has sequence entropy tables unwritten");
+ DEBUGLOG(5, "Sequence entropy tables were never written => cancel, emit an uncompressed block");
return 0;
}
+
if (ip < iend) {
- size_t const cSize = ZSTD_noCompressBlock(op, oend - op, ip, iend - ip, lastBlock);
- DEBUGLOG(5, "ZSTD_compressSubBlock_multi last sub-block uncompressed, %zu bytes", (size_t)(iend - ip));
+ /* some data left : last part of the block sent uncompressed */
+ size_t const rSize = (size_t)((iend - ip));
+ size_t const cSize = ZSTD_noCompressBlock(op, (size_t)(oend - op), ip, rSize, lastBlock);
+ DEBUGLOG(5, "Generate last uncompressed sub-block of %u bytes", (unsigned)(rSize));
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
assert(cSize != 0);
op += cSize;
/* We have to regenerate the repcodes because we've skipped some sequences */
if (sp < send) {
- seqDef const* seq;
+ const seqDef* seq;
repcodes_t rep;
ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
for (seq = sstart; seq < sp; ++seq) {
@@ -548,14 +656,17 @@ static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
}
}
- DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed");
- return op-ostart;
+
+ DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed all subBlocks: total compressed size = %u",
+ (unsigned)(op-ostart));
+ return (size_t)(op-ostart);
}
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
- void const* src, size_t srcSize,
- unsigned lastBlock) {
+ const void* src, size_t srcSize,
+ unsigned lastBlock)
+{
ZSTD_entropyCTablesMetadata_t entropyMetadata;
FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(&zc->seqStore,
diff --git a/thirdparty/zstd/compress/zstd_cwksp.h b/thirdparty/zstd/compress/zstd_cwksp.h
index cc7fb1c715..3eddbd334e 100644
--- a/thirdparty/zstd/compress/zstd_cwksp.h
+++ b/thirdparty/zstd/compress/zstd_cwksp.h
@@ -192,6 +192,7 @@ MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
{
intptr_t const offset = __msan_test_shadow(ws->initOnceStart,
(U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart);
+ (void)offset;
#if defined(ZSTD_MSAN_PRINT)
if(offset!=-1) {
__msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32);
@@ -433,7 +434,7 @@ MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
/**
* Aligned on 64 bytes. These buffers have the special property that
- * their values remain constrained, allowing us to re-use them without
+ * their values remain constrained, allowing us to reuse them without
* memset()-ing them.
*/
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
@@ -525,7 +526,7 @@ MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
- /* To validate that the table re-use logic is sound, and that we don't
+ /* To validate that the table reuse logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty.
* Since tableValidEnd space and initOnce space may overlap we don't poison
@@ -602,9 +603,9 @@ MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing!");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
- /* To validate that the context re-use logic is sound, and that we don't
+ /* To validate that the context reuse logic is sound, and that we don't
* access stuff that this compression hasn't initialized, we re-"poison"
- * the workspace except for the areas in which we expect memory re-use
+ * the workspace except for the areas in which we expect memory reuse
* without initialization (objects, valid tables area and init once
* memory). */
{
@@ -635,6 +636,15 @@ MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
ZSTD_cwksp_assert_internal_consistency(ws);
}
+MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
+ return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
+}
+
+MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
+ return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
+ + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
+}
+
/**
* The provided workspace takes ownership of the buffer [start, start+size).
* Any existing values in the workspace are ignored (the previously managed
@@ -666,6 +676,11 @@ MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem
MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
void *ptr = ws->workspace;
DEBUGLOG(4, "cwksp: freeing workspace");
+#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
+ if (ptr != NULL && customMem.customFree != NULL) {
+ __msan_unpoison(ptr, ZSTD_cwksp_sizeof(ws));
+ }
+#endif
ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
ZSTD_customFree(ptr, customMem);
}
@@ -679,15 +694,6 @@ MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
}
-MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
- return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
-}
-
-MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
- return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
- + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
-}
-
MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
return ws->allocFailed;
}
diff --git a/thirdparty/zstd/compress/zstd_double_fast.c b/thirdparty/zstd/compress/zstd_double_fast.c
index 0ad88ffc7b..a4e9c50d3b 100644
--- a/thirdparty/zstd/compress/zstd_double_fast.c
+++ b/thirdparty/zstd/compress/zstd_double_fast.c
@@ -11,7 +11,11 @@
#include "zstd_compress_internal.h"
#include "zstd_double_fast.h"
-static void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
+#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
+
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
@@ -47,7 +51,9 @@ static void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
} }
}
-static void ZSTD_fillDoubleHashTableForCCtx(ZSTD_matchState_t* ms,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_fillDoubleHashTableForCCtx(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
@@ -95,6 +101,7 @@ void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_doubleFast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls /* template */)
@@ -305,6 +312,7 @@ _match_stored:
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
@@ -348,8 +356,8 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
size_t const chainTableBytes = (((size_t)1) << dictCParams->chainLog) * sizeof(U32);
- PREFETCH_AREA(dictHashLong, hashTableBytes)
- PREFETCH_AREA(dictHashSmall, chainTableBytes)
+ PREFETCH_AREA(dictHashLong, hashTableBytes);
+ PREFETCH_AREA(dictHashSmall, chainTableBytes);
}
/* init */
@@ -589,7 +597,9 @@ size_t ZSTD_compressBlock_doubleFast_dictMatchState(
}
-static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
@@ -756,3 +766,5 @@ size_t ZSTD_compressBlock_doubleFast_extDict(
return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize);
}
}
+
+#endif /* ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR */
diff --git a/thirdparty/zstd/compress/zstd_double_fast.h b/thirdparty/zstd/compress/zstd_double_fast.h
index 6f0047c4ba..ce6ed8c97f 100644
--- a/thirdparty/zstd/compress/zstd_double_fast.h
+++ b/thirdparty/zstd/compress/zstd_double_fast.h
@@ -18,9 +18,12 @@ extern "C" {
#include "../common/mem.h" /* U32 */
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
+#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
+
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp);
+
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
@@ -31,6 +34,14 @@ size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+#define ZSTD_COMPRESSBLOCK_DOUBLEFAST ZSTD_compressBlock_doubleFast
+#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE ZSTD_compressBlock_doubleFast_dictMatchState
+#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT ZSTD_compressBlock_doubleFast_extDict
+#else
+#define ZSTD_COMPRESSBLOCK_DOUBLEFAST NULL
+#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT NULL
+#endif /* ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR */
#if defined (__cplusplus)
}
diff --git a/thirdparty/zstd/compress/zstd_fast.c b/thirdparty/zstd/compress/zstd_fast.c
index 5f2c6a2eda..6c4554cfca 100644
--- a/thirdparty/zstd/compress/zstd_fast.c
+++ b/thirdparty/zstd/compress/zstd_fast.c
@@ -11,7 +11,9 @@
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
#include "zstd_fast.h"
-static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
@@ -46,7 +48,9 @@ static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
} } } }
}
-static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
@@ -139,8 +143,9 @@ void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
*
* This is also the work we do at the beginning to enter the loop initially.
*/
-FORCE_INLINE_TEMPLATE size_t
-ZSTD_compressBlock_fast_noDict_generic(
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_compressBlock_fast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls, U32 const hasStep)
@@ -456,6 +461,7 @@ size_t ZSTD_compressBlock_fast(
}
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_fast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
@@ -502,7 +508,7 @@ size_t ZSTD_compressBlock_fast_dictMatchState_generic(
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
- PREFETCH_AREA(dictHashTable, hashTableBytes)
+ PREFETCH_AREA(dictHashTable, hashTableBytes);
}
/* init */
@@ -681,7 +687,9 @@ size_t ZSTD_compressBlock_fast_dictMatchState(
}
-static size_t ZSTD_compressBlock_fast_extDict_generic(
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
diff --git a/thirdparty/zstd/compress/zstd_lazy.c b/thirdparty/zstd/compress/zstd_lazy.c
index 5ba88e8678..67dd55fdb8 100644
--- a/thirdparty/zstd/compress/zstd_lazy.c
+++ b/thirdparty/zstd/compress/zstd_lazy.c
@@ -12,6 +12,11 @@
#include "zstd_lazy.h"
#include "../common/bits.h" /* ZSTD_countTrailingZeros64 */
+#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
+
#define kLazySkippingStep 8
@@ -19,8 +24,9 @@
* Binary Tree search
***************************************/
-static void
-ZSTD_updateDUBT(ZSTD_matchState_t* ms,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_updateDUBT(ZSTD_matchState_t* ms,
const BYTE* ip, const BYTE* iend,
U32 mls)
{
@@ -63,8 +69,9 @@ ZSTD_updateDUBT(ZSTD_matchState_t* ms,
* sort one already inserted but unsorted position
* assumption : curr >= btlow == (curr - btmask)
* doesn't fail */
-static void
-ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
U32 curr, const BYTE* inputEnd,
U32 nbCompares, U32 btLow,
const ZSTD_dictMode_e dictMode)
@@ -152,8 +159,9 @@ ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
}
-static size_t
-ZSTD_DUBT_findBetterDictMatch (
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_DUBT_findBetterDictMatch (
const ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
size_t* offsetPtr,
@@ -230,8 +238,9 @@ ZSTD_DUBT_findBetterDictMatch (
}
-static size_t
-ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
size_t* offBasePtr,
U32 const mls,
@@ -381,8 +390,9 @@ ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
-FORCE_INLINE_TEMPLATE size_t
-ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iLimit,
size_t* offBasePtr,
const U32 mls /* template */,
@@ -617,7 +627,9 @@ size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nb
/* Update chains up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
-FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_insertAndFindFirstIndex_internal(
ZSTD_matchState_t* ms,
const ZSTD_compressionParameters* const cParams,
const BYTE* ip, U32 const mls, U32 const lazySkipping)
@@ -651,6 +663,7 @@ U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
/* inlining is important to hardwire a hot branch (template emulation) */
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_HcFindBestMatch(
ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iLimit,
@@ -819,7 +832,9 @@ FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* t
* Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
* but not beyond iLimit.
*/
-FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
U32 const rowLog, U32 const mls,
U32 idx, const BYTE* const iLimit)
{
@@ -845,7 +860,9 @@ FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const B
* Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
* base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
*/
-FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
BYTE const* tagTable, BYTE const* base,
U32 idx, U32 const hashLog,
U32 const rowLog, U32 const mls,
@@ -863,10 +880,12 @@ FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTab
/* ZSTD_row_update_internalImpl():
* Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
*/
-FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
- U32 updateStartIdx, U32 const updateEndIdx,
- U32 const mls, U32 const rowLog,
- U32 const rowMask, U32 const useCache)
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
+ U32 updateStartIdx, U32 const updateEndIdx,
+ U32 const mls, U32 const rowLog,
+ U32 const rowMask, U32 const useCache)
{
U32* const hashTable = ms->hashTable;
BYTE* const tagTable = ms->tagTable;
@@ -892,9 +911,11 @@ FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
* Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
* Skips sections of long matches as is necessary.
*/
-FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
- U32 const mls, U32 const rowLog,
- U32 const rowMask, U32 const useCache)
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
+ U32 const mls, U32 const rowLog,
+ U32 const rowMask, U32 const useCache)
{
U32 idx = ms->nextToUpdate;
const BYTE* const base = ms->window.base;
@@ -1102,20 +1123,21 @@ ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 headGr
/* The high-level approach of the SIMD row based match finder is as follows:
* - Figure out where to insert the new entry:
- * - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag"
- * - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines
+ * - Generate a hash for current input posistion and split it into a one byte of tag and `rowHashLog` bits of index.
+ * - The hash is salted by a value that changes on every contex reset, so when the same table is used
+ * we will avoid collisions that would otherwise slow us down by intorducing phantom matches.
+ * - The hashTable is effectively split into groups or "rows" of 15 or 31 entries of U32, and the index determines
* which row to insert into.
- * - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can
- * be considered as a circular buffer with a "head" index that resides in the tagTable.
- * - Also insert the "tag" into the equivalent row and position in the tagTable.
- * - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry.
- * The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively,
- * for alignment/performance reasons, leaving some bytes unused.
- * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and
+ * - Determine the correct position within the row to insert the entry into. Each row of 15 or 31 can
+ * be considered as a circular buffer with a "head" index that resides in the tagTable (overall 16 or 32 bytes
+ * per row).
+ * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte tag calculated for the position and
* generate a bitfield that we can cycle through to check the collisions in the hash table.
* - Pick the longest match.
+ * - Insert the tag into the equivalent row and position in the tagTable.
*/
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_RowFindBestMatch(
ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iLimit,
@@ -1489,8 +1511,9 @@ FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax(
* Common parser - lazy strategy
*********************************/
-FORCE_INLINE_TEMPLATE size_t
-ZSTD_compressBlock_lazy_generic(
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_compressBlock_lazy_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize,
@@ -1754,152 +1777,163 @@ _storeSequence:
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+#endif /* build exclusions */
-size_t ZSTD_compressBlock_btlazy2(
+#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_lazy2(
+size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
}
-size_t ZSTD_compressBlock_lazy(
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
}
-size_t ZSTD_compressBlock_greedy(
+size_t ZSTD_compressBlock_greedy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_btlazy2_dictMatchState(
+size_t ZSTD_compressBlock_greedy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
}
-size_t ZSTD_compressBlock_lazy2_dictMatchState(
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
}
+#endif
-size_t ZSTD_compressBlock_lazy_dictMatchState(
+#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_greedy_dictMatchState(
+size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
}
-
-size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
}
-size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
+size_t ZSTD_compressBlock_lazy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
+size_t ZSTD_compressBlock_lazy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
}
-/* Row-based matchfinder */
-size_t ZSTD_compressBlock_lazy2_row(
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
}
+#endif
-size_t ZSTD_compressBlock_lazy_row(
+#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_greedy_row(
+size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
}
-size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
}
-size_t ZSTD_compressBlock_lazy_dictMatchState_row(
+size_t ZSTD_compressBlock_lazy2_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_greedy_dictMatchState_row(
+size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
}
-
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
}
+#endif
-size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
+#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
}
-size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
+size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
+ return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
}
+#endif
+#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_lazy_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
@@ -2101,8 +2135,9 @@ _storeSequence:
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+#endif /* build exclusions */
-
+#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
@@ -2110,48 +2145,55 @@ size_t ZSTD_compressBlock_greedy_extDict(
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
}
-size_t ZSTD_compressBlock_lazy_extDict(
+size_t ZSTD_compressBlock_greedy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
-
{
- return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
}
+#endif
-size_t ZSTD_compressBlock_lazy2_extDict(
+#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
}
-size_t ZSTD_compressBlock_btlazy2_extDict(
+size_t ZSTD_compressBlock_lazy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
- return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
}
+#endif
-size_t ZSTD_compressBlock_greedy_extDict_row(
+#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
+
{
- return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
}
-size_t ZSTD_compressBlock_lazy_extDict_row(
+size_t ZSTD_compressBlock_lazy2_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
-
{
- return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
}
+#endif
-size_t ZSTD_compressBlock_lazy2_extDict_row(
+#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
+
{
- return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
+ return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
}
+#endif
diff --git a/thirdparty/zstd/compress/zstd_lazy.h b/thirdparty/zstd/compress/zstd_lazy.h
index 3bde67331e..3635813bdd 100644
--- a/thirdparty/zstd/compress/zstd_lazy.h
+++ b/thirdparty/zstd/compress/zstd_lazy.h
@@ -27,98 +27,173 @@ extern "C" {
#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */
+#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip);
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
+#endif
-size_t ZSTD_compressBlock_btlazy2(
+#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy2(
+size_t ZSTD_compressBlock_greedy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy(
+size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy(
+size_t ZSTD_compressBlock_greedy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy2_row(
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_row(
+size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy_row(
+size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-
-size_t ZSTD_compressBlock_btlazy2_dictMatchState(
+size_t ZSTD_compressBlock_greedy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy2_dictMatchState(
+
+#define ZSTD_COMPRESSBLOCK_GREEDY ZSTD_compressBlock_greedy
+#define ZSTD_COMPRESSBLOCK_GREEDY_ROW ZSTD_compressBlock_greedy_row
+#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE ZSTD_compressBlock_greedy_dictMatchState
+#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW ZSTD_compressBlock_greedy_dictMatchState_row
+#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH ZSTD_compressBlock_greedy_dedicatedDictSearch
+#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_greedy_dedicatedDictSearch_row
+#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT ZSTD_compressBlock_greedy_extDict
+#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW ZSTD_compressBlock_greedy_extDict_row
+#else
+#define ZSTD_COMPRESSBLOCK_GREEDY NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_ROW NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT NULL
+#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW NULL
+#endif
+
+#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_dictMatchState(
+size_t ZSTD_compressBlock_lazy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy_dictMatchState(
+size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
+size_t ZSTD_compressBlock_lazy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_dictMatchState_row(
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy_dictMatchState_row(
+size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-
-size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
+size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
+size_t ZSTD_compressBlock_lazy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
+
+#define ZSTD_COMPRESSBLOCK_LAZY ZSTD_compressBlock_lazy
+#define ZSTD_COMPRESSBLOCK_LAZY_ROW ZSTD_compressBlock_lazy_row
+#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE ZSTD_compressBlock_lazy_dictMatchState
+#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW ZSTD_compressBlock_lazy_dictMatchState_row
+#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH ZSTD_compressBlock_lazy_dedicatedDictSearch
+#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_lazy_dedicatedDictSearch_row
+#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT ZSTD_compressBlock_lazy_extDict
+#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW ZSTD_compressBlock_lazy_extDict_row
+#else
+#define ZSTD_COMPRESSBLOCK_LAZY NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_ROW NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT NULL
+#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW NULL
+#endif
+
+#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
+size_t ZSTD_compressBlock_lazy2_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
+size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
+size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-
-size_t ZSTD_compressBlock_greedy_extDict(
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_extDict(
+size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_greedy_extDict_row(
+size_t ZSTD_compressBlock_lazy2_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy_extDict_row(
+
+#define ZSTD_COMPRESSBLOCK_LAZY2 ZSTD_compressBlock_lazy2
+#define ZSTD_COMPRESSBLOCK_LAZY2_ROW ZSTD_compressBlock_lazy2_row
+#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE ZSTD_compressBlock_lazy2_dictMatchState
+#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW ZSTD_compressBlock_lazy2_dictMatchState_row
+#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH ZSTD_compressBlock_lazy2_dedicatedDictSearch
+#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_lazy2_dedicatedDictSearch_row
+#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT ZSTD_compressBlock_lazy2_extDict
+#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW ZSTD_compressBlock_lazy2_extDict_row
+#else
+#define ZSTD_COMPRESSBLOCK_LAZY2 NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_ROW NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT NULL
+#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW NULL
+#endif
+
+#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_lazy2_extDict_row(
+size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+#define ZSTD_COMPRESSBLOCK_BTLAZY2 ZSTD_compressBlock_btlazy2
+#define ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE ZSTD_compressBlock_btlazy2_dictMatchState
+#define ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT ZSTD_compressBlock_btlazy2_extDict
+#else
+#define ZSTD_COMPRESSBLOCK_BTLAZY2 NULL
+#define ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT NULL
+#endif
+
#if defined (__cplusplus)
}
diff --git a/thirdparty/zstd/compress/zstd_ldm.c b/thirdparty/zstd/compress/zstd_ldm.c
index 3d74ff19e3..17c069fe1d 100644
--- a/thirdparty/zstd/compress/zstd_ldm.c
+++ b/thirdparty/zstd/compress/zstd_ldm.c
@@ -246,7 +246,11 @@ static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
break;
case ZSTD_dfast:
+#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
+#else
+ assert(0); /* shouldn't be called: cparams should've been adjusted. */
+#endif
break;
case ZSTD_greedy:
@@ -318,7 +322,9 @@ static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
}
}
-static size_t ZSTD_ldm_generateSequences_internal(
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
@@ -689,7 +695,6 @@ size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
- int i;
/* End signal */
if (sequence.offset == 0)
break;
@@ -702,6 +707,7 @@ size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
/* Run the block compressor */
DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
{
+ int i;
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
ip += sequence.litLength;
diff --git a/thirdparty/zstd/compress/zstd_opt.c b/thirdparty/zstd/compress/zstd_opt.c
index f02a760946..e63073e5a4 100644
--- a/thirdparty/zstd/compress/zstd_opt.c
+++ b/thirdparty/zstd/compress/zstd_opt.c
@@ -12,6 +12,9 @@
#include "hist.h"
#include "zstd_opt.h"
+#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR)
#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
#define ZSTD_MAX_PRICE (1<<30)
@@ -264,6 +267,7 @@ static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
const optState_t* const optPtr,
int optLevel)
{
+ DEBUGLOG(8, "ZSTD_rawLiteralsCost (%u literals)", litLength);
if (litLength == 0) return 0;
if (!ZSTD_compressedLiterals(optPtr))
@@ -402,9 +406,11 @@ MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
/* Update hashTable3 up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
-static U32 ZSTD_insertAndFindFirstIndexHash3 (const ZSTD_matchState_t* ms,
- U32* nextToUpdate3,
- const BYTE* const ip)
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_insertAndFindFirstIndexHash3 (const ZSTD_matchState_t* ms,
+ U32* nextToUpdate3,
+ const BYTE* const ip)
{
U32* const hashTable3 = ms->hashTable3;
U32 const hashLog3 = ms->hashLog3;
@@ -431,7 +437,9 @@ static U32 ZSTD_insertAndFindFirstIndexHash3 (const ZSTD_matchState_t* ms,
* @param ip assumed <= iend-8 .
* @param target The target of ZSTD_updateTree_internal() - we are filling to this position
* @return : nb of positions added */
-static U32 ZSTD_insertBt1(
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_insertBt1(
const ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
U32 const target,
@@ -550,6 +558,7 @@ static U32 ZSTD_insertBt1(
}
FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_updateTree_internal(
ZSTD_matchState_t* ms,
const BYTE* const ip, const BYTE* const iend,
@@ -558,7 +567,7 @@ void ZSTD_updateTree_internal(
const BYTE* const base = ms->window.base;
U32 const target = (U32)(ip - base);
U32 idx = ms->nextToUpdate;
- DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)",
+ DEBUGLOG(7, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)",
idx, target, dictMode);
while(idx < target) {
@@ -575,7 +584,9 @@ void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
}
-FORCE_INLINE_TEMPLATE U32
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32
ZSTD_insertBtAndGetAllMatches (
ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
ZSTD_matchState_t* ms,
@@ -816,7 +827,9 @@ typedef U32 (*ZSTD_getAllMatchesFn)(
U32 const ll0,
U32 const lengthToBeat);
-FORCE_INLINE_TEMPLATE U32 ZSTD_btGetAllMatches_internal(
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+U32 ZSTD_btGetAllMatches_internal(
ZSTD_match_t* matches,
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
@@ -1035,11 +1048,6 @@ ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm,
* Optimal parser
*********************************/
-static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
-{
- return sol.litlen + sol.mlen;
-}
-
#if 0 /* debug */
static void
@@ -1057,7 +1065,13 @@ listStats(const U32* table, int lastEltID)
#endif
-FORCE_INLINE_TEMPLATE size_t
+#define LIT_PRICE(_p) (int)ZSTD_rawLiteralsCost(_p, 1, optStatePtr, optLevel)
+#define LL_PRICE(_l) (int)ZSTD_litLengthPrice(_l, optStatePtr, optLevel)
+#define LL_INCPRICE(_l) (LL_PRICE(_l) - LL_PRICE(_l-1))
+
+FORCE_INLINE_TEMPLATE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t
ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
@@ -1083,10 +1097,10 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
ZSTD_optimal_t* const opt = optStatePtr->priceTable;
ZSTD_match_t* const matches = optStatePtr->matchTable;
- ZSTD_optimal_t lastSequence;
+ ZSTD_optimal_t lastStretch;
ZSTD_optLdm_t optLdm;
- ZSTD_memset(&lastSequence, 0, sizeof(ZSTD_optimal_t));
+ ZSTD_memset(&lastStretch, 0, sizeof(ZSTD_optimal_t));
optLdm.seqStore = ms->ldmSeqStore ? *ms->ldmSeqStore : kNullRawSeqStore;
optLdm.endPosInBlock = optLdm.startPosInBlock = optLdm.offset = 0;
@@ -1108,19 +1122,31 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
U32 const ll0 = !litlen;
U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, ip, iend, rep, ll0, minMatch);
ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
- (U32)(ip-istart), (U32)(iend - ip));
- if (!nbMatches) { ip++; continue; }
+ (U32)(ip-istart), (U32)(iend-ip));
+ if (!nbMatches) {
+ DEBUGLOG(8, "no match found at cPos %u", (unsigned)(ip-istart));
+ ip++;
+ continue;
+ }
+
+ /* Match found: let's store this solution, and eventually find more candidates.
+ * During this forward pass, @opt is used to store stretches,
+ * defined as "a match followed by N literals".
+ * Note how this is different from a Sequence, which is "N literals followed by a match".
+ * Storing stretches allows us to store different match predecessors
+ * for each literal position part of a literals run. */
/* initialize opt[0] */
- { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
- opt[0].mlen = 0; /* means is_a_literal */
+ opt[0].mlen = 0; /* there are only literals so far */
opt[0].litlen = litlen;
- /* We don't need to include the actual price of the literals because
- * it is static for the duration of the forward pass, and is included
- * in every price. We include the literal length to avoid negative
- * prices when we subtract the previous literal length.
+ /* No need to include the actual price of the literals before the first match
+ * because it is static for the duration of the forward pass, and is included
+ * in every subsequent price. But, we include the literal length because
+ * the cost variation of litlen depends on the value of litlen.
*/
- opt[0].price = (int)ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);
+ opt[0].price = LL_PRICE(litlen);
+ ZSTD_STATIC_ASSERT(sizeof(opt[0].rep[0]) == sizeof(rep[0]));
+ ZSTD_memcpy(&opt[0].rep, rep, sizeof(opt[0].rep));
/* large match -> immediate encoding */
{ U32 const maxML = matches[nbMatches-1].len;
@@ -1129,82 +1155,106 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
nbMatches, maxML, maxOffBase, (U32)(ip-prefixStart));
if (maxML > sufficient_len) {
- lastSequence.litlen = litlen;
- lastSequence.mlen = maxML;
- lastSequence.off = maxOffBase;
- DEBUGLOG(6, "large match (%u>%u), immediate encoding",
+ lastStretch.litlen = 0;
+ lastStretch.mlen = maxML;
+ lastStretch.off = maxOffBase;
+ DEBUGLOG(6, "large match (%u>%u) => immediate encoding",
maxML, sufficient_len);
cur = 0;
- last_pos = ZSTD_totalLen(lastSequence);
+ last_pos = maxML;
goto _shortestPath;
} }
/* set prices for first matches starting position == 0 */
assert(opt[0].price >= 0);
- { U32 const literalsPrice = (U32)opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
- U32 pos;
+ { U32 pos;
U32 matchNb;
for (pos = 1; pos < minMatch; pos++) {
- opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */
+ opt[pos].price = ZSTD_MAX_PRICE;
+ opt[pos].mlen = 0;
+ opt[pos].litlen = litlen + pos;
}
for (matchNb = 0; matchNb < nbMatches; matchNb++) {
U32 const offBase = matches[matchNb].off;
U32 const end = matches[matchNb].len;
for ( ; pos <= end ; pos++ ) {
- U32 const matchPrice = ZSTD_getMatchPrice(offBase, pos, optStatePtr, optLevel);
- U32 const sequencePrice = literalsPrice + matchPrice;
+ int const matchPrice = (int)ZSTD_getMatchPrice(offBase, pos, optStatePtr, optLevel);
+ int const sequencePrice = opt[0].price + matchPrice;
DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
- pos, ZSTD_fCost((int)sequencePrice));
+ pos, ZSTD_fCost(sequencePrice));
opt[pos].mlen = pos;
opt[pos].off = offBase;
- opt[pos].litlen = litlen;
- opt[pos].price = (int)sequencePrice;
- } }
+ opt[pos].litlen = 0; /* end of match */
+ opt[pos].price = sequencePrice + LL_PRICE(0);
+ }
+ }
last_pos = pos-1;
+ opt[pos].price = ZSTD_MAX_PRICE;
}
}
/* check further positions */
for (cur = 1; cur <= last_pos; cur++) {
const BYTE* const inr = ip + cur;
- assert(cur < ZSTD_OPT_NUM);
- DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur)
+ assert(cur <= ZSTD_OPT_NUM);
+ DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur);
/* Fix current position with one literal if cheaper */
- { U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
+ { U32 const litlen = opt[cur-1].litlen + 1;
int const price = opt[cur-1].price
- + (int)ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
- + (int)ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
- - (int)ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
+ + LIT_PRICE(ip+cur-1)
+ + LL_INCPRICE(litlen);
assert(price < 1000000000); /* overflow check */
if (price <= opt[cur].price) {
+ ZSTD_optimal_t const prevMatch = opt[cur];
DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
- opt[cur].mlen = 0;
- opt[cur].off = 0;
+ opt[cur] = opt[cur-1];
opt[cur].litlen = litlen;
opt[cur].price = price;
+ if ( (optLevel >= 1) /* additional check only for higher modes */
+ && (prevMatch.litlen == 0) /* replace a match */
+ && (LL_INCPRICE(1) < 0) /* ll1 is cheaper than ll0 */
+ && LIKELY(ip + cur < iend)
+ ) {
+ /* check next position, in case it would be cheaper */
+ int with1literal = prevMatch.price + LIT_PRICE(ip+cur) + LL_INCPRICE(1);
+ int withMoreLiterals = price + LIT_PRICE(ip+cur) + LL_INCPRICE(litlen+1);
+ DEBUGLOG(7, "then at next rPos %u : match+1lit %.2f vs %ulits %.2f",
+ cur+1, ZSTD_fCost(with1literal), litlen+1, ZSTD_fCost(withMoreLiterals));
+ if ( (with1literal < withMoreLiterals)
+ && (with1literal < opt[cur+1].price) ) {
+ /* update offset history - before it disappears */
+ U32 const prev = cur - prevMatch.mlen;
+ repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, prevMatch.off, opt[prev].litlen==0);
+ assert(cur >= prevMatch.mlen);
+ DEBUGLOG(7, "==> match+1lit is cheaper (%.2f < %.2f) (hist:%u,%u,%u) !",
+ ZSTD_fCost(with1literal), ZSTD_fCost(withMoreLiterals),
+ newReps.rep[0], newReps.rep[1], newReps.rep[2] );
+ opt[cur+1] = prevMatch; /* mlen & offbase */
+ ZSTD_memcpy(opt[cur+1].rep, &newReps, sizeof(repcodes_t));
+ opt[cur+1].litlen = 1;
+ opt[cur+1].price = with1literal;
+ if (last_pos < cur+1) last_pos = cur+1;
+ }
+ }
} else {
- DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)",
- inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
- opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
+ DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f)",
+ inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price));
}
}
- /* Set the repcodes of the current position. We must do it here
- * because we rely on the repcodes of the 2nd to last sequence being
- * correct to set the next chunks repcodes during the backward
- * traversal.
+ /* Offset history is not updated during match comparison.
+ * Do it here, now that the match is selected and confirmed.
*/
ZSTD_STATIC_ASSERT(sizeof(opt[cur].rep) == sizeof(repcodes_t));
assert(cur >= opt[cur].mlen);
- if (opt[cur].mlen != 0) {
+ if (opt[cur].litlen == 0) {
+ /* just finished a match => alter offset history */
U32 const prev = cur - opt[cur].mlen;
- repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
+ repcodes_t const newReps = ZSTD_newRep(opt[prev].rep, opt[cur].off, opt[prev].litlen==0);
ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t));
- } else {
- ZSTD_memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t));
}
/* last match must start at a minimum distance of 8 from oend */
@@ -1214,15 +1264,14 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
if ( (optLevel==0) /*static_test*/
&& (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
- DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1);
+ DEBUGLOG(7, "skip current position : next rPos(%u) price is cheaper", cur+1);
continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
}
assert(opt[cur].price >= 0);
- { U32 const ll0 = (opt[cur].mlen != 0);
- U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
- U32 const previousPrice = (U32)opt[cur].price;
- U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
+ { U32 const ll0 = (opt[cur].litlen == 0);
+ int const previousPrice = opt[cur].price;
+ int const basePrice = previousPrice + LL_PRICE(0);
U32 nbMatches = getAllMatches(matches, ms, &nextToUpdate3, inr, iend, opt[cur].rep, ll0, minMatch);
U32 matchNb;
@@ -1234,18 +1283,17 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
continue;
}
- { U32 const maxML = matches[nbMatches-1].len;
- DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u",
- inr-istart, cur, nbMatches, maxML);
-
- if ( (maxML > sufficient_len)
- || (cur + maxML >= ZSTD_OPT_NUM) ) {
- lastSequence.mlen = maxML;
- lastSequence.off = matches[nbMatches-1].off;
- lastSequence.litlen = litlen;
- cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0; /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */
- last_pos = cur + ZSTD_totalLen(lastSequence);
- if (cur > ZSTD_OPT_NUM) cur = 0; /* underflow => first match */
+ { U32 const longestML = matches[nbMatches-1].len;
+ DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of longest ML=%u",
+ inr-istart, cur, nbMatches, longestML);
+
+ if ( (longestML > sufficient_len)
+ || (cur + longestML >= ZSTD_OPT_NUM)
+ || (ip + cur + longestML >= iend) ) {
+ lastStretch.mlen = longestML;
+ lastStretch.off = matches[nbMatches-1].off;
+ lastStretch.litlen = 0;
+ last_pos = cur + longestML;
goto _shortestPath;
} }
@@ -1257,19 +1305,24 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
U32 mlen;
DEBUGLOG(7, "testing match %u => offBase=%4u, mlen=%2u, llen=%2u",
- matchNb, matches[matchNb].off, lastML, litlen);
+ matchNb, matches[matchNb].off, lastML, opt[cur].litlen);
for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */
U32 const pos = cur + mlen;
- int const price = (int)basePrice + (int)ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
+ int const price = basePrice + (int)ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
if ((pos > last_pos) || (price < opt[pos].price)) {
DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
- while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } /* fill empty positions */
+ while (last_pos < pos) {
+ /* fill empty positions, for future comparisons */
+ last_pos++;
+ opt[last_pos].price = ZSTD_MAX_PRICE;
+ opt[last_pos].litlen = !0; /* just needs to be != 0, to mean "not an end of match" */
+ }
opt[pos].mlen = mlen;
opt[pos].off = offset;
- opt[pos].litlen = litlen;
+ opt[pos].litlen = 0;
opt[pos].price = price;
} else {
DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)",
@@ -1277,47 +1330,81 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */
}
} } }
+ opt[last_pos+1].price = ZSTD_MAX_PRICE;
} /* for (cur = 1; cur <= last_pos; cur++) */
- lastSequence = opt[last_pos];
- cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0; /* single sequence, and it starts before `ip` */
- assert(cur < ZSTD_OPT_NUM); /* control overflow*/
+ lastStretch = opt[last_pos];
+ assert(cur >= lastStretch.mlen);
+ cur = last_pos - lastStretch.mlen;
_shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
assert(opt[0].mlen == 0);
+ assert(last_pos >= lastStretch.mlen);
+ assert(cur == last_pos - lastStretch.mlen);
- /* Set the next chunk's repcodes based on the repcodes of the beginning
- * of the last match, and the last sequence. This avoids us having to
- * update them while traversing the sequences.
- */
- if (lastSequence.mlen != 0) {
- repcodes_t const reps = ZSTD_newRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
- ZSTD_memcpy(rep, &reps, sizeof(reps));
+ if (lastStretch.mlen==0) {
+ /* no solution : all matches have been converted into literals */
+ assert(lastStretch.litlen == (ip - anchor) + last_pos);
+ ip += last_pos;
+ continue;
+ }
+ assert(lastStretch.off > 0);
+
+ /* Update offset history */
+ if (lastStretch.litlen == 0) {
+ /* finishing on a match : update offset history */
+ repcodes_t const reps = ZSTD_newRep(opt[cur].rep, lastStretch.off, opt[cur].litlen==0);
+ ZSTD_memcpy(rep, &reps, sizeof(repcodes_t));
} else {
- ZSTD_memcpy(rep, opt[cur].rep, sizeof(repcodes_t));
+ ZSTD_memcpy(rep, lastStretch.rep, sizeof(repcodes_t));
+ assert(cur >= lastStretch.litlen);
+ cur -= lastStretch.litlen;
}
- { U32 const storeEnd = cur + 1;
+ /* Let's write the shortest path solution.
+ * It is stored in @opt in reverse order,
+ * starting from @storeEnd (==cur+2),
+ * effectively partially @opt overwriting.
+ * Content is changed too:
+ * - So far, @opt stored stretches, aka a match followed by literals
+ * - Now, it will store sequences, aka literals followed by a match
+ */
+ { U32 const storeEnd = cur + 2;
U32 storeStart = storeEnd;
- U32 seqPos = cur;
+ U32 stretchPos = cur;
DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)",
last_pos, cur); (void)last_pos;
- assert(storeEnd < ZSTD_OPT_NUM);
- DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
- storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
- opt[storeEnd] = lastSequence;
- while (seqPos > 0) {
- U32 const backDist = ZSTD_totalLen(opt[seqPos]);
+ assert(storeEnd < ZSTD_OPT_SIZE);
+ DEBUGLOG(6, "last stretch copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
+ storeEnd, lastStretch.litlen, lastStretch.mlen, lastStretch.off);
+ if (lastStretch.litlen > 0) {
+ /* last "sequence" is unfinished: just a bunch of literals */
+ opt[storeEnd].litlen = lastStretch.litlen;
+ opt[storeEnd].mlen = 0;
+ storeStart = storeEnd-1;
+ opt[storeStart] = lastStretch;
+ } {
+ opt[storeEnd] = lastStretch; /* note: litlen will be fixed */
+ storeStart = storeEnd;
+ }
+ while (1) {
+ ZSTD_optimal_t nextStretch = opt[stretchPos];
+ opt[storeStart].litlen = nextStretch.litlen;
+ DEBUGLOG(6, "selected sequence (llen=%u,mlen=%u,ofc=%u)",
+ opt[storeStart].litlen, opt[storeStart].mlen, opt[storeStart].off);
+ if (nextStretch.mlen == 0) {
+ /* reaching beginning of segment */
+ break;
+ }
storeStart--;
- DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
- seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
- opt[storeStart] = opt[seqPos];
- seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
+ opt[storeStart] = nextStretch; /* note: litlen will be fixed */
+ assert(nextStretch.litlen + nextStretch.mlen <= stretchPos);
+ stretchPos -= nextStretch.litlen + nextStretch.mlen;
}
/* save sequences */
- DEBUGLOG(6, "sending selected sequences into seqStore")
+ DEBUGLOG(6, "sending selected sequences into seqStore");
{ U32 storePos;
for (storePos=storeStart; storePos <= storeEnd; storePos++) {
U32 const llen = opt[storePos].litlen;
@@ -1339,6 +1426,9 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
anchor += advance;
ip = anchor;
} }
+ DEBUGLOG(7, "new offset history : %u, %u, %u", rep[0], rep[1], rep[2]);
+
+ /* update all costs */
ZSTD_setBasePrices(optStatePtr, optLevel);
}
} /* while (ip < ilimit) */
@@ -1346,21 +1436,27 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
/* Return the last literals size */
return (size_t)(iend - anchor);
}
+#endif /* build exclusions */
+#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR
static size_t ZSTD_compressBlock_opt0(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode)
{
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /* optLevel */, dictMode);
}
+#endif
+#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR
static size_t ZSTD_compressBlock_opt2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize, const ZSTD_dictMode_e dictMode)
{
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /* optLevel */, dictMode);
}
+#endif
+#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
@@ -1368,20 +1464,23 @@ size_t ZSTD_compressBlock_btopt(
DEBUGLOG(5, "ZSTD_compressBlock_btopt");
return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
}
+#endif
+#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR
/* ZSTD_initStats_ultra():
* make a first compression pass, just to seed stats with more accurate starting values.
* only works on first block, with no dictionary and no ldm.
* this function cannot error out, its narrow contract must be respected.
*/
-static void
-ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
- seqStore_t* seqStore,
- U32 rep[ZSTD_REP_NUM],
- const void* src, size_t srcSize)
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+void ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
+ seqStore_t* seqStore,
+ U32 rep[ZSTD_REP_NUM],
+ const void* src, size_t srcSize)
{
U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */
ZSTD_memcpy(tmpRep, rep, sizeof(tmpRep));
@@ -1425,7 +1524,7 @@ size_t ZSTD_compressBlock_btultra2(
* Consequently, this can only work if no data has been previously loaded in tables,
* aka, no dictionary, no prefix, no ldm preprocessing.
* The compression ratio gain is generally small (~0.5% on first block),
- ** the cost is 2x cpu time on first block. */
+ * the cost is 2x cpu time on first block. */
assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
if ( (ms->opt.litLengthSum==0) /* first block */
&& (seqStore->sequences == seqStore->sequencesStart) /* no ldm */
@@ -1438,7 +1537,9 @@ size_t ZSTD_compressBlock_btultra2(
return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_noDict);
}
+#endif
+#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
@@ -1446,18 +1547,20 @@ size_t ZSTD_compressBlock_btopt_dictMatchState(
return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
}
-size_t ZSTD_compressBlock_btultra_dictMatchState(
+size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
- return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
+ return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
}
+#endif
-size_t ZSTD_compressBlock_btopt_extDict(
+#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize)
{
- return ZSTD_compressBlock_opt0(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
+ return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_btultra_extDict(
@@ -1466,6 +1569,7 @@ size_t ZSTD_compressBlock_btultra_extDict(
{
return ZSTD_compressBlock_opt2(ms, seqStore, rep, src, srcSize, ZSTD_extDict);
}
+#endif
/* note : no btultra2 variant for extDict nor dictMatchState,
* because btultra2 is not meant to work with dictionaries
diff --git a/thirdparty/zstd/compress/zstd_opt.h b/thirdparty/zstd/compress/zstd_opt.h
index 342e5a3112..d4e7113157 100644
--- a/thirdparty/zstd/compress/zstd_opt.h
+++ b/thirdparty/zstd/compress/zstd_opt.h
@@ -17,30 +17,40 @@ extern "C" {
#include "zstd_compress_internal.h"
+#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \
+ || !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR)
/* used in ZSTD_loadDictionaryContent() */
void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
+#endif
+#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_btultra(
+size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-size_t ZSTD_compressBlock_btultra2(
+size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
+#define ZSTD_COMPRESSBLOCK_BTOPT ZSTD_compressBlock_btopt
+#define ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE ZSTD_compressBlock_btopt_dictMatchState
+#define ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT ZSTD_compressBlock_btopt_extDict
+#else
+#define ZSTD_COMPRESSBLOCK_BTOPT NULL
+#define ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT NULL
+#endif
-size_t ZSTD_compressBlock_btopt_dictMatchState(
+#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR
+size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
-
-size_t ZSTD_compressBlock_btopt_extDict(
- ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
- void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
@@ -48,6 +58,20 @@ size_t ZSTD_compressBlock_btultra_extDict(
/* note : no btultra2 variant for extDict nor dictMatchState,
* because btultra2 is not meant to work with dictionaries
* and is only specific for the first block (no prefix) */
+size_t ZSTD_compressBlock_btultra2(
+ ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
+ void const* src, size_t srcSize);
+
+#define ZSTD_COMPRESSBLOCK_BTULTRA ZSTD_compressBlock_btultra
+#define ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE ZSTD_compressBlock_btultra_dictMatchState
+#define ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT ZSTD_compressBlock_btultra_extDict
+#define ZSTD_COMPRESSBLOCK_BTULTRA2 ZSTD_compressBlock_btultra2
+#else
+#define ZSTD_COMPRESSBLOCK_BTULTRA NULL
+#define ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE NULL
+#define ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT NULL
+#define ZSTD_COMPRESSBLOCK_BTULTRA2 NULL
+#endif
#if defined (__cplusplus)
}
diff --git a/thirdparty/zstd/compress/zstdmt_compress.c b/thirdparty/zstd/compress/zstdmt_compress.c
index 6786075569..86ccce3184 100644
--- a/thirdparty/zstd/compress/zstdmt_compress.c
+++ b/thirdparty/zstd/compress/zstdmt_compress.c
@@ -15,17 +15,13 @@
#endif
-/* ====== Constants ====== */
-#define ZSTDMT_OVERLAPLOG_DEFAULT 0
-
-
/* ====== Dependencies ====== */
-#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
+#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
#include "../common/mem.h" /* MEM_STATIC */
#include "../common/pool.h" /* threadpool */
#include "../common/threading.h" /* mutex */
-#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
+#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstd_ldm.h"
#include "zstdmt_compress.h"
@@ -44,12 +40,13 @@
# include <unistd.h>
# include <sys/times.h>
-# define DEBUG_PRINTHEX(l,p,n) { \
- unsigned debug_u; \
- for (debug_u=0; debug_u<(n); debug_u++) \
- RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
- RAWLOG(l, " \n"); \
-}
+# define DEBUG_PRINTHEX(l,p,n) \
+ do { \
+ unsigned debug_u; \
+ for (debug_u=0; debug_u<(n); debug_u++) \
+ RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
+ RAWLOG(l, " \n"); \
+ } while (0)
static unsigned long long GetCurrentClockTimeMicroseconds(void)
{
@@ -61,25 +58,28 @@ static unsigned long long GetCurrentClockTimeMicroseconds(void)
} }
#define MUTEX_WAIT_TIME_DLEVEL 6
-#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \
- if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
- unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
- ZSTD_pthread_mutex_lock(mutex); \
- { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
- unsigned long long const elapsedTime = (afterTime-beforeTime); \
- if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
- DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
- elapsedTime, #mutex); \
- } } \
- } else { \
- ZSTD_pthread_mutex_lock(mutex); \
- } \
-}
+#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) \
+ do { \
+ if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
+ unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
+ ZSTD_pthread_mutex_lock(mutex); \
+ { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
+ unsigned long long const elapsedTime = (afterTime-beforeTime); \
+ if (elapsedTime > 1000) { \
+ /* or whatever threshold you like; I'm using 1 millisecond here */ \
+ DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, \
+ "Thread took %llu microseconds to acquire mutex %s \n", \
+ elapsedTime, #mutex); \
+ } } \
+ } else { \
+ ZSTD_pthread_mutex_lock(mutex); \
+ } \
+ } while (0)
#else
# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
-# define DEBUG_PRINTHEX(l,p,n) {}
+# define DEBUG_PRINTHEX(l,p,n) do { } while (0)
#endif
@@ -100,18 +100,39 @@ typedef struct ZSTDMT_bufferPool_s {
unsigned totalBuffers;
unsigned nbBuffers;
ZSTD_customMem cMem;
- buffer_t bTable[1]; /* variable size */
+ buffer_t* buffers;
} ZSTDMT_bufferPool;
+static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
+{
+ DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
+ if (!bufPool) return; /* compatibility with free on NULL */
+ if (bufPool->buffers) {
+ unsigned u;
+ for (u=0; u<bufPool->totalBuffers; u++) {
+ DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start);
+ ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem);
+ }
+ ZSTD_customFree(bufPool->buffers, bufPool->cMem);
+ }
+ ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
+ ZSTD_customFree(bufPool, bufPool->cMem);
+}
+
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
{
- ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
- sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
+ ZSTDMT_bufferPool* const bufPool =
+ (ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem);
if (bufPool==NULL) return NULL;
if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
ZSTD_customFree(bufPool, cMem);
return NULL;
}
+ bufPool->buffers = (buffer_t*)ZSTD_customCalloc(maxNbBuffers * sizeof(buffer_t), cMem);
+ if (bufPool->buffers==NULL) {
+ ZSTDMT_freeBufferPool(bufPool);
+ return NULL;
+ }
bufPool->bufferSize = 64 KB;
bufPool->totalBuffers = maxNbBuffers;
bufPool->nbBuffers = 0;
@@ -119,32 +140,19 @@ static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_cu
return bufPool;
}
-static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
-{
- unsigned u;
- DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
- if (!bufPool) return; /* compatibility with free on NULL */
- for (u=0; u<bufPool->totalBuffers; u++) {
- DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
- ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
- }
- ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
- ZSTD_customFree(bufPool, bufPool->cMem);
-}
-
/* only works at initialization, not during compression */
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
{
- size_t const poolSize = sizeof(*bufPool)
- + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
+ size_t const poolSize = sizeof(*bufPool);
+ size_t const arraySize = bufPool->totalBuffers * sizeof(buffer_t);
unsigned u;
size_t totalBufferSize = 0;
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
for (u=0; u<bufPool->totalBuffers; u++)
- totalBufferSize += bufPool->bTable[u].capacity;
+ totalBufferSize += bufPool->buffers[u].capacity;
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
- return poolSize + totalBufferSize;
+ return poolSize + arraySize + totalBufferSize;
}
/* ZSTDMT_setBufferSize() :
@@ -187,9 +195,9 @@ static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
if (bufPool->nbBuffers) { /* try to use an existing buffer */
- buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
+ buffer_t const buf = bufPool->buffers[--(bufPool->nbBuffers)];
size_t const availBufferSize = buf.capacity;
- bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
+ bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer;
if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
/* large enough, but not too much */
DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
@@ -250,14 +258,14 @@ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
if (buf.start == NULL) return; /* compatible with release on NULL */
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
if (bufPool->nbBuffers < bufPool->totalBuffers) {
- bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */
+ bufPool->buffers[bufPool->nbBuffers++] = buf; /* stored for later use */
DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
(U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return;
}
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
- /* Reached bufferPool capacity (should not happen) */
+ /* Reached bufferPool capacity (note: should not happen) */
DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
ZSTD_customFree(buf.start, bufPool->cMem);
}
@@ -350,16 +358,20 @@ typedef struct {
int totalCCtx;
int availCCtx;
ZSTD_customMem cMem;
- ZSTD_CCtx* cctx[1]; /* variable size */
+ ZSTD_CCtx** cctxs;
} ZSTDMT_CCtxPool;
-/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
+/* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
- int cid;
- for (cid=0; cid<pool->totalCCtx; cid++)
- ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */
+ if (!pool) return;
ZSTD_pthread_mutex_destroy(&pool->poolMutex);
+ if (pool->cctxs) {
+ int cid;
+ for (cid=0; cid<pool->totalCCtx; cid++)
+ ZSTD_freeCCtx(pool->cctxs[cid]); /* free compatible with NULL */
+ ZSTD_customFree(pool->cctxs, pool->cMem);
+ }
ZSTD_customFree(pool, pool->cMem);
}
@@ -368,19 +380,24 @@ static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
ZSTD_customMem cMem)
{
- ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
- sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
+ ZSTDMT_CCtxPool* const cctxPool =
+ (ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem);
assert(nbWorkers > 0);
if (!cctxPool) return NULL;
if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
ZSTD_customFree(cctxPool, cMem);
return NULL;
}
- cctxPool->cMem = cMem;
cctxPool->totalCCtx = nbWorkers;
+ cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem);
+ if (!cctxPool->cctxs) {
+ ZSTDMT_freeCCtxPool(cctxPool);
+ return NULL;
+ }
+ cctxPool->cMem = cMem;
+ cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem);
+ if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
- cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
- if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
return cctxPool;
}
@@ -402,16 +419,16 @@ static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
{
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
{ unsigned const nbWorkers = cctxPool->totalCCtx;
- size_t const poolSize = sizeof(*cctxPool)
- + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
- unsigned u;
+ size_t const poolSize = sizeof(*cctxPool);
+ size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*);
size_t totalCCtxSize = 0;
+ unsigned u;
for (u=0; u<nbWorkers; u++) {
- totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
+ totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctxs[u]);
}
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
assert(nbWorkers > 0);
- return poolSize + totalCCtxSize;
+ return poolSize + arraySize + totalCCtxSize;
}
}
@@ -421,7 +438,7 @@ static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
if (cctxPool->availCCtx) {
cctxPool->availCCtx--;
- { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
+ { ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx];
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
return cctx;
} }
@@ -435,7 +452,7 @@ static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
if (cctx==NULL) return; /* compatibility with release on NULL */
ZSTD_pthread_mutex_lock(&pool->poolMutex);
if (pool->availCCtx < pool->totalCCtx)
- pool->cctx[pool->availCCtx++] = cctx;
+ pool->cctxs[pool->availCCtx++] = cctx;
else {
/* pool overflow : should not happen, since totalCCtx==nbWorkers */
DEBUGLOG(4, "CCtx pool overflow : free cctx");
@@ -601,11 +618,8 @@ static void ZSTDMT_serialState_update(serialState_t* serialState,
ZSTD_pthread_mutex_unlock(&serialState->mutex);
if (seqStore.size > 0) {
- size_t const err = ZSTD_referenceExternalSequences(
- jobCCtx, seqStore.seq, seqStore.size);
+ ZSTD_referenceExternalSequences(jobCCtx, seqStore.seq, seqStore.size);
assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
- assert(!ZSTD_isError(err));
- (void)err;
}
}
@@ -657,12 +671,13 @@ typedef struct {
unsigned frameChecksumNeeded; /* used only by mtctx */
} ZSTDMT_jobDescription;
-#define JOB_ERROR(e) { \
- ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
- job->cSize = e; \
- ZSTD_pthread_mutex_unlock(&job->job_mutex); \
- goto _endJob; \
-}
+#define JOB_ERROR(e) \
+ do { \
+ ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
+ job->cSize = e; \
+ ZSTD_pthread_mutex_unlock(&job->job_mutex); \
+ goto _endJob; \
+ } while (0)
/* ZSTDMT_compressionJob() is a POOL_function type */
static void ZSTDMT_compressionJob(void* jobDescription)
@@ -1091,7 +1106,7 @@ ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
{ unsigned jobNb;
unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
- mtctx->doneJobID, lastJobNb, mtctx->jobReady)
+ mtctx->doneJobID, lastJobNb, mtctx->jobReady);
for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
unsigned const wJobID = jobNb & mtctx->jobIDMask;
ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
diff --git a/thirdparty/zstd/decompress/huf_decompress.c b/thirdparty/zstd/decompress/huf_decompress.c
index 5b217ac586..f85dd0beea 100644
--- a/thirdparty/zstd/decompress/huf_decompress.c
+++ b/thirdparty/zstd/decompress/huf_decompress.c
@@ -34,6 +34,12 @@
* Macros
****************************************************************/
+#ifdef HUF_DISABLE_FAST_DECODE
+# define HUF_ENABLE_FAST_DECODE 0
+#else
+# define HUF_ENABLE_FAST_DECODE 1
+#endif
+
/* These two optional macros force the use one way or another of the two
* Huffman decompression implementations. You can't force in both directions
* at the same time.
@@ -158,17 +164,18 @@ static size_t HUF_initFastDStream(BYTE const* ip) {
* op [in/out] - The output pointers, must be updated to reflect what is written.
* bits [in/out] - The bitstream containers, must be updated to reflect the current state.
* dt [in] - The decoding table.
- * ilimit [in] - The input limit, stop when any input pointer is below ilimit.
+ * ilowest [in] - The beginning of the valid range of the input. Decoders may read
+ * down to this pointer. It may be below iend[0].
* oend [in] - The end of the output stream. op[3] must not cross oend.
* iend [in] - The end of each input stream. ip[i] may cross iend[i],
- * as long as it is above ilimit, but that indicates corruption.
+ * as long as it is above ilowest, but that indicates corruption.
*/
typedef struct {
BYTE const* ip[4];
BYTE* op[4];
U64 bits[4];
void const* dt;
- BYTE const* ilimit;
+ BYTE const* ilowest;
BYTE* oend;
BYTE const* iend[4];
} HUF_DecompressFastArgs;
@@ -186,9 +193,9 @@ static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* ds
void const* dt = DTable + 1;
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
- const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
+ const BYTE* const istart = (const BYTE*)src;
- BYTE* const oend = (BYTE*)dst + dstSize;
+ BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
/* The fast decoding loop assumes 64-bit little-endian.
* This condition is false on x32.
@@ -196,6 +203,11 @@ static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* ds
if (!MEM_isLittleEndian() || MEM_32bits())
return 0;
+ /* Avoid nullptr addition */
+ if (dstSize == 0)
+ return 0;
+ assert(dst != NULL);
+
/* strict minimum : jump table + 1 byte per stream */
if (srcSize < 10)
return ERROR(corruption_detected);
@@ -209,7 +221,6 @@ static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* ds
/* Read the jump table. */
{
- const BYTE* const istart = (const BYTE*)src;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
@@ -221,10 +232,8 @@ static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* ds
/* HUF_initFastDStream() requires this, and this small of an input
* won't benefit from the ASM loop anyways.
- * length1 must be >= 16 so that ip[0] >= ilimit before the loop
- * starts.
*/
- if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
+ if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
return 0;
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
}
@@ -256,11 +265,12 @@ static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* ds
args->bits[2] = HUF_initFastDStream(args->ip[2]);
args->bits[3] = HUF_initFastDStream(args->ip[3]);
- /* If ip[] >= ilimit, it is guaranteed to be safe to
- * reload bits[]. It may be beyond its section, but is
- * guaranteed to be valid (>= istart).
- */
- args->ilimit = ilimit;
+ /* The decoders must be sure to never read beyond ilowest.
+ * This is lower than iend[0], but allowing decoders to read
+ * down to ilowest can allow an extra iteration or two in the
+ * fast loop.
+ */
+ args->ilowest = istart;
args->oend = oend;
args->dt = dt;
@@ -285,13 +295,31 @@ static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArg
assert(sizeof(size_t) == 8);
bit->bitContainer = MEM_readLEST(args->ip[stream]);
bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
- bit->start = (const char*)args->iend[0];
+ bit->start = (const char*)args->ilowest;
bit->limitPtr = bit->start + sizeof(size_t);
bit->ptr = (const char*)args->ip[stream];
return 0;
}
+/* Calls X(N) for each stream 0, 1, 2, 3. */
+#define HUF_4X_FOR_EACH_STREAM(X) \
+ do { \
+ X(0); \
+ X(1); \
+ X(2); \
+ X(3); \
+ } while (0)
+
+/* Calls X(N, var) for each stream 0, 1, 2, 3. */
+#define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
+ do { \
+ X(0, (var)); \
+ X(1, (var)); \
+ X(2, (var)); \
+ X(3, (var)); \
+ } while (0)
+
#ifndef HUF_FORCE_DECOMPRESS_X2
@@ -500,15 +528,19 @@ HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog
}
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
- *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
+ do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
-#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
- if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
- HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
+#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
+ do { \
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
+ } while (0)
-#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
- if (MEM_64bits()) \
- HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
+#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
+ do { \
+ if (MEM_64bits()) \
+ HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
+ } while (0)
HINT_INLINE size_t
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
@@ -546,7 +578,7 @@ HUF_decompress1X1_usingDTable_internal_body(
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
- BYTE* const oend = op + dstSize;
+ BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
const void* dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
BIT_DStream_t bitD;
@@ -574,6 +606,7 @@ HUF_decompress4X1_usingDTable_internal_body(
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+ if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
@@ -609,7 +642,7 @@ HUF_decompress4X1_usingDTable_internal_body(
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
- if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
+ assert(dstSize >= 6); /* validated above */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
@@ -692,7 +725,7 @@ void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
BYTE* op[4];
U16 const* const dtable = (U16 const*)args->dt;
BYTE* const oend = args->oend;
- BYTE const* const ilimit = args->ilimit;
+ BYTE const* const ilowest = args->ilowest;
/* Copy the arguments to local variables */
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
@@ -705,13 +738,12 @@ void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
for (;;) {
BYTE* olimit;
int stream;
- int symbol;
/* Assert loop preconditions */
#ifndef NDEBUG
for (stream = 0; stream < 4; ++stream) {
assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
- assert(ip[stream] >= ilimit);
+ assert(ip[stream] >= ilowest);
}
#endif
/* Compute olimit */
@@ -721,7 +753,7 @@ void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
/* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
* per stream.
*/
- size_t const iiters = (size_t)(ip[0] - ilimit) / 7;
+ size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
/* We can safely run iters iterations before running bounds checks */
size_t const iters = MIN(oiters, iiters);
size_t const symbols = iters * 5;
@@ -732,8 +764,8 @@ void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
*/
olimit = op[3] + symbols;
- /* Exit fast decoding loop once we get close to the end. */
- if (op[3] + 20 > olimit)
+ /* Exit fast decoding loop once we reach the end. */
+ if (op[3] == olimit)
break;
/* Exit the decoding loop if any input pointer has crossed the
@@ -752,27 +784,42 @@ void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
}
#endif
+#define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \
+ do { \
+ int const index = (int)(bits[(_stream)] >> 53); \
+ int const entry = (int)dtable[index]; \
+ bits[(_stream)] <<= (entry & 0x3F); \
+ op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
+ } while (0)
+
+#define HUF_4X1_RELOAD_STREAM(_stream) \
+ do { \
+ int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
+ int const nbBits = ctz & 7; \
+ int const nbBytes = ctz >> 3; \
+ op[(_stream)] += 5; \
+ ip[(_stream)] -= nbBytes; \
+ bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
+ bits[(_stream)] <<= nbBits; \
+ } while (0)
+
+ /* Manually unroll the loop because compilers don't consistently
+ * unroll the inner loops, which destroys performance.
+ */
do {
/* Decode 5 symbols in each of the 4 streams */
- for (symbol = 0; symbol < 5; ++symbol) {
- for (stream = 0; stream < 4; ++stream) {
- int const index = (int)(bits[stream] >> 53);
- int const entry = (int)dtable[index];
- bits[stream] <<= (entry & 63);
- op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF);
- }
- }
- /* Reload the bitstreams */
- for (stream = 0; stream < 4; ++stream) {
- int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
- int const nbBits = ctz & 7;
- int const nbBytes = ctz >> 3;
- op[stream] += 5;
- ip[stream] -= nbBytes;
- bits[stream] = MEM_read64(ip[stream]) | 1;
- bits[stream] <<= nbBits;
- }
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
+
+ /* Reload each of the 4 the bitstreams */
+ HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
} while (op[3] < olimit);
+
+#undef HUF_4X1_DECODE_SYMBOL
+#undef HUF_4X1_RELOAD_STREAM
}
_out:
@@ -797,8 +844,8 @@ HUF_decompress4X1_usingDTable_internal_fast(
HUF_DecompressFastLoopFn loopFn)
{
void const* dt = DTable + 1;
- const BYTE* const iend = (const BYTE*)cSrc + 6;
- BYTE* const oend = (BYTE*)dst + dstSize;
+ BYTE const* const ilowest = (BYTE const*)cSrc;
+ BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
HUF_DecompressFastArgs args;
{ size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
@@ -806,18 +853,22 @@ HUF_decompress4X1_usingDTable_internal_fast(
return 0;
}
- assert(args.ip[0] >= args.ilimit);
+ assert(args.ip[0] >= args.ilowest);
loopFn(&args);
- /* Our loop guarantees that ip[] >= ilimit and that we haven't
+ /* Our loop guarantees that ip[] >= ilowest and that we haven't
* overwritten any op[].
*/
- assert(args.ip[0] >= iend);
- assert(args.ip[1] >= iend);
- assert(args.ip[2] >= iend);
- assert(args.ip[3] >= iend);
+ assert(args.ip[0] >= ilowest);
+ assert(args.ip[0] >= ilowest);
+ assert(args.ip[1] >= ilowest);
+ assert(args.ip[2] >= ilowest);
+ assert(args.ip[3] >= ilowest);
assert(args.op[3] <= oend);
- (void)iend;
+
+ assert(ilowest == args.ilowest);
+ assert(ilowest + 6 == args.iend[0]);
+ (void)ilowest;
/* finish bit streams one by one. */
{ size_t const segmentSize = (dstSize+3) / 4;
@@ -868,7 +919,7 @@ static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize,
}
#endif
- if (!(flags & HUF_flags_disableFast)) {
+ if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
if (ret != 0)
return ret;
@@ -1239,15 +1290,19 @@ HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, c
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
- ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+ do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0)
-#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
- if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
- ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+ do { \
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
+ } while (0)
-#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
- if (MEM_64bits()) \
- ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+ do { \
+ if (MEM_64bits()) \
+ ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
+ } while (0)
HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
@@ -1307,7 +1362,7 @@ HUF_decompress1X2_usingDTable_internal_body(
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
- BYTE* const oend = ostart + dstSize;
+ BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize);
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
@@ -1332,6 +1387,7 @@ HUF_decompress4X2_usingDTable_internal_body(
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
+ if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
@@ -1367,7 +1423,7 @@ HUF_decompress4X2_usingDTable_internal_body(
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
- if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
+ assert(dstSize >= 6 /* validated above */);
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
@@ -1472,7 +1528,7 @@ void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
BYTE* op[4];
BYTE* oend[4];
HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
- BYTE const* const ilimit = args->ilimit;
+ BYTE const* const ilowest = args->ilowest;
/* Copy the arguments to local registers. */
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
@@ -1490,13 +1546,12 @@ void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
for (;;) {
BYTE* olimit;
int stream;
- int symbol;
/* Assert loop preconditions */
#ifndef NDEBUG
for (stream = 0; stream < 4; ++stream) {
assert(op[stream] <= oend[stream]);
- assert(ip[stream] >= ilimit);
+ assert(ip[stream] >= ilowest);
}
#endif
/* Compute olimit */
@@ -1509,7 +1564,7 @@ void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
* We also know that each input pointer is >= ip[0]. So we can run
* iters loops before running out of input.
*/
- size_t iters = (size_t)(ip[0] - ilimit) / 7;
+ size_t iters = (size_t)(ip[0] - ilowest) / 7;
/* Each iteration can produce up to 10 bytes of output per stream.
* Each output stream my advance at different rates. So take the
* minimum number of safe iterations among all the output streams.
@@ -1527,8 +1582,8 @@ void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
*/
olimit = op[3] + (iters * 5);
- /* Exit the fast decoding loop if we are too close to the end. */
- if (op[3] + 10 > olimit)
+ /* Exit the fast decoding loop once we reach the end. */
+ if (op[3] == olimit)
break;
/* Exit the decoding loop if any input pointer has crossed the
@@ -1547,54 +1602,58 @@ void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs*
}
#endif
+#define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \
+ do { \
+ if ((_decode3) || (_stream) != 3) { \
+ int const index = (int)(bits[(_stream)] >> 53); \
+ HUF_DEltX2 const entry = dtable[index]; \
+ MEM_write16(op[(_stream)], entry.sequence); \
+ bits[(_stream)] <<= (entry.nbBits) & 0x3F; \
+ op[(_stream)] += (entry.length); \
+ } \
+ } while (0)
+
+#define HUF_4X2_RELOAD_STREAM(_stream) \
+ do { \
+ HUF_4X2_DECODE_SYMBOL(3, 1); \
+ { \
+ int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
+ int const nbBits = ctz & 7; \
+ int const nbBytes = ctz >> 3; \
+ ip[(_stream)] -= nbBytes; \
+ bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
+ bits[(_stream)] <<= nbBits; \
+ } \
+ } while (0)
+
+ /* Manually unroll the loop because compilers don't consistently
+ * unroll the inner loops, which destroys performance.
+ */
do {
- /* Do 5 table lookups for each of the first 3 streams */
- for (symbol = 0; symbol < 5; ++symbol) {
- for (stream = 0; stream < 3; ++stream) {
- int const index = (int)(bits[stream] >> 53);
- HUF_DEltX2 const entry = dtable[index];
- MEM_write16(op[stream], entry.sequence);
- bits[stream] <<= (entry.nbBits);
- op[stream] += (entry.length);
- }
- }
- /* Do 1 table lookup from the final stream */
- {
- int const index = (int)(bits[3] >> 53);
- HUF_DEltX2 const entry = dtable[index];
- MEM_write16(op[3], entry.sequence);
- bits[3] <<= (entry.nbBits);
- op[3] += (entry.length);
- }
- /* Do 4 table lookups from the final stream & reload bitstreams */
- for (stream = 0; stream < 4; ++stream) {
- /* Do a table lookup from the final stream.
- * This is interleaved with the reloading to reduce register
- * pressure. This shouldn't be necessary, but compilers can
- * struggle with codegen with high register pressure.
- */
- {
- int const index = (int)(bits[3] >> 53);
- HUF_DEltX2 const entry = dtable[index];
- MEM_write16(op[3], entry.sequence);
- bits[3] <<= (entry.nbBits);
- op[3] += (entry.length);
- }
- /* Reload the bistreams. The final bitstream must be reloaded
- * after the 5th symbol was decoded.
- */
- {
- int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
- int const nbBits = ctz & 7;
- int const nbBytes = ctz >> 3;
- ip[stream] -= nbBytes;
- bits[stream] = MEM_read64(ip[stream]) | 1;
- bits[stream] <<= nbBits;
- }
- }
+ /* Decode 5 symbols from each of the first 3 streams.
+ * The final stream will be decoded during the reload phase
+ * to reduce register pressure.
+ */
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
+ HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
+
+ /* Decode one symbol from the final stream */
+ HUF_4X2_DECODE_SYMBOL(3, 1);
+
+ /* Decode 4 symbols from the final stream & reload bitstreams.
+ * The final stream is reloaded last, meaning that all 5 symbols
+ * are decoded from the final stream before it is reloaded.
+ */
+ HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM);
} while (op[3] < olimit);
}
+#undef HUF_4X2_DECODE_SYMBOL
+#undef HUF_4X2_RELOAD_STREAM
+
_out:
/* Save the final values of each of the state variables back to args. */
@@ -1611,8 +1670,8 @@ HUF_decompress4X2_usingDTable_internal_fast(
const HUF_DTable* DTable,
HUF_DecompressFastLoopFn loopFn) {
void const* dt = DTable + 1;
- const BYTE* const iend = (const BYTE*)cSrc + 6;
- BYTE* const oend = (BYTE*)dst + dstSize;
+ const BYTE* const ilowest = (const BYTE*)cSrc;
+ BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
HUF_DecompressFastArgs args;
{
size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
@@ -1621,16 +1680,19 @@ HUF_decompress4X2_usingDTable_internal_fast(
return 0;
}
- assert(args.ip[0] >= args.ilimit);
+ assert(args.ip[0] >= args.ilowest);
loopFn(&args);
/* note : op4 already verified within main loop */
- assert(args.ip[0] >= iend);
- assert(args.ip[1] >= iend);
- assert(args.ip[2] >= iend);
- assert(args.ip[3] >= iend);
+ assert(args.ip[0] >= ilowest);
+ assert(args.ip[1] >= ilowest);
+ assert(args.ip[2] >= ilowest);
+ assert(args.ip[3] >= ilowest);
assert(args.op[3] <= oend);
- (void)iend;
+
+ assert(ilowest == args.ilowest);
+ assert(ilowest + 6 == args.iend[0]);
+ (void)ilowest;
/* finish bitStreams one by one */
{
@@ -1679,7 +1741,7 @@ static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize,
}
#endif
- if (!(flags & HUF_flags_disableFast)) {
+ if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
if (ret != 0)
return ret;
diff --git a/thirdparty/zstd/decompress/huf_decompress_amd64.S b/thirdparty/zstd/decompress/huf_decompress_amd64.S
index 671624fe34..78da291ee3 100644
--- a/thirdparty/zstd/decompress/huf_decompress_amd64.S
+++ b/thirdparty/zstd/decompress/huf_decompress_amd64.S
@@ -10,11 +10,32 @@
#include "../common/portability_macros.h"
+#if defined(__ELF__) && defined(__GNUC__)
/* Stack marking
* ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
*/
-#if defined(__ELF__) && defined(__GNUC__)
.section .note.GNU-stack,"",%progbits
+
+#if defined(__aarch64__)
+/* Mark that this assembly supports BTI & PAC, because it is empty for aarch64.
+ * See: https://github.com/facebook/zstd/issues/3841
+ * See: https://gcc.godbolt.org/z/sqr5T4ffK
+ * See: https://lore.kernel.org/linux-arm-kernel/20200429211641.9279-8-broonie@kernel.org/
+ * See: https://reviews.llvm.org/D62609
+ */
+.pushsection .note.gnu.property, "a"
+.p2align 3
+.long 4 /* size of the name - "GNU\0" */
+.long 0x10 /* size of descriptor */
+.long 0x5 /* NT_GNU_PROPERTY_TYPE_0 */
+.asciz "GNU"
+.long 0xc0000000 /* pr_type - GNU_PROPERTY_AARCH64_FEATURE_1_AND */
+.long 4 /* pr_datasz - 4 bytes */
+.long 3 /* pr_data - GNU_PROPERTY_AARCH64_FEATURE_1_BTI | GNU_PROPERTY_AARCH64_FEATURE_1_PAC */
+.p2align 3 /* pr_padding - bring everything to 8 byte alignment */
+.popsection
+#endif
+
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
@@ -131,7 +152,7 @@ HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
- push 104(%rax) /* ilimit */
+ push 104(%rax) /* ilowest */
push 112(%rax) /* oend */
push %olimit /* olimit space */
@@ -156,11 +177,11 @@ HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
shrq $2, %r15
movq %ip0, %rax /* rax = ip0 */
- movq 40(%rsp), %rdx /* rdx = ilimit */
- subq %rdx, %rax /* rax = ip0 - ilimit */
- movq %rax, %rbx /* rbx = ip0 - ilimit */
+ movq 40(%rsp), %rdx /* rdx = ilowest */
+ subq %rdx, %rax /* rax = ip0 - ilowest */
+ movq %rax, %rbx /* rbx = ip0 - ilowest */
- /* rdx = (ip0 - ilimit) / 7 */
+ /* rdx = (ip0 - ilowest) / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %rbx
@@ -183,9 +204,8 @@ HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
/* If (op3 + 20 > olimit) */
movq %op3, %rax /* rax = op3 */
- addq $20, %rax /* rax = op3 + 20 */
- cmpq %rax, %olimit /* op3 + 20 > olimit */
- jb .L_4X1_exit
+ cmpq %rax, %olimit /* op3 == olimit */
+ je .L_4X1_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
@@ -316,7 +336,7 @@ HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
/* Restore stack (oend & olimit) */
pop %rax /* olimit */
pop %rax /* oend */
- pop %rax /* ilimit */
+ pop %rax /* ilowest */
pop %rax /* arg */
/* Save ip / op / bits */
@@ -387,7 +407,7 @@ HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
movq 96(%rax), %dtable
push %rax /* argument */
push %rax /* olimit */
- push 104(%rax) /* ilimit */
+ push 104(%rax) /* ilowest */
movq 112(%rax), %rax
push %rax /* oend3 */
@@ -414,9 +434,9 @@ HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
/* We can consume up to 7 input bytes each iteration. */
movq %ip0, %rax /* rax = ip0 */
- movq 40(%rsp), %rdx /* rdx = ilimit */
- subq %rdx, %rax /* rax = ip0 - ilimit */
- movq %rax, %r15 /* r15 = ip0 - ilimit */
+ movq 40(%rsp), %rdx /* rdx = ilowest */
+ subq %rdx, %rax /* rax = ip0 - ilowest */
+ movq %rax, %r15 /* r15 = ip0 - ilowest */
/* rdx = rax / 7 */
movabsq $2635249153387078803, %rdx
@@ -426,7 +446,7 @@ HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
addq %r15, %rdx
shrq $2, %rdx
- /* r15 = (ip0 - ilimit) / 7 */
+ /* r15 = (ip0 - ilowest) / 7 */
movq %rdx, %r15
/* r15 = min(r15, min(oend0 - op0, oend1 - op1, oend2 - op2, oend3 - op3) / 10) */
@@ -467,9 +487,8 @@ HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
/* If (op3 + 10 > olimit) */
movq %op3, %rax /* rax = op3 */
- addq $10, %rax /* rax = op3 + 10 */
- cmpq %rax, %olimit /* op3 + 10 > olimit */
- jb .L_4X2_exit
+ cmpq %rax, %olimit /* op3 == olimit */
+ je .L_4X2_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
@@ -537,7 +556,7 @@ HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
pop %rax /* oend1 */
pop %rax /* oend2 */
pop %rax /* oend3 */
- pop %rax /* ilimit */
+ pop %rax /* ilowest */
pop %rax /* olimit */
pop %rax /* arg */
diff --git a/thirdparty/zstd/decompress/zstd_decompress.c b/thirdparty/zstd/decompress/zstd_decompress.c
index 7bc2713429..2f03cf7b0c 100644
--- a/thirdparty/zstd/decompress/zstd_decompress.c
+++ b/thirdparty/zstd/decompress/zstd_decompress.c
@@ -55,18 +55,19 @@
/*-*******************************************************
* Dependencies
*********************************************************/
-#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
+#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
+#include "../common/error_private.h"
+#include "../common/zstd_internal.h" /* blockProperties_t */
#include "../common/mem.h" /* low level memory routines */
+#include "../common/bits.h" /* ZSTD_highbit32 */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#include "../common/huf.h"
#include "../common/xxhash.h" /* XXH64_reset, XXH64_update, XXH64_digest, XXH64 */
-#include "../common/zstd_internal.h" /* blockProperties_t */
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */
-#include "../common/bits.h" /* ZSTD_highbit32 */
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
# include "../legacy/zstd_legacy.h"
@@ -245,6 +246,7 @@ static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx)
dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum;
dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict;
dctx->disableHufAsm = 0;
+ dctx->maxBlockSizeParam = 0;
}
static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
@@ -265,6 +267,7 @@ static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
#endif
dctx->noForwardProgress = 0;
dctx->oversizedDuration = 0;
+ dctx->isFrameDecompression = 1;
#if DYNAMIC_BMI2
dctx->bmi2 = ZSTD_cpuSupportsBmi2();
#endif
@@ -726,17 +729,17 @@ static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret)
return frameSizeInfo;
}
-static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize)
+static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize, ZSTD_format_e format)
{
ZSTD_frameSizeInfo frameSizeInfo;
ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo));
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
- if (ZSTD_isLegacy(src, srcSize))
+ if (format == ZSTD_f_zstd1 && ZSTD_isLegacy(src, srcSize))
return ZSTD_findFrameSizeInfoLegacy(src, srcSize);
#endif
- if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
+ if (format == ZSTD_f_zstd1 && (srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
&& (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize);
assert(ZSTD_isError(frameSizeInfo.compressedSize) ||
@@ -750,7 +753,7 @@ static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize
ZSTD_frameHeader zfh;
/* Extract Frame Header */
- { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
+ { size_t const ret = ZSTD_getFrameHeader_advanced(&zfh, src, srcSize, format);
if (ZSTD_isError(ret))
return ZSTD_errorFrameSizeInfo(ret);
if (ret > 0)
@@ -793,15 +796,17 @@ static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize
}
}
+static size_t ZSTD_findFrameCompressedSize_advanced(const void *src, size_t srcSize, ZSTD_format_e format) {
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize, format);
+ return frameSizeInfo.compressedSize;
+}
+
/** ZSTD_findFrameCompressedSize() :
- * compatible with legacy mode
- * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
- * `srcSize` must be at least as large as the frame contained
- * @return : the compressed size of the frame starting at `src` */
+ * See docs in zstd.h
+ * Note: compatible with legacy mode */
size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
{
- ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
- return frameSizeInfo.compressedSize;
+ return ZSTD_findFrameCompressedSize_advanced(src, srcSize, ZSTD_f_zstd1);
}
/** ZSTD_decompressBound() :
@@ -815,7 +820,7 @@ unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize)
unsigned long long bound = 0;
/* Iterate over each frame */
while (srcSize > 0) {
- ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize, ZSTD_f_zstd1);
size_t const compressedSize = frameSizeInfo.compressedSize;
unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR)
@@ -835,7 +840,7 @@ size_t ZSTD_decompressionMargin(void const* src, size_t srcSize)
/* Iterate over each frame */
while (srcSize > 0) {
- ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
+ ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize, ZSTD_f_zstd1);
size_t const compressedSize = frameSizeInfo.compressedSize;
unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
ZSTD_frameHeader zfh;
@@ -971,6 +976,10 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize;
}
+ /* Shrink the blockSizeMax if enabled */
+ if (dctx->maxBlockSizeParam != 0)
+ dctx->fParams.blockSizeMax = MIN(dctx->fParams.blockSizeMax, (unsigned)dctx->maxBlockSizeParam);
+
/* Loop on each block */
while (1) {
BYTE* oBlockEnd = oend;
@@ -1003,7 +1012,8 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
switch(blockProperties.blockType)
{
case bt_compressed:
- decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oBlockEnd-op), ip, cBlockSize, /* frame */ 1, not_streaming);
+ assert(dctx->isFrameDecompression == 1);
+ decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oBlockEnd-op), ip, cBlockSize, not_streaming);
break;
case bt_raw :
/* Use oend instead of oBlockEnd because this function is safe to overlap. It uses memmove. */
@@ -1016,12 +1026,14 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
default:
RETURN_ERROR(corruption_detected, "invalid block type");
}
-
- if (ZSTD_isError(decodedSize)) return decodedSize;
- if (dctx->validateChecksum)
+ FORWARD_IF_ERROR(decodedSize, "Block decompression failure");
+ DEBUGLOG(5, "Decompressed block of dSize = %u", (unsigned)decodedSize);
+ if (dctx->validateChecksum) {
XXH64_update(&dctx->xxhState, op, decodedSize);
- if (decodedSize != 0)
+ }
+ if (decodedSize) /* support dst = NULL,0 */ {
op += decodedSize;
+ }
assert(ip != NULL);
ip += cBlockSize;
remainingSrcSize -= cBlockSize;
@@ -1051,7 +1063,9 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
return (size_t)(op-ostart);
}
-static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
+static
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
+size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize,
@@ -1071,7 +1085,7 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
while (srcSize >= ZSTD_startingInputLength(dctx->format)) {
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
- if (ZSTD_isLegacy(src, srcSize)) {
+ if (dctx->format == ZSTD_f_zstd1 && ZSTD_isLegacy(src, srcSize)) {
size_t decodedSize;
size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
if (ZSTD_isError(frameSize)) return frameSize;
@@ -1081,6 +1095,15 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
+ {
+ unsigned long long const expectedSize = ZSTD_getFrameContentSize(src, srcSize);
+ RETURN_ERROR_IF(expectedSize == ZSTD_CONTENTSIZE_ERROR, corruption_detected, "Corrupted frame header!");
+ if (expectedSize != ZSTD_CONTENTSIZE_UNKNOWN) {
+ RETURN_ERROR_IF(expectedSize != decodedSize, corruption_detected,
+ "Frame header size does not match decoded size!");
+ }
+ }
+
assert(decodedSize <= dstCapacity);
dst = (BYTE*)dst + decodedSize;
dstCapacity -= decodedSize;
@@ -1092,7 +1115,7 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
}
#endif
- if (srcSize >= 4) {
+ if (dctx->format == ZSTD_f_zstd1 && srcSize >= 4) {
U32 const magicNumber = MEM_readLE32(src);
DEBUGLOG(5, "reading magic number %08X", (unsigned)magicNumber);
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
@@ -1319,7 +1342,8 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
{
case bt_compressed:
DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed");
- rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1, is_streaming);
+ assert(dctx->isFrameDecompression == 1);
+ rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, is_streaming);
dctx->expected = 0; /* Streaming not supported */
break;
case bt_raw :
@@ -1388,6 +1412,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
case ZSTDds_decodeSkippableHeader:
assert(src != NULL);
assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE);
+ assert(dctx->format != ZSTD_f_zstd1_magicless);
ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */
dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */
dctx->stage = ZSTDds_skipFrame;
@@ -1548,6 +1573,7 @@ size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
dctx->litEntropy = dctx->fseEntropy = 0;
dctx->dictID = 0;
dctx->bType = bt_reserved;
+ dctx->isFrameDecompression = 1;
ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
dctx->LLTptr = dctx->entropy.LLTable;
@@ -1819,6 +1845,10 @@ ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam)
bounds.lowerBound = 0;
bounds.upperBound = 1;
return bounds;
+ case ZSTD_d_maxBlockSize:
+ bounds.lowerBound = ZSTD_BLOCKSIZE_MAX_MIN;
+ bounds.upperBound = ZSTD_BLOCKSIZE_MAX;
+ return bounds;
default:;
}
@@ -1863,6 +1893,9 @@ size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value
case ZSTD_d_disableHuffmanAssembly:
*value = (int)dctx->disableHufAsm;
return 0;
+ case ZSTD_d_maxBlockSize:
+ *value = dctx->maxBlockSizeParam;
+ return 0;
default:;
}
RETURN_ERROR(parameter_unsupported, "");
@@ -1900,6 +1933,10 @@ size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value
CHECK_DBOUNDS(ZSTD_d_disableHuffmanAssembly, value);
dctx->disableHufAsm = value != 0;
return 0;
+ case ZSTD_d_maxBlockSize:
+ if (value != 0) CHECK_DBOUNDS(ZSTD_d_maxBlockSize, value);
+ dctx->maxBlockSizeParam = value;
+ return 0;
default:;
}
RETURN_ERROR(parameter_unsupported, "");
@@ -1911,6 +1948,7 @@ size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset)
|| (reset == ZSTD_reset_session_and_parameters) ) {
dctx->streamStage = zdss_init;
dctx->noForwardProgress = 0;
+ dctx->isFrameDecompression = 1;
}
if ( (reset == ZSTD_reset_parameters)
|| (reset == ZSTD_reset_session_and_parameters) ) {
@@ -1927,11 +1965,17 @@ size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx)
return ZSTD_sizeof_DCtx(dctx);
}
-size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
+static size_t ZSTD_decodingBufferSize_internal(unsigned long long windowSize, unsigned long long frameContentSize, size_t blockSizeMax)
{
- size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
- /* space is needed to store the litbuffer after the output of a given block without stomping the extDict of a previous run, as well as to cover both windows against wildcopy*/
- unsigned long long const neededRBSize = windowSize + blockSize + ZSTD_BLOCKSIZE_MAX + (WILDCOPY_OVERLENGTH * 2);
+ size_t const blockSize = MIN((size_t)MIN(windowSize, ZSTD_BLOCKSIZE_MAX), blockSizeMax);
+ /* We need blockSize + WILDCOPY_OVERLENGTH worth of buffer so that if a block
+ * ends at windowSize + WILDCOPY_OVERLENGTH + 1 bytes, we can start writing
+ * the block at the beginning of the output buffer, and maintain a full window.
+ *
+ * We need another blockSize worth of buffer so that we can store split
+ * literals at the end of the block without overwriting the extDict window.
+ */
+ unsigned long long const neededRBSize = windowSize + (blockSize * 2) + (WILDCOPY_OVERLENGTH * 2);
unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
size_t const minRBSize = (size_t) neededSize;
RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize,
@@ -1939,6 +1983,11 @@ size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long
return minRBSize;
}
+size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
+{
+ return ZSTD_decodingBufferSize_internal(windowSize, frameContentSize, ZSTD_BLOCKSIZE_MAX);
+}
+
size_t ZSTD_estimateDStreamSize(size_t windowSize)
{
size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
@@ -2134,12 +2183,12 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
&& zds->fParams.frameType != ZSTD_skippableFrame
&& (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) {
- size_t const cSize = ZSTD_findFrameCompressedSize(istart, (size_t)(iend-istart));
+ size_t const cSize = ZSTD_findFrameCompressedSize_advanced(istart, (size_t)(iend-istart), zds->format);
if (cSize <= (size_t)(iend-istart)) {
/* shortcut : using single-pass mode */
size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds));
if (ZSTD_isError(decompressedSize)) return decompressedSize;
- DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
+ DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()");
assert(istart != NULL);
ip = istart + cSize;
op = op ? op + decompressedSize : op; /* can occur if frameContentSize = 0 (empty frame) */
@@ -2161,7 +2210,8 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
DEBUGLOG(4, "Consume header");
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), "");
- if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
+ if (zds->format == ZSTD_f_zstd1
+ && (MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE);
zds->stage = ZSTDds_skipFrame;
} else {
@@ -2177,11 +2227,13 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize,
frameParameter_windowTooLarge, "");
+ if (zds->maxBlockSizeParam != 0)
+ zds->fParams.blockSizeMax = MIN(zds->fParams.blockSizeMax, (unsigned)zds->maxBlockSizeParam);
/* Adapt buffer sizes to frame header instructions */
{ size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */);
size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered
- ? ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize)
+ ? ZSTD_decodingBufferSize_internal(zds->fParams.windowSize, zds->fParams.frameContentSize, zds->fParams.blockSizeMax)
: 0;
ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize);
diff --git a/thirdparty/zstd/decompress/zstd_decompress_block.c b/thirdparty/zstd/decompress/zstd_decompress_block.c
index 09896a931e..76d7332e88 100644
--- a/thirdparty/zstd/decompress/zstd_decompress_block.c
+++ b/thirdparty/zstd/decompress/zstd_decompress_block.c
@@ -51,6 +51,13 @@ static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
* Block decoding
***************************************************************/
+static size_t ZSTD_blockSizeMax(ZSTD_DCtx const* dctx)
+{
+ size_t const blockSizeMax = dctx->isFrameDecompression ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX;
+ assert(blockSizeMax <= ZSTD_BLOCKSIZE_MAX);
+ return blockSizeMax;
+}
+
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
@@ -73,41 +80,49 @@ size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
{
- if (streaming == not_streaming && dstCapacity > ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH)
- {
- /* room for litbuffer to fit without read faulting */
- dctx->litBuffer = (BYTE*)dst + ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH;
+ size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
+ assert(litSize <= blockSizeMax);
+ assert(dctx->isFrameDecompression || streaming == not_streaming);
+ assert(expectedWriteSize <= blockSizeMax);
+ if (streaming == not_streaming && dstCapacity > blockSizeMax + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) {
+ /* If we aren't streaming, we can just put the literals after the output
+ * of the current block. We don't need to worry about overwriting the
+ * extDict of our window, because it doesn't exist.
+ * So if we have space after the end of the block, just put it there.
+ */
+ dctx->litBuffer = (BYTE*)dst + blockSizeMax + WILDCOPY_OVERLENGTH;
dctx->litBufferEnd = dctx->litBuffer + litSize;
dctx->litBufferLocation = ZSTD_in_dst;
- }
- else if (litSize > ZSTD_LITBUFFEREXTRASIZE)
- {
- /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
+ } else if (litSize <= ZSTD_LITBUFFEREXTRASIZE) {
+ /* Literals fit entirely within the extra buffer, put them there to avoid
+ * having to split the literals.
+ */
+ dctx->litBuffer = dctx->litExtraBuffer;
+ dctx->litBufferEnd = dctx->litBuffer + litSize;
+ dctx->litBufferLocation = ZSTD_not_in_dst;
+ } else {
+ assert(blockSizeMax > ZSTD_LITBUFFEREXTRASIZE);
+ /* Literals must be split between the output block and the extra lit
+ * buffer. We fill the extra lit buffer with the tail of the literals,
+ * and put the rest of the literals at the end of the block, with
+ * WILDCOPY_OVERLENGTH of buffer room to allow for overreads.
+ * This MUST not write more than our maxBlockSize beyond dst, because in
+ * streaming mode, that could overwrite part of our extDict window.
+ */
if (splitImmediately) {
/* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
- }
- else {
+ } else {
/* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
}
dctx->litBufferLocation = ZSTD_split;
- }
- else
- {
- /* fits entirely within litExtraBuffer, so no split is necessary */
- dctx->litBuffer = dctx->litExtraBuffer;
- dctx->litBufferEnd = dctx->litBuffer + litSize;
- dctx->litBufferLocation = ZSTD_not_in_dst;
+ assert(dctx->litBufferEnd <= (BYTE*)dst + expectedWriteSize);
}
}
-/* Hidden declaration for fullbench */
-size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
- const void* src, size_t srcSize,
- void* dst, size_t dstCapacity, const streaming_operation streaming);
/*! ZSTD_decodeLiteralsBlock() :
* Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
* in the dstBuffer. If there is room to do so, it will be stored in full in the excess dst space after where the current
@@ -116,7 +131,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
*
* @return : nb of bytes read from src (< srcSize )
* note : symbol not declared but exposed for fullbench */
-size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize, /* note : srcSize < BLOCKSIZE */
void* dst, size_t dstCapacity, const streaming_operation streaming)
{
@@ -125,6 +140,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
{ const BYTE* const istart = (const BYTE*) src;
symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
+ size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
switch(litEncType)
{
@@ -140,7 +156,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
U32 const lhlCode = (istart[0] >> 2) & 3;
U32 const lhc = MEM_readLE32(istart);
size_t hufSuccess;
- size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
+ size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
int const flags = 0
| (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
| (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
@@ -167,7 +183,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
break;
}
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
- RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
+ RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
if (!singleStream)
RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
"Not enough literals (%zu) for the 4-streams mode (min %u)",
@@ -214,10 +230,12 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
}
if (dctx->litBufferLocation == ZSTD_split)
{
+ assert(litSize > ZSTD_LITBUFFEREXTRASIZE);
ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
+ assert(dctx->litBufferEnd <= (BYTE*)dst + blockSizeMax);
}
RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
@@ -232,7 +250,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
case set_basic:
{ size_t litSize, lhSize;
U32 const lhlCode = ((istart[0]) >> 2) & 3;
- size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
+ size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
@@ -251,6 +269,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
}
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
+ RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
@@ -279,7 +298,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
case set_rle:
{ U32 const lhlCode = ((istart[0]) >> 2) & 3;
size_t litSize, lhSize;
- size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
+ size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
@@ -298,7 +317,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
break;
}
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
- RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
+ RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
if (dctx->litBufferLocation == ZSTD_split)
@@ -320,6 +339,18 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
}
}
+/* Hidden declaration for fullbench */
+size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize,
+ void* dst, size_t dstCapacity);
+size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
+ const void* src, size_t srcSize,
+ void* dst, size_t dstCapacity)
+{
+ dctx->isFrameDecompression = 0;
+ return ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, not_streaming);
+}
+
/* Default FSE distribution tables.
* These are pre-calculated FSE decoding tables using default distributions as defined in specification :
* https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
@@ -675,11 +706,6 @@ size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
/* SeqHead */
nbSeq = *ip++;
- if (!nbSeq) {
- *nbSeqPtr=0;
- RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
- return 1;
- }
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
@@ -692,8 +718,16 @@ size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
}
*nbSeqPtr = nbSeq;
+ if (nbSeq == 0) {
+ /* No sequence : section ends immediately */
+ RETURN_ERROR_IF(ip != iend, corruption_detected,
+ "extraneous data present in the Sequences section");
+ return (size_t)(ip - istart);
+ }
+
/* FSE table descriptors */
RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
+ RETURN_ERROR_IF(*ip & 3, corruption_detected, ""); /* The last field, Reserved, must be all-zeroes. */
{ symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
@@ -840,7 +874,7 @@ static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, pt
/* ZSTD_safecopyDstBeforeSrc():
* This version allows overlap with dst before src, or handles the non-overlap case with dst after src
* Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
-static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length) {
+static void ZSTD_safecopyDstBeforeSrc(BYTE* op, const BYTE* ip, ptrdiff_t length) {
ptrdiff_t const diff = op - ip;
BYTE* const oend = op + length;
@@ -869,6 +903,7 @@ static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length
* to be optimized for many small sequences, since those fall into ZSTD_execSequence().
*/
FORCE_NOINLINE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_execSequenceEnd(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
@@ -916,6 +951,7 @@ size_t ZSTD_execSequenceEnd(BYTE* op,
* This version is intended to be used during instances where the litBuffer is still split. It is kept separate to avoid performance impact for the good case.
*/
FORCE_NOINLINE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
@@ -961,6 +997,7 @@ size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
}
HINT_INLINE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
@@ -1059,6 +1096,7 @@ size_t ZSTD_execSequence(BYTE* op,
}
HINT_INLINE
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
@@ -1181,14 +1219,20 @@ ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
+/**
+ * ZSTD_decodeSequence():
+ * @p longOffsets : tells the decoder to reload more bit while decoding large offsets
+ * only used in 32-bit mode
+ * @return : Sequence (litL + matchL + offset)
+ */
FORCE_INLINE_TEMPLATE seq_t
-ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
+ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const int isLastSeq)
{
seq_t seq;
/*
- * ZSTD_seqSymbol is a structure with a total of 64 bits wide. So it can be
- * loaded in one operation and extracted its fields by simply shifting or
- * bit-extracting on aarch64.
+ * ZSTD_seqSymbol is a 64 bits wide structure.
+ * It can be loaded in one operation
+ * and its fields extracted by simply shifting or bit-extracting on aarch64.
* GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
* operations that cause performance drop. This can be avoided by using this
* ZSTD_memcpy hack.
@@ -1261,7 +1305,7 @@ ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
} else {
offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
{ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
- temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
+ temp -= !temp; /* 0 is not valid: input corrupted => force offset to -1 => corruption detected at execSequence */
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset = temp;
@@ -1288,17 +1332,22 @@ ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
- ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */
- ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */
- if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
- ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */
+ if (!isLastSeq) {
+ /* don't update FSE state for last Sequence */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
+ ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */
+ BIT_reloadDStream(&seqState->DStream);
+ }
}
return seq;
}
-#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
-MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
+#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
+#if DEBUGLEVEL >= 1
+static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
{
size_t const windowSize = dctx->fParams.windowSize;
/* No dictionary used. */
@@ -1312,30 +1361,33 @@ MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefix
/* Dictionary is active. */
return 1;
}
+#endif
-MEM_STATIC void ZSTD_assertValidSequence(
+static void ZSTD_assertValidSequence(
ZSTD_DCtx const* dctx,
BYTE const* op, BYTE const* oend,
seq_t const seq,
BYTE const* prefixStart, BYTE const* virtualStart)
{
#if DEBUGLEVEL >= 1
- size_t const windowSize = dctx->fParams.windowSize;
- size_t const sequenceSize = seq.litLength + seq.matchLength;
- BYTE const* const oLitEnd = op + seq.litLength;
- DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
- (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
- assert(op <= oend);
- assert((size_t)(oend - op) >= sequenceSize);
- assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
- if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
- size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
- /* Offset must be within the dictionary. */
- assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
- assert(seq.offset <= windowSize + dictSize);
- } else {
- /* Offset must be within our window. */
- assert(seq.offset <= windowSize);
+ if (dctx->isFrameDecompression) {
+ size_t const windowSize = dctx->fParams.windowSize;
+ size_t const sequenceSize = seq.litLength + seq.matchLength;
+ BYTE const* const oLitEnd = op + seq.litLength;
+ DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
+ (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
+ assert(op <= oend);
+ assert((size_t)(oend - op) >= sequenceSize);
+ assert(sequenceSize <= ZSTD_blockSizeMax(dctx));
+ if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
+ size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
+ /* Offset must be within the dictionary. */
+ assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
+ assert(seq.offset <= windowSize + dictSize);
+ } else {
+ /* Offset must be within our window. */
+ assert(seq.offset <= windowSize);
+ }
}
#else
(void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
@@ -1351,23 +1403,21 @@ DONT_VECTORIZE
ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE*)dst;
- BYTE* const oend = ostart + maxDstSize;
+ BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* litBufferEnd = dctx->litBufferEnd;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
- DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer");
- (void)frame;
+ DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer (%i seqs)", nbSeq);
- /* Regen sequences */
+ /* Literals are split between internal buffer & output buffer */
if (nbSeq) {
seqState_t seqState;
dctx->fseEntropy = 1;
@@ -1386,8 +1436,7 @@ ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
BIT_DStream_completed < BIT_DStream_overflow);
/* decompress without overrunning litPtr begins */
- {
- seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ { seq_t sequence = {0,0,0}; /* some static analyzer believe that @sequence is not initialized (it necessarily is, since for(;;) loop as at least one iteration) */
/* Align the decompression loop to 32 + 16 bytes.
*
* zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
@@ -1449,27 +1498,26 @@ ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
#endif
/* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
- for (; litPtr + sequence.litLength <= dctx->litBufferEnd; ) {
- size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
+ for ( ; nbSeq; nbSeq--) {
+ sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
+ if (litPtr + sequence.litLength > dctx->litBufferEnd) break;
+ { size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
- assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+ assert(!ZSTD_isError(oneSeqSize));
+ ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
- if (UNLIKELY(ZSTD_isError(oneSeqSize)))
- return oneSeqSize;
- DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
- op += oneSeqSize;
- if (UNLIKELY(!--nbSeq))
- break;
- BIT_reloadDStream(&(seqState.DStream));
- sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
- }
+ if (UNLIKELY(ZSTD_isError(oneSeqSize)))
+ return oneSeqSize;
+ DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
+ op += oneSeqSize;
+ } }
+ DEBUGLOG(6, "reached: (litPtr + sequence.litLength > dctx->litBufferEnd)");
/* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
if (nbSeq > 0) {
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
- if (leftoverLit)
- {
+ DEBUGLOG(6, "There are %i sequences left, and %zu/%zu literals left in buffer", nbSeq, leftoverLit, sequence.litLength);
+ if (leftoverLit) {
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
sequence.litLength -= leftoverLit;
@@ -1478,24 +1526,22 @@ ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
litPtr = dctx->litExtraBuffer;
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
dctx->litBufferLocation = ZSTD_not_in_dst;
- {
- size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
+ { size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+ ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
return oneSeqSize;
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
op += oneSeqSize;
- if (--nbSeq)
- BIT_reloadDStream(&(seqState.DStream));
}
+ nbSeq--;
}
}
- if (nbSeq > 0) /* there is remaining lit from extra buffer */
- {
+ if (nbSeq > 0) {
+ /* there is remaining lit from extra buffer */
#if defined(__GNUC__) && defined(__x86_64__)
__asm__(".p2align 6");
@@ -1514,35 +1560,34 @@ ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
# endif
#endif
- for (; ; ) {
- seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ for ( ; nbSeq ; nbSeq--) {
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+ ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
return oneSeqSize;
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
op += oneSeqSize;
- if (UNLIKELY(!--nbSeq))
- break;
- BIT_reloadDStream(&(seqState.DStream));
}
}
/* check if reached exact end */
DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
RETURN_ERROR_IF(nbSeq, corruption_detected, "");
- RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
+ DEBUGLOG(5, "bitStream : start=%p, ptr=%p, bitsConsumed=%u", seqState.DStream.start, seqState.DStream.ptr, seqState.DStream.bitsConsumed);
+ RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
- if (dctx->litBufferLocation == ZSTD_split) /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
- {
- size_t const lastLLSize = litBufferEnd - litPtr;
+ if (dctx->litBufferLocation == ZSTD_split) {
+ /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
+ size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
+ DEBUGLOG(6, "copy last literals from segment : %u", (U32)lastLLSize);
RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
if (op != NULL) {
ZSTD_memmove(op, litPtr, lastLLSize);
@@ -1552,15 +1597,17 @@ ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
dctx->litBufferLocation = ZSTD_not_in_dst;
}
- { size_t const lastLLSize = litBufferEnd - litPtr;
+ /* copy last literals from internal buffer */
+ { size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
+ DEBUGLOG(6, "copy last literals from internal buffer : %u", (U32)lastLLSize);
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
if (op != NULL) {
ZSTD_memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
- }
- }
+ } }
- return op-ostart;
+ DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
+ return (size_t)(op - ostart);
}
FORCE_INLINE_TEMPLATE size_t
@@ -1568,13 +1615,12 @@ DONT_VECTORIZE
ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE*)dst;
- BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ostart + maxDstSize : dctx->litBuffer;
+ BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ZSTD_maybeNullPtrAdd(ostart, maxDstSize) : dctx->litBuffer;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
@@ -1582,7 +1628,6 @@ ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
- (void)frame;
/* Regen sequences */
if (nbSeq) {
@@ -1597,11 +1642,6 @@ ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
assert(dst != NULL);
- ZSTD_STATIC_ASSERT(
- BIT_DStream_unfinished < BIT_DStream_completed &&
- BIT_DStream_endOfBuffer < BIT_DStream_completed &&
- BIT_DStream_completed < BIT_DStream_overflow);
-
#if defined(__GNUC__) && defined(__x86_64__)
__asm__(".p2align 6");
__asm__("nop");
@@ -1616,73 +1656,70 @@ ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
# endif
#endif
- for ( ; ; ) {
- seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ for ( ; nbSeq ; nbSeq--) {
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
+ ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
return oneSeqSize;
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
op += oneSeqSize;
- if (UNLIKELY(!--nbSeq))
- break;
- BIT_reloadDStream(&(seqState.DStream));
}
/* check if reached exact end */
- DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
- RETURN_ERROR_IF(nbSeq, corruption_detected, "");
- RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
+ assert(nbSeq == 0);
+ RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
- { size_t const lastLLSize = litEnd - litPtr;
+ { size_t const lastLLSize = (size_t)(litEnd - litPtr);
+ DEBUGLOG(6, "copy last literals : %u", (U32)lastLLSize);
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
if (op != NULL) {
ZSTD_memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
- }
- }
+ } }
- return op-ostart;
+ DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
+ return (size_t)(op - ostart);
}
static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
- return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
static size_t
ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
- return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
-FORCE_INLINE_TEMPLATE size_t
-ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
+FORCE_INLINE_TEMPLATE
+
+size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
const BYTE* const prefixStart, const BYTE* const dictEnd)
{
prefetchPos += sequence.litLength;
{ const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
- const BYTE* const match = matchBase + prefetchPos - sequence.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
- * No consequence though : memory address is only used for prefetching, not for dereferencing */
+ /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
+ * No consequence though : memory address is only used for prefetching, not for dereferencing */
+ const BYTE* const match = ZSTD_wrappedPtrSub(ZSTD_wrappedPtrAdd(matchBase, prefetchPos), sequence.offset);
PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
}
return prefetchPos + sequence.matchLength;
@@ -1697,20 +1734,18 @@ ZSTD_decompressSequencesLong_body(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE*)dst;
- BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ostart + maxDstSize;
+ BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* litBufferEnd = dctx->litBufferEnd;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
- (void)frame;
/* Regen sequences */
if (nbSeq) {
@@ -1735,20 +1770,17 @@ ZSTD_decompressSequencesLong_body(
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
/* prepare in advance */
- for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
- seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
+ for (seqNb=0; seqNb<seqAdvance; seqNb++) {
+ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
sequences[seqNb] = sequence;
}
- RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
/* decompress without stomping litBuffer */
- for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb < nbSeq); seqNb++) {
- seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
- size_t oneSeqSize;
+ for (; seqNb < nbSeq; seqNb++) {
+ seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
- if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd)
- {
+ if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) {
/* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
if (leftoverLit)
@@ -1761,26 +1793,26 @@ ZSTD_decompressSequencesLong_body(
litPtr = dctx->litExtraBuffer;
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
dctx->litBufferLocation = ZSTD_not_in_dst;
- oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
+ { size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
- assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
+ assert(!ZSTD_isError(oneSeqSize));
+ ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
#endif
- if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
- prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
- sequences[seqNb & STORED_SEQS_MASK] = sequence;
- op += oneSeqSize;
- }
+ prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
+ sequences[seqNb & STORED_SEQS_MASK] = sequence;
+ op += oneSeqSize;
+ } }
else
{
/* lit buffer is either wholly contained in first or second split, or not split at all*/
- oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
+ size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
+ ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
#endif
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
@@ -1789,17 +1821,15 @@ ZSTD_decompressSequencesLong_body(
op += oneSeqSize;
}
}
- RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
+ RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
/* finish queue */
seqNb -= seqAdvance;
for ( ; seqNb<nbSeq ; seqNb++) {
seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
- if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd)
- {
+ if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) {
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
- if (leftoverLit)
- {
+ if (leftoverLit) {
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
sequence->litLength -= leftoverLit;
@@ -1808,11 +1838,10 @@ ZSTD_decompressSequencesLong_body(
litPtr = dctx->litExtraBuffer;
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
dctx->litBufferLocation = ZSTD_not_in_dst;
- {
- size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
+ { size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
+ ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
#endif
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
@@ -1825,7 +1854,7 @@ ZSTD_decompressSequencesLong_body(
ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
assert(!ZSTD_isError(oneSeqSize));
- if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
+ ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
#endif
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
@@ -1837,8 +1866,7 @@ ZSTD_decompressSequencesLong_body(
}
/* last literal segment */
- if (dctx->litBufferLocation == ZSTD_split) /* first deplete literal buffer in dst, then copy litExtraBuffer */
- {
+ if (dctx->litBufferLocation == ZSTD_split) { /* first deplete literal buffer in dst, then copy litExtraBuffer */
size_t const lastLLSize = litBufferEnd - litPtr;
RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
if (op != NULL) {
@@ -1856,17 +1884,16 @@ ZSTD_decompressSequencesLong_body(
}
}
- return op-ostart;
+ return (size_t)(op - ostart);
}
static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
- return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
@@ -1880,20 +1907,18 @@ DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
- return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
static BMI2_TARGET_ATTRIBUTE size_t
DONT_VECTORIZE
ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
- return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
@@ -1902,10 +1927,9 @@ static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
- return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
@@ -1915,37 +1939,34 @@ typedef size_t (*ZSTD_decompressSequences_t)(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame);
+ const ZSTD_longOffset_e isLongOffset);
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static size_t
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
DEBUGLOG(5, "ZSTD_decompressSequences");
#if DYNAMIC_BMI2
if (ZSTD_DCtx_get_bmi2(dctx)) {
- return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif
- return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
static size_t
ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
#if DYNAMIC_BMI2
if (ZSTD_DCtx_get_bmi2(dctx)) {
- return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif
- return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
@@ -1960,16 +1981,15 @@ static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
- const ZSTD_longOffset_e isLongOffset,
- const int frame)
+ const ZSTD_longOffset_e isLongOffset)
{
DEBUGLOG(5, "ZSTD_decompressSequencesLong");
#if DYNAMIC_BMI2
if (ZSTD_DCtx_get_bmi2(dctx)) {
- return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif
- return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
@@ -2051,20 +2071,20 @@ static size_t ZSTD_maxShortOffset(void)
size_t
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
- const void* src, size_t srcSize, const int frame, const streaming_operation streaming)
+ const void* src, size_t srcSize, const streaming_operation streaming)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
- DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
+ DEBUGLOG(5, "ZSTD_decompressBlock_internal (cSize : %u)", (unsigned)srcSize);
/* Note : the wording of the specification
- * allows compressed block to be sized exactly ZSTD_BLOCKSIZE_MAX.
+ * allows compressed block to be sized exactly ZSTD_blockSizeMax(dctx).
* This generally does not happen, as it makes little sense,
* since an uncompressed block would feature same size and have no decompression cost.
* Also, note that decoder from reference libzstd before < v1.5.4
* would consider this edge case as an error.
- * As a consequence, avoid generating compressed blocks of size ZSTD_BLOCKSIZE_MAX
+ * As a consequence, avoid generating compressed blocks of size ZSTD_blockSizeMax(dctx)
* for broader compatibility with the deployed ecosystem of zstd decoders */
- RETURN_ERROR_IF(srcSize > ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
+ RETURN_ERROR_IF(srcSize > ZSTD_blockSizeMax(dctx), srcSize_wrong, "");
/* Decode literals section */
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
@@ -2079,8 +2099,8 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
/* Compute the maximum block size, which must also work when !frame and fParams are unset.
* Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
*/
- size_t const blockSizeMax = MIN(dstCapacity, (frame ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX));
- size_t const totalHistorySize = ZSTD_totalHistorySize((BYTE*)dst + blockSizeMax, (BYTE const*)dctx->virtualStart);
+ size_t const blockSizeMax = MIN(dstCapacity, ZSTD_blockSizeMax(dctx));
+ size_t const totalHistorySize = ZSTD_totalHistorySize(ZSTD_maybeNullPtrAdd((BYTE*)dst, blockSizeMax), (BYTE const*)dctx->virtualStart);
/* isLongOffset must be true if there are long offsets.
* Offsets are long if they are larger than ZSTD_maxShortOffset().
* We don't expect that to be the case in 64-bit mode.
@@ -2145,21 +2165,22 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
{
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
- return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
#endif
}
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
/* else */
if (dctx->litBufferLocation == ZSTD_split)
- return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
else
- return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
+ return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
#endif
}
}
+ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
{
if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */
@@ -2176,8 +2197,10 @@ size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
const void* src, size_t srcSize)
{
size_t dSize;
+ dctx->isFrameDecompression = 0;
ZSTD_checkContinuity(dctx, dst, dstCapacity);
- dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0, not_streaming);
+ dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, not_streaming);
+ FORWARD_IF_ERROR(dSize, "");
dctx->previousDstEnd = (char*)dst + dSize;
return dSize;
}
diff --git a/thirdparty/zstd/decompress/zstd_decompress_block.h b/thirdparty/zstd/decompress/zstd_decompress_block.h
index 9d1318882d..ab152404ba 100644
--- a/thirdparty/zstd/decompress/zstd_decompress_block.h
+++ b/thirdparty/zstd/decompress/zstd_decompress_block.h
@@ -47,7 +47,7 @@ typedef enum {
*/
size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
- const void* src, size_t srcSize, const int frame, const streaming_operation streaming);
+ const void* src, size_t srcSize, const streaming_operation streaming);
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off)
diff --git a/thirdparty/zstd/decompress/zstd_decompress_internal.h b/thirdparty/zstd/decompress/zstd_decompress_internal.h
index c2ec5d9fbe..83a7a0115f 100644
--- a/thirdparty/zstd/decompress/zstd_decompress_internal.h
+++ b/thirdparty/zstd/decompress/zstd_decompress_internal.h
@@ -153,6 +153,7 @@ struct ZSTD_DCtx_s
size_t litSize;
size_t rleSize;
size_t staticSize;
+ int isFrameDecompression;
#if DYNAMIC_BMI2 != 0
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
#endif
@@ -166,6 +167,7 @@ struct ZSTD_DCtx_s
ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */
ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */
int disableHufAsm;
+ int maxBlockSizeParam;
/* streaming */
ZSTD_dStreamStage streamStage;
diff --git a/thirdparty/zstd/zstd.h b/thirdparty/zstd/zstd.h
index e5c3f8b68b..5d1fef8a6b 100644
--- a/thirdparty/zstd/zstd.h
+++ b/thirdparty/zstd/zstd.h
@@ -106,7 +106,7 @@ extern "C" {
/*------ Version ------*/
#define ZSTD_VERSION_MAJOR 1
#define ZSTD_VERSION_MINOR 5
-#define ZSTD_VERSION_RELEASE 5
+#define ZSTD_VERSION_RELEASE 6
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
/*! ZSTD_versionNumber() :
@@ -228,7 +228,7 @@ ZSTDLIB_API size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize)
* for example to size a static array on stack.
* Will produce constant value 0 if srcSize too large.
*/
-#define ZSTD_MAX_INPUT_SIZE ((sizeof(size_t)==8) ? 0xFF00FF00FF00FF00LLU : 0xFF00FF00U)
+#define ZSTD_MAX_INPUT_SIZE ((sizeof(size_t)==8) ? 0xFF00FF00FF00FF00ULL : 0xFF00FF00U)
#define ZSTD_COMPRESSBOUND(srcSize) (((size_t)(srcSize) >= ZSTD_MAX_INPUT_SIZE) ? 0 : (srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */
ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */
/* ZSTD_isError() :
@@ -249,7 +249,7 @@ ZSTDLIB_API int ZSTD_defaultCLevel(void); /*!< default compres
/*= Compression context
* When compressing many times,
* it is recommended to allocate a context just once,
- * and re-use it for each successive compression operation.
+ * and reuse it for each successive compression operation.
* This will make workload friendlier for system's memory.
* Note : re-using context is just a speed / resource optimization.
* It doesn't change the compression ratio, which remains identical.
@@ -262,9 +262,9 @@ ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); /* accept NULL pointer *
/*! ZSTD_compressCCtx() :
* Same as ZSTD_compress(), using an explicit ZSTD_CCtx.
- * Important : in order to behave similarly to `ZSTD_compress()`,
- * this function compresses at requested compression level,
- * __ignoring any other parameter__ .
+ * Important : in order to mirror `ZSTD_compress()` behavior,
+ * this function compresses at the requested compression level,
+ * __ignoring any other advanced parameter__ .
* If any advanced parameter was set using the advanced API,
* they will all be reset. Only `compressionLevel` remains.
*/
@@ -276,7 +276,7 @@ ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
/*= Decompression context
* When decompressing many times,
* it is recommended to allocate a context only once,
- * and re-use it for each successive compression operation.
+ * and reuse it for each successive compression operation.
* This will make workload friendlier for system's memory.
* Use one context per thread for parallel execution. */
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
@@ -286,7 +286,7 @@ ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); /* accept NULL pointer *
/*! ZSTD_decompressDCtx() :
* Same as ZSTD_decompress(),
* requires an allocated ZSTD_DCtx.
- * Compatible with sticky parameters.
+ * Compatible with sticky parameters (see below).
*/
ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
@@ -302,12 +302,12 @@ ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx,
* using ZSTD_CCtx_set*() functions.
* Pushed parameters are sticky : they are valid for next compressed frame, and any subsequent frame.
* "sticky" parameters are applicable to `ZSTD_compress2()` and `ZSTD_compressStream*()` !
- * __They do not apply to "simple" one-shot variants such as ZSTD_compressCCtx()__ .
+ * __They do not apply to one-shot variants such as ZSTD_compressCCtx()__ .
*
* It's possible to reset all parameters to "default" using ZSTD_CCtx_reset().
*
* This API supersedes all other "advanced" API entry points in the experimental section.
- * In the future, we expect to remove from experimental API entry points which are redundant with this API.
+ * In the future, we expect to remove API entry points from experimental which are redundant with this API.
*/
@@ -390,6 +390,19 @@ typedef enum {
* The higher the value of selected strategy, the more complex it is,
* resulting in stronger and slower compression.
* Special: value 0 means "use default strategy". */
+
+ ZSTD_c_targetCBlockSize=130, /* v1.5.6+
+ * Attempts to fit compressed block size into approximatively targetCBlockSize.
+ * Bound by ZSTD_TARGETCBLOCKSIZE_MIN and ZSTD_TARGETCBLOCKSIZE_MAX.
+ * Note that it's not a guarantee, just a convergence target (default:0).
+ * No target when targetCBlockSize == 0.
+ * This is helpful in low bandwidth streaming environments to improve end-to-end latency,
+ * when a client can make use of partial documents (a prominent example being Chrome).
+ * Note: this parameter is stable since v1.5.6.
+ * It was present as an experimental parameter in earlier versions,
+ * but it's not recommended using it with earlier library versions
+ * due to massive performance regressions.
+ */
/* LDM mode parameters */
ZSTD_c_enableLongDistanceMatching=160, /* Enable long distance matching.
* This parameter is designed to improve compression ratio
@@ -469,7 +482,6 @@ typedef enum {
* ZSTD_c_forceMaxWindow
* ZSTD_c_forceAttachDict
* ZSTD_c_literalCompressionMode
- * ZSTD_c_targetCBlockSize
* ZSTD_c_srcSizeHint
* ZSTD_c_enableDedicatedDictSearch
* ZSTD_c_stableInBuffer
@@ -490,7 +502,7 @@ typedef enum {
ZSTD_c_experimentalParam3=1000,
ZSTD_c_experimentalParam4=1001,
ZSTD_c_experimentalParam5=1002,
- ZSTD_c_experimentalParam6=1003,
+ /* was ZSTD_c_experimentalParam6=1003; is now ZSTD_c_targetCBlockSize */
ZSTD_c_experimentalParam7=1004,
ZSTD_c_experimentalParam8=1005,
ZSTD_c_experimentalParam9=1006,
@@ -575,6 +587,7 @@ ZSTDLIB_API size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset);
/*! ZSTD_compress2() :
* Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API.
+ * (note that this entry point doesn't even expose a compression level parameter).
* ZSTD_compress2() always starts a new frame.
* Should cctx hold data from a previously unfinished frame, everything about it is forgotten.
* - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*()
@@ -618,6 +631,7 @@ typedef enum {
* ZSTD_d_forceIgnoreChecksum
* ZSTD_d_refMultipleDDicts
* ZSTD_d_disableHuffmanAssembly
+ * ZSTD_d_maxBlockSize
* Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them.
* note : never ever use experimentalParam? names directly
*/
@@ -625,7 +639,8 @@ typedef enum {
ZSTD_d_experimentalParam2=1001,
ZSTD_d_experimentalParam3=1002,
ZSTD_d_experimentalParam4=1003,
- ZSTD_d_experimentalParam5=1004
+ ZSTD_d_experimentalParam5=1004,
+ ZSTD_d_experimentalParam6=1005
} ZSTD_dParameter;
@@ -680,14 +695,14 @@ typedef struct ZSTD_outBuffer_s {
* A ZSTD_CStream object is required to track streaming operation.
* Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources.
* ZSTD_CStream objects can be reused multiple times on consecutive compression operations.
-* It is recommended to re-use ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory.
+* It is recommended to reuse ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory.
*
* For parallel execution, use one separate ZSTD_CStream per thread.
*
* note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing.
*
* Parameters are sticky : when starting a new compression on the same context,
-* it will re-use the same sticky parameters as previous compression session.
+* it will reuse the same sticky parameters as previous compression session.
* When in doubt, it's recommended to fully initialize the context before usage.
* Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(),
* ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to
@@ -776,6 +791,11 @@ typedef enum {
* only ZSTD_e_end or ZSTD_e_flush operations are allowed.
* Before starting a new compression job, or changing compression parameters,
* it is required to fully flush internal buffers.
+ * - note: if an operation ends with an error, it may leave @cctx in an undefined state.
+ * Therefore, it's UB to invoke ZSTD_compressStream2() of ZSTD_compressStream() on such a state.
+ * In order to be re-employed after an error, a state must be reset,
+ * which can be done explicitly (ZSTD_CCtx_reset()),
+ * or is sometimes implied by methods starting a new compression job (ZSTD_initCStream(), ZSTD_compressCCtx())
*/
ZSTDLIB_API size_t ZSTD_compressStream2( ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
@@ -835,7 +855,7 @@ ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
*
* A ZSTD_DStream object is required to track streaming operations.
* Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources.
-* ZSTD_DStream objects can be re-used multiple times.
+* ZSTD_DStream objects can be reused multiple times.
*
* Use ZSTD_initDStream() to start a new decompression operation.
* @return : recommended first input size
@@ -889,6 +909,12 @@ ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds);
* @return : 0 when a frame is completely decoded and fully flushed,
* or an error code, which can be tested using ZSTD_isError(),
* or any other value > 0, which means there is some decoding or flushing to do to complete current frame.
+ *
+ * Note: when an operation returns with an error code, the @zds state may be left in undefined state.
+ * It's UB to invoke `ZSTD_decompressStream()` on such a state.
+ * In order to re-use such a state, it must be first reset,
+ * which can be done explicitly (`ZSTD_DCtx_reset()`),
+ * or is implied for operations starting some new decompression job (`ZSTD_initDStream`, `ZSTD_decompressDCtx()`, `ZSTD_decompress_usingDict()`)
*/
ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
@@ -1021,7 +1047,7 @@ ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
*
* This API allows dictionaries to be used with ZSTD_compress2(),
* ZSTD_compressStream2(), and ZSTD_decompressDCtx().
- * Dictionaries are sticky, they remain valid when same context is re-used,
+ * Dictionaries are sticky, they remain valid when same context is reused,
* they only reset when the context is reset
* with ZSTD_reset_parameters or ZSTD_reset_session_and_parameters.
* In contrast, Prefixes are single-use.
@@ -1239,7 +1265,7 @@ ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
#define ZSTD_LDM_HASHRATELOG_MAX (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN)
/* Advanced parameter bounds */
-#define ZSTD_TARGETCBLOCKSIZE_MIN 64
+#define ZSTD_TARGETCBLOCKSIZE_MIN 1340 /* suitable to fit into an ethernet / wifi / 4G transport frame */
#define ZSTD_TARGETCBLOCKSIZE_MAX ZSTD_BLOCKSIZE_MAX
#define ZSTD_SRCSIZEHINT_MIN 0
#define ZSTD_SRCSIZEHINT_MAX INT_MAX
@@ -1527,25 +1553,38 @@ typedef enum {
ZSTDLIB_STATIC_API size_t ZSTD_sequenceBound(size_t srcSize);
/*! ZSTD_generateSequences() :
+ * WARNING: This function is meant for debugging and informational purposes ONLY!
+ * Its implementation is flawed, and it will be deleted in a future version.
+ * It is not guaranteed to succeed, as there are several cases where it will give
+ * up and fail. You should NOT use this function in production code.
+ *
+ * This function is deprecated, and will be removed in a future version.
+ *
* Generate sequences using ZSTD_compress2(), given a source buffer.
*
+ * @param zc The compression context to be used for ZSTD_compress2(). Set any
+ * compression parameters you need on this context.
+ * @param outSeqs The output sequences buffer of size @p outSeqsSize
+ * @param outSeqsSize The size of the output sequences buffer.
+ * ZSTD_sequenceBound(srcSize) is an upper bound on the number
+ * of sequences that can be generated.
+ * @param src The source buffer to generate sequences from of size @p srcSize.
+ * @param srcSize The size of the source buffer.
+ *
* Each block will end with a dummy sequence
* with offset == 0, matchLength == 0, and litLength == length of last literals.
* litLength may be == 0, and if so, then the sequence of (of: 0 ml: 0 ll: 0)
* simply acts as a block delimiter.
*
- * @zc can be used to insert custom compression params.
- * This function invokes ZSTD_compress2().
- *
- * The output of this function can be fed into ZSTD_compressSequences() with CCtx
- * setting of ZSTD_c_blockDelimiters as ZSTD_sf_explicitBlockDelimiters
- * @return : number of sequences generated
+ * @returns The number of sequences generated, necessarily less than
+ * ZSTD_sequenceBound(srcSize), or an error code that can be checked
+ * with ZSTD_isError().
*/
-
+ZSTD_DEPRECATED("For debugging only, will be replaced by ZSTD_extractSequences()")
ZSTDLIB_STATIC_API size_t
-ZSTD_generateSequences( ZSTD_CCtx* zc,
- ZSTD_Sequence* outSeqs, size_t outSeqsSize,
- const void* src, size_t srcSize);
+ZSTD_generateSequences(ZSTD_CCtx* zc,
+ ZSTD_Sequence* outSeqs, size_t outSeqsSize,
+ const void* src, size_t srcSize);
/*! ZSTD_mergeBlockDelimiters() :
* Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals
@@ -1640,56 +1679,59 @@ ZSTDLIB_API unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size);
/*! ZSTD_estimate*() :
* These functions make it possible to estimate memory usage
* of a future {D,C}Ctx, before its creation.
+ * This is useful in combination with ZSTD_initStatic(),
+ * which makes it possible to employ a static buffer for ZSTD_CCtx* state.
*
* ZSTD_estimateCCtxSize() will provide a memory budget large enough
- * for any compression level up to selected one.
- * Note : Unlike ZSTD_estimateCStreamSize*(), this estimate
- * does not include space for a window buffer.
- * Therefore, the estimation is only guaranteed for single-shot compressions, not streaming.
+ * to compress data of any size using one-shot compression ZSTD_compressCCtx() or ZSTD_compress2()
+ * associated with any compression level up to max specified one.
* The estimate will assume the input may be arbitrarily large,
* which is the worst case.
*
+ * Note that the size estimation is specific for one-shot compression,
+ * it is not valid for streaming (see ZSTD_estimateCStreamSize*())
+ * nor other potential ways of using a ZSTD_CCtx* state.
+ *
* When srcSize can be bound by a known and rather "small" value,
- * this fact can be used to provide a tighter estimation
- * because the CCtx compression context will need less memory.
- * This tighter estimation can be provided by more advanced functions
+ * this knowledge can be used to provide a tighter budget estimation
+ * because the ZSTD_CCtx* state will need less memory for small inputs.
+ * This tighter estimation can be provided by employing more advanced functions
* ZSTD_estimateCCtxSize_usingCParams(), which can be used in tandem with ZSTD_getCParams(),
* and ZSTD_estimateCCtxSize_usingCCtxParams(), which can be used in tandem with ZSTD_CCtxParams_setParameter().
* Both can be used to estimate memory using custom compression parameters and arbitrary srcSize limits.
*
* Note : only single-threaded compression is supported.
* ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1.
- *
- * Note 2 : ZSTD_estimateCCtxSize* functions are not compatible with the Block-Level Sequence Producer API at this time.
- * Size estimates assume that no external sequence producer is registered.
*/
-ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize(int maxCompressionLevel);
ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
ZSTDLIB_STATIC_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
ZSTDLIB_STATIC_API size_t ZSTD_estimateDCtxSize(void);
/*! ZSTD_estimateCStreamSize() :
- * ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one.
- * It will also consider src size to be arbitrarily "large", which is worst case.
+ * ZSTD_estimateCStreamSize() will provide a memory budget large enough for streaming compression
+ * using any compression level up to the max specified one.
+ * It will also consider src size to be arbitrarily "large", which is a worst case scenario.
* If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation.
* ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
* ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1.
* Note : CStream size estimation is only correct for single-threaded compression.
- * ZSTD_DStream memory budget depends on window Size.
+ * ZSTD_estimateCStreamSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1.
+ * Note 2 : ZSTD_estimateCStreamSize* functions are not compatible with the Block-Level Sequence Producer API at this time.
+ * Size estimates assume that no external sequence producer is registered.
+ *
+ * ZSTD_DStream memory budget depends on frame's window Size.
* This information can be passed manually, using ZSTD_estimateDStreamSize,
* or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame();
+ * Any frame requesting a window size larger than max specified one will be rejected.
* Note : if streaming is init with function ZSTD_init?Stream_usingDict(),
* an internal ?Dict will be created, which additional size is not estimated here.
* In this case, get total size by adding ZSTD_estimate?DictSize
- * Note 2 : only single-threaded compression is supported.
- * ZSTD_estimateCStreamSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1.
- * Note 3 : ZSTD_estimateCStreamSize* functions are not compatible with the Block-Level Sequence Producer API at this time.
- * Size estimates assume that no external sequence producer is registered.
*/
-ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize(int compressionLevel);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize(int maxCompressionLevel);
ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams);
ZSTDLIB_STATIC_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params);
-ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
+ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize(size_t maxWindowSize);
ZSTDLIB_STATIC_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
/*! ZSTD_estimate?DictSize() :
@@ -1946,11 +1988,6 @@ ZSTDLIB_STATIC_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const vo
*/
#define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5
-/* Tries to fit compressed block size to be around targetCBlockSize.
- * No target when targetCBlockSize == 0.
- * There is no guarantee on compressed block size (default:0) */
-#define ZSTD_c_targetCBlockSize ZSTD_c_experimentalParam6
-
/* User's best guess of source size.
* Hint is not valid when srcSizeHint == 0.
* There is no guarantee that hint is close to actual source size,
@@ -2430,6 +2467,22 @@ ZSTDLIB_STATIC_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParamete
*/
#define ZSTD_d_disableHuffmanAssembly ZSTD_d_experimentalParam5
+/* ZSTD_d_maxBlockSize
+ * Allowed values are between 1KB and ZSTD_BLOCKSIZE_MAX (128KB).
+ * The default is ZSTD_BLOCKSIZE_MAX, and setting to 0 will set to the default.
+ *
+ * Forces the decompressor to reject blocks whose content size is
+ * larger than the configured maxBlockSize. When maxBlockSize is
+ * larger than the windowSize, the windowSize is used instead.
+ * This saves memory on the decoder when you know all blocks are small.
+ *
+ * This option is typically used in conjunction with ZSTD_c_maxBlockSize.
+ *
+ * WARNING: This causes the decoder to reject otherwise valid frames
+ * that have block sizes larger than the configured maxBlockSize.
+ */
+#define ZSTD_d_maxBlockSize ZSTD_d_experimentalParam6
+
/*! ZSTD_DCtx_setFormat() :
* This function is REDUNDANT. Prefer ZSTD_DCtx_setParameter().
@@ -2557,7 +2610,7 @@ size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
* explicitly specified.
*
* start a new frame, using same parameters from previous frame.
- * This is typically useful to skip dictionary loading stage, since it will re-use it in-place.
+ * This is typically useful to skip dictionary loading stage, since it will reuse it in-place.
* Note that zcs must be init at least once before using ZSTD_resetCStream().
* If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN.
* If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end.
@@ -2633,7 +2686,7 @@ ZSTDLIB_STATIC_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const Z
*
* ZSTD_DCtx_reset(zds, ZSTD_reset_session_only);
*
- * re-use decompression parameters from previous init; saves dictionary loading
+ * reuse decompression parameters from previous init; saves dictionary loading
*/
ZSTD_DEPRECATED("use ZSTD_DCtx_reset, see zstd.h for detailed instructions")
ZSTDLIB_STATIC_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
@@ -2765,7 +2818,7 @@ ZSTDLIB_STATIC_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);
#define ZSTD_SEQUENCE_PRODUCER_ERROR ((size_t)(-1))
-typedef size_t ZSTD_sequenceProducer_F (
+typedef size_t (*ZSTD_sequenceProducer_F) (
void* sequenceProducerState,
ZSTD_Sequence* outSeqs, size_t outSeqsCapacity,
const void* src, size_t srcSize,
@@ -2797,7 +2850,23 @@ ZSTDLIB_STATIC_API void
ZSTD_registerSequenceProducer(
ZSTD_CCtx* cctx,
void* sequenceProducerState,
- ZSTD_sequenceProducer_F* sequenceProducer
+ ZSTD_sequenceProducer_F sequenceProducer
+);
+
+/*! ZSTD_CCtxParams_registerSequenceProducer() :
+ * Same as ZSTD_registerSequenceProducer(), but operates on ZSTD_CCtx_params.
+ * This is used for accurate size estimation with ZSTD_estimateCCtxSize_usingCCtxParams(),
+ * which is needed when creating a ZSTD_CCtx with ZSTD_initStaticCCtx().
+ *
+ * If you are using the external sequence producer API in a scenario where ZSTD_initStaticCCtx()
+ * is required, then this function is for you. Otherwise, you probably don't need it.
+ *
+ * See tests/zstreamtest.c for example usage. */
+ZSTDLIB_STATIC_API void
+ZSTD_CCtxParams_registerSequenceProducer(
+ ZSTD_CCtx_params* params,
+ void* sequenceProducerState,
+ ZSTD_sequenceProducer_F sequenceProducer
);
@@ -2820,7 +2889,7 @@ ZSTD_registerSequenceProducer(
A ZSTD_CCtx object is required to track streaming operations.
Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
- ZSTD_CCtx object can be re-used multiple times within successive compression operations.
+ ZSTD_CCtx object can be reused multiple times within successive compression operations.
Start by initializing a context.
Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression.
@@ -2841,7 +2910,7 @@ ZSTD_registerSequenceProducer(
It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame.
Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders.
- `ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress again.
+ `ZSTD_CCtx` object can be reused (ZSTD_compressBegin()) to compress again.
*/
/*===== Buffer-less streaming compression functions =====*/
@@ -2873,7 +2942,7 @@ size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_
A ZSTD_DCtx object is required to track streaming operations.
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
- A ZSTD_DCtx object can be re-used multiple times.
+ A ZSTD_DCtx object can be reused multiple times.
First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader().
Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough.