summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/gles3/effects/copy_effects.cpp10
-rw-r--r--drivers/gles3/effects/copy_effects.h1
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.cpp1190
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.h79
-rw-r--r--drivers/gles3/shaders/copy.glsl20
-rw-r--r--drivers/gles3/shaders/scene.glsl537
-rw-r--r--drivers/gles3/storage/light_storage.cpp476
-rw-r--r--drivers/gles3/storage/light_storage.h401
-rw-r--r--scene/3d/light_3d.cpp4
-rw-r--r--servers/rendering/renderer_rd/storage_rd/light_storage.h13
10 files changed, 2360 insertions, 371 deletions
diff --git a/drivers/gles3/effects/copy_effects.cpp b/drivers/gles3/effects/copy_effects.cpp
index 658c0e6145..996e7eee7f 100644
--- a/drivers/gles3/effects/copy_effects.cpp
+++ b/drivers/gles3/effects/copy_effects.cpp
@@ -134,6 +134,16 @@ void CopyEffects::copy_screen() {
draw_screen_triangle();
}
+void CopyEffects::copy_cube_to_rect(const Rect2 &p_rect) {
+ bool success = copy.shader.version_bind_shader(copy.shader_version, CopyShaderGLES3::MODE_CUBE_TO_OCTAHEDRAL);
+ if (!success) {
+ return;
+ }
+
+ copy.shader.version_set_uniform(CopyShaderGLES3::COPY_SECTION, p_rect.position.x, p_rect.position.y, p_rect.size.x, p_rect.size.y, copy.shader_version, CopyShaderGLES3::MODE_COPY_SECTION);
+ draw_screen_quad();
+}
+
// Intended for efficiently mipmapping textures.
void CopyEffects::bilinear_blur(GLuint p_source_texture, int p_mipmap_count, const Rect2i &p_region) {
GLuint framebuffers[2];
diff --git a/drivers/gles3/effects/copy_effects.h b/drivers/gles3/effects/copy_effects.h
index b2bceb84af..6e2cb07382 100644
--- a/drivers/gles3/effects/copy_effects.h
+++ b/drivers/gles3/effects/copy_effects.h
@@ -63,6 +63,7 @@ public:
// These functions assume that a framebuffer and texture are bound already. They only manage the shader, uniforms, and vertex array.
void copy_to_rect(const Rect2 &p_rect);
void copy_screen();
+ void copy_cube_to_rect(const Rect2 &p_rect);
void bilinear_blur(GLuint p_source_texture, int p_mipmap_count, const Rect2i &p_region);
void gaussian_blur(GLuint p_source_texture, int p_mipmap_count, const Rect2i &p_region, const Size2i &p_size);
void set_color(const Color &p_color, const Rect2i &p_region);
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp
index de2de54c44..1f8e9180e3 100644
--- a/drivers/gles3/rasterizer_scene_gles3.cpp
+++ b/drivers/gles3/rasterizer_scene_gles3.cpp
@@ -30,6 +30,7 @@
#include "rasterizer_scene_gles3.h"
+#include "drivers/gles3/effects/copy_effects.h"
#include "rasterizer_gles3.h"
#include "storage/config.h"
#include "storage/mesh_storage.h"
@@ -70,24 +71,24 @@ uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() {
void RasterizerSceneGLES3::GeometryInstanceGLES3::pair_light_instances(const RID *p_light_instances, uint32_t p_light_instance_count) {
GLES3::Config *config = GLES3::Config::get_singleton();
- omni_light_count = 0;
- spot_light_count = 0;
- omni_lights.clear();
- spot_lights.clear();
+ paired_omni_light_count = 0;
+ paired_spot_light_count = 0;
+ paired_omni_lights.clear();
+ paired_spot_lights.clear();
for (uint32_t i = 0; i < p_light_instance_count; i++) {
RS::LightType type = GLES3::LightStorage::get_singleton()->light_instance_get_type(p_light_instances[i]);
switch (type) {
case RS::LIGHT_OMNI: {
- if (omni_light_count < (uint32_t)config->max_lights_per_object) {
- omni_lights.push_back(p_light_instances[i]);
- omni_light_count++;
+ if (paired_omni_light_count < (uint32_t)config->max_lights_per_object) {
+ paired_omni_lights.push_back(p_light_instances[i]);
+ paired_omni_light_count++;
}
} break;
case RS::LIGHT_SPOT: {
- if (spot_light_count < (uint32_t)config->max_lights_per_object) {
- spot_lights.push_back(p_light_instances[i]);
- spot_light_count++;
+ if (paired_spot_light_count < (uint32_t)config->max_lights_per_object) {
+ paired_spot_lights.push_back(p_light_instances[i]);
+ paired_spot_light_count++;
}
} break;
default:
@@ -949,6 +950,14 @@ void RasterizerSceneGLES3::_update_sky_radiance(RID p_env, const Projection &p_p
glViewport(0, 0, sky->radiance_size, sky->radiance_size);
glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer);
+ glDisable(GL_BLEND);
+ glDepthMask(GL_FALSE);
+ glDisable(GL_DEPTH_TEST);
+ glDisable(GL_SCISSOR_TEST);
+ glCullFace(GL_BACK);
+ glEnable(GL_CULL_FACE);
+ scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
+
for (int i = 0; i < 6; i++) {
Basis local_view = Basis::looking_at(view_normals[i], view_up[i]);
material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP);
@@ -1138,9 +1147,11 @@ Ref<Image> RasterizerSceneGLES3::environment_bake_panorama(RID p_env, bool p_bak
}
void RasterizerSceneGLES3::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
+ scene_state.positional_shadow_quality = p_quality;
}
void RasterizerSceneGLES3::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
+ scene_state.directional_shadow_quality = p_quality;
}
RID RasterizerSceneGLES3::fog_volume_instance_create(RID p_fog_volume) {
@@ -1238,18 +1249,47 @@ void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const
// Sets the index values for lookup in the shader
// This has to be done after _setup_lights was called this frame
- // TODO, check shadow status of lights here, if using shadows, skip here and add below
+
if (p_pass_mode == PASS_MODE_COLOR) {
- if (inst->omni_light_count) {
- inst->omni_light_gl_cache.resize(inst->omni_light_count);
- for (uint32_t j = 0; j < inst->omni_light_count; j++) {
- inst->omni_light_gl_cache[j] = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(inst->omni_lights[j]);
+ inst->light_passes.clear();
+ inst->spot_light_gl_cache.clear();
+ inst->omni_light_gl_cache.clear();
+ if (inst->paired_omni_light_count) {
+ for (uint32_t j = 0; j < inst->paired_omni_light_count; j++) {
+ RID light_instance = inst->paired_omni_lights[j];
+ RID light = GLES3::LightStorage::get_singleton()->light_instance_get_base_light(light_instance);
+ int32_t shadow_id = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_id(light_instance);
+
+ if (GLES3::LightStorage::get_singleton()->light_has_shadow(light) && shadow_id >= 0) {
+ GeometryInstanceGLES3::LightPass pass;
+ pass.light_id = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance);
+ pass.shadow_id = shadow_id;
+ pass.light_instance_rid = light_instance;
+ pass.is_omni = true;
+ inst->light_passes.push_back(pass);
+ } else {
+ // Lights without shadow can all go in base pass.
+ inst->omni_light_gl_cache.push_back((uint32_t)GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance));
+ }
}
}
- if (inst->spot_light_count) {
- inst->spot_light_gl_cache.resize(inst->spot_light_count);
- for (uint32_t j = 0; j < inst->spot_light_count; j++) {
- inst->spot_light_gl_cache[j] = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(inst->spot_lights[j]);
+
+ if (inst->paired_spot_light_count) {
+ for (uint32_t j = 0; j < inst->paired_spot_light_count; j++) {
+ RID light_instance = inst->paired_spot_lights[j];
+ RID light = GLES3::LightStorage::get_singleton()->light_instance_get_base_light(light_instance);
+ int32_t shadow_id = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_id(light_instance);
+
+ if (GLES3::LightStorage::get_singleton()->light_has_shadow(light) && shadow_id >= 0) {
+ GeometryInstanceGLES3::LightPass pass;
+ pass.light_id = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance);
+ pass.shadow_id = shadow_id;
+ pass.light_instance_rid = light_instance;
+ inst->light_passes.push_back(pass);
+ } else {
+ // Lights without shadow can all go in base pass.
+ inst->spot_light_gl_cache.push_back((uint32_t)GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance));
+ }
}
}
}
@@ -1337,10 +1377,6 @@ void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const
scene_state.used_depth_texture = true;
}
- /*
- Add elements here if there are shadows
- */
-
} else if (p_pass_mode == PASS_MODE_SHADOW) {
if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) {
rl->add_element(surf);
@@ -1352,6 +1388,8 @@ void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const
}
surf->sort.depth_layer = depth_layer;
+ surf->finished_base_pass = false;
+ surf->light_pass_index = 0;
surf = surf->next;
}
@@ -1359,7 +1397,7 @@ void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const
}
// Needs to be called after _setup_lights so that directional_light_count is accurate.
-void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows) {
+void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows, float p_shadow_bias) {
Projection correction;
correction.columns[1][1] = p_flip_y ? -1.0 : 1.0;
Projection projection = correction * p_render_data->cam_projection;
@@ -1383,7 +1421,8 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
}
}
- scene_state.ubo.directional_light_count = p_render_data->directional_light_count;
+ // Only render the lights without shadows in the base pass.
+ scene_state.ubo.directional_light_count = p_render_data->directional_light_count - p_render_data->directional_shadow_count;
scene_state.ubo.z_far = p_render_data->z_far;
scene_state.ubo.z_near = p_render_data->z_near;
@@ -1395,6 +1434,9 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x;
scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y;
+ scene_state.ubo.shadow_bias = p_shadow_bias;
+ scene_state.ubo.pancake_shadows = p_pancake_shadows;
+
//time global variables
scene_state.ubo.time = time;
@@ -1505,7 +1547,7 @@ void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_da
}
// Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer
-void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count) {
+void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count, uint32_t &r_directional_shadow_count) {
GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
@@ -1516,6 +1558,7 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
r_directional_light_count = 0;
r_omni_light_count = 0;
r_spot_light_count = 0;
+ r_directional_shadow_count = 0;
int num_lights = lights.size();
@@ -1535,7 +1578,16 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
continue;
}
- DirectionalLightData &light_data = scene_state.directional_lights[r_directional_light_count];
+ // If a DirectionalLight has shadows, we will add it to the end of the array and work in.
+ bool has_shadow = light_storage->light_has_shadow(base);
+
+ int index = r_directional_light_count - r_directional_shadow_count;
+
+ if (has_shadow) {
+ // Lights with shadow are incremented from the end of the array.
+ index = MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count;
+ }
+ DirectionalLightData &light_data = scene_state.directional_lights[index];
Transform3D light_transform = li->transform;
@@ -1569,6 +1621,48 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
+ light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
+ ? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
+ : 0.0;
+
+ if (has_shadow) {
+ DirectionalShadowData &shadow_data = scene_state.directional_shadows[MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count];
+
+ RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base);
+
+ int limit = shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
+
+ shadow_data.shadow_atlas_pixel_size = 1.0 / light_storage->directional_shadow_get_size();
+
+ shadow_data.blend_splits = uint32_t((shadow_mode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base));
+ for (int j = 0; j < 4; j++) {
+ Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
+ Projection matrix = li->shadow_transform[j].camera;
+ float split = li->shadow_transform[MIN(limit, j)].split;
+
+ Projection bias;
+ bias.set_light_bias();
+ Projection rectm;
+ rectm.set_light_atlas_rect(atlas_rect);
+
+ Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
+
+ shadow_data.direction[0] = light_data.direction[0];
+ shadow_data.direction[1] = light_data.direction[1];
+ shadow_data.direction[2] = light_data.direction[2];
+
+ Projection shadow_mtx = rectm * bias * matrix * modelview;
+ shadow_data.shadow_split_offsets[j] = split;
+ shadow_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
+ GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrices[j]);
+ }
+ float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
+ shadow_data.fade_from = -shadow_data.shadow_split_offsets[3] * MIN(fade_start, 0.999);
+ shadow_data.fade_to = -shadow_data.shadow_split_offsets[3];
+
+ r_directional_shadow_count++;
+ }
+
r_directional_light_count++;
} break;
case RS::LIGHT_OMNI: {
@@ -1630,6 +1724,8 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
sorter.sort(scene_state.spot_light_sort, r_spot_light_count);
}
+ int num_positional_shadows = 0;
+
for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) {
uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count);
LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index];
@@ -1665,17 +1761,24 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
// Reuse fade begin, fade length and distance for shadow LOD determination later.
float fade_begin = 0.0;
+ float fade_shadow = 0.0;
float fade_length = 0.0;
float fade = 1.0;
- if (light_storage->light_is_distance_fade_enabled(li->light)) {
- fade_begin = light_storage->light_get_distance_fade_begin(li->light);
- fade_length = light_storage->light_get_distance_fade_length(li->light);
+ float shadow_opacity_fade = 1.0;
+
+ if (light_storage->light_is_distance_fade_enabled(base)) {
+ fade_begin = light_storage->light_get_distance_fade_begin(base);
+ fade_shadow = light_storage->light_get_distance_fade_shadow(base);
+ fade_length = light_storage->light_get_distance_fade_length(base);
if (distance > fade_begin) {
// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
}
+ if (distance > fade_shadow) {
+ shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
+ }
}
float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;
@@ -1712,7 +1815,55 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
- light_data.shadow_opacity = 0.0;
+ // Setup shadows
+ const bool needs_shadow =
+ p_using_shadows &&
+ light_storage->owns_shadow_atlas(p_render_data->shadow_atlas) &&
+ light_storage->shadow_atlas_owns_light_instance(p_render_data->shadow_atlas, li->self) &&
+ light_storage->light_has_shadow(base);
+
+ bool in_shadow_range = true;
+ if (needs_shadow && light_storage->light_is_distance_fade_enabled(base)) {
+ if (distance > fade_shadow + fade_length) {
+ // Out of range, don't draw shadows to improve performance.
+ in_shadow_range = false;
+ }
+ }
+
+ // Fill in the shadow information.
+ if (needs_shadow && in_shadow_range) {
+ if (num_positional_shadows >= config->max_renderable_lights) {
+ continue;
+ }
+ ShadowData &shadow_data = scene_state.positional_shadows[num_positional_shadows];
+ li->shadow_id = num_positional_shadows;
+ num_positional_shadows++;
+
+ light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;
+
+ float shadow_texel_size = light_storage->light_instance_get_shadow_texel_size(li->self, p_render_data->shadow_atlas);
+ shadow_data.shadow_atlas_pixel_size = shadow_texel_size;
+ shadow_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;
+
+ shadow_data.light_position[0] = light_data.position[0];
+ shadow_data.light_position[1] = light_data.position[1];
+ shadow_data.light_position[2] = light_data.position[2];
+
+ if (type == RS::LIGHT_OMNI) {
+ Transform3D proj = (inverse_transform * light_transform).inverse();
+
+ GLES3::MaterialStorage::store_transform(proj, shadow_data.shadow_matrix);
+
+ } else if (type == RS::LIGHT_SPOT) {
+ Transform3D modelview = (inverse_transform * light_transform).inverse();
+ Projection bias;
+ bias.set_light_bias();
+
+ Projection cm = li->shadow_transform[0].camera;
+ Projection shadow_mtx = bias * cm * modelview;
+ GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrix);
+ }
+ }
}
// TODO, to avoid stalls, should rotate between 3 buffers based on frame index.
@@ -1729,11 +1880,266 @@ void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, b
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer);
if (r_directional_light_count) {
- glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(DirectionalLightData) * r_directional_light_count, scene_state.directional_lights);
+ glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_lights, GL_STREAM_DRAW);
+ }
+
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_POSITIONAL_SHADOW_UNIFORM_LOCATION, scene_state.positional_shadow_buffer);
+ if (num_positional_shadows) {
+ glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(ShadowData) * num_positional_shadows, scene_state.positional_shadows);
+ }
+
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_SHADOW_UNIFORM_LOCATION, scene_state.directional_shadow_buffer);
+ if (r_directional_shadow_count) {
+ glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalShadowData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_shadows, GL_STREAM_DRAW);
}
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
+// Render shadows
+void RasterizerSceneGLES3::_render_shadows(const RenderDataGLES3 *p_render_data) {
+ GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
+
+ LocalVector<int> cube_shadows;
+ LocalVector<int> shadows;
+ LocalVector<int> directional_shadows;
+
+ Plane camera_plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin);
+ float lod_distance_multiplier = p_render_data->cam_projection.get_lod_multiplier();
+
+ // Put lights into buckets for omni (cube shadows), directional, and spot.
+ {
+ for (int i = 0; i < p_render_data->render_shadow_count; i++) {
+ RID li = p_render_data->render_shadows[i].light;
+ RID base = light_storage->light_instance_get_base_light(li);
+
+ if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
+ directional_shadows.push_back(i);
+ } else if (light_storage->light_get_type(base) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) {
+ cube_shadows.push_back(i);
+ } else {
+ shadows.push_back(i);
+ }
+ }
+ if (directional_shadows.size()) {
+ light_storage->update_directional_shadow_atlas();
+ }
+ }
+
+ bool render_shadows = directional_shadows.size() || shadows.size() || cube_shadows.size();
+
+ if (render_shadows) {
+ RENDER_TIMESTAMP("Render Shadows");
+
+ // Render cubemap shadows.
+ for (const int &index : cube_shadows) {
+ _render_shadow_pass(p_render_data->render_shadows[index].light, p_render_data->shadow_atlas, p_render_data->render_shadows[index].pass, p_render_data->render_shadows[index].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info);
+ }
+ // Render directional shadows.
+ for (uint32_t i = 0; i < directional_shadows.size(); i++) {
+ _render_shadow_pass(p_render_data->render_shadows[directional_shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[directional_shadows[i]].pass, p_render_data->render_shadows[directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info);
+ }
+ // Render positional shadows (Spotlight and Omnilight with dual-paraboloid).
+ for (uint32_t i = 0; i < shadows.size(); i++) {
+ _render_shadow_pass(p_render_data->render_shadows[shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[shadows[i]].pass, p_render_data->render_shadows[shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info);
+ }
+ }
+}
+
+void RasterizerSceneGLES3::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, RenderingMethod::RenderInfo *p_render_info) {
+ GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
+
+ ERR_FAIL_COND(!light_storage->owns_light_instance(p_light));
+
+ RID base = light_storage->light_instance_get_base_light(p_light);
+
+ float zfar = 0.0;
+ bool use_pancake = false;
+ float shadow_bias = 0.0;
+ bool reverse_cull = false;
+ bool needs_clear = false;
+
+ Projection light_projection;
+ Transform3D light_transform;
+ GLuint shadow_fb = 0;
+ Rect2i atlas_rect;
+
+ if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) {
+ // Set pssm stuff.
+ uint64_t last_scene_shadow_pass = light_storage->light_instance_get_shadow_pass(p_light);
+ if (last_scene_shadow_pass != get_scene_pass()) {
+ light_storage->light_instance_set_directional_rect(p_light, light_storage->get_directional_shadow_rect());
+ light_storage->directional_shadow_increase_current_light();
+ light_storage->light_instance_set_shadow_pass(p_light, get_scene_pass());
+ }
+
+ atlas_rect = light_storage->light_instance_get_directional_rect(p_light);
+
+ if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
+ atlas_rect.size.width /= 2;
+ atlas_rect.size.height /= 2;
+
+ if (p_pass == 1) {
+ atlas_rect.position.x += atlas_rect.size.width;
+ } else if (p_pass == 2) {
+ atlas_rect.position.y += atlas_rect.size.height;
+ } else if (p_pass == 3) {
+ atlas_rect.position += atlas_rect.size;
+ }
+ } else if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
+ atlas_rect.size.height /= 2;
+
+ if (p_pass == 0) {
+ } else {
+ atlas_rect.position.y += atlas_rect.size.height;
+ }
+ }
+
+ use_pancake = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
+ light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass);
+ light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass);
+
+ float directional_shadow_size = light_storage->directional_shadow_get_size();
+ Rect2 atlas_rect_norm = atlas_rect;
+ atlas_rect_norm.position /= directional_shadow_size;
+ atlas_rect_norm.size /= directional_shadow_size;
+ light_storage->light_instance_set_directional_shadow_atlas_rect(p_light, p_pass, atlas_rect_norm);
+
+ zfar = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
+ shadow_fb = light_storage->direction_shadow_get_fb();
+ reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base);
+
+ float bias_scale = light_storage->light_instance_get_shadow_bias_scale(p_light, p_pass);
+ shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
+
+ } else {
+ // Set from shadow atlas.
+
+ ERR_FAIL_COND(!light_storage->owns_shadow_atlas(p_shadow_atlas));
+ ERR_FAIL_COND(!light_storage->shadow_atlas_owns_light_instance(p_shadow_atlas, p_light));
+
+ uint32_t key = light_storage->shadow_atlas_get_light_instance_key(p_shadow_atlas, p_light);
+
+ uint32_t quadrant = (key >> GLES3::LightStorage::QUADRANT_SHIFT) & 0x3;
+ uint32_t shadow = key & GLES3::LightStorage::SHADOW_INDEX_MASK;
+
+ ERR_FAIL_INDEX((int)shadow, light_storage->shadow_atlas_get_quadrant_shadows_length(p_shadow_atlas, quadrant));
+
+ int shadow_size = light_storage->shadow_atlas_get_quadrant_shadow_size(p_shadow_atlas, quadrant);
+
+ shadow_fb = light_storage->shadow_atlas_get_quadrant_shadow_fb(p_shadow_atlas, quadrant, shadow);
+
+ zfar = light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
+ reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base);
+
+ if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) {
+ if (light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) {
+ GLuint shadow_texture = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow);
+ glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb);
+
+ static GLenum cube_map_faces[6] = {
+ GL_TEXTURE_CUBE_MAP_POSITIVE_X,
+ GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
+ // Flipped order for Y to match what the RD renderer expects
+ // (and thus what is given to us by the Rendering Server).
+ GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
+ GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
+ GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
+ GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
+ };
+
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, cube_map_faces[p_pass], shadow_texture, 0);
+
+ light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass);
+ light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass);
+ shadow_size = shadow_size / 2;
+ } else {
+ ERR_FAIL_MSG("Dual paraboloid shadow mode not supported in GL Compatibility renderer. Please use Cubemap shadow mode instead.");
+ }
+
+ shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
+
+ } else if (light_storage->light_get_type(base) == RS::LIGHT_SPOT) {
+ light_projection = light_storage->light_instance_get_shadow_camera(p_light, 0);
+ light_transform = light_storage->light_instance_get_shadow_transform(p_light, 0);
+
+ shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 10.0;
+ // Prebake range into bias so we can scale based on distance easily.
+ shadow_bias *= light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE);
+ }
+ atlas_rect.size.x = shadow_size;
+ atlas_rect.size.y = shadow_size;
+
+ needs_clear = true;
+ }
+
+ RenderDataGLES3 render_data;
+ render_data.cam_projection = light_projection;
+ render_data.cam_transform = light_transform;
+ render_data.inv_cam_transform = light_transform.affine_inverse();
+ render_data.z_far = zfar; // Only used by OmniLights.
+ render_data.z_near = 0.0;
+ render_data.lod_distance_multiplier = p_lod_distance_multiplier;
+
+ render_data.instances = &p_instances;
+ render_data.render_info = p_render_info;
+
+ _setup_environment(&render_data, true, Vector2(1, 1), false, Color(), use_pancake, shadow_bias);
+
+ if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
+ render_data.screen_mesh_lod_threshold = 0.0;
+ } else {
+ render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
+ }
+
+ _fill_render_list(RENDER_LIST_SECONDARY, &render_data, PASS_MODE_SHADOW);
+ render_list[RENDER_LIST_SECONDARY].sort_by_key();
+
+ glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb);
+ glViewport(atlas_rect.position.x, atlas_rect.position.y, atlas_rect.size.x, atlas_rect.size.y);
+
+ GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer();
+
+ glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, 0);
+
+ glDisable(GL_BLEND);
+ glDepthMask(GL_TRUE);
+ glEnable(GL_DEPTH_TEST);
+ glDepthFunc(GL_LESS);
+ glDisable(GL_SCISSOR_TEST);
+ glCullFace(GL_BACK);
+ glEnable(GL_CULL_FACE);
+ scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK;
+
+ glColorMask(0, 0, 0, 0);
+ RasterizerGLES3::clear_depth(1.0);
+ if (needs_clear) {
+ glClear(GL_DEPTH_BUFFER_BIT);
+ }
+
+ uint64_t spec_constant_base_flags = SceneShaderGLES3::DISABLE_LIGHTMAP |
+ SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL |
+ SceneShaderGLES3::DISABLE_LIGHT_OMNI |
+ SceneShaderGLES3::DISABLE_LIGHT_SPOT |
+ SceneShaderGLES3::DISABLE_FOG |
+ SceneShaderGLES3::RENDER_SHADOWS;
+
+ if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) {
+ spec_constant_base_flags |= SceneShaderGLES3::RENDER_SHADOWS_LINEAR;
+ }
+
+ RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), reverse_cull, spec_constant_base_flags, false);
+
+ _render_list_template<PASS_MODE_SHADOW>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size());
+
+ glColorMask(1, 1, 1, 1);
+ glDisable(GL_DEPTH_TEST);
+ glDepthMask(GL_FALSE);
+ glDisable(GL_CULL_FACE);
+ scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
+ glBindFramebuffer(GL_FRAMEBUFFER, 0);
+}
+
void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
@@ -1775,6 +2181,7 @@ void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_
render_data.reflection_probes = &p_reflection_probes;
render_data.environment = p_environment;
render_data.camera_attributes = p_camera_attributes;
+ render_data.shadow_atlas = p_shadow_atlas;
render_data.reflection_probe = p_reflection_probe;
render_data.reflection_probe_pass = p_reflection_probe_pass;
@@ -1787,6 +2194,8 @@ void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_
render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
}
render_data.render_info = r_render_info;
+ render_data.render_shadows = p_render_shadows;
+ render_data.render_shadow_count = p_render_shadow_count;
}
PagedArray<RID> empty;
@@ -1852,8 +2261,9 @@ void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_
// If we're rendering right-side up, then we need to change the winding order.
glFrontFace(GL_CW);
}
+ _render_shadows(&render_data);
- _setup_lights(&render_data, false, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count);
+ _setup_lights(&render_data, true, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count, render_data.directional_shadow_count);
_setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, flip_y, clear_color, false);
_fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR);
@@ -2073,7 +2483,7 @@ void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_
}
if (rb.is_valid()) {
- _render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex);
+ _render_buffers_debug_draw(rb, p_shadow_atlas);
}
glDisable(GL_BLEND);
texture_storage->render_target_disable_clear_request(rb->render_target);
@@ -2098,23 +2508,6 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
// Specializations constants used by all instances in the scene.
uint64_t base_spec_constants = p_params->spec_constant_base_flags;
- if (p_render_data->view_count > 1) {
- base_spec_constants |= SceneShaderGLES3::USE_MULTIVIEW;
- }
-
- switch (p_pass_mode) {
- case PASS_MODE_COLOR:
- case PASS_MODE_COLOR_TRANSPARENT: {
- } break;
- case PASS_MODE_COLOR_ADDITIVE: {
- shader_variant = SceneShaderGLES3::MODE_ADDITIVE;
- } break;
- case PASS_MODE_SHADOW:
- case PASS_MODE_DEPTH: {
- shader_variant = SceneShaderGLES3::MODE_DEPTH;
- } break;
- }
-
if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
@@ -2128,6 +2521,12 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
}
glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind);
}
+ } else if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) {
+ shader_variant = SceneShaderGLES3::MODE_DEPTH;
+ }
+
+ if (p_render_data->view_count > 1) {
+ base_spec_constants |= SceneShaderGLES3::USE_MULTIVIEW;
}
bool should_request_redraw = false;
@@ -2139,7 +2538,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
}
for (uint32_t i = p_from_element; i < p_to_element; i++) {
- const GeometryInstanceSurface *surf = p_params->elements[i];
+ GeometryInstanceSurface *surf = p_params->elements[i];
GeometryInstanceGLES3 *inst = surf->owner;
if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) {
@@ -2184,273 +2583,412 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
}
}
- if (scene_state.current_depth_draw != shader->depth_draw) {
- switch (shader->depth_draw) {
- case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: {
- glDepthMask((p_pass_mode == PASS_MODE_COLOR && !GLES3::Config::get_singleton()->use_depth_prepass) ||
- p_pass_mode == PASS_MODE_DEPTH ||
- p_pass_mode == PASS_MODE_SHADOW);
- } break;
- case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: {
- glDepthMask(GL_TRUE);
- } break;
- case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: {
- glDepthMask(GL_FALSE);
- } break;
+ if constexpr (p_pass_mode != PASS_MODE_SHADOW) {
+ if (scene_state.current_depth_draw != shader->depth_draw) {
+ switch (shader->depth_draw) {
+ case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: {
+ glDepthMask((p_pass_mode == PASS_MODE_COLOR && !GLES3::Config::get_singleton()->use_depth_prepass) ||
+ p_pass_mode == PASS_MODE_DEPTH);
+ } break;
+ case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: {
+ glDepthMask(GL_TRUE);
+ } break;
+ case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: {
+ glDepthMask(GL_FALSE);
+ } break;
+ }
}
scene_state.current_depth_draw = shader->depth_draw;
}
- if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT || p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
- GLES3::SceneShaderData::BlendMode desired_blend_mode;
- if constexpr (p_pass_mode == PASS_MODE_COLOR_ADDITIVE) {
- desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD;
- } else {
- desired_blend_mode = shader->blend_mode;
+ bool uses_additive_lighting = (inst->light_passes.size() + p_render_data->directional_shadow_count) > 0;
+ uses_additive_lighting = uses_additive_lighting && !shader->unshaded;
+ // TODOS
+ /*
+ * Still a bug when atlas space is limited. Somehow need to evict light when it doesn't have a spot on the atlas, current check isn't enough
+ * Disable depth draw
+ */
+
+ for (int32_t pass = 0; pass < MAX(1, int32_t(inst->light_passes.size() + p_render_data->directional_shadow_count)); pass++) {
+ if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) {
+ if (pass > 0) {
+ // Don't render shadow passes when doing depth or shadow pass.
+ break;
+ }
}
- if (desired_blend_mode != scene_state.current_blend_mode) {
- switch (desired_blend_mode) {
- case GLES3::SceneShaderData::BLEND_MODE_MIX: {
- glBlendEquation(GL_FUNC_ADD);
- if (p_render_data->transparent_bg) {
- glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
- } else {
- glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
- }
+ if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
+ if (!uses_additive_lighting && pass == 1) {
+ // Don't render additive passes if not using additive lighting.
+ break;
+ }
+ if (uses_additive_lighting && pass == 1 && !p_render_data->transparent_bg) {
+ // Enable blending if in opaque pass and not already enabled.
+ glEnable(GL_BLEND);
+ }
+ if (pass < int32_t(inst->light_passes.size())) {
+ RID light_instance_rid = inst->light_passes[pass].light_instance_rid;
+ if (!GLES3::LightStorage::get_singleton()->light_instance_has_shadow_atlas(light_instance_rid, p_render_data->shadow_atlas)) {
+ // Shadow wasn't able to get a spot on the atlas. So skip it.
+ continue;
+ }
+ }
+ }
- } break;
- case GLES3::SceneShaderData::BLEND_MODE_ADD: {
- glBlendEquation(GL_FUNC_ADD);
- glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
+ if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
+ GLES3::SceneShaderData::BlendMode desired_blend_mode;
+ if (pass > 0) {
+ desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD;
+ } else {
+ desired_blend_mode = shader->blend_mode;
+ }
- } break;
- case GLES3::SceneShaderData::BLEND_MODE_SUB: {
- glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
- glBlendFunc(GL_SRC_ALPHA, GL_ONE);
+ if (desired_blend_mode != scene_state.current_blend_mode) {
+ switch (desired_blend_mode) {
+ case GLES3::SceneShaderData::BLEND_MODE_MIX: {
+ glBlendEquation(GL_FUNC_ADD);
+ if (p_render_data->transparent_bg) {
+ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
+ } else {
+ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
+ }
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_ADD: {
+ glBlendEquation(GL_FUNC_ADD);
+ glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_SUB: {
+ glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
+ glBlendFunc(GL_SRC_ALPHA, GL_ONE);
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_MUL: {
+ glBlendEquation(GL_FUNC_ADD);
+ if (p_render_data->transparent_bg) {
+ glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
+ } else {
+ glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
+ }
+
+ } break;
+ case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: {
+ // Do nothing for now.
+ } break;
+ }
+ scene_state.current_blend_mode = desired_blend_mode;
+ }
+ }
- } break;
- case GLES3::SceneShaderData::BLEND_MODE_MUL: {
- glBlendEquation(GL_FUNC_ADD);
- if (p_render_data->transparent_bg) {
- glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
- } else {
- glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
- }
+ // Find cull variant.
+ GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode;
- } break;
- case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: {
- // Do nothing for now.
- } break;
+ if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) {
+ cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
+ } else {
+ bool mirror = inst->mirror;
+ if (p_params->reverse_cull) {
+ mirror = !mirror;
+ }
+ if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) {
+ cull_mode = GLES3::SceneShaderData::CULL_BACK;
+ } else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) {
+ cull_mode = GLES3::SceneShaderData::CULL_FRONT;
}
- scene_state.current_blend_mode = desired_blend_mode;
}
- }
-
- //find cull variant
- GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode;
- if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) {
- cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
- } else {
- bool mirror = inst->mirror;
- if (p_params->reverse_cull) {
- mirror = !mirror;
+ if (scene_state.cull_mode != cull_mode) {
+ if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
+ glDisable(GL_CULL_FACE);
+ } else {
+ if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
+ // Last time was disabled, so enable and set proper face.
+ glEnable(GL_CULL_FACE);
+ }
+ glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK);
+ }
+ scene_state.cull_mode = cull_mode;
}
- if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) {
- cull_mode = GLES3::SceneShaderData::CULL_BACK;
- } else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) {
- cull_mode = GLES3::SceneShaderData::CULL_FRONT;
+
+ RS::PrimitiveType primitive = surf->primitive;
+ if (shader->uses_point_size) {
+ primitive = RS::PRIMITIVE_POINTS;
}
- }
+ static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP };
+ GLenum primitive_gl = prim[int(primitive)];
+
+ GLuint vertex_array_gl = 0;
+ GLuint index_array_gl = 0;
- if (scene_state.cull_mode != cull_mode) {
- if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
- glDisable(GL_CULL_FACE);
+ //skeleton and blend shape
+ if (surf->owner->mesh_instance.is_valid()) {
+ mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, shader->vertex_input_mask, vertex_array_gl);
} else {
- if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) {
- // Last time was disabled, so enable and set proper face.
- glEnable(GL_CULL_FACE);
- }
- glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK);
+ mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, shader->vertex_input_mask, vertex_array_gl);
}
- scene_state.cull_mode = cull_mode;
- }
- RS::PrimitiveType primitive = surf->primitive;
- if (shader->uses_point_size) {
- primitive = RS::PRIMITIVE_POINTS;
- }
- static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP };
- GLenum primitive_gl = prim[int(primitive)];
+ index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index);
+
+ if (prev_vertex_array_gl != vertex_array_gl) {
+ if (vertex_array_gl != 0) {
+ glBindVertexArray(vertex_array_gl);
+ }
+ prev_vertex_array_gl = vertex_array_gl;
- GLuint vertex_array_gl = 0;
- GLuint index_array_gl = 0;
+ // Invalidate the previous index array
+ prev_index_array_gl = 0;
+ }
- //skeleton and blend shape
- if (surf->owner->mesh_instance.is_valid()) {
- mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, shader->vertex_input_mask, vertex_array_gl);
- } else {
- mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, shader->vertex_input_mask, vertex_array_gl);
- }
+ bool use_index_buffer = index_array_gl != 0;
+ if (prev_index_array_gl != index_array_gl) {
+ if (index_array_gl != 0) {
+ // Bind index each time so we can use LODs
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl);
+ }
+ prev_index_array_gl = index_array_gl;
+ }
- index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index);
+ Transform3D world_transform;
+ if (inst->store_transform_cache) {
+ world_transform = inst->transform;
+ }
- if (prev_vertex_array_gl != vertex_array_gl) {
- if (vertex_array_gl != 0) {
- glBindVertexArray(vertex_array_gl);
+ if (prev_material_data != material_data) {
+ material_data->bind_uniforms();
+ prev_material_data = material_data;
}
- prev_vertex_array_gl = vertex_array_gl;
- // Invalidate the previous index array
- prev_index_array_gl = 0;
- }
+ SceneShaderGLES3::ShaderVariant instance_variant = shader_variant;
- bool use_index_buffer = index_array_gl != 0;
- if (prev_index_array_gl != index_array_gl) {
- if (index_array_gl != 0) {
- // Bind index each time so we can use LODs
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl);
+ if (inst->instance_count > 0) {
+ // Will need to use instancing to draw (either MultiMesh or Particles).
+ instance_variant = SceneShaderGLES3::ShaderVariant(1 + int(instance_variant));
}
- prev_index_array_gl = index_array_gl;
- }
- Transform3D world_transform;
- if (inst->store_transform_cache) {
- world_transform = inst->transform;
- }
+ uint64_t spec_constants = base_spec_constants;
- if (prev_material_data != material_data) {
- material_data->bind_uniforms();
- prev_material_data = material_data;
- }
+ // Set up spec constants for lighting.
+ if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
+ // Only check during color passes as light shader code is compiled out during depth-only pass anyway.
- SceneShaderGLES3::ShaderVariant instance_variant = shader_variant;
- if (inst->instance_count > 0) {
- // Will need to use instancing to draw (either MultiMesh or Particles).
- instance_variant = SceneShaderGLES3::ShaderVariant(1 + int(shader_variant));
- }
+ if (pass == 0) {
+ spec_constants |= SceneShaderGLES3::BASE_PASS;
+ if (inst->omni_light_gl_cache.size() == 0) {
+ spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
+ }
- uint64_t spec_constants = base_spec_constants;
+ if (inst->spot_light_gl_cache.size() == 0) {
+ spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
+ }
- if (inst->omni_light_count == 0) {
- spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
- }
+ if (p_render_data->directional_light_count == p_render_data->directional_shadow_count) {
+ spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
+ }
+ } else {
+ // Only base pass uses the radiance map.
+ spec_constants &= ~SceneShaderGLES3::USE_RADIANCE_MAP;
+ spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
+ spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
+ spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
+ }
- if (inst->spot_light_count == 0) {
- spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
- }
+ if (uses_additive_lighting) {
+ spec_constants |= SceneShaderGLES3::USE_ADDITIVE_LIGHTING;
- if (prev_shader != shader || prev_variant != instance_variant || spec_constants != prev_spec_constants) {
- bool success = material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant, spec_constants);
- if (!success) {
- continue;
- }
+ if (pass < int32_t(inst->light_passes.size())) {
+ // Rendering positional lights.
+ if (inst->light_passes[pass].is_omni) {
+ spec_constants |= SceneShaderGLES3::ADDITIVE_OMNI;
+ } else {
+ spec_constants |= SceneShaderGLES3::ADDITIVE_SPOT;
+ }
+
+ if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) {
+ spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13;
+ } else if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) {
+ spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5;
+ }
+ } else {
+ // Render directional lights.
+
+ uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
+ if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[0] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[1]) {
+ // Orthogonal, do nothing.
+ } else if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[1] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[2]) {
+ spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM2;
+ } else {
+ spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM4;
+ }
+
+ if (scene_state.directional_shadows[shadow_id].blend_splits) {
+ spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM_BLEND;
+ }
- float opaque_prepass_threshold = 0.0;
- if constexpr (p_pass_mode == PASS_MODE_DEPTH) {
- opaque_prepass_threshold = 0.99;
- } else if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
- opaque_prepass_threshold = 0.1;
+ if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) {
+ spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13;
+ } else if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) {
+ spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5;
+ }
+ }
+ }
}
- material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, instance_variant, spec_constants);
+ if (prev_shader != shader || prev_variant != instance_variant || spec_constants != prev_spec_constants) {
+ bool success = material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant, spec_constants);
+ if (!success) {
+ break;
+ }
- prev_shader = shader;
- prev_variant = instance_variant;
- prev_spec_constants = spec_constants;
- }
+ float opaque_prepass_threshold = 0.0;
+ if constexpr (p_pass_mode == PASS_MODE_DEPTH) {
+ opaque_prepass_threshold = 0.99;
+ } else if constexpr (p_pass_mode == PASS_MODE_SHADOW) {
+ opaque_prepass_threshold = 0.1;
+ }
- if (prev_inst != inst || prev_shader != shader || prev_variant != instance_variant) {
- // Rebind the light indices.
- material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_count, shader->version, instance_variant, spec_constants);
- material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_count, shader->version, instance_variant, spec_constants);
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, instance_variant, spec_constants);
- if (inst->omni_light_count) {
- glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->omni_light_count, inst->omni_light_gl_cache.ptr());
+ prev_shader = shader;
+ prev_variant = instance_variant;
+ prev_spec_constants = spec_constants;
}
- if (inst->spot_light_count) {
- glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->spot_light_count, inst->spot_light_gl_cache.ptr());
- }
+ // Pass in lighting uniforms.
+ if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) {
+ GLES3::Config *config = GLES3::Config::get_singleton();
+ // Pass light and shadow index and bind shadow texture.
+ if (uses_additive_lighting) {
+ if (pass < int32_t(inst->light_passes.size())) {
+ int32_t shadow_id = inst->light_passes[pass].shadow_id;
+ if (shadow_id >= 0) {
+ uint32_t light_id = inst->light_passes[pass].light_id;
+ bool is_omni = inst->light_passes[pass].is_omni;
+ SceneShaderGLES3::Uniforms uniform_name = is_omni ? SceneShaderGLES3::OMNI_LIGHT_INDEX : SceneShaderGLES3::SPOT_LIGHT_INDEX;
+ material_storage->shaders.scene_shader.version_set_uniform(uniform_name, uint32_t(light_id), shader->version, instance_variant, spec_constants);
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::POSITIONAL_SHADOW_INDEX, uint32_t(shadow_id), shader->version, instance_variant, spec_constants);
+
+ glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
+ RID light_instance_rid = inst->light_passes[pass].light_instance_rid;
+
+ GLuint tex = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_texture(light_instance_rid, p_render_data->shadow_atlas);
+ if (is_omni) {
+ glBindTexture(GL_TEXTURE_CUBE_MAP, tex);
+ } else {
+ glBindTexture(GL_TEXTURE_2D, tex);
+ }
+ }
+ } else {
+ uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size()));
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::DIRECTIONAL_SHADOW_INDEX, shadow_id, shader->version, instance_variant, spec_constants);
- prev_inst = inst;
- }
+ GLuint tex = GLES3::LightStorage::get_singleton()->directional_shadow_get_texture();
+ glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
+ glBindTexture(GL_TEXTURE_2D, tex);
+ }
+ }
- material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, instance_variant, spec_constants);
+ // Pass light count and array of light indices for base pass.
+ if ((prev_inst != inst || prev_shader != shader || prev_variant != instance_variant) && pass == 0) {
+ // Rebind the light indices.
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_gl_cache.size(), shader->version, instance_variant, spec_constants);
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_gl_cache.size(), shader->version, instance_variant, spec_constants);
- // Can be index count or vertex count
- uint32_t count = 0;
- if (surf->lod_index > 0) {
- count = surf->index_count;
- } else {
- count = mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface);
- }
- if constexpr (p_pass_mode != PASS_MODE_DEPTH) {
- // Don't count draw calls during depth pre-pass to match the RD renderers.
- if (p_render_data->render_info) {
- p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
+ if (inst->omni_light_gl_cache.size()) {
+ glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->omni_light_gl_cache.size(), inst->omni_light_gl_cache.ptr());
+ }
+
+ if (inst->spot_light_gl_cache.size()) {
+ glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->spot_light_gl_cache.size(), inst->spot_light_gl_cache.ptr());
+ }
+
+ prev_inst = inst;
+ }
}
- }
- if (inst->instance_count > 0) {
- // Using MultiMesh or Particles.
- // Bind instance buffers.
+ material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, instance_variant, spec_constants);
- GLuint instance_buffer = 0;
- uint32_t stride = 0;
- if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) {
- instance_buffer = particles_storage->particles_get_gl_buffer(inst->data->base);
- stride = 16; // 12 bytes for instance transform and 4 bytes for packed color and custom.
+ // Can be index count or vertex count
+ uint32_t count = 0;
+ if (surf->lod_index > 0) {
+ count = surf->index_count;
} else {
- instance_buffer = mesh_storage->multimesh_get_gl_buffer(inst->data->base);
- stride = mesh_storage->multimesh_get_stride(inst->data->base);
+ count = mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface);
}
- if (instance_buffer == 0) {
- // Instance buffer not initialized yet. Skip rendering for now.
- continue;
+ if constexpr (p_pass_mode != PASS_MODE_DEPTH) {
+ // Don't count draw calls during depth pre-pass to match the RD renderers.
+ if (p_render_data->render_info) {
+ p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
+ }
}
- glBindBuffer(GL_ARRAY_BUFFER, instance_buffer);
+ if (inst->instance_count > 0) {
+ // Using MultiMesh or Particles.
+ // Bind instance buffers.
- glEnableVertexAttribArray(12);
- glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0));
- glVertexAttribDivisor(12, 1);
- glEnableVertexAttribArray(13);
- glVertexAttribPointer(13, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4));
- glVertexAttribDivisor(13, 1);
- if (!(inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D)) {
- glEnableVertexAttribArray(14);
- glVertexAttribPointer(14, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 8));
- glVertexAttribDivisor(14, 1);
- }
+ GLuint instance_buffer = 0;
+ uint32_t stride = 0;
+ if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) {
+ instance_buffer = particles_storage->particles_get_gl_buffer(inst->data->base);
+ stride = 16; // 12 bytes for instance transform and 4 bytes for packed color and custom.
+ } else {
+ instance_buffer = mesh_storage->multimesh_get_gl_buffer(inst->data->base);
+ stride = mesh_storage->multimesh_get_stride(inst->data->base);
+ }
- if ((inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR) || (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA)) {
- uint32_t color_custom_offset = inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D ? 8 : 12;
- glEnableVertexAttribArray(15);
- glVertexAttribIPointer(15, 4, GL_UNSIGNED_INT, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(color_custom_offset * sizeof(float)));
- glVertexAttribDivisor(15, 1);
- }
- if (use_index_buffer) {
- glDrawElementsInstanced(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0, inst->instance_count);
+ if (instance_buffer == 0) {
+ // Instance buffer not initialized yet. Skip rendering for now.
+ break;
+ }
+
+ glBindBuffer(GL_ARRAY_BUFFER, instance_buffer);
+
+ glEnableVertexAttribArray(12);
+ glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0));
+ glVertexAttribDivisor(12, 1);
+ glEnableVertexAttribArray(13);
+ glVertexAttribPointer(13, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4));
+ glVertexAttribDivisor(13, 1);
+ if (!(inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D)) {
+ glEnableVertexAttribArray(14);
+ glVertexAttribPointer(14, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 8));
+ glVertexAttribDivisor(14, 1);
+ }
+
+ if ((inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR) || (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA)) {
+ uint32_t color_custom_offset = inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D ? 8 : 12;
+ glEnableVertexAttribArray(15);
+ glVertexAttribIPointer(15, 4, GL_UNSIGNED_INT, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(color_custom_offset * sizeof(float)));
+ glVertexAttribDivisor(15, 1);
+ }
+ if (use_index_buffer) {
+ glDrawElementsInstanced(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0, inst->instance_count);
+ } else {
+ glDrawArraysInstanced(primitive_gl, 0, count, inst->instance_count);
+ }
} else {
- glDrawArraysInstanced(primitive_gl, 0, count, inst->instance_count);
+ // Using regular Mesh.
+ if (use_index_buffer) {
+ glDrawElements(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0);
+ } else {
+ glDrawArrays(primitive_gl, 0, count);
+ }
}
- } else {
- // Using regular Mesh.
- if (use_index_buffer) {
- glDrawElements(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0);
- } else {
- glDrawArrays(primitive_gl, 0, count);
+
+ if (inst->instance_count > 0) {
+ glDisableVertexAttribArray(12);
+ glDisableVertexAttribArray(13);
+ glDisableVertexAttribArray(14);
+ glDisableVertexAttribArray(15);
}
}
- if (inst->instance_count > 0) {
- glDisableVertexAttribArray(12);
- glDisableVertexAttribArray(13);
- glDisableVertexAttribArray(14);
- glDisableVertexAttribArray(15);
+ if constexpr (p_pass_mode == PASS_MODE_COLOR) {
+ if (uses_additive_lighting && !p_render_data->transparent_bg) {
+ // Disable additive blending if enabled for additive lights.
+ glDisable(GL_BLEND);
+ }
}
}
@@ -2548,32 +3086,116 @@ Ref<RenderSceneBuffers> RasterizerSceneGLES3::render_buffers_create() {
return rb;
}
-//clear render buffers
-/*
+void RasterizerSceneGLES3::_render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas) {
+ GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
+ GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton();
+ GLES3::CopyEffects *copy_effects = GLES3::CopyEffects::get_singleton();
+ ERR_FAIL_COND(p_render_buffers.is_null());
- if (rt->copy_screen_effect.color) {
- glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo);
- rt->copy_screen_effect.fbo = 0;
+ RID render_target = p_render_buffers->render_target;
+ GLES3::RenderTarget *rt = texture_storage->get_render_target(render_target);
+ ERR_FAIL_NULL(rt);
- glDeleteTextures(1, &rt->copy_screen_effect.color);
- rt->copy_screen_effect.color = 0;
- }
+ if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
+ if (p_shadow_atlas.is_valid()) {
+ // Get or create debug textures to display shadow maps as an atlas.
+ GLuint shadow_atlas_texture = light_storage->shadow_atlas_get_debug_texture(p_shadow_atlas);
+ GLuint shadow_atlas_fb = light_storage->shadow_atlas_get_debug_fb(p_shadow_atlas);
+
+ uint32_t shadow_atlas_size = light_storage->shadow_atlas_get_size(p_shadow_atlas);
+ uint32_t quadrant_size = shadow_atlas_size >> 1;
+
+ glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas_fb);
+ glViewport(0, 0, shadow_atlas_size, shadow_atlas_size);
+ glActiveTexture(GL_TEXTURE0);
+ glDepthMask(GL_TRUE);
+ glDepthFunc(GL_ALWAYS);
+ glDisable(GL_CULL_FACE);
+ scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED;
+
+ // Loop through quadrants and copy shadows over.
+ for (int quadrant = 0; quadrant < 4; quadrant++) {
+ uint32_t subdivision = light_storage->shadow_atlas_get_quadrant_subdivision(p_shadow_atlas, quadrant);
+ if (subdivision == 0) {
+ continue;
+ }
- if (rt->multisample_active) {
- glDeleteFramebuffers(1, &rt->multisample_fbo);
- rt->multisample_fbo = 0;
+ Rect2i atlas_rect;
+ Rect2 atlas_uv_rect;
- glDeleteRenderbuffers(1, &rt->multisample_depth);
- rt->multisample_depth = 0;
+ uint32_t shadow_size = (quadrant_size / subdivision);
+ float size = float(shadow_size) / float(shadow_atlas_size);
- glDeleteRenderbuffers(1, &rt->multisample_color);
+ uint32_t length = light_storage->shadow_atlas_get_quadrant_shadows_allocated(p_shadow_atlas, quadrant);
+ for (uint32_t shadow_idx = 0; shadow_idx < length; shadow_idx++) {
+ bool is_omni = light_storage->shadow_atlas_get_quadrant_shadow_is_omni(p_shadow_atlas, quadrant, shadow_idx);
- rt->multisample_color = 0;
+ // Calculate shadow's position in the debug atlas.
+ atlas_rect.position.x = (quadrant & 1) * quadrant_size;
+ atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
+
+ atlas_rect.position.x += (shadow_idx % subdivision) * shadow_size;
+ atlas_rect.position.y += (shadow_idx / subdivision) * shadow_size;
+
+ atlas_uv_rect.position = Vector2(atlas_rect.position) / float(shadow_atlas_size);
+
+ atlas_uv_rect.size = Vector2(size, size);
+
+ GLuint shadow_tex = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow_idx);
+ // Copy from shadowmap to debug atlas.
+ if (is_omni) {
+ glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_tex);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE);
+
+ copy_effects->copy_cube_to_rect(atlas_uv_rect);
+
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
+ } else {
+ glBindTexture(GL_TEXTURE_2D, shadow_tex);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
+
+ copy_effects->copy_to_rect(atlas_uv_rect);
+
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
+ }
+ }
+ }
+ glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
+ glViewport(0, 0, rt->size.width, rt->size.height);
+ glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture);
+
+ copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5)));
+ glBindTexture(GL_TEXTURE_2D, 0);
+ glBindFramebuffer(GL_FRAMEBUFFER, 0);
+ }
}
-*/
+ if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
+ if (light_storage->directional_shadow_get_texture() != 0) {
+ GLuint shadow_atlas_texture = light_storage->directional_shadow_get_texture();
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE);
+
+ glDisable(GL_DEPTH_TEST);
+ glDepthMask(GL_FALSE);
-void RasterizerSceneGLES3::_render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
+ copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5)));
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_GREEN);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_BLUE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ALPHA);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
+ glBindTexture(GL_TEXTURE_2D, 0);
+ }
+ }
}
void RasterizerSceneGLES3::gi_set_use_half_resolution(bool p_enable) {
@@ -2662,6 +3284,18 @@ RasterizerSceneGLES3::RasterizerSceneGLES3() {
glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "DirectionalLight UBO");
+ uint32_t shadow_buffer_size = config->max_renderable_lights * sizeof(ShadowData) * 2;
+ scene_state.positional_shadows = memnew_arr(ShadowData, config->max_renderable_lights * 2);
+ glGenBuffers(1, &scene_state.positional_shadow_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer);
+ GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer, shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Positional Shadow UBO");
+
+ uint32_t directional_shadow_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalShadowData);
+ scene_state.directional_shadows = memnew_arr(DirectionalShadowData, MAX_DIRECTIONAL_LIGHTS);
+ glGenBuffers(1, &scene_state.directional_shadow_buffer);
+ glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer);
+ GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer, directional_shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Directional Shadow UBO");
+
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
@@ -2809,11 +3443,15 @@ RasterizerSceneGLES3::~RasterizerSceneGLES3() {
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_light_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.omni_light_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.spot_light_buffer);
+ GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.positional_shadow_buffer);
+ GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_shadow_buffer);
memdelete_arr(scene_state.directional_lights);
memdelete_arr(scene_state.omni_lights);
memdelete_arr(scene_state.spot_lights);
memdelete_arr(scene_state.omni_light_sort);
memdelete_arr(scene_state.spot_light_sort);
+ memdelete_arr(scene_state.positional_shadows);
+ memdelete_arr(scene_state.directional_shadows);
// Scene Shader
GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version);
diff --git a/drivers/gles3/rasterizer_scene_gles3.h b/drivers/gles3/rasterizer_scene_gles3.h
index 9709d6be2a..da60d571bf 100644
--- a/drivers/gles3/rasterizer_scene_gles3.h
+++ b/drivers/gles3/rasterizer_scene_gles3.h
@@ -59,7 +59,6 @@ enum RenderListType {
enum PassMode {
PASS_MODE_COLOR,
PASS_MODE_COLOR_TRANSPARENT,
- PASS_MODE_COLOR_ADDITIVE,
PASS_MODE_SHADOW,
PASS_MODE_DEPTH,
};
@@ -75,6 +74,8 @@ enum SceneUniformLocation {
SCENE_SPOTLIGHT_UNIFORM_LOCATION,
SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION,
SCENE_MULTIVIEW_UNIFORM_LOCATION,
+ SCENE_POSITIONAL_SHADOW_UNIFORM_LOCATION,
+ SCENE_DIRECTIONAL_SHADOW_UNIFORM_LOCATION,
};
enum SkyUniformLocation {
@@ -109,6 +110,7 @@ struct RenderDataGLES3 {
const PagedArray<RID> *reflection_probes = nullptr;
RID environment;
RID camera_attributes;
+ RID shadow_atlas;
RID reflection_probe;
int reflection_probe_pass = 0;
@@ -116,10 +118,16 @@ struct RenderDataGLES3 {
float screen_mesh_lod_threshold = 0.0;
uint32_t directional_light_count = 0;
+ uint32_t directional_shadow_count = 0;
+
uint32_t spot_light_count = 0;
uint32_t omni_light_count = 0;
RenderingMethod::RenderInfo *render_info = nullptr;
+
+ /* Shadow data */
+ const RendererSceneRender::RenderShadowData *render_shadows = nullptr;
+ int render_shadow_count = 0;
};
class RasterizerCanvasGLES3;
@@ -173,11 +181,36 @@ private:
float size;
uint32_t enabled; // For use by SkyShaders
- float pad[2];
+ float pad;
+ float shadow_opacity;
float specular;
};
static_assert(sizeof(DirectionalLightData) % 16 == 0, "DirectionalLightData size must be a multiple of 16 bytes");
+ struct ShadowData {
+ float shadow_matrix[16];
+
+ float light_position[3];
+ float shadow_normal_bias;
+
+ float pad[3];
+ float shadow_atlas_pixel_size;
+ };
+ static_assert(sizeof(ShadowData) % 16 == 0, "ShadowData size must be a multiple of 16 bytes");
+
+ struct DirectionalShadowData {
+ float direction[3];
+ float shadow_atlas_pixel_size;
+ float shadow_normal_bias[4];
+ float shadow_split_offsets[4];
+ float shadow_matrices[4][16];
+ float fade_from;
+ float fade_to;
+ uint32_t blend_splits; // Not exposed to the shader.
+ uint32_t pad;
+ };
+ static_assert(sizeof(DirectionalShadowData) % 16 == 0, "DirectionalShadowData size must be a multiple of 16 bytes");
+
class GeometryInstanceGLES3;
// Cached data for drawing surfaces
@@ -221,6 +254,8 @@ private:
uint32_t surface_index = 0;
uint32_t lod_index = 0;
uint32_t index_count = 0;
+ int32_t light_pass_index = -1;
+ bool finished_base_pass = false;
void *surface = nullptr;
GLES3::SceneShaderData *shader = nullptr;
@@ -245,14 +280,23 @@ private:
bool using_projectors = false;
bool using_softshadows = false;
- uint32_t omni_light_count = 0;
- LocalVector<RID> omni_lights;
- uint32_t spot_light_count = 0;
- LocalVector<RID> spot_lights;
+ struct LightPass {
+ int32_t light_id = -1; // Position in the light uniform buffer.
+ int32_t shadow_id = -1; // Position in the shadow uniform buffer.
+ RID light_instance_rid;
+ bool is_omni = false;
+ };
+
+ LocalVector<LightPass> light_passes;
+
+ uint32_t paired_omni_light_count = 0;
+ uint32_t paired_spot_light_count = 0;
+ LocalVector<RID> paired_omni_lights;
+ LocalVector<RID> paired_spot_lights;
LocalVector<uint32_t> omni_light_gl_cache;
LocalVector<uint32_t> spot_light_gl_cache;
- //used during setup
+ // Used during setup.
GeometryInstanceSurface *surface_caches = nullptr;
SelfList<GeometryInstanceGLES3> dirty_list_element;
@@ -336,10 +380,11 @@ private:
float fog_light_color[3];
float fog_sun_scatter;
+
+ float shadow_bias;
+ float pad;
uint32_t camera_visible_layers;
- uint32_t pad1;
- uint32_t pad2;
- uint32_t pad3;
+ bool pancake_shadows;
};
static_assert(sizeof(UBO) % 16 == 0, "Scene UBO size must be a multiple of 16 bytes");
@@ -378,16 +423,22 @@ private:
LightData *omni_lights = nullptr;
LightData *spot_lights = nullptr;
+ ShadowData *positional_shadows = nullptr;
InstanceSort<GLES3::LightInstance> *omni_light_sort;
InstanceSort<GLES3::LightInstance> *spot_light_sort;
GLuint omni_light_buffer = 0;
GLuint spot_light_buffer = 0;
+ GLuint positional_shadow_buffer = 0;
uint32_t omni_light_count = 0;
uint32_t spot_light_count = 0;
+ RS::ShadowQuality positional_shadow_quality = RS::ShadowQuality::SHADOW_QUALITY_SOFT_LOW;
DirectionalLightData *directional_lights = nullptr;
GLuint directional_light_buffer = 0;
+ DirectionalShadowData *directional_shadows = nullptr;
+ GLuint directional_shadow_buffer = 0;
+ RS::ShadowQuality directional_shadow_quality = RS::ShadowQuality::SHADOW_QUALITY_SOFT_LOW;
} scene_state;
struct RenderListParameters {
@@ -462,9 +513,11 @@ private:
RenderList render_list[RENDER_LIST_MAX];
- void _setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count);
- void _setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows);
+ void _setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count, uint32_t &r_directional_shadow_count);
+ void _setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows, float p_shadow_bias = 0.0);
void _fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append = false);
+ void _render_shadows(const RenderDataGLES3 *p_render_data);
+ void _render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane = Plane(), float p_lod_distance_multiplier = 0, float p_screen_mesh_lod_threshold = 0.0, RenderingMethod::RenderInfo *p_render_info = nullptr);
template <PassMode p_pass_mode>
_FORCE_INLINE_ void _render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass = false);
@@ -477,7 +530,7 @@ protected:
float screen_space_roughness_limiter_amount = 0.25;
float screen_space_roughness_limiter_limit = 0.18;
- void _render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer);
+ void _render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas);
/* Camera Attributes */
diff --git a/drivers/gles3/shaders/copy.glsl b/drivers/gles3/shaders/copy.glsl
index 3a85569555..265acc1430 100644
--- a/drivers/gles3/shaders/copy.glsl
+++ b/drivers/gles3/shaders/copy.glsl
@@ -6,6 +6,7 @@ mode_copy_section = #define USE_COPY_SECTION \n#define MODE_SIMPLE_COPY
mode_gaussian_blur = #define MODE_GAUSSIAN_BLUR
mode_mipmap = #define MODE_MIPMAP
mode_simple_color = #define MODE_SIMPLE_COLOR \n#define USE_COPY_SECTION
+mode_cube_to_octahedral = #define CUBE_TO_OCTAHEDRAL \n#define USE_COPY_SECTION
#[specializations]
@@ -50,8 +51,20 @@ uniform vec4 color_in;
uniform highp vec2 pixel_size;
#endif
+#ifdef CUBE_TO_OCTAHEDRAL
+uniform samplerCube source_cube; // texunit:0
+
+vec3 oct_to_vec3(vec2 e) {
+ vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
+ float t = max(-v.z, 0.0);
+ v.xy += t * -sign(v.xy);
+ return normalize(v);
+}
+#else
uniform sampler2D source; // texunit:0
+#endif
+
layout(location = 0) out vec4 frag_color;
void main() {
@@ -90,4 +103,11 @@ void main() {
frag_color += (F + G + L + K) * lesser_weight;
frag_color += (G + H + M + L) * lesser_weight;
#endif
+
+#ifdef CUBE_TO_OCTAHEDRAL
+ // Treat the UV coordinates as 0-1 encoded octahedral coordinates.
+ vec3 dir = oct_to_vec3(uv_interp * 2.0 - 1.0);
+ frag_color = texture(source_cube, dir);
+
+#endif
}
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index 8d3eabc55b..0c1a20caed 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -1,10 +1,8 @@
/* clang-format off */
#[modes]
-mode_color = #define BASE_PASS
-mode_color_instancing = #define BASE_PASS \n#define USE_INSTANCING
-mode_additive = #define USE_ADDITIVE_LIGHTING
-mode_additive_instancing = #define USE_ADDITIVE_LIGHTING \n#define USE_INSTANCING
+mode_color =
+mode_color_instancing = \n#define USE_INSTANCING
mode_depth = #define MODE_RENDER_DEPTH
mode_depth_instancing = #define MODE_RENDER_DEPTH \n#define USE_INSTANCING
@@ -17,6 +15,19 @@ DISABLE_LIGHT_SPOT = false
DISABLE_FOG = false
USE_RADIANCE_MAP = true
USE_MULTIVIEW = false
+RENDER_SHADOWS = false
+RENDER_SHADOWS_LINEAR = false
+SHADOW_MODE_PCF_5 = false
+SHADOW_MODE_PCF_13 = false
+LIGHT_USE_PSSM2 = false
+LIGHT_USE_PSSM4 = false
+LIGHT_USE_PSSM_BLEND = false
+BASE_PASS = true
+USE_ADDITIVE_LIGHTING = false
+// We can only use one type of light per additive pass. This means that if USE_ADDITIVE_LIGHTING is defined, and
+// these are false, we are doing a directional light pass.
+ADDITIVE_OMNI = false
+ADDITIVE_SPOT = false
#[vertex]
@@ -33,6 +44,12 @@ USE_MULTIVIEW = false
#endif
#endif
+#ifdef MODE_UNSHADED
+#ifdef USE_ADDITIVE_LIGHTING
+#undef USE_ADDITIVE_LIGHTING
+#endif
+#endif // MODE_UNSHADED
+
/*
from RenderingServer:
ARRAY_VERTEX = 0, // RG32F or RGB32F (depending on 2D bit)
@@ -151,13 +168,56 @@ layout(std140) uniform SceneData { // ubo:2
vec3 fog_light_color;
float fog_sun_scatter;
+
+ float shadow_bias;
+ float pad;
uint camera_visible_layers;
- uint pad3;
- uint pad4;
- uint pad5;
+ bool pancake_shadows;
}
scene_data;
+#ifdef USE_ADDITIVE_LIGHTING
+
+#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
+struct PositionalShadowData {
+ highp mat4 shadow_matrix;
+ highp vec3 light_position;
+ highp float shadow_normal_bias;
+ vec3 pad;
+ highp float shadow_atlas_pixel_size;
+};
+
+layout(std140) uniform PositionalShadows { // ubo:9
+ PositionalShadowData positional_shadows[MAX_LIGHT_DATA_STRUCTS];
+};
+
+uniform lowp uint positional_shadow_index;
+
+#else // ADDITIVE_DIRECTIONAL
+
+struct DirectionalShadowData {
+ highp vec3 direction;
+ highp float shadow_atlas_pixel_size;
+ highp vec4 shadow_normal_bias;
+ highp vec4 shadow_split_offsets;
+ highp mat4 shadow_matrix1;
+ highp mat4 shadow_matrix2;
+ highp mat4 shadow_matrix3;
+ highp mat4 shadow_matrix4;
+ mediump float fade_from;
+ mediump float fade_to;
+ mediump vec2 pad;
+};
+
+layout(std140) uniform DirectionalShadows { // ubo:10
+ DirectionalShadowData directional_shadows[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
+};
+
+uniform lowp uint directional_shadow_index;
+
+#endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT))
+#endif // USE_ADDITIVE_LIGHTING
+
#ifdef USE_MULTIVIEW
layout(std140) uniform MultiviewData { // ubo:8
highp mat4 projection_matrix_view[MAX_VIEWS];
@@ -201,6 +261,19 @@ out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
+#ifdef USE_ADDITIVE_LIGHTING
+out highp vec4 shadow_coord;
+
+#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
+out highp vec4 shadow_coord2;
+#endif
+
+#ifdef LIGHT_USE_PSSM4
+out highp vec4 shadow_coord3;
+out highp vec4 shadow_coord4;
+#endif //LIGHT_USE_PSSM4
+#endif
+
#ifdef MATERIAL_UNIFORMS_USED
/* clang-format off */
@@ -351,6 +424,50 @@ void main() {
binormal_interp = binormal;
#endif
+ // Calculate shadows.
+#ifdef USE_ADDITIVE_LIGHTING
+#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
+ // Apply normal bias at draw time to avoid issues with scaling non-fused geometry.
+ vec3 light_rel_vec = positional_shadows[positional_shadow_index].light_position - vertex_interp;
+ float light_length = length(light_rel_vec);
+ float aNdotL = abs(dot(normalize(normal_interp), normalize(light_rel_vec)));
+ vec3 normal_offset = (1.0 - aNdotL) * positional_shadows[positional_shadow_index].shadow_normal_bias * light_length * normal_interp;
+
+#ifdef ADDITIVE_SPOT
+ // Calculate coord here so we can take advantage of prefetch.
+ shadow_coord = positional_shadows[positional_shadow_index].shadow_matrix * vec4(vertex_interp + normal_offset, 1.0);
+#endif
+
+#ifdef ADDITIVE_OMNI
+ // Can't interpolate unit direction nicely, so forget about prefetch.
+ shadow_coord = vec4(vertex_interp + normal_offset, 1.0);
+#endif
+#else // ADDITIVE_DIRECTIONAL
+ vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(directional_shadows[directional_shadow_index].direction, -normalize(normal_interp))));
+ vec3 normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.x;
+ shadow_coord = directional_shadows[directional_shadow_index].shadow_matrix1 * vec4(vertex_interp + normal_offset, 1.0);
+
+#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
+ normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.y;
+ shadow_coord2 = directional_shadows[directional_shadow_index].shadow_matrix2 * vec4(vertex_interp + normal_offset, 1.0);
+#endif
+
+#ifdef LIGHT_USE_PSSM4
+ normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.z;
+ shadow_coord3 = directional_shadows[directional_shadow_index].shadow_matrix3 * vec4(vertex_interp + normal_offset, 1.0);
+ normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.w;
+ shadow_coord4 = directional_shadows[directional_shadow_index].shadow_matrix4 * vec4(vertex_interp + normal_offset, 1.0);
+#endif //LIGHT_USE_PSSM4
+
+#endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT))
+#endif // USE_ADDITIVE_LIGHTING
+
+#if defined(RENDER_SHADOWS) && !defined(RENDER_SHADOWS_LINEAR)
+ // This is an optimized version of normalize(vertex_interp) * scene_data.shadow_bias / length(vertex_interp).
+ float light_length_sq = dot(vertex_interp, vertex_interp);
+ vertex_interp += vertex_interp * scene_data.shadow_bias / light_length_sq;
+#endif
+
#if defined(OVERRIDE_POSITION)
gl_Position = position;
#else
@@ -372,17 +489,22 @@ void main() {
#endif
#endif
+#ifdef MODE_UNSHADED
+#ifdef USE_ADDITIVE_LIGHTING
+#undef USE_ADDITIVE_LIGHTING
+#endif
+#endif // MODE_UNSHADED
+
#ifndef MODE_RENDER_DEPTH
#include "tonemap_inc.glsl"
#endif
#include "stdlib_inc.glsl"
-/* texture unit usage, N is max_texture_unity-N
+/* texture unit usage, N is max_texture_unit-N
1-color correction // In tonemap_inc.glsl
2-radiance
-3-directional_shadow
-4-positional_shadow
+3-shadow
5-screen
6-depth
@@ -422,6 +544,19 @@ in vec3 normal_interp;
in highp vec3 vertex_interp;
+#ifdef USE_ADDITIVE_LIGHTING
+in highp vec4 shadow_coord;
+
+#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
+in highp vec4 shadow_coord2;
+#endif
+
+#ifdef LIGHT_USE_PSSM4
+in highp vec4 shadow_coord3;
+in highp vec4 shadow_coord4;
+#endif //LIGHT_USE_PSSM4
+#endif
+
#ifdef USE_RADIANCE_MAP
#define RADIANCE_MAX_LOD 5.0
@@ -483,10 +618,11 @@ layout(std140) uniform SceneData { // ubo:2
vec3 fog_light_color;
float fog_sun_scatter;
+
+ float shadow_bias;
+ float pad;
uint camera_visible_layers;
- uint pad3;
- uint pad4;
- uint pad5;
+ bool pancake_shadows;
}
scene_data;
@@ -505,15 +641,17 @@ multiview_data;
/* clang-format on */
+#ifndef MODE_RENDER_DEPTH
// Directional light data.
-#ifndef DISABLE_LIGHT_DIRECTIONAL
+#if !defined(DISABLE_LIGHT_DIRECTIONAL) || (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT))
struct DirectionalLightData {
mediump vec3 direction;
mediump float energy;
mediump vec3 color;
mediump float size;
- mediump vec3 pad;
+ mediump vec2 pad;
+ mediump float shadow_opacity;
mediump float specular;
};
@@ -521,10 +659,15 @@ layout(std140) uniform DirectionalLights { // ubo:7
DirectionalLightData directional_lights[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
};
+#if defined(USE_ADDITIVE_LIGHTING) && (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT))
+// Directional shadows can be in the base pass or in the additive passes
+uniform highp sampler2DShadow directional_shadow_atlas; // texunit:-3
+#endif // defined(USE_ADDITIVE_LIGHTING) && (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT))
+
#endif // !DISABLE_LIGHT_DIRECTIONAL
// Omni and spot light data.
-#if !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
+#if !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
struct LightData { // This structure needs to be as packed as possible.
highp vec3 position;
@@ -542,27 +685,119 @@ struct LightData { // This structure needs to be as packed as possible.
mediump float shadow_opacity;
};
-#ifndef DISABLE_LIGHT_OMNI
+#if !defined(DISABLE_LIGHT_OMNI) || defined(ADDITIVE_OMNI)
layout(std140) uniform OmniLightData { // ubo:5
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
+#ifdef BASE_PASS
uniform uint omni_light_indices[MAX_FORWARD_LIGHTS];
uniform uint omni_light_count;
-#endif
+#endif // BASE_PASS
+#endif // DISABLE_LIGHT_OMNI
-#ifndef DISABLE_LIGHT_SPOT
+#if !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT)
layout(std140) uniform SpotLightData { // ubo:6
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
+#ifdef BASE_PASS
uniform uint spot_light_indices[MAX_FORWARD_LIGHTS];
uniform uint spot_light_count;
-#endif
+#endif // BASE_PASS
+#endif // DISABLE_LIGHT_SPOT
+#endif // !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
#ifdef USE_ADDITIVE_LIGHTING
-uniform highp samplerCubeShadow positional_shadow; // texunit:-4
+#ifdef ADDITIVE_OMNI
+uniform highp samplerCubeShadow omni_shadow_texture; // texunit:-3
+uniform lowp uint omni_light_index;
+#endif
+#ifdef ADDITIVE_SPOT
+uniform highp sampler2DShadow spot_shadow_texture; // texunit:-3
+uniform lowp uint spot_light_index;
+#endif
+
+#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
+struct PositionalShadowData {
+ highp mat4 shadow_matrix;
+ highp vec3 light_position;
+ highp float shadow_normal_bias;
+ vec3 pad;
+ highp float shadow_atlas_pixel_size;
+};
+
+layout(std140) uniform PositionalShadows { // ubo:9
+ PositionalShadowData positional_shadows[MAX_LIGHT_DATA_STRUCTS];
+};
+
+uniform lowp uint positional_shadow_index;
+#else // ADDITIVE_DIRECTIONAL
+struct DirectionalShadowData {
+ highp vec3 direction;
+ highp float shadow_atlas_pixel_size;
+ highp vec4 shadow_normal_bias;
+ highp vec4 shadow_split_offsets;
+ highp mat4 shadow_matrix1;
+ highp mat4 shadow_matrix2;
+ highp mat4 shadow_matrix3;
+ highp mat4 shadow_matrix4;
+ mediump float fade_from;
+ mediump float fade_to;
+ mediump vec2 pad;
+};
+
+layout(std140) uniform DirectionalShadows { // ubo:10
+ DirectionalShadowData directional_shadows[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
+};
+
+uniform lowp uint directional_shadow_index;
+#endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT))
+
+#if !defined(ADDITIVE_OMNI)
+float sample_shadow(highp sampler2DShadow shadow, float shadow_pixel_size, vec4 pos) {
+ float avg = textureProj(shadow, pos);
+#ifdef SHADOW_MODE_PCF_13
+ pos /= pos.w;
+ avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size * 2.0, 0.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size * 2.0, 0.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size * 2.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size * 2.0), pos.zw));
+
+ // Early bail if distant samples are fully shaded (or none are shaded) to improve performance.
+ if (avg <= 0.000001) {
+ // None shaded at all.
+ return 0.0;
+ } else if (avg >= 4.999999) {
+ // All fully shaded.
+ return 1.0;
+ }
+
+ avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, 0.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, 0.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, shadow_pixel_size), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, shadow_pixel_size), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, -shadow_pixel_size), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, -shadow_pixel_size), pos.zw));
+ return avg * (1.0 / 13.0);
#endif
-#endif // !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
+#ifdef SHADOW_MODE_PCF_5
+ pos /= pos.w;
+ avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, 0.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, 0.0), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size), pos.zw));
+ avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size), pos.zw));
+ return avg * (1.0 / 5.0);
+
+#endif
+
+ return avg;
+}
+#endif //!defined(ADDITIVE_OMNI)
+#endif // USE_ADDITIVE_LIGHTING
+
+#endif // !MODE_RENDER_DEPTH
#ifdef USE_MULTIVIEW
uniform highp sampler2DArray depth_buffer; // texunit:-6
@@ -589,8 +824,8 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
-
-#if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
+#ifndef MODE_RENDER_DEPTH
+#if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) || defined(USE_ADDITIVE_LIGHTING)
float D_GGX(float cos_theta_m, float alpha) {
float a = cos_theta_m * alpha;
@@ -787,7 +1022,7 @@ float get_omni_spot_attenuation(float distance, float inv_range, float decay) {
return nd * pow(max(distance, 0.0001), -decay);
}
-#ifndef DISABLE_LIGHT_OMNI
+#if !defined(DISABLE_LIGHT_OMNI) || defined(ADDITIVE_OMNI)
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
@@ -813,6 +1048,8 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
}
+ omni_attenuation *= shadow;
+
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, omni_attenuation, f0, roughness, metallic, omni_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
@@ -831,7 +1068,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
}
#endif // !DISABLE_LIGHT_OMNI
-#ifndef DISABLE_LIGHT_SPOT
+#if !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT)
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
@@ -864,6 +1101,8 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
}
+ spot_attenuation *= shadow;
+
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, spot_attenuation, f0, roughness, metallic, spot_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
@@ -879,11 +1118,10 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
#endif
diffuse_light, specular_light);
}
-#endif // !DISABLE_LIGHT_SPOT
+#endif // !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT)
#endif // !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
-#ifndef MODE_RENDER_DEPTH
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data.fog_light_color;
@@ -1191,10 +1429,7 @@ void main() {
#endif
}
-#endif // BASE_PASS
-
#ifndef DISABLE_LIGHT_DIRECTIONAL
- //diffuse_light = normal; //
for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
light_compute(normal, normalize(directional_lights[i].direction), normalize(view), directional_lights[i].size, directional_lights[i].color * directional_lights[i].energy, true, 1.0, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
@@ -1220,7 +1455,7 @@ void main() {
if (i >= omni_light_count) {
break;
}
- light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
+ light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -1243,7 +1478,7 @@ void main() {
if (i >= spot_light_count) {
break;
}
- light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
+ light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -1261,7 +1496,7 @@ void main() {
diffuse_light, specular_light);
}
#endif // !DISABLE_LIGHT_SPOT
-
+#endif // BASE_PASS
#endif // !MODE_UNSHADED
#endif // !MODE_RENDER_DEPTH
@@ -1287,9 +1522,14 @@ void main() {
#endif // USE_SHADOW_TO_OPACITY
#ifdef MODE_RENDER_DEPTH
-//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
-#else // !MODE_RENDER_DEPTH
+#ifdef RENDER_SHADOWS_LINEAR
+ // Linearize the depth buffer if rendering cubemap shadows.
+ gl_FragDepth = (length(vertex) + scene_data.shadow_bias) / scene_data.z_far;
+#endif
+// Nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
+#else // !MODE_RENDER_DEPTH
+#ifdef BASE_PASS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else
@@ -1300,21 +1540,15 @@ void main() {
ambient_light *= 1.0 - metallic;
frag_color = vec4(diffuse_light + specular_light, alpha);
-#ifdef BASE_PASS
frag_color.rgb += emission + ambient_light;
-#endif
-#endif //MODE_UNSHADED
+#endif //!MODE_UNSHADED
#ifndef FOG_DISABLED
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
#ifndef DISABLE_FOG
if (scene_data.fog_enabled) {
-#ifdef BASE_PASS
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
-#else
- frag_color.rgb *= (1.0 - fog.a);
-#endif // BASE_PASS
}
#endif // !DISABLE_FOG
#endif // !FOG_DISABLED
@@ -1331,6 +1565,223 @@ void main() {
#ifdef USE_COLOR_CORRECTION
frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction);
#endif
+#else // !BASE_PASS
+ frag_color = vec4(0.0, 0.0, 0.0, alpha);
+#endif // !BASE_PASS
+
+/* ADDITIVE LIGHTING PASS */
+#ifdef USE_ADDITIVE_LIGHTING
+ diffuse_light = vec3(0.0);
+ specular_light = vec3(0.0);
+
+#if !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)
+
+// Orthogonal shadows
+#if !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4)
+ float directional_shadow = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
+#endif // !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4)
+
+// PSSM2 shadows
+#ifdef LIGHT_USE_PSSM2
+ float depth_z = -vertex.z;
+ vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
+ //take advantage of prefetch
+ float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
+ float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
+ float directional_shadow = 1.0;
+
+ if (depth_z < light_split_offsets.y) {
+ float pssm_fade = 0.0;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ float directional_shadow2 = 1.0;
+ float pssm_blend = 0.0;
+ bool use_blend = true;
+#endif
+ if (depth_z < light_split_offsets.x) {
+ float pssm_fade = 0.0;
+ directional_shadow = shadow1;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ directional_shadow2 = shadow2;
+ pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#endif
+ } else {
+ directional_shadow = shadow2;
+ pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+#ifdef LIGHT_USE_PSSM_BLEND
+ use_blend = false;
+#endif
+ }
+#ifdef LIGHT_USE_PSSM_BLEND
+ if (use_blend) {
+ directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
+ }
+#endif
+ directional_shadow = mix(directional_shadow, 1.0, pssm_fade);
+ }
+
+#endif //LIGHT_USE_PSSM2
+// PSSM4 shadows
+#ifdef LIGHT_USE_PSSM4
+ float depth_z = -vertex.z;
+ vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
+
+ float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
+ float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
+ float shadow3 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord3);
+ float shadow4 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord4);
+ float directional_shadow = 1.0;
+
+ if (depth_z < light_split_offsets.w) {
+ float pssm_fade = 0.0;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ float directional_shadow2 = 1.0;
+ float pssm_blend = 0.0;
+ bool use_blend = true;
+#endif
+ if (depth_z < light_split_offsets.y) {
+ if (depth_z < light_split_offsets.x) {
+ directional_shadow = shadow1;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ directional_shadow2 = shadow2;
+
+ pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#endif
+ } else {
+ directional_shadow = shadow2;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ directional_shadow2 = shadow3;
+
+ pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+#endif
+ }
+ } else {
+ if (depth_z < light_split_offsets.z) {
+ directional_shadow = shadow3;
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+ directional_shadow2 = shadow4;
+ pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
+#endif
+
+ } else {
+ directional_shadow = shadow4;
+ pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+ use_blend = false;
+#endif
+ }
+ }
+#if defined(LIGHT_USE_PSSM_BLEND)
+ if (use_blend) {
+ directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
+ }
+#endif
+ directional_shadow = mix(directional_shadow, 1.0, pssm_fade);
+ }
+
+#endif //LIGHT_USE_PSSM4
+ directional_shadow = mix(directional_shadow, 1.0, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z));
+ directional_shadow = mix(1.0, directional_shadow, directional_lights[directional_shadow_index].shadow_opacity);
+
+ light_compute(normal, normalize(directional_lights[directional_shadow_index].direction), normalize(view), directional_lights[directional_shadow_index].size, directional_lights[directional_shadow_index].color * directional_lights[directional_shadow_index].energy, true, directional_shadow, f0, roughness, metallic, 1.0, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim, rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal,
+ tangent, anisotropy,
+#endif
+ diffuse_light,
+ specular_light);
+#endif // !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)
+
+#ifdef ADDITIVE_OMNI
+ vec3 light_ray = ((positional_shadows[positional_shadow_index].shadow_matrix * vec4(shadow_coord.xyz, 1.0))).xyz;
+
+ float omni_shadow = texture(omni_shadow_texture, vec4(light_ray, length(light_ray) * omni_lights[omni_light_index].inv_radius));
+ omni_shadow = mix(1.0, omni_shadow, omni_lights[omni_light_index].shadow_opacity);
+
+ light_process_omni(omni_light_index, vertex, view, normal, f0, roughness, metallic, omni_shadow, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
+#endif
+ diffuse_light, specular_light);
+#endif // ADDITIVE_OMNI
+
+#ifdef ADDITIVE_SPOT
+ float spot_shadow = sample_shadow(spot_shadow_texture, positional_shadows[positional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
+ spot_shadow = mix(1.0, spot_shadow, spot_lights[spot_light_index].shadow_opacity);
+
+ light_process_spot(spot_light_index, vertex, view, normal, f0, roughness, metallic, spot_shadow, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ tangent,
+ binormal, anisotropy,
+#endif
+ diffuse_light, specular_light);
+
+#endif // ADDITIVE_SPOT
+
+ diffuse_light *= albedo;
+ diffuse_light *= 1.0 - metallic;
+ vec3 additive_light_color = diffuse_light + specular_light;
+
+#ifndef FOG_DISABLED
+ fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
+
+#ifndef DISABLE_FOG
+ if (scene_data.fog_enabled) {
+ additive_light_color *= (1.0 - fog.a);
+ }
+#endif // !DISABLE_FOG
+#endif // !FOG_DISABLED
+
+ // Tonemap before writing as we are writing to an sRGB framebuffer
+ additive_light_color *= exposure;
+ additive_light_color = apply_tonemapping(additive_light_color, white);
+ additive_light_color = linear_to_srgb(additive_light_color);
+
+#ifdef USE_BCS
+ additive_light_color = apply_bcs(additive_light_color, bcs);
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+ additive_light_color = apply_color_correction(additive_light_color, color_correction);
+#endif
+
+ frag_color.rgb += additive_light_color;
+#endif // USE_ADDITIVE_LIGHTING
#endif //!MODE_RENDER_DEPTH
}
diff --git a/drivers/gles3/storage/light_storage.cpp b/drivers/gles3/storage/light_storage.cpp
index 2fa99707b0..ff06fbfa41 100644
--- a/drivers/gles3/storage/light_storage.cpp
+++ b/drivers/gles3/storage/light_storage.cpp
@@ -31,6 +31,8 @@
#ifdef GLES3_ENABLED
#include "light_storage.h"
+#include "../rasterizer_gles3.h"
+#include "../rasterizer_scene_gles3.h"
#include "config.h"
#include "texture_storage.h"
@@ -358,6 +360,20 @@ RID LightStorage::light_instance_create(RID p_light) {
void LightStorage::light_instance_free(RID p_light_instance) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_NULL(light_instance);
+
+ // Remove from shadow atlases.
+ for (const RID &E : light_instance->shadow_atlases) {
+ ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E);
+ ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_light_instance));
+ uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
+ uint32_t q = (key >> QUADRANT_SHIFT) & 0x3;
+ uint32_t s = key & SHADOW_INDEX_MASK;
+
+ shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
+
+ shadow_atlas->shadow_owners.erase(p_light_instance);
+ }
+
light_instance_owner.free(p_light_instance);
}
@@ -376,9 +392,26 @@ void LightStorage::light_instance_set_aabb(RID p_light_instance, const AABB &p_a
}
void LightStorage::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
+ LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_NULL(light_instance);
+
+ ERR_FAIL_INDEX(p_pass, 6);
+
+ light_instance->shadow_transform[p_pass].camera = p_projection;
+ light_instance->shadow_transform[p_pass].transform = p_transform;
+ light_instance->shadow_transform[p_pass].farplane = p_far;
+ light_instance->shadow_transform[p_pass].split = p_split;
+ light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
+ light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
+ light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
+ light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
}
void LightStorage::light_instance_mark_visible(RID p_light_instance) {
+ LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_NULL(light_instance);
+
+ light_instance->last_scene_pass = RasterizerSceneGLES3::get_singleton()->get_scene_pass();
}
/* PROBE API */
@@ -598,33 +631,466 @@ void LightStorage::lightmap_instance_set_transform(RID p_lightmap, const Transfo
/* SHADOW ATLAS API */
RID LightStorage::shadow_atlas_create() {
- return RID();
+ return shadow_atlas_owner.make_rid(ShadowAtlas());
}
void LightStorage::shadow_atlas_free(RID p_atlas) {
+ shadow_atlas_set_size(p_atlas, 0);
+ shadow_atlas_owner.free(p_atlas);
}
void LightStorage::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
+ ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL(shadow_atlas);
+ ERR_FAIL_COND(p_size < 0);
+ p_size = next_power_of_2(p_size);
+
+ if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
+ return;
+ }
+
+ for (uint32_t i = 0; i < 4; i++) {
+ // Clear all subdivisions and free shadows.
+ for (uint32_t j = 0; j < shadow_atlas->quadrants[i].textures.size(); j++) {
+ glDeleteTextures(1, &shadow_atlas->quadrants[i].textures[j]);
+ glDeleteFramebuffers(1, &shadow_atlas->quadrants[i].fbos[j]);
+ }
+ shadow_atlas->quadrants[i].textures.clear();
+ shadow_atlas->quadrants[i].fbos.clear();
+
+ shadow_atlas->quadrants[i].shadows.clear();
+ shadow_atlas->quadrants[i].shadows.resize(shadow_atlas->quadrants[i].subdivision * shadow_atlas->quadrants[i].subdivision);
+ }
+
+ // Erase shadow atlas reference from lights.
+ for (const KeyValue<RID, uint32_t> &E : shadow_atlas->shadow_owners) {
+ LightInstance *li = light_instance_owner.get_or_null(E.key);
+ ERR_CONTINUE(!li);
+ li->shadow_atlases.erase(p_atlas);
+ }
+
+ if (shadow_atlas->debug_texture != 0) {
+ glDeleteTextures(1, &shadow_atlas->debug_texture);
+ }
+
+ if (shadow_atlas->debug_fbo != 0) {
+ glDeleteFramebuffers(1, &shadow_atlas->debug_fbo);
+ }
+
+ // Clear owners.
+ shadow_atlas->shadow_owners.clear();
+
+ shadow_atlas->size = p_size;
+ shadow_atlas->use_16_bits = p_16_bits;
}
void LightStorage::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
+ ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL(shadow_atlas);
+ ERR_FAIL_INDEX(p_quadrant, 4);
+ ERR_FAIL_INDEX(p_subdivision, 16384);
+
+ uint32_t subdiv = next_power_of_2(p_subdivision);
+ if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer.
+ subdiv <<= 1;
+ }
+
+ subdiv = int(Math::sqrt((float)subdiv));
+
+ if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
+ return;
+ }
+
+ // Erase all data from quadrant.
+ for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
+ if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
+ shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
+ LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
+ ERR_CONTINUE(!li);
+ li->shadow_atlases.erase(p_atlas);
+ }
+ }
+
+ for (uint32_t j = 0; j < shadow_atlas->quadrants[p_quadrant].textures.size(); j++) {
+ glDeleteTextures(1, &shadow_atlas->quadrants[p_quadrant].textures[j]);
+ glDeleteFramebuffers(1, &shadow_atlas->quadrants[p_quadrant].fbos[j]);
+ }
+
+ shadow_atlas->quadrants[p_quadrant].textures.clear();
+ shadow_atlas->quadrants[p_quadrant].fbos.clear();
+
+ shadow_atlas->quadrants[p_quadrant].shadows.clear();
+ shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
+ shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
+
+ // Cache the smallest subdiv (for faster allocation in light update).
+
+ shadow_atlas->smallest_subdiv = 1 << 30;
+
+ for (int i = 0; i < 4; i++) {
+ if (shadow_atlas->quadrants[i].subdivision) {
+ shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
+ }
+ }
+
+ if (shadow_atlas->smallest_subdiv == 1 << 30) {
+ shadow_atlas->smallest_subdiv = 0;
+ }
+
+ // Re-sort the size orders, simple bubblesort for 4 elements.
+
+ int swaps = 0;
+ do {
+ swaps = 0;
+
+ for (int i = 0; i < 3; i++) {
+ if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
+ SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
+ swaps++;
+ }
+ }
+ } while (swaps > 0);
+}
+
+bool LightStorage::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) {
+ ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(shadow_atlas, false);
+
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_NULL_V(li, false);
+
+ if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
+ return false;
+ }
+
+ uint32_t quad_size = shadow_atlas->size >> 1;
+ int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
+
+ int valid_quadrants[4];
+ int valid_quadrant_count = 0;
+ int best_size = -1; // Best size found.
+ int best_subdiv = -1; // Subdiv for the best size.
+
+ // Find the quadrants this fits into, and the best possible size it can fit into.
+ for (int i = 0; i < 4; i++) {
+ int q = shadow_atlas->size_order[i];
+ int sd = shadow_atlas->quadrants[q].subdivision;
+ if (sd == 0) {
+ continue; // Unused.
+ }
+
+ int max_fit = quad_size / sd;
+
+ if (best_size != -1 && max_fit > best_size) {
+ break; // Too large.
+ }
+
+ valid_quadrants[valid_quadrant_count++] = q;
+ best_subdiv = sd;
+
+ if (max_fit >= desired_fit) {
+ best_size = max_fit;
+ }
+ }
+
+ ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
+
+ uint64_t tick = OS::get_singleton()->get_ticks_msec();
+
+ uint32_t old_key = SHADOW_INVALID;
+ uint32_t old_quadrant = SHADOW_INVALID;
+ uint32_t old_shadow = SHADOW_INVALID;
+ int old_subdivision = -1;
+
+ bool should_realloc = false;
+ bool should_redraw = false;
+
+ if (shadow_atlas->shadow_owners.has(p_light_instance)) {
+ old_key = shadow_atlas->shadow_owners[p_light_instance];
+ old_quadrant = (old_key >> QUADRANT_SHIFT) & 0x3;
+ old_shadow = old_key & SHADOW_INDEX_MASK;
+
+ // Only re-allocate if a better option is available, and enough time has passed.
+ should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
+ should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version;
+
+ if (!should_realloc) {
+ shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version;
+ // Already existing, see if it should redraw or it's just OK.
+ return should_redraw;
+ }
+
+ old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision;
+ }
+
+ bool is_omni = li->light_type == RS::LIGHT_OMNI;
+ bool found_shadow = false;
+ int new_quadrant = -1;
+ int new_shadow = -1;
+
+ found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, is_omni, new_quadrant, new_shadow);
+
+ // For new shadows if we found an atlas.
+ // Or for existing shadows that found a better atlas.
+ if (found_shadow) {
+ if (old_quadrant != SHADOW_INVALID) {
+ shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0;
+ shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID();
+ }
+
+ uint32_t new_key = new_quadrant << QUADRANT_SHIFT;
+ new_key |= new_shadow;
+
+ ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
+ _shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow);
+
+ sh->owner = p_light_instance;
+ sh->owner_is_omni = is_omni;
+ sh->alloc_tick = tick;
+ sh->version = p_light_version;
+
+ li->shadow_atlases.insert(p_atlas);
+
+ // Update it in map.
+ shadow_atlas->shadow_owners[p_light_instance] = new_key;
+ // Make it dirty, as it should redraw anyway.
+ return true;
+ }
+
+ return should_redraw;
}
-bool LightStorage::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
+bool LightStorage::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, bool is_omni, int &r_quadrant, int &r_shadow) {
+ for (int i = p_quadrant_count - 1; i >= 0; i--) {
+ int qidx = p_in_quadrants[i];
+
+ if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
+ return false;
+ }
+
+ // Look for an empty space.
+ int sc = shadow_atlas->quadrants[qidx].shadows.size();
+ const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
+
+ // We have a free space in this quadrant, allocate a texture and use it.
+ if (sc > (int)shadow_atlas->quadrants[qidx].textures.size()) {
+ GLuint fbo_id = 0;
+ glGenFramebuffers(1, &fbo_id);
+ glBindFramebuffer(GL_FRAMEBUFFER, fbo_id);
+
+ GLuint texture_id = 0;
+ glGenTextures(1, &texture_id);
+ glActiveTexture(GL_TEXTURE0);
+
+ int size = (shadow_atlas->size >> 1) / shadow_atlas->quadrants[qidx].subdivision;
+
+ GLenum format = shadow_atlas->use_16_bits ? GL_DEPTH_COMPONENT16 : GL_DEPTH_COMPONENT24;
+ GLenum type = shadow_atlas->use_16_bits ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT;
+
+ if (is_omni) {
+ glBindTexture(GL_TEXTURE_CUBE_MAP, texture_id);
+ for (int id = 0; id < 6; id++) {
+ glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + id, 0, format, size / 2, size / 2, 0, GL_DEPTH_COMPONENT, type, nullptr);
+ }
+
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
+
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
+ glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
+
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X, texture_id, 0);
+
+#ifdef DEBUG_ENABLED
+ GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
+ if (status != GL_FRAMEBUFFER_COMPLETE) {
+ ERR_PRINT("Could not create omni light shadow framebuffer, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status));
+ }
+#endif
+ glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
+ } else {
+ glBindTexture(GL_TEXTURE_2D, texture_id);
+
+ glTexImage2D(GL_TEXTURE_2D, 0, format, size, size, 0, GL_DEPTH_COMPONENT, type, nullptr);
+
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
+
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, texture_id, 0);
+
+ glBindTexture(GL_TEXTURE_2D, 0);
+ }
+ glBindFramebuffer(GL_FRAMEBUFFER, 0);
+
+ r_quadrant = qidx;
+ r_shadow = shadow_atlas->quadrants[qidx].textures.size();
+
+ shadow_atlas->quadrants[qidx].textures.push_back(texture_id);
+ shadow_atlas->quadrants[qidx].fbos.push_back(fbo_id);
+
+ return true;
+ }
+
+ int found_used_idx = -1; // Found existing one, must steal it.
+ uint64_t min_pass = 0; // Pass of the existing one, try to use the least recently used one (LRU fashion).
+
+ for (int j = 0; j < sc; j++) {
+ LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
+ ERR_CONTINUE(!sli);
+
+ if (sli->last_scene_pass != RasterizerSceneGLES3::get_singleton()->get_scene_pass()) {
+ // Was just allocated, don't kill it so soon, wait a bit.
+ if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
+ continue;
+ }
+
+ if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
+ found_used_idx = j;
+ min_pass = sli->last_scene_pass;
+ }
+ }
+ }
+
+ if (found_used_idx != -1) {
+ r_quadrant = qidx;
+ r_shadow = found_used_idx;
+
+ return true;
+ }
+ }
+
return false;
}
+void LightStorage::_shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) {
+ if (p_shadow->owner.is_valid()) {
+ LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner);
+
+ p_shadow_atlas->shadow_owners.erase(p_shadow->owner);
+ p_shadow->version = 0;
+ p_shadow->owner = RID();
+ sli->shadow_atlases.erase(p_atlas);
+ }
+}
+
void LightStorage::shadow_atlas_update(RID p_atlas) {
+ // Do nothing as there is no shadow atlas texture.
}
-void LightStorage::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
+/* DIRECTIONAL SHADOW */
+
+// Create if necessary and clear.
+void LightStorage::update_directional_shadow_atlas() {
+ if (directional_shadow.depth == 0 && directional_shadow.size > 0) {
+ glGenFramebuffers(1, &directional_shadow.fbo);
+ glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
+
+ glGenTextures(1, &directional_shadow.depth);
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
+
+ GLenum format = directional_shadow.use_16_bits ? GL_DEPTH_COMPONENT16 : GL_DEPTH_COMPONENT24;
+ GLenum type = directional_shadow.use_16_bits ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT;
+
+ glTexImage2D(GL_TEXTURE_2D, 0, format, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, type, nullptr);
+
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
+
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
+ }
+ glDepthMask(GL_TRUE);
+ glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
+ RasterizerGLES3::clear_depth(1.0);
+ glClear(GL_DEPTH_BUFFER_BIT);
+
+ glBindTexture(GL_TEXTURE_2D, 0);
+ glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
-int LightStorage::get_directional_light_shadow_size(RID p_light_intance) {
- return 0;
+void LightStorage::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
+ p_size = nearest_power_of_2_templated(p_size);
+
+ if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
+ return;
+ }
+
+ directional_shadow.size = p_size;
+ directional_shadow.use_16_bits = p_16_bits;
+
+ if (directional_shadow.depth != 0) {
+ glDeleteTextures(1, &directional_shadow.depth);
+ directional_shadow.depth = 0;
+ glDeleteFramebuffers(1, &directional_shadow.fbo);
+ directional_shadow.fbo = 0;
+ }
}
void LightStorage::set_directional_shadow_count(int p_count) {
+ directional_shadow.light_count = p_count;
+ directional_shadow.current_light = 0;
+}
+
+static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
+ int split_h = 1;
+ int split_v = 1;
+
+ while (split_h * split_v < p_shadow_count) {
+ if (split_h == split_v) {
+ split_h <<= 1;
+ } else {
+ split_v <<= 1;
+ }
+ }
+
+ Rect2i rect(0, 0, p_size, p_size);
+ rect.size.width /= split_h;
+ rect.size.height /= split_v;
+
+ rect.position.x = rect.size.width * (p_shadow_index % split_h);
+ rect.position.y = rect.size.height * (p_shadow_index / split_h);
+
+ return rect;
+}
+
+Rect2i LightStorage::get_directional_shadow_rect() {
+ return _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
+}
+
+int LightStorage::get_directional_light_shadow_size(RID p_light_instance) {
+ ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
+
+ Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
+
+ LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_NULL_V(light_instance, 0);
+
+ switch (light_directional_get_shadow_mode(light_instance->light)) {
+ case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
+ break; //none
+ case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
+ r.size.height /= 2;
+ break;
+ case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
+ r.size /= 2;
+ break;
+ }
+
+ return MAX(r.size.width, r.size.height);
}
#endif // !GLES3_ENABLED
diff --git a/drivers/gles3/storage/light_storage.h b/drivers/gles3/storage/light_storage.h
index 8491b378fe..2fb4dcaeca 100644
--- a/drivers/gles3/storage/light_storage.h
+++ b/drivers/gles3/storage/light_storage.h
@@ -73,6 +73,19 @@ struct Light {
/* Light instance */
struct LightInstance {
+ struct ShadowTransform {
+ Projection camera;
+ Transform3D transform;
+ float farplane;
+ float split;
+ float bias_scale;
+ float shadow_texel_size;
+ float range_begin;
+ Rect2 atlas_rect;
+ Vector2 uv_scale;
+ };
+
+ ShadowTransform shadow_transform[6];
RS::LightType light_type = RS::LIGHT_DIRECTIONAL;
AABB aabb;
@@ -80,10 +93,6 @@ struct LightInstance {
RID light;
Transform3D transform;
- Vector3 light_vector;
- Vector3 spot_vector;
- float linear_att = 0.0;
-
uint64_t shadow_pass = 0;
uint64_t last_scene_pass = 0;
uint64_t last_scene_shadow_pass = 0;
@@ -93,7 +102,10 @@ struct LightInstance {
Rect2 directional_rect;
- uint32_t gl_id = -1;
+ HashSet<RID> shadow_atlases; // Shadow atlases where this light is registered.
+
+ int32_t gl_id = -1;
+ int32_t shadow_id = -1;
LightInstance() {}
};
@@ -144,6 +156,14 @@ struct Lightmap {
};
class LightStorage : public RendererLightStorage {
+public:
+ enum ShadowAtlastQuadrant {
+ QUADRANT_SHIFT = 27,
+ OMNI_LIGHT_FLAG = 1 << 26,
+ SHADOW_INDEX_MASK = OMNI_LIGHT_FLAG - 1,
+ SHADOW_INVALID = 0xFFFFFFFF
+ };
+
private:
static LightStorage *singleton;
@@ -162,6 +182,63 @@ private:
mutable RID_Owner<Lightmap, true> lightmap_owner;
+ /* SHADOW ATLAS */
+
+ // Note: The ShadowAtlas in the OpenGL is virtual. Each light gets assigned its
+ // own texture which is the same size as it would be if it were in a real atlas.
+ // This allows us to maintain the same behavior as the other renderers.
+
+ struct ShadowAtlas {
+ struct Quadrant {
+ uint32_t subdivision = 0;
+
+ struct Shadow {
+ RID owner;
+ bool owner_is_omni = false;
+ uint64_t version = 0;
+ uint64_t alloc_tick = 0;
+
+ Shadow() {}
+ };
+
+ Vector<Shadow> shadows;
+ LocalVector<GLuint> textures;
+ LocalVector<GLuint> fbos;
+
+ Quadrant() {}
+ } quadrants[4];
+
+ // Ordered from smallest (worst) shadow size to largest (best).
+ int size_order[4] = { 0, 1, 2, 3 };
+ uint32_t smallest_subdiv = 0;
+
+ int size = 0;
+ bool use_16_bits = true;
+
+ GLuint debug_texture = 0;
+ GLuint debug_fbo = 0;
+
+ HashMap<RID, uint32_t> shadow_owners;
+ };
+
+ uint64_t shadow_atlas_realloc_tolerance_msec = 500;
+ RID_Owner<ShadowAtlas> shadow_atlas_owner;
+
+ void _shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx);
+ bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, bool p_omni, int &r_quadrant, int &r_shadow);
+
+ /* DIRECTIONAL SHADOW */
+
+ struct DirectionalShadow {
+ GLuint depth = 0;
+ GLuint fbo = 0;
+
+ int light_count = 0;
+ int size = 0;
+ bool use_16_bits = true;
+ int current_light = 0;
+ } directional_shadow;
+
public:
static LightStorage *get_singleton();
@@ -307,15 +384,169 @@ public:
virtual void light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override;
virtual void light_instance_mark_visible(RID p_light_instance) override;
+ _FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->light;
+ }
+
+ _FORCE_INLINE_ Transform3D light_instance_get_base_transform(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->transform;
+ }
+
+ _FORCE_INLINE_ AABB light_instance_get_base_aabb(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->aabb;
+ }
+
+ _FORCE_INLINE_ void light_instance_set_cull_mask(RID p_light_instance, uint32_t p_cull_mask) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ li->cull_mask = p_cull_mask;
+ }
+
+ _FORCE_INLINE_ uint32_t light_instance_get_cull_mask(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->cull_mask;
+ }
+
+ _FORCE_INLINE_ GLuint light_instance_get_shadow_texture(RID p_light_instance, RID p_shadow_atlas) {
+#ifdef DEBUG_ENABLED
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
+#endif
+ ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
+ ERR_FAIL_NULL_V(shadow_atlas, 0);
+#ifdef DEBUG_ENABLED
+ ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
+#endif
+ uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
+
+ uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3;
+ uint32_t shadow = key & SHADOW_INDEX_MASK;
+
+ ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), 0);
+
+ return shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow);
+ }
+
+ _FORCE_INLINE_ bool light_instance_has_shadow_atlas(RID p_light_instance, RID p_shadow_atlas) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_atlases.has(p_shadow_atlas);
+ }
+
+ _FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) {
+#ifdef DEBUG_ENABLED
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
+#endif
+ ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
+ ERR_FAIL_NULL_V(shadow_atlas, 0);
+#ifdef DEBUG_ENABLED
+ ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
+#endif
+ uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
+
+ uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3;
+
+ uint32_t quadrant_size = shadow_atlas->size >> 1;
+
+ uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
+
+ return float(1.0) / shadow_size;
+ }
+
+ _FORCE_INLINE_ Projection light_instance_get_shadow_camera(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].camera;
+ }
+
+ _FORCE_INLINE_ Transform3D light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].transform;
+ }
+ _FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].bias_scale;
+ }
+ _FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].farplane;
+ }
+ _FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].range_begin;
+ }
+
+ _FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].uv_scale;
+ }
+
+ _FORCE_INLINE_ void light_instance_set_directional_shadow_atlas_rect(RID p_light_instance, int p_index, const Rect2 p_atlas_rect) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ li->shadow_transform[p_index].atlas_rect = p_atlas_rect;
+ }
+
+ _FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].atlas_rect;
+ }
+
+ _FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].split;
+ }
+
+ _FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_transform[p_index].shadow_texel_size;
+ }
+
+ _FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ li->last_pass = p_pass;
+ }
+
+ _FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->last_pass;
+ }
+
+ _FORCE_INLINE_ void light_instance_set_shadow_pass(RID p_light_instance, uint64_t p_pass) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ li->last_scene_shadow_pass = p_pass;
+ }
+
+ _FORCE_INLINE_ uint64_t light_instance_get_shadow_pass(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->last_scene_shadow_pass;
+ }
+
+ _FORCE_INLINE_ void light_instance_set_directional_rect(RID p_light_instance, const Rect2 &p_directional_rect) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ li->directional_rect = p_directional_rect;
+ }
+
+ _FORCE_INLINE_ Rect2 light_instance_get_directional_rect(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->directional_rect;
+ }
+
_FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->light_type;
}
- _FORCE_INLINE_ uint32_t light_instance_get_gl_id(RID p_light_instance) {
+
+ _FORCE_INLINE_ int32_t light_instance_get_gl_id(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->gl_id;
}
+ _FORCE_INLINE_ int32_t light_instance_get_shadow_id(RID p_light_instance) {
+ LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
+ return li->shadow_id;
+ }
+
/* PROBE API */
virtual RID reflection_probe_allocate() override;
@@ -389,23 +620,6 @@ public:
virtual void lightmap_set_probe_capture_update_speed(float p_speed) override;
virtual float lightmap_get_probe_capture_update_speed() const override;
- /* LIGHT SHADOW MAPPING */
- /*
- struct CanvasOccluder {
- RID self;
-
- GLuint vertex_id; // 0 means, unconfigured
- GLuint index_id; // 0 means, unconfigured
- LocalVector<Vector2> lines;
- int len;
- };
-
- RID_Owner<CanvasOccluder> canvas_occluder_owner;
-
- RID canvas_light_occluder_create();
- void canvas_light_occluder_set_polylines(RID p_occluder, const LocalVector<Vector2> &p_lines);
- */
-
/* LIGHTMAP INSTANCE */
virtual RID lightmap_instance_create(RID p_lightmap) override;
@@ -413,6 +627,7 @@ public:
virtual void lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) override;
/* SHADOW ATLAS API */
+ bool owns_shadow_atlas(RID p_rid) { return shadow_atlas_owner.owns(p_rid); };
virtual RID shadow_atlas_create() override;
virtual void shadow_atlas_free(RID p_atlas) override;
@@ -420,11 +635,151 @@ public:
virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override;
virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) override;
+ _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_instance) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, false);
+ return atlas->shadow_owners.has(p_light_instance);
+ }
+ _FORCE_INLINE_ uint32_t shadow_atlas_get_light_instance_key(RID p_atlas, RID p_light_instance) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, -1);
+ return atlas->shadow_owners[p_light_instance];
+ }
+
+ _FORCE_INLINE_ int shadow_atlas_get_size(RID p_atlas) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ return atlas->size;
+ }
+
+ _FORCE_INLINE_ GLuint shadow_atlas_get_debug_fb(RID p_atlas) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+
+ if (atlas->debug_fbo != 0) {
+ return atlas->debug_fbo;
+ }
+ glGenFramebuffers(1, &atlas->debug_fbo);
+ glBindFramebuffer(GL_FRAMEBUFFER, atlas->debug_fbo);
+
+ if (atlas->debug_texture == 0) {
+ atlas->debug_texture = shadow_atlas_get_debug_texture(p_atlas);
+ }
+
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, atlas->debug_texture);
+
+ glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, atlas->debug_texture, 0);
+
+ glBindFramebuffer(GL_FRAMEBUFFER, 0);
+
+ return atlas->debug_fbo;
+ }
+
+ _FORCE_INLINE_ GLuint shadow_atlas_get_debug_texture(RID p_atlas) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+
+ if (atlas->debug_texture != 0) {
+ return atlas->debug_texture;
+ }
+
+ glGenTextures(1, &atlas->debug_texture);
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, atlas->debug_texture);
+
+ glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, atlas->size, atlas->size, 0, GL_RED, GL_UNSIGNED_INT, nullptr);
+
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE);
+
+ glBindTexture(GL_TEXTURE_2D, 0);
+
+ return atlas->debug_texture;
+ }
+
+ _FORCE_INLINE_ int shadow_atlas_get_quadrant_shadows_length(RID p_atlas, uint32_t p_quadrant) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
+ return atlas->quadrants[p_quadrant].shadows.size();
+ }
+
+ _FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_shadows_allocated(RID p_atlas, uint32_t p_quadrant) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
+ return atlas->quadrants[p_quadrant].textures.size();
+ }
+
+ _FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_subdivision(RID p_atlas, uint32_t p_quadrant) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
+ return atlas->quadrants[p_quadrant].subdivision;
+ }
+
+ _FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_texture(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].textures.size(), 0);
+ return atlas->quadrants[p_quadrant].textures[p_shadow];
+ }
+
+ _FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_fb(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].fbos.size(), 0);
+ return atlas->quadrants[p_quadrant].fbos[p_shadow];
+ }
+
+ _FORCE_INLINE_ int shadow_atlas_get_quadrant_shadow_size(RID p_atlas, uint32_t p_quadrant) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, 0);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
+ return (atlas->size >> 1) / atlas->quadrants[p_quadrant].subdivision;
+ }
+
+ _FORCE_INLINE_ bool shadow_atlas_get_quadrant_shadow_is_omni(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
+ ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
+ ERR_FAIL_NULL_V(atlas, false);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, false);
+ ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, (uint32_t)atlas->quadrants[p_quadrant].shadows.size(), false);
+ return atlas->quadrants[p_quadrant].shadows[p_shadow].owner_is_omni;
+ }
+
virtual void shadow_atlas_update(RID p_atlas) override;
virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = true) override;
virtual int get_directional_light_shadow_size(RID p_light_intance) override;
virtual void set_directional_shadow_count(int p_count) override;
+
+ Rect2i get_directional_shadow_rect();
+ void update_directional_shadow_atlas();
+
+ _FORCE_INLINE_ GLuint directional_shadow_get_texture() {
+ return directional_shadow.depth;
+ }
+
+ _FORCE_INLINE_ int directional_shadow_get_size() {
+ return directional_shadow.size;
+ }
+
+ _FORCE_INLINE_ GLuint direction_shadow_get_fb() {
+ return directional_shadow.fbo;
+ }
+
+ _FORCE_INLINE_ void directional_shadow_increase_current_light() {
+ directional_shadow.current_light++;
+ }
};
} // namespace GLES3
diff --git a/scene/3d/light_3d.cpp b/scene/3d/light_3d.cpp
index 18198b566e..187ce90284 100644
--- a/scene/3d/light_3d.cpp
+++ b/scene/3d/light_3d.cpp
@@ -172,10 +172,6 @@ AABB Light3D::get_aabb() const {
PackedStringArray Light3D::get_configuration_warnings() const {
PackedStringArray warnings = VisualInstance3D::get_configuration_warnings();
- if (has_shadow() && OS::get_singleton()->get_current_rendering_method() == "gl_compatibility") {
- warnings.push_back(RTR("Shadows are not supported when using the GL Compatibility backend yet. Support will be added in a future release."));
- }
-
if (!get_scale().is_equal_approx(Vector3(1, 1, 1))) {
warnings.push_back(RTR("A light's scale does not affect the visual size of the light."));
}
diff --git a/servers/rendering/renderer_rd/storage_rd/light_storage.h b/servers/rendering/renderer_rd/storage_rd/light_storage.h
index f0b27103fb..f5b846362a 100644
--- a/servers/rendering/renderer_rd/storage_rd/light_storage.h
+++ b/servers/rendering/renderer_rd/storage_rd/light_storage.h
@@ -677,8 +677,7 @@ public:
return li->shadow_transform[p_index].camera;
}
- _FORCE_INLINE_ Transform3D
- light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
+ _FORCE_INLINE_ Transform3D light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].transform;
}
@@ -1005,15 +1004,15 @@ public:
virtual void shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits = true) override;
virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override;
virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) override;
- _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) {
+ _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_instance) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, false);
- return atlas->shadow_owners.has(p_light_intance);
+ return atlas->shadow_owners.has(p_light_instance);
}
- _FORCE_INLINE_ uint32_t shadow_atlas_get_light_instance_key(RID p_atlas, RID p_light_intance) {
+ _FORCE_INLINE_ uint32_t shadow_atlas_get_light_instance_key(RID p_atlas, RID p_light_instance) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, -1);
- return atlas->shadow_owners[p_light_intance];
+ return atlas->shadow_owners[p_light_instance];
}
_FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) {
@@ -1053,7 +1052,7 @@ public:
/* DIRECTIONAL SHADOW */
virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = true) override;
- virtual int get_directional_light_shadow_size(RID p_light_intance) override;
+ virtual int get_directional_light_shadow_size(RID p_light_instance) override;
virtual void set_directional_shadow_count(int p_count) override;
Rect2i get_directional_shadow_rect();