diff options
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r-- | doc/classes/Basis.xml | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index 3865e54e26..32077c0b89 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -4,7 +4,7 @@ A 3×3 matrix for representing 3D rotation and scale. </brief_description> <description> - The [Basis] built-in [Variant] type is a 3x3 [url=https://en.wikipedia.org/wiki/Matrix_(mathematics)]matrix[/url] used to represent 3D rotation, scale, and shear. It is frequently used within a [Transform3D]. + The [Basis] built-in [Variant] type is a 3×3 [url=https://en.wikipedia.org/wiki/Matrix_(mathematics)]matrix[/url] used to represent 3D rotation, scale, and shear. It is frequently used within a [Transform3D]. A [Basis] is composed by 3 axis vectors, each representing a column of the matrix: [member x], [member y], and [member z]. The length of each axis ([method Vector3.length]) influences the basis's scale, while the direction of all axes influence the rotation. Usually, these axes are perpendicular to one another. However, when you rotate any axis individually, the basis becomes sheared. Applying a sheared basis to a 3D model will make the model appear distorted. A [Basis] is [b]orthogonal[/b] if its axes are perpendicular to each other. A basis is [b]normalized[/b] if the length of every axis is [code]1[/code]. A basis is [b]uniform[/b] if all axes share the same length (see [method get_scale]). A basis is [b]orthonormal[/b] if it is both orthogonal and normalized, which allows it to only represent rotations. A basis is [b]conformal[/b] if it is both orthogonal and uniform, which ensures it is not distorted. For a general introduction, see the [url=$DOCS_URL/tutorials/math/matrices_and_transforms.html]Matrices and transforms[/url] tutorial. |