diff options
Diffstat (limited to 'core/math/transform_interpolator.cpp')
-rw-r--r-- | core/math/transform_interpolator.cpp | 338 |
1 files changed, 338 insertions, 0 deletions
diff --git a/core/math/transform_interpolator.cpp b/core/math/transform_interpolator.cpp index 6a564b0ca7..1cd35b3d1a 100644 --- a/core/math/transform_interpolator.cpp +++ b/core/math/transform_interpolator.cpp @@ -31,6 +31,7 @@ #include "transform_interpolator.h" #include "core/math/transform_2d.h" +#include "core/math/transform_3d.h" void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev, const Transform2D &p_curr, Transform2D &r_result, real_t p_fraction) { // Special case for physics interpolation, if flipping, don't interpolate basis. @@ -44,3 +45,340 @@ void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev, r_result = p_prev.interpolate_with(p_curr, p_fraction); } + +void TransformInterpolator::interpolate_transform_3d(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction) { + r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction); + interpolate_basis(p_prev.basis, p_curr.basis, r_result.basis, p_fraction); +} + +void TransformInterpolator::interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) { + Method method = find_method(p_prev, p_curr); + interpolate_basis_via_method(p_prev, p_curr, r_result, p_fraction, method); +} + +void TransformInterpolator::interpolate_transform_3d_via_method(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction, Method p_method) { + r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction); + interpolate_basis_via_method(p_prev.basis, p_curr.basis, r_result.basis, p_fraction, p_method); +} + +void TransformInterpolator::interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, Method p_method) { + switch (p_method) { + default: { + interpolate_basis_linear(p_prev, p_curr, r_result, p_fraction); + } break; + case INTERP_SLERP: { + r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction); + } break; + case INTERP_SCALED_SLERP: { + interpolate_basis_scaled_slerp(p_prev, p_curr, r_result, p_fraction); + } break; + } +} + +Quaternion TransformInterpolator::_basis_to_quat_unchecked(const Basis &p_basis) { + Basis m = p_basis; + real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; + real_t temp[4]; + + if (trace > 0.0) { + real_t s = Math::sqrt(trace + 1.0f); + temp[3] = (s * 0.5f); + s = 0.5f / s; + + temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); + temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); + temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); + } else { + int i = m.rows[0][0] < m.rows[1][1] + ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1) + : (m.rows[0][0] < m.rows[2][2] ? 2 : 0); + int j = (i + 1) % 3; + int k = (i + 2) % 3; + + real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f); + temp[i] = s * 0.5f; + s = 0.5f / s; + + temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; + temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; + temp[k] = (m.rows[k][i] + m.rows[i][k]) * s; + } + + return Quaternion(temp[0], temp[1], temp[2], temp[3]); +} + +Quaternion TransformInterpolator::_quat_slerp_unchecked(const Quaternion &p_from, const Quaternion &p_to, real_t p_fraction) { + Quaternion to1; + real_t omega, cosom, sinom, scale0, scale1; + + // Calculate cosine. + cosom = p_from.dot(p_to); + + // Adjust signs (if necessary) + if (cosom < 0.0f) { + cosom = -cosom; + to1.x = -p_to.x; + to1.y = -p_to.y; + to1.z = -p_to.z; + to1.w = -p_to.w; + } else { + to1.x = p_to.x; + to1.y = p_to.y; + to1.z = p_to.z; + to1.w = p_to.w; + } + + // Calculate coefficients. + + // This check could possibly be removed as we dealt with this + // case in the find_method() function, but is left for safety, it probably + // isn't a bottleneck. + if ((1.0f - cosom) > (real_t)CMP_EPSILON) { + // standard case (slerp) + omega = Math::acos(cosom); + sinom = Math::sin(omega); + scale0 = Math::sin((1.0f - p_fraction) * omega) / sinom; + scale1 = Math::sin(p_fraction * omega) / sinom; + } else { + // "from" and "to" quaternions are very close + // ... so we can do a linear interpolation + scale0 = 1.0f - p_fraction; + scale1 = p_fraction; + } + // Calculate final values. + return Quaternion( + scale0 * p_from.x + scale1 * to1.x, + scale0 * p_from.y + scale1 * to1.y, + scale0 * p_from.z + scale1 * to1.z, + scale0 * p_from.w + scale1 * to1.w); +} + +Basis TransformInterpolator::_basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction) { + Quaternion from = _basis_to_quat_unchecked(p_from); + Quaternion to = _basis_to_quat_unchecked(p_to); + + Basis b(_quat_slerp_unchecked(from, to, p_fraction)); + return b; +} + +void TransformInterpolator::interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction) { + // Normalize both and find lengths. + Vector3 lengths_prev = _basis_orthonormalize(p_prev); + Vector3 lengths_curr = _basis_orthonormalize(p_curr); + + r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction); + + // Now the result is unit length basis, we need to scale. + Vector3 lengths_lerped = lengths_prev + ((lengths_curr - lengths_prev) * p_fraction); + + // Keep a note that the column / row order of the basis is weird, + // so keep an eye for bugs with this. + r_result[0] *= lengths_lerped; + r_result[1] *= lengths_lerped; + r_result[2] *= lengths_lerped; +} + +void TransformInterpolator::interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) { + // Interpolate basis. + r_result = p_prev.lerp(p_curr, p_fraction); + + // It turns out we need to guard against zero scale basis. + // This is kind of silly, as we should probably fix the bugs elsewhere in Godot that can't deal with + // zero scale, but until that time... + for (int n = 0; n < 3; n++) { + Vector3 &axis = r_result[n]; + + // Not ok, this could cause errors due to bugs elsewhere, + // so we will bodge set this to a small value. + const real_t smallest = 0.0001f; + const real_t smallest_squared = smallest * smallest; + if (axis.length_squared() < smallest_squared) { + // Setting a different component to the smallest + // helps prevent the situation where all the axes are pointing in the same direction, + // which could be a problem for e.g. cross products... + axis[n] = smallest; + } + } +} + +// Returns length. +real_t TransformInterpolator::_vec3_normalize(Vector3 &p_vec) { + real_t lengthsq = p_vec.length_squared(); + if (lengthsq == 0.0f) { + p_vec.x = p_vec.y = p_vec.z = 0.0f; + return 0.0f; + } + real_t length = Math::sqrt(lengthsq); + p_vec.x /= length; + p_vec.y /= length; + p_vec.z /= length; + return length; +} + +// Returns lengths. +Vector3 TransformInterpolator::_basis_orthonormalize(Basis &r_basis) { + // Gram-Schmidt Process. + + Vector3 x = r_basis.get_column(0); + Vector3 y = r_basis.get_column(1); + Vector3 z = r_basis.get_column(2); + + Vector3 lengths; + + lengths.x = _vec3_normalize(x); + y = (y - x * (x.dot(y))); + lengths.y = _vec3_normalize(y); + z = (z - x * (x.dot(z)) - y * (y.dot(z))); + lengths.z = _vec3_normalize(z); + + r_basis.set_column(0, x); + r_basis.set_column(1, y); + r_basis.set_column(2, z); + + return lengths; +} + +TransformInterpolator::Method TransformInterpolator::_test_basis(Basis p_basis, bool r_needed_normalize, Quaternion &r_quat) { + // Axis lengths. + Vector3 al = Vector3(p_basis.get_column(0).length_squared(), + p_basis.get_column(1).length_squared(), + p_basis.get_column(2).length_squared()); + + // Non unit scale? + if (r_needed_normalize || !_vec3_is_equal_approx(al, Vector3(1.0, 1.0, 1.0), (real_t)0.001f)) { + // If the basis is not normalized (at least approximately), it will fail the checks needed for slerp. + // So we try to detect a scaled (but not sheared) basis, which we *can* slerp by normalizing first, + // and lerping the scales separately. + + // If any of the axes are really small, it is unlikely to be a valid rotation, or is scaled too small to deal with float error. + const real_t sl_epsilon = 0.00001f; + if ((al.x < sl_epsilon) || + (al.y < sl_epsilon) || + (al.z < sl_epsilon)) { + return INTERP_LERP; + } + + // Normalize the basis. + Basis norm_basis = p_basis; + + al.x = Math::sqrt(al.x); + al.y = Math::sqrt(al.y); + al.z = Math::sqrt(al.z); + + norm_basis.set_column(0, norm_basis.get_column(0) / al.x); + norm_basis.set_column(1, norm_basis.get_column(1) / al.y); + norm_basis.set_column(2, norm_basis.get_column(2) / al.z); + + // This doesn't appear necessary, as the later checks will catch it. + // if (!_basis_is_orthogonal_any_scale(norm_basis)) { + // return INTERP_LERP; + // } + + p_basis = norm_basis; + + // Orthonormalize not necessary as normal normalization(!) works if the + // axes are orthonormal. + // p_basis.orthonormalize(); + + // If we needed to normalize one of the two bases, we will need to normalize both, + // regardless of whether the 2nd needs it, just to make sure it takes the path to return + // INTERP_SCALED_LERP on the 2nd call of _test_basis. + r_needed_normalize = true; + } + + // Apply less stringent tests than the built in slerp, the standard Godot slerp + // is too susceptible to float error to be useful. + real_t det = p_basis.determinant(); + if (!Math::is_equal_approx(det, 1, (real_t)0.01f)) { + return INTERP_LERP; + } + + if (!_basis_is_orthogonal(p_basis)) { + return INTERP_LERP; + } + + // TODO: This could possibly be less stringent too, check this. + r_quat = _basis_to_quat_unchecked(p_basis); + if (!r_quat.is_normalized()) { + return INTERP_LERP; + } + + return r_needed_normalize ? INTERP_SCALED_SLERP : INTERP_SLERP; +} + +// This check doesn't seem to be needed but is preserved in case of bugs. +bool TransformInterpolator::_basis_is_orthogonal_any_scale(const Basis &p_basis) { + Vector3 cross = p_basis.get_column(0).cross(p_basis.get_column(1)); + real_t l = _vec3_normalize(cross); + // Too small numbers, revert to lerp. + if (l < 0.001f) { + return false; + } + + const real_t epsilon = 0.9995f; + + real_t dot = cross.dot(p_basis.get_column(2)); + if (dot < epsilon) { + return false; + } + + cross = p_basis.get_column(1).cross(p_basis.get_column(2)); + l = _vec3_normalize(cross); + // Too small numbers, revert to lerp. + if (l < 0.001f) { + return false; + } + + dot = cross.dot(p_basis.get_column(0)); + if (dot < epsilon) { + return false; + } + + return true; +} + +bool TransformInterpolator::_basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon) { + Basis identity; + Basis m = p_basis * p_basis.transposed(); + + // Less stringent tests than the standard Godot slerp. + if (!_vec3_is_equal_approx(m[0], identity[0], p_epsilon) || !_vec3_is_equal_approx(m[1], identity[1], p_epsilon) || !_vec3_is_equal_approx(m[2], identity[2], p_epsilon)) { + return false; + } + return true; +} + +real_t TransformInterpolator::checksum_transform_3d(const Transform3D &p_transform) { + // just a really basic checksum, this can probably be improved + real_t sum = _vec3_sum(p_transform.origin); + sum -= _vec3_sum(p_transform.basis.rows[0]); + sum += _vec3_sum(p_transform.basis.rows[1]); + sum -= _vec3_sum(p_transform.basis.rows[2]); + return sum; +} + +TransformInterpolator::Method TransformInterpolator::find_method(const Basis &p_a, const Basis &p_b) { + bool needed_normalize = false; + + Quaternion q0; + Method method = _test_basis(p_a, needed_normalize, q0); + if (method == INTERP_LERP) { + return method; + } + + Quaternion q1; + method = _test_basis(p_b, needed_normalize, q1); + if (method == INTERP_LERP) { + return method; + } + + // Are they close together? + // Apply the same test that will revert to lerp as is present in the slerp routine. + // Calculate cosine. + real_t cosom = Math::abs(q0.dot(q1)); + if ((1.0f - cosom) <= (real_t)CMP_EPSILON) { + return INTERP_LERP; + } + + return method; +} |