summaryrefslogtreecommitdiffstats
path: root/modules/godot_physics_2d/godot_body_pair_2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'modules/godot_physics_2d/godot_body_pair_2d.cpp')
-rw-r--r--modules/godot_physics_2d/godot_body_pair_2d.cpp608
1 files changed, 608 insertions, 0 deletions
diff --git a/modules/godot_physics_2d/godot_body_pair_2d.cpp b/modules/godot_physics_2d/godot_body_pair_2d.cpp
new file mode 100644
index 0000000000..6c2d28dc92
--- /dev/null
+++ b/modules/godot_physics_2d/godot_body_pair_2d.cpp
@@ -0,0 +1,608 @@
+/**************************************************************************/
+/* godot_body_pair_2d.cpp */
+/**************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/**************************************************************************/
+/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
+/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/**************************************************************************/
+
+#include "godot_body_pair_2d.h"
+
+#include "godot_collision_solver_2d.h"
+#include "godot_space_2d.h"
+
+#define ACCUMULATE_IMPULSES
+
+#define MIN_VELOCITY 0.001
+#define MAX_BIAS_ROTATION (Math_PI / 8)
+
+void GodotBodyPair2D::_add_contact(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_self) {
+ GodotBodyPair2D *self = static_cast<GodotBodyPair2D *>(p_self);
+
+ self->_contact_added_callback(p_point_A, p_point_B);
+}
+
+void GodotBodyPair2D::_contact_added_callback(const Vector2 &p_point_A, const Vector2 &p_point_B) {
+ Vector2 local_A = A->get_inv_transform().basis_xform(p_point_A);
+ Vector2 local_B = B->get_inv_transform().basis_xform(p_point_B - offset_B);
+
+ int new_index = contact_count;
+
+ ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));
+
+ Contact contact;
+ contact.local_A = local_A;
+ contact.local_B = local_B;
+ contact.normal = (p_point_A - p_point_B).normalized();
+ contact.used = true;
+
+ // Attempt to determine if the contact will be reused.
+ real_t recycle_radius_2 = space->get_contact_recycle_radius() * space->get_contact_recycle_radius();
+
+ for (int i = 0; i < contact_count; i++) {
+ Contact &c = contacts[i];
+ if (c.local_A.distance_squared_to(local_A) < (recycle_radius_2) &&
+ c.local_B.distance_squared_to(local_B) < (recycle_radius_2)) {
+ contact.acc_normal_impulse = c.acc_normal_impulse;
+ contact.acc_tangent_impulse = c.acc_tangent_impulse;
+ contact.acc_bias_impulse = c.acc_bias_impulse;
+ contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
+ c = contact;
+ return;
+ }
+ }
+
+ // Figure out if the contact amount must be reduced to fit the new contact.
+ if (new_index == MAX_CONTACTS) {
+ // Remove the contact with the minimum depth.
+
+ const Transform2D &transform_A = A->get_transform();
+ const Transform2D &transform_B = B->get_transform();
+
+ int least_deep = -1;
+ real_t min_depth;
+
+ // Start with depth for new contact.
+ {
+ Vector2 global_A = transform_A.basis_xform(contact.local_A);
+ Vector2 global_B = transform_B.basis_xform(contact.local_B) + offset_B;
+
+ Vector2 axis = global_A - global_B;
+ min_depth = axis.dot(contact.normal);
+ }
+
+ for (int i = 0; i < contact_count; i++) {
+ const Contact &c = contacts[i];
+ Vector2 global_A = transform_A.basis_xform(c.local_A);
+ Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
+
+ Vector2 axis = global_A - global_B;
+ real_t depth = axis.dot(c.normal);
+
+ if (depth < min_depth) {
+ min_depth = depth;
+ least_deep = i;
+ }
+ }
+
+ if (least_deep > -1) {
+ // Replace the least deep contact by the new one.
+ contacts[least_deep] = contact;
+ }
+
+ return;
+ }
+
+ contacts[new_index] = contact;
+ contact_count++;
+}
+
+void GodotBodyPair2D::_validate_contacts() {
+ // Make sure to erase contacts that are no longer valid.
+ real_t max_separation = space->get_contact_max_separation();
+ real_t max_separation2 = max_separation * max_separation;
+
+ const Transform2D &transform_A = A->get_transform();
+ const Transform2D &transform_B = B->get_transform();
+
+ for (int i = 0; i < contact_count; i++) {
+ Contact &c = contacts[i];
+
+ bool erase = false;
+ if (!c.used) {
+ // Was left behind in previous frame.
+ erase = true;
+ } else {
+ c.used = false;
+
+ Vector2 global_A = transform_A.basis_xform(c.local_A);
+ Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
+ Vector2 axis = global_A - global_B;
+ real_t depth = axis.dot(c.normal);
+
+ if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
+ erase = true;
+ }
+ }
+
+ if (erase) {
+ // Contact no longer needed, remove.
+
+ if ((i + 1) < contact_count) {
+ // Swap with the last one.
+ SWAP(contacts[i], contacts[contact_count - 1]);
+ }
+
+ i--;
+ contact_count--;
+ }
+ }
+}
+
+// _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap)
+// Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce!
+// Process: only proceed if body A's motion is high relative to its size.
+// cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does.
+// adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it.
+bool GodotBodyPair2D::_test_ccd(real_t p_step, GodotBody2D *p_A, int p_shape_A, const Transform2D &p_xform_A, GodotBody2D *p_B, int p_shape_B, const Transform2D &p_xform_B) {
+ Vector2 motion = p_A->get_linear_velocity() * p_step;
+ real_t mlen = motion.length();
+ if (mlen < CMP_EPSILON) {
+ return false;
+ }
+
+ Vector2 mnormal = motion / mlen;
+
+ real_t min = 0.0, max = 0.0;
+ p_A->get_shape(p_shape_A)->project_rangev(mnormal, p_xform_A, min, max);
+
+ // Did it move enough in this direction to even attempt raycast?
+ // Let's say it should move more than 1/3 the size of the object in that axis.
+ bool fast_object = mlen > (max - min) * 0.3;
+ if (!fast_object) {
+ return false;
+ }
+
+ // A is moving fast enough that tunneling might occur. See if it's really about to collide.
+
+ // Roughly predict body B's position in the next frame (ignoring collisions).
+ Transform2D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step);
+
+ // Cast a segment from support in motion normal, in the same direction of motion by motion length.
+ // Support point will the farthest forward collision point along the movement vector.
+ // i.e. the point that should hit B first if any collision does occur.
+
+ // convert mnormal into body A's local xform because get_support requires (and returns) local coordinates.
+ int a;
+ Vector2 s[2];
+ p_A->get_shape(p_shape_A)->get_supports(p_xform_A.basis_xform_inv(mnormal).normalized(), s, a);
+ Vector2 from = p_xform_A.xform(s[0]);
+ // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
+ // This should ensure the calculated new velocity will really cause a bit of overlap instead of just getting us very close.
+ Vector2 to = from + motion;
+
+ Transform2D from_inv = predicted_xform_B.affine_inverse();
+
+ // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
+ // At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. But it still works out.
+ Vector2 local_from = from_inv.xform(from - motion * 0.1);
+ Vector2 local_to = from_inv.xform(to);
+
+ Vector2 rpos, rnorm;
+ if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) {
+ // there was no hit. Since the segment is the length of per-frame motion, this means the bodies will not
+ // actually collide yet on next frame. We'll probably check again next frame once they're closer.
+ return false;
+ }
+
+ // Check one-way collision based on motion direction.
+ if (p_A->get_shape(p_shape_A)->allows_one_way_collision() && p_B->is_shape_set_as_one_way_collision(p_shape_B)) {
+ Vector2 direction = predicted_xform_B.columns[1].normalized();
+ if (direction.dot(mnormal) < CMP_EPSILON) {
+ collided = false;
+ oneway_disabled = true;
+ return false;
+ }
+ }
+
+ // Shorten the linear velocity so it does not hit, but gets close enough,
+ // next frame will hit softly or soft enough.
+ Vector2 hitpos = predicted_xform_B.xform(rpos);
+
+ real_t newlen = hitpos.distance_to(from) + (max - min) * 0.01; // adding 1% of body length to the distance between collision and support point should cause body A's support point to arrive just within B's collider next frame.
+ p_A->set_linear_velocity(mnormal * (newlen / p_step));
+
+ return true;
+}
+
+real_t combine_bounce(GodotBody2D *A, GodotBody2D *B) {
+ return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
+}
+
+real_t combine_friction(GodotBody2D *A, GodotBody2D *B) {
+ return ABS(MIN(A->get_friction(), B->get_friction()));
+}
+
+bool GodotBodyPair2D::setup(real_t p_step) {
+ check_ccd = false;
+
+ if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
+ collided = false;
+ return false;
+ }
+
+ collide_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && A->collides_with(B);
+ collide_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && B->collides_with(A);
+
+ report_contacts_only = false;
+ if (!collide_A && !collide_B) {
+ if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
+ report_contacts_only = true;
+ } else {
+ collided = false;
+ return false;
+ }
+ }
+
+ //use local A coordinates to avoid numerical issues on collision detection
+ offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
+
+ _validate_contacts();
+
+ const Vector2 &offset_A = A->get_transform().get_origin();
+ Transform2D xform_Au = A->get_transform().untranslated();
+ Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);
+
+ Transform2D xform_Bu = B->get_transform();
+ xform_Bu.columns[2] -= offset_A;
+ Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);
+
+ GodotShape2D *shape_A_ptr = A->get_shape(shape_A);
+ GodotShape2D *shape_B_ptr = B->get_shape(shape_B);
+
+ Vector2 motion_A, motion_B;
+
+ if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
+ motion_A = A->get_motion();
+ }
+ if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
+ motion_B = B->get_motion();
+ }
+
+ bool prev_collided = collided;
+
+ collided = GodotCollisionSolver2D::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis);
+ if (!collided) {
+ oneway_disabled = false;
+
+ if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
+ check_ccd = true;
+ return true;
+ }
+
+ if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
+ check_ccd = true;
+ return true;
+ }
+
+ return false;
+ }
+
+ if (oneway_disabled) {
+ return false;
+ }
+
+ if (!prev_collided) {
+ if (shape_B_ptr->allows_one_way_collision() && A->is_shape_set_as_one_way_collision(shape_A)) {
+ Vector2 direction = xform_A.columns[1].normalized();
+ bool valid = false;
+ for (int i = 0; i < contact_count; i++) {
+ Contact &c = contacts[i];
+ if (c.normal.dot(direction) > -CMP_EPSILON) { // Greater (normal inverted).
+ continue;
+ }
+ valid = true;
+ break;
+ }
+ if (!valid) {
+ collided = false;
+ oneway_disabled = true;
+ return false;
+ }
+ }
+
+ if (shape_A_ptr->allows_one_way_collision() && B->is_shape_set_as_one_way_collision(shape_B)) {
+ Vector2 direction = xform_B.columns[1].normalized();
+ bool valid = false;
+ for (int i = 0; i < contact_count; i++) {
+ Contact &c = contacts[i];
+ if (c.normal.dot(direction) < CMP_EPSILON) { // Less (normal ok).
+ continue;
+ }
+ valid = true;
+ break;
+ }
+ if (!valid) {
+ collided = false;
+ oneway_disabled = true;
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+bool GodotBodyPair2D::pre_solve(real_t p_step) {
+ if (oneway_disabled) {
+ return false;
+ }
+
+ if (!collided) {
+ if (check_ccd) {
+ const Vector2 &offset_A = A->get_transform().get_origin();
+ Transform2D xform_Au = A->get_transform().untranslated();
+ Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);
+
+ Transform2D xform_Bu = B->get_transform();
+ xform_Bu.columns[2] -= offset_A;
+ Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);
+
+ if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
+ _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
+ }
+
+ if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
+ _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
+ }
+ }
+
+ return false;
+ }
+
+ real_t max_penetration = space->get_contact_max_allowed_penetration();
+
+ real_t bias = space->get_contact_bias();
+
+ GodotShape2D *shape_A_ptr = A->get_shape(shape_A);
+ GodotShape2D *shape_B_ptr = B->get_shape(shape_B);
+
+ if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
+ if (shape_A_ptr->get_custom_bias() == 0) {
+ bias = shape_B_ptr->get_custom_bias();
+ } else if (shape_B_ptr->get_custom_bias() == 0) {
+ bias = shape_A_ptr->get_custom_bias();
+ } else {
+ bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
+ }
+ }
+
+ real_t inv_dt = 1.0 / p_step;
+
+ bool do_process = false;
+
+ const Vector2 &offset_A = A->get_transform().get_origin();
+ const Transform2D &transform_A = A->get_transform();
+ const Transform2D &transform_B = B->get_transform();
+
+ real_t inv_inertia_A = collide_A ? A->get_inv_inertia() : 0.0;
+ real_t inv_inertia_B = collide_B ? B->get_inv_inertia() : 0.0;
+
+ real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
+ real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
+
+ for (int i = 0; i < contact_count; i++) {
+ Contact &c = contacts[i];
+ c.active = false;
+
+ Vector2 global_A = transform_A.basis_xform(c.local_A);
+ Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
+
+ Vector2 axis = global_A - global_B;
+ real_t depth = axis.dot(c.normal);
+
+ if (depth <= 0.0) {
+ continue;
+ }
+
+#ifdef DEBUG_ENABLED
+ if (space->is_debugging_contacts()) {
+ space->add_debug_contact(global_A + offset_A);
+ space->add_debug_contact(global_B + offset_A);
+ }
+#endif
+
+ c.rA = global_A - A->get_center_of_mass();
+ c.rB = global_B - B->get_center_of_mass() - offset_B;
+
+ // Precompute normal mass, tangent mass, and bias.
+ real_t rnA = c.rA.dot(c.normal);
+ real_t rnB = c.rB.dot(c.normal);
+ real_t kNormal = inv_mass_A + inv_mass_B;
+ kNormal += inv_inertia_A * (c.rA.dot(c.rA) - rnA * rnA) + inv_inertia_B * (c.rB.dot(c.rB) - rnB * rnB);
+ c.mass_normal = 1.0f / kNormal;
+
+ Vector2 tangent = c.normal.orthogonal();
+ real_t rtA = c.rA.dot(tangent);
+ real_t rtB = c.rB.dot(tangent);
+ real_t kTangent = inv_mass_A + inv_mass_B;
+ kTangent += inv_inertia_A * (c.rA.dot(c.rA) - rtA * rtA) + inv_inertia_B * (c.rB.dot(c.rB) - rtB * rtB);
+ c.mass_tangent = 1.0f / kTangent;
+
+ c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
+ c.depth = depth;
+
+ Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent;
+
+ c.acc_impulse -= P;
+
+ if (A->can_report_contacts() || B->can_report_contacts()) {
+ Vector2 crB = Vector2(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x) + B->get_linear_velocity();
+ Vector2 crA = Vector2(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x) + A->get_linear_velocity();
+ if (A->can_report_contacts()) {
+ A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse);
+ }
+ if (B->can_report_contacts()) {
+ B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, c.acc_impulse);
+ }
+ }
+
+ if (report_contacts_only) {
+ collided = false;
+ continue;
+ }
+
+#ifdef ACCUMULATE_IMPULSES
+ {
+ // Apply normal + friction impulse
+ if (collide_A) {
+ A->apply_impulse(-P, c.rA + A->get_center_of_mass());
+ }
+ if (collide_B) {
+ B->apply_impulse(P, c.rB + B->get_center_of_mass());
+ }
+ }
+#endif
+
+ c.bounce = combine_bounce(A, B);
+ if (c.bounce) {
+ Vector2 crA(-A->get_prev_angular_velocity() * c.rA.y, A->get_prev_angular_velocity() * c.rA.x);
+ Vector2 crB(-B->get_prev_angular_velocity() * c.rB.y, B->get_prev_angular_velocity() * c.rB.x);
+ Vector2 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA;
+ c.bounce = c.bounce * dv.dot(c.normal);
+ }
+
+ c.active = true;
+ do_process = true;
+ }
+
+ return do_process;
+}
+
+void GodotBodyPair2D::solve(real_t p_step) {
+ if (!collided || oneway_disabled) {
+ return;
+ }
+
+ const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;
+
+ real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
+ real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
+
+ for (int i = 0; i < contact_count; ++i) {
+ Contact &c = contacts[i];
+
+ if (!c.active) {
+ continue;
+ }
+
+ // Relative velocity at contact
+
+ Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
+ Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
+ Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
+
+ Vector2 crbA(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
+ Vector2 crbB(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
+ Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
+
+ real_t vn = dv.dot(c.normal);
+ real_t vbn = dbv.dot(c.normal);
+
+ Vector2 tangent = c.normal.orthogonal();
+ real_t vt = dv.dot(tangent);
+
+ real_t jbn = (c.bias - vbn) * c.mass_normal;
+ real_t jbnOld = c.acc_bias_impulse;
+ c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
+
+ Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld);
+
+ if (collide_A) {
+ A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av);
+ }
+ if (collide_B) {
+ B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av);
+ }
+
+ crbA = Vector2(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
+ crbB = Vector2(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
+ dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
+
+ vbn = dbv.dot(c.normal);
+
+ if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
+ real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B);
+ real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
+ c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);
+
+ Vector2 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);
+
+ if (collide_A) {
+ A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
+ }
+ if (collide_B) {
+ B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
+ }
+ }
+
+ real_t jn = -(c.bounce + vn) * c.mass_normal;
+ real_t jnOld = c.acc_normal_impulse;
+ c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
+
+ real_t friction = combine_friction(A, B);
+
+ real_t jtMax = friction * c.acc_normal_impulse;
+ real_t jt = -vt * c.mass_tangent;
+ real_t jtOld = c.acc_tangent_impulse;
+ c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax);
+
+ Vector2 j = c.normal * (c.acc_normal_impulse - jnOld) + tangent * (c.acc_tangent_impulse - jtOld);
+
+ if (collide_A) {
+ A->apply_impulse(-j, c.rA + A->get_center_of_mass());
+ }
+ if (collide_B) {
+ B->apply_impulse(j, c.rB + B->get_center_of_mass());
+ }
+ c.acc_impulse -= j;
+ }
+}
+
+GodotBodyPair2D::GodotBodyPair2D(GodotBody2D *p_A, int p_shape_A, GodotBody2D *p_B, int p_shape_B) :
+ GodotConstraint2D(_arr, 2) {
+ A = p_A;
+ B = p_B;
+ shape_A = p_shape_A;
+ shape_B = p_shape_B;
+ space = A->get_space();
+ A->add_constraint(this, 0);
+ B->add_constraint(this, 1);
+}
+
+GodotBodyPair2D::~GodotBodyPair2D() {
+ A->remove_constraint(this, 0);
+ B->remove_constraint(this, 1);
+}