diff options
Diffstat (limited to 'modules/godot_physics_3d/joints/godot_generic_6dof_joint_3d.cpp')
-rw-r--r-- | modules/godot_physics_3d/joints/godot_generic_6dof_joint_3d.cpp | 675 |
1 files changed, 675 insertions, 0 deletions
diff --git a/modules/godot_physics_3d/joints/godot_generic_6dof_joint_3d.cpp b/modules/godot_physics_3d/joints/godot_generic_6dof_joint_3d.cpp new file mode 100644 index 0000000000..226f8a0f7f --- /dev/null +++ b/modules/godot_physics_3d/joints/godot_generic_6dof_joint_3d.cpp @@ -0,0 +1,675 @@ +/**************************************************************************/ +/* godot_generic_6dof_joint_3d.cpp */ +/**************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/**************************************************************************/ +/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/**************************************************************************/ + +/* +Adapted to Godot from the Bullet library. +*/ + +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +/* +2007-09-09 +GodotGeneric6DOFJoint3D Refactored by Francisco Le?n +email: projectileman@yahoo.com +http://gimpact.sf.net +*/ + +#include "godot_generic_6dof_joint_3d.h" + +#define GENERIC_D6_DISABLE_WARMSTARTING 1 + +//////////////////////////// GodotG6DOFRotationalLimitMotor3D //////////////////////////////////// + +int GodotG6DOFRotationalLimitMotor3D::testLimitValue(real_t test_value) { + if (m_loLimit > m_hiLimit) { + m_currentLimit = 0; //Free from violation + return 0; + } + + if (test_value < m_loLimit) { + m_currentLimit = 1; //low limit violation + m_currentLimitError = test_value - m_loLimit; + return 1; + } else if (test_value > m_hiLimit) { + m_currentLimit = 2; //High limit violation + m_currentLimitError = test_value - m_hiLimit; + return 2; + }; + + m_currentLimit = 0; //Free from violation + return 0; +} + +real_t GodotG6DOFRotationalLimitMotor3D::solveAngularLimits( + real_t timeStep, Vector3 &axis, real_t jacDiagABInv, + GodotBody3D *body0, GodotBody3D *body1, bool p_body0_dynamic, bool p_body1_dynamic) { + if (!needApplyTorques()) { + return 0.0f; + } + + real_t target_velocity = m_targetVelocity; + real_t maxMotorForce = m_maxMotorForce; + + //current error correction + if (m_currentLimit != 0) { + target_velocity = -m_ERP * m_currentLimitError / (timeStep); + maxMotorForce = m_maxLimitForce; + } + + maxMotorForce *= timeStep; + + // current velocity difference + Vector3 vel_diff = body0->get_angular_velocity(); + if (body1) { + vel_diff -= body1->get_angular_velocity(); + } + + real_t rel_vel = axis.dot(vel_diff); + + // correction velocity + real_t motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel); + + if (Math::is_zero_approx(motor_relvel)) { + return 0.0f; //no need for applying force + } + + // correction impulse + real_t unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv; + + // clip correction impulse + real_t clippedMotorImpulse; + + ///@todo: should clip against accumulated impulse + if (unclippedMotorImpulse > 0.0f) { + clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse; + } else { + clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse; + } + + // sort with accumulated impulses + real_t lo = real_t(-1e30); + real_t hi = real_t(1e30); + + real_t oldaccumImpulse = m_accumulatedImpulse; + real_t sum = oldaccumImpulse + clippedMotorImpulse; + m_accumulatedImpulse = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum); + + clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; + + Vector3 motorImp = clippedMotorImpulse * axis; + + if (p_body0_dynamic) { + body0->apply_torque_impulse(motorImp); + } + if (body1 && p_body1_dynamic) { + body1->apply_torque_impulse(-motorImp); + } + + return clippedMotorImpulse; +} + +//////////////////////////// GodotG6DOFTranslationalLimitMotor3D //////////////////////////////////// + +real_t GodotG6DOFTranslationalLimitMotor3D::solveLinearAxis( + real_t timeStep, + real_t jacDiagABInv, + GodotBody3D *body1, const Vector3 &pointInA, + GodotBody3D *body2, const Vector3 &pointInB, + bool p_body1_dynamic, bool p_body2_dynamic, + int limit_index, + const Vector3 &axis_normal_on_a, + const Vector3 &anchorPos) { + ///find relative velocity + // Vector3 rel_pos1 = pointInA - body1->get_transform().origin; + // Vector3 rel_pos2 = pointInB - body2->get_transform().origin; + Vector3 rel_pos1 = anchorPos - body1->get_transform().origin; + Vector3 rel_pos2 = anchorPos - body2->get_transform().origin; + + Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1); + Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2); + Vector3 vel = vel1 - vel2; + + real_t rel_vel = axis_normal_on_a.dot(vel); + + /// apply displacement correction + + //positional error (zeroth order error) + real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a); + real_t lo = real_t(-1e30); + real_t hi = real_t(1e30); + + real_t minLimit = m_lowerLimit[limit_index]; + real_t maxLimit = m_upperLimit[limit_index]; + + //handle the limits + if (minLimit < maxLimit) { + { + if (depth > maxLimit) { + depth -= maxLimit; + lo = real_t(0.); + + } else { + if (depth < minLimit) { + depth -= minLimit; + hi = real_t(0.); + } else { + return 0.0f; + } + } + } + } + + real_t normalImpulse = m_limitSoftness[limit_index] * (m_restitution[limit_index] * depth / timeStep - m_damping[limit_index] * rel_vel) * jacDiagABInv; + + real_t oldNormalImpulse = m_accumulatedImpulse[limit_index]; + real_t sum = oldNormalImpulse + normalImpulse; + m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum); + normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; + + Vector3 impulse_vector = axis_normal_on_a * normalImpulse; + if (p_body1_dynamic) { + body1->apply_impulse(impulse_vector, rel_pos1); + } + if (p_body2_dynamic) { + body2->apply_impulse(-impulse_vector, rel_pos2); + } + return normalImpulse; +} + +//////////////////////////// GodotGeneric6DOFJoint3D //////////////////////////////////// + +GodotGeneric6DOFJoint3D::GodotGeneric6DOFJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &frameInA, const Transform3D &frameInB, bool useLinearReferenceFrameA) : + GodotJoint3D(_arr, 2), + m_frameInA(frameInA), + m_frameInB(frameInB), + m_useLinearReferenceFrameA(useLinearReferenceFrameA) { + A = rbA; + B = rbB; + A->add_constraint(this, 0); + B->add_constraint(this, 1); +} + +void GodotGeneric6DOFJoint3D::calculateAngleInfo() { + Basis relative_frame = m_calculatedTransformB.basis.inverse() * m_calculatedTransformA.basis; + + m_calculatedAxisAngleDiff = relative_frame.get_euler(EulerOrder::XYZ); + + // in euler angle mode we do not actually constrain the angular velocity + // along the axes axis[0] and axis[2] (although we do use axis[1]) : + // + // to get constrain w2-w1 along ...not + // ------ --------------------- ------ + // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] + // d(angle[1])/dt = 0 ax[1] + // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] + // + // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. + // to prove the result for angle[0], write the expression for angle[0] from + // GetInfo1 then take the derivative. to prove this for angle[2] it is + // easier to take the euler rate expression for d(angle[2])/dt with respect + // to the components of w and set that to 0. + + Vector3 axis0 = m_calculatedTransformB.basis.get_column(0); + Vector3 axis2 = m_calculatedTransformA.basis.get_column(2); + + m_calculatedAxis[1] = axis2.cross(axis0); + m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); + m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); + + /* + if(m_debugDrawer) + { + char buff[300]; + sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ", + m_calculatedAxisAngleDiff[0], + m_calculatedAxisAngleDiff[1], + m_calculatedAxisAngleDiff[2]); + m_debugDrawer->reportErrorWarning(buff); + } + */ +} + +void GodotGeneric6DOFJoint3D::calculateTransforms() { + m_calculatedTransformA = A->get_transform() * m_frameInA; + m_calculatedTransformB = B->get_transform() * m_frameInB; + + calculateAngleInfo(); +} + +void GodotGeneric6DOFJoint3D::buildLinearJacobian( + GodotJacobianEntry3D &jacLinear, const Vector3 &normalWorld, + const Vector3 &pivotAInW, const Vector3 &pivotBInW) { + memnew_placement( + &jacLinear, + GodotJacobianEntry3D( + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + pivotAInW - A->get_transform().origin - A->get_center_of_mass(), + pivotBInW - B->get_transform().origin - B->get_center_of_mass(), + normalWorld, + A->get_inv_inertia(), + A->get_inv_mass(), + B->get_inv_inertia(), + B->get_inv_mass())); +} + +void GodotGeneric6DOFJoint3D::buildAngularJacobian( + GodotJacobianEntry3D &jacAngular, const Vector3 &jointAxisW) { + memnew_placement( + &jacAngular, + GodotJacobianEntry3D( + jointAxisW, + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + A->get_inv_inertia(), + B->get_inv_inertia())); +} + +bool GodotGeneric6DOFJoint3D::testAngularLimitMotor(int axis_index) { + real_t angle = m_calculatedAxisAngleDiff[axis_index]; + + //test limits + m_angularLimits[axis_index].testLimitValue(angle); + return m_angularLimits[axis_index].needApplyTorques(); +} + +bool GodotGeneric6DOFJoint3D::setup(real_t p_timestep) { + dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); + dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); + + if (!dynamic_A && !dynamic_B) { + return false; + } + + // Clear accumulated impulses for the next simulation step + m_linearLimits.m_accumulatedImpulse = Vector3(real_t(0.), real_t(0.), real_t(0.)); + int i; + for (i = 0; i < 3; i++) { + m_angularLimits[i].m_accumulatedImpulse = real_t(0.); + } + //calculates transform + calculateTransforms(); + + // const Vector3& pivotAInW = m_calculatedTransformA.origin; + // const Vector3& pivotBInW = m_calculatedTransformB.origin; + calcAnchorPos(); + Vector3 pivotAInW = m_AnchorPos; + Vector3 pivotBInW = m_AnchorPos; + + // not used here + // Vector3 rel_pos1 = pivotAInW - A->get_transform().origin; + // Vector3 rel_pos2 = pivotBInW - B->get_transform().origin; + + Vector3 normalWorld; + //linear part + for (i = 0; i < 3; i++) { + if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) { + if (m_useLinearReferenceFrameA) { + normalWorld = m_calculatedTransformA.basis.get_column(i); + } else { + normalWorld = m_calculatedTransformB.basis.get_column(i); + } + + buildLinearJacobian( + m_jacLinear[i], normalWorld, + pivotAInW, pivotBInW); + } + } + + // angular part + for (i = 0; i < 3; i++) { + //calculates error angle + if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i)) { + normalWorld = getAxis(i); + // Create angular atom + buildAngularJacobian(m_jacAng[i], normalWorld); + } + } + + return true; +} + +void GodotGeneric6DOFJoint3D::solve(real_t p_timestep) { + m_timeStep = p_timestep; + + //calculateTransforms(); + + int i; + + // linear + + Vector3 pointInA = m_calculatedTransformA.origin; + Vector3 pointInB = m_calculatedTransformB.origin; + + real_t jacDiagABInv; + Vector3 linear_axis; + for (i = 0; i < 3; i++) { + if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) { + jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal(); + + if (m_useLinearReferenceFrameA) { + linear_axis = m_calculatedTransformA.basis.get_column(i); + } else { + linear_axis = m_calculatedTransformB.basis.get_column(i); + } + + m_linearLimits.solveLinearAxis( + m_timeStep, + jacDiagABInv, + A, pointInA, + B, pointInB, + dynamic_A, dynamic_B, + i, linear_axis, m_AnchorPos); + } + } + + // angular + Vector3 angular_axis; + real_t angularJacDiagABInv; + for (i = 0; i < 3; i++) { + if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques()) { + // get axis + angular_axis = getAxis(i); + + angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal(); + + m_angularLimits[i].solveAngularLimits(m_timeStep, angular_axis, angularJacDiagABInv, A, B, dynamic_A, dynamic_B); + } + } +} + +void GodotGeneric6DOFJoint3D::updateRHS(real_t timeStep) { + (void)timeStep; +} + +Vector3 GodotGeneric6DOFJoint3D::getAxis(int axis_index) const { + return m_calculatedAxis[axis_index]; +} + +real_t GodotGeneric6DOFJoint3D::getAngle(int axis_index) const { + return m_calculatedAxisAngleDiff[axis_index]; +} + +void GodotGeneric6DOFJoint3D::calcAnchorPos() { + real_t imA = A->get_inv_mass(); + real_t imB = B->get_inv_mass(); + real_t weight; + if (imB == real_t(0.0)) { + weight = real_t(1.0); + } else { + weight = imA / (imA + imB); + } + const Vector3 &pA = m_calculatedTransformA.origin; + const Vector3 &pB = m_calculatedTransformB.origin; + m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight); +} + +void GodotGeneric6DOFJoint3D::set_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param, real_t p_value) { + ERR_FAIL_INDEX(p_axis, 3); + switch (p_param) { + case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: { + m_linearLimits.m_lowerLimit[p_axis] = p_value; + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: { + m_linearLimits.m_upperLimit[p_axis] = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: { + m_linearLimits.m_limitSoftness[p_axis] = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: { + m_linearLimits.m_restitution[p_axis] = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: { + m_linearLimits.m_damping[p_axis] = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: { + m_angularLimits[p_axis].m_loLimit = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: { + m_angularLimits[p_axis].m_hiLimit = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: { + m_angularLimits[p_axis].m_limitSoftness = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: { + m_angularLimits[p_axis].m_damping = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: { + m_angularLimits[p_axis].m_bounce = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: { + m_angularLimits[p_axis].m_maxLimitForce = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: { + m_angularLimits[p_axis].m_ERP = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: { + m_angularLimits[p_axis].m_targetVelocity = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: { + m_angularLimits[p_axis].m_maxLimitForce = p_value; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_MAX: + break; // Can't happen, but silences warning + } +} + +real_t GodotGeneric6DOFJoint3D::get_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param) const { + ERR_FAIL_INDEX_V(p_axis, 3, 0); + switch (p_param) { + case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: { + return m_linearLimits.m_lowerLimit[p_axis]; + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: { + return m_linearLimits.m_upperLimit[p_axis]; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: { + return m_linearLimits.m_limitSoftness[p_axis]; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: { + return m_linearLimits.m_restitution[p_axis]; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: { + return m_linearLimits.m_damping[p_axis]; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: { + return m_angularLimits[p_axis].m_loLimit; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: { + return m_angularLimits[p_axis].m_hiLimit; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: { + return m_angularLimits[p_axis].m_limitSoftness; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: { + return m_angularLimits[p_axis].m_damping; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: { + return m_angularLimits[p_axis].m_bounce; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: { + return m_angularLimits[p_axis].m_maxLimitForce; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: { + return m_angularLimits[p_axis].m_ERP; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: { + return m_angularLimits[p_axis].m_targetVelocity; + + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: { + return m_angularLimits[p_axis].m_maxMotorForce; + + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_MAX: + break; // Can't happen, but silences warning + } + return 0; +} + +void GodotGeneric6DOFJoint3D::set_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag, bool p_value) { + ERR_FAIL_INDEX(p_axis, 3); + + switch (p_flag) { + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: { + m_linearLimits.enable_limit[p_axis] = p_value; + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: { + m_angularLimits[p_axis].m_enableLimit = p_value; + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: { + m_angularLimits[p_axis].m_enableMotor = p_value; + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX: + break; // Can't happen, but silences warning + } +} + +bool GodotGeneric6DOFJoint3D::get_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag) const { + ERR_FAIL_INDEX_V(p_axis, 3, 0); + switch (p_flag) { + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: { + return m_linearLimits.enable_limit[p_axis]; + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: { + return m_angularLimits[p_axis].m_enableLimit; + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: { + return m_angularLimits[p_axis].m_enableMotor; + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: { + // Not implemented in GodotPhysics3D backend + } break; + case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX: + break; // Can't happen, but silences warning + } + + return false; +} |