diff options
Diffstat (limited to 'modules/godot_physics_3d/godot_collision_solver_3d.cpp')
-rw-r--r-- | modules/godot_physics_3d/godot_collision_solver_3d.cpp | 589 |
1 files changed, 589 insertions, 0 deletions
diff --git a/modules/godot_physics_3d/godot_collision_solver_3d.cpp b/modules/godot_physics_3d/godot_collision_solver_3d.cpp new file mode 100644 index 0000000000..db48111eea --- /dev/null +++ b/modules/godot_physics_3d/godot_collision_solver_3d.cpp @@ -0,0 +1,589 @@ +/**************************************************************************/ +/* godot_collision_solver_3d.cpp */ +/**************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/**************************************************************************/ +/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/**************************************************************************/ + +#include "godot_collision_solver_3d.h" + +#include "godot_collision_solver_3d_sat.h" +#include "godot_soft_body_3d.h" + +#include "gjk_epa.h" + +#define collision_solver sat_calculate_penetration +//#define collision_solver gjk_epa_calculate_penetration + +bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { + const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A); + if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { + return false; + } + Plane p = p_transform_A.xform(world_boundary->get_plane()); + + static const int max_supports = 16; + Vector3 supports[max_supports]; + int support_count; + GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT; + p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type); + + if (support_type == GodotShape3D::FEATURE_CIRCLE) { + ERR_FAIL_COND_V(support_count != 3, false); + + Vector3 circle_pos = supports[0]; + Vector3 circle_axis_1 = supports[1] - circle_pos; + Vector3 circle_axis_2 = supports[2] - circle_pos; + + // Use 3 equidistant points on the circle. + for (int i = 0; i < 3; ++i) { + Vector3 vertex_pos = circle_pos; + vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0); + vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0); + supports[i] = vertex_pos; + } + } + + bool found = false; + + for (int i = 0; i < support_count; i++) { + supports[i] += p_margin * supports[i].normalized(); + supports[i] = p_transform_B.xform(supports[i]); + if (p.distance_to(supports[i]) >= 0) { + continue; + } + found = true; + + Vector3 support_A = p.project(supports[i]); + + if (p_result_callback) { + if (p_swap_result) { + Vector3 normal = (support_A - supports[i]).normalized(); + p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata); + } else { + Vector3 normal = (supports[i] - support_A).normalized(); + p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata); + } + } + } + + return found; +} + +bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { + const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A); + + Vector3 from = p_transform_A.origin; + Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin); + Vector3 support_A = to; + + Transform3D ai = p_transform_B.affine_inverse(); + + from = ai.xform(from); + to = ai.xform(to); + + Vector3 p, n; + int fi = -1; + if (!p_shape_B->intersect_segment(from, to, p, n, fi, true)) { + return false; + } + + // Discard contacts when the ray is fully contained inside the shape. + if (n == Vector3()) { + return false; + } + + // Discard contacts in the wrong direction. + if (n.dot(from - to) < CMP_EPSILON) { + return false; + } + + Vector3 support_B = p_transform_B.xform(p); + if (ray->get_slide_on_slope()) { + Vector3 global_n = ai.basis.xform_inv(n).normalized(); + support_B = support_A + (support_B - support_A).length() * global_n; + } + + if (p_result_callback) { + Vector3 normal = (support_B - support_A).normalized(); + if (p_swap_result) { + p_result_callback(support_B, 0, support_A, 0, -normal, p_userdata); + } else { + p_result_callback(support_A, 0, support_B, 0, normal, p_userdata); + } + } + return true; +} + +struct _SoftBodyContactCollisionInfo { + int node_index = 0; + GodotCollisionSolver3D::CallbackResult result_callback = nullptr; + void *userdata = nullptr; + bool swap_result = false; + int contact_count = 0; +}; + +void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { + _SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata)); + + ++cinfo.contact_count; + + if (!cinfo.result_callback) { + return; + } + + if (cinfo.swap_result) { + cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata); + } else { + cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata); + } +} + +struct _SoftBodyQueryInfo { + GodotSoftBody3D *soft_body = nullptr; + const GodotShape3D *shape_A = nullptr; + const GodotShape3D *shape_B = nullptr; + Transform3D transform_A; + Transform3D node_transform; + _SoftBodyContactCollisionInfo contact_info; +#ifdef DEBUG_ENABLED + int node_query_count = 0; + int convex_query_count = 0; +#endif +}; + +bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) { + _SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata)); + + Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index); + + Transform3D transform_B; + transform_B.origin = query_cinfo.node_transform.xform(node_position); + + query_cinfo.contact_info.node_index = p_node_index; + bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info); + +#ifdef DEBUG_ENABLED + ++query_cinfo.node_query_count; +#endif + + // Stop at first collision if contacts are not needed. + return (collided && !query_cinfo.contact_info.result_callback); +} + +bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) { + _SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata)); + + query_cinfo.shape_A = p_convex; + + // Calculate AABB for internal soft body query (in world space). + AABB shape_aabb; + for (int i = 0; i < 3; i++) { + Vector3 axis; + axis[i] = 1.0; + + real_t smin, smax; + p_convex->project_range(axis, query_cinfo.transform_A, smin, smax); + + shape_aabb.position[i] = smin; + shape_aabb.size[i] = smax - smin; + } + + shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin()); + + query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo); + + bool collided = (query_cinfo.contact_info.contact_count > 0); + +#ifdef DEBUG_ENABLED + ++query_cinfo.convex_query_count; +#endif + + // Stop at first collision if contacts are not needed. + return (collided && !query_cinfo.contact_info.result_callback); +} + +bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { + const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B); + + GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body(); + const Transform3D &world_to_local = soft_body->get_inv_transform(); + + const real_t collision_margin = soft_body->get_collision_margin(); + + GodotSphereShape3D sphere_shape; + sphere_shape.set_data(collision_margin); + + _SoftBodyQueryInfo query_cinfo; + query_cinfo.contact_info.result_callback = p_result_callback; + query_cinfo.contact_info.userdata = p_userdata; + query_cinfo.contact_info.swap_result = p_swap_result; + query_cinfo.soft_body = soft_body; + query_cinfo.node_transform = p_transform_B * world_to_local; + query_cinfo.shape_A = p_shape_A; + query_cinfo.transform_A = p_transform_A; + query_cinfo.shape_B = &sphere_shape; + + if (p_shape_A->is_concave()) { + // In case of concave shape, query convex shapes first. + const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A); + + AABB soft_body_aabb = soft_body->get_bounds(); + soft_body_aabb.grow_by(collision_margin); + + // Calculate AABB for internal concave shape query (in local space). + AABB local_aabb; + for (int i = 0; i < 3; i++) { + Vector3 axis(p_transform_A.basis.get_column(i)); + real_t axis_scale = 1.0 / axis.length(); + + real_t smin = soft_body_aabb.position[i]; + real_t smax = smin + soft_body_aabb.size[i]; + + smin *= axis_scale; + smax *= axis_scale; + + local_aabb.position[i] = smin; + local_aabb.size[i] = smax - smin; + } + + concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true); + } else { + AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb()); + shape_aabb.grow_by(collision_margin); + + soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo); + } + + return (query_cinfo.contact_info.contact_count > 0); +} + +struct _ConcaveCollisionInfo { + const Transform3D *transform_A = nullptr; + const GodotShape3D *shape_A = nullptr; + const Transform3D *transform_B = nullptr; + GodotCollisionSolver3D::CallbackResult result_callback = nullptr; + void *userdata = nullptr; + bool swap_result = false; + bool collided = false; + int aabb_tests = 0; + int collisions = 0; + bool tested = false; + real_t margin_A = 0.0f; + real_t margin_B = 0.0f; + Vector3 close_A; + Vector3 close_B; +}; + +bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) { + _ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata)); + cinfo.aabb_tests++; + + bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B); + if (!collided) { + return false; + } + + cinfo.collided = true; + cinfo.collisions++; + + // Stop at first collision if contacts are not needed. + return !cinfo.result_callback; +} + +bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) { + const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B); + + _ConcaveCollisionInfo cinfo; + cinfo.transform_A = &p_transform_A; + cinfo.shape_A = p_shape_A; + cinfo.transform_B = &p_transform_B; + cinfo.result_callback = p_result_callback; + cinfo.userdata = p_userdata; + cinfo.swap_result = p_swap_result; + cinfo.collided = false; + cinfo.collisions = 0; + cinfo.margin_A = p_margin_A; + cinfo.margin_B = p_margin_B; + + cinfo.aabb_tests = 0; + + Transform3D rel_transform = p_transform_A; + rel_transform.origin -= p_transform_B.origin; + + //quickly compute a local AABB + + AABB local_aabb; + for (int i = 0; i < 3; i++) { + Vector3 axis(p_transform_B.basis.get_column(i)); + real_t axis_scale = 1.0 / axis.length(); + axis *= axis_scale; + + real_t smin = 0.0, smax = 0.0; + p_shape_A->project_range(axis, rel_transform, smin, smax); + smin -= p_margin_A; + smax += p_margin_A; + smin *= axis_scale; + smax *= axis_scale; + + local_aabb.position[i] = smin; + local_aabb.size[i] = smax - smin; + } + + concave_B->cull(local_aabb, concave_callback, &cinfo, false); + + return cinfo.collided; +} + +bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { + PhysicsServer3D::ShapeType type_A = p_shape_A->get_type(); + PhysicsServer3D::ShapeType type_B = p_shape_B->get_type(); + bool concave_A = p_shape_A->is_concave(); + bool concave_B = p_shape_B->is_concave(); + + bool swap = false; + + if (type_A > type_B) { + SWAP(type_A, type_B); + SWAP(concave_A, concave_B); + swap = true; + } + + if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { + if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { + WARN_PRINT_ONCE("Collisions between world boundaries are not supported."); + return false; + } + if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) { + WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported."); + return false; + } + if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) { + WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported."); + return false; + } + + if (swap) { + return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A); + } else { + return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B); + } + + } else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) { + if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) { + WARN_PRINT_ONCE("Collisions between rays are not supported."); + return false; + } + + if (swap) { + return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B); + } else { + return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A); + } + + } else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) { + if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) { + WARN_PRINT_ONCE("Collisions between soft bodies are not supported."); + return false; + } + + if (swap) { + return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); + } else { + return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); + } + + } else if (concave_B) { + if (concave_A) { + WARN_PRINT_ONCE("Collisions between two concave shapes are not supported."); + return false; + } + + if (!swap) { + return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B); + } else { + return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B); + } + + } else { + return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B); + } +} + +bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) { + _ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata)); + cinfo.aabb_tests++; + + Vector3 close_A, close_B; + cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B); + + if (cinfo.collided) { + // No need to process any more result. + return true; + } + + if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) { + cinfo.close_A = close_A; + cinfo.close_B = close_B; + cinfo.tested = true; + } + + cinfo.collisions++; + return false; +} + +bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) { + const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A); + if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { + return false; + } + Plane p = p_transform_A.xform(world_boundary->get_plane()); + + static const int max_supports = 16; + Vector3 supports[max_supports]; + int support_count; + GodotShape3D::FeatureType support_type; + Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized(); + + p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type); + + if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D. + Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction)); + r_point_A = p.project(support_B); + r_point_B = support_B; + bool collided = p.distance_to(support_B) <= 0; + return collided; + } + + if (support_type == GodotShape3D::FEATURE_CIRCLE) { + ERR_FAIL_COND_V(support_count != 3, false); + + Vector3 circle_pos = supports[0]; + Vector3 circle_axis_1 = supports[1] - circle_pos; + Vector3 circle_axis_2 = supports[2] - circle_pos; + + // Use 3 equidistant points on the circle. + for (int i = 0; i < 3; ++i) { + Vector3 vertex_pos = circle_pos; + vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0); + vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0); + supports[i] = vertex_pos; + } + } + + bool collided = false; + Vector3 closest; + real_t closest_d = 0; + + for (int i = 0; i < support_count; i++) { + supports[i] = p_transform_B.xform(supports[i]); + real_t d = p.distance_to(supports[i]); + if (i == 0 || d < closest_d) { + closest = supports[i]; + closest_d = d; + if (d <= 0) { + collided = true; + } + } + } + + r_point_A = p.project(closest); + r_point_B = closest; + + return collided; +} + +bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) { + if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { + Vector3 a, b; + bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b); + r_point_A = b; + r_point_B = a; + return !col; + + } else if (p_shape_B->is_concave()) { + if (p_shape_A->is_concave()) { + return false; + } + + const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B); + + _ConcaveCollisionInfo cinfo; + cinfo.transform_A = &p_transform_A; + cinfo.shape_A = p_shape_A; + cinfo.transform_B = &p_transform_B; + cinfo.result_callback = nullptr; + cinfo.userdata = nullptr; + cinfo.swap_result = false; + cinfo.collided = false; + cinfo.collisions = 0; + cinfo.aabb_tests = 0; + cinfo.tested = false; + + Transform3D rel_transform = p_transform_A; + rel_transform.origin -= p_transform_B.origin; + + //quickly compute a local AABB + + bool use_cc_hint = p_concave_hint != AABB(); + AABB cc_hint_aabb; + if (use_cc_hint) { + cc_hint_aabb = p_concave_hint; + cc_hint_aabb.position -= p_transform_B.origin; + } + + AABB local_aabb; + for (int i = 0; i < 3; i++) { + Vector3 axis(p_transform_B.basis.get_column(i)); + real_t axis_scale = ((real_t)1.0) / axis.length(); + axis *= axis_scale; + + real_t smin, smax; + + if (use_cc_hint) { + cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax); + } else { + p_shape_A->project_range(axis, rel_transform, smin, smax); + } + + smin *= axis_scale; + smax *= axis_scale; + + local_aabb.position[i] = smin; + local_aabb.size[i] = smax - smin; + } + + concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false); + if (!cinfo.collided) { + r_point_A = cinfo.close_A; + r_point_B = cinfo.close_B; + } + + return !cinfo.collided; + } else { + return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis.. + } +} |