summaryrefslogtreecommitdiffstats
path: root/modules/lightmapper_rd/lm_compute.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'modules/lightmapper_rd/lm_compute.glsl')
-rw-r--r--modules/lightmapper_rd/lm_compute.glsl202
1 files changed, 151 insertions, 51 deletions
diff --git a/modules/lightmapper_rd/lm_compute.glsl b/modules/lightmapper_rd/lm_compute.glsl
index 1d088450e9..2c85fff6f3 100644
--- a/modules/lightmapper_rd/lm_compute.glsl
+++ b/modules/lightmapper_rd/lm_compute.glsl
@@ -6,6 +6,7 @@ dilate = "#define MODE_DILATE";
unocclude = "#define MODE_UNOCCLUDE";
light_probes = "#define MODE_LIGHT_PROBES";
denoise = "#define MODE_DENOISE";
+pack_coeffs = "#define MODE_PACK_L1_COEFFS";
#[compute]
@@ -63,7 +64,7 @@ layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light;
layout(set = 1, binding = 5) uniform texture2D environment;
#endif
-#if defined(MODE_DILATE) || defined(MODE_DENOISE)
+#if defined(MODE_DILATE) || defined(MODE_DENOISE) || defined(MODE_PACK_L1_COEFFS)
layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
layout(set = 1, binding = 1) uniform texture2DArray source_light;
#endif
@@ -76,6 +77,7 @@ layout(set = 1, binding = 3) uniform DenoiseParams {
float albedo_bandwidth;
float normal_bandwidth;
+ int half_search_window;
float filter_strength;
}
denoise_params;
@@ -358,7 +360,36 @@ float get_omni_attenuation(float distance, float inv_range, float decay) {
return nd * pow(max(distance, 0.0001), -decay);
}
-void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise) {
+const int AA_SAMPLES = 16;
+
+const vec2 halton_map[AA_SAMPLES] = vec2[](
+ vec2(0.5, 0.33333333),
+ vec2(0.25, 0.66666667),
+ vec2(0.75, 0.11111111),
+ vec2(0.125, 0.44444444),
+ vec2(0.625, 0.77777778),
+ vec2(0.375, 0.22222222),
+ vec2(0.875, 0.55555556),
+ vec2(0.0625, 0.88888889),
+ vec2(0.5625, 0.03703704),
+ vec2(0.3125, 0.37037037),
+ vec2(0.8125, 0.7037037),
+ vec2(0.1875, 0.14814815),
+ vec2(0.6875, 0.48148148),
+ vec2(0.4375, 0.81481481),
+ vec2(0.9375, 0.25925926),
+ vec2(0.03125, 0.59259259));
+
+vec2 get_vogel_disk(float p_i, float p_rotation, float p_sample_count_sqrt) {
+ const float golden_angle = 2.4;
+
+ float r = sqrt(p_i + 0.5) / p_sample_count_sqrt;
+ float theta = p_i * golden_angle + p_rotation;
+
+ return vec2(cos(theta), sin(theta)) * r;
+}
+
+void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise, float p_texel_size) {
r_light = vec3(0.0f);
vec3 light_pos;
@@ -406,46 +437,70 @@ void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool
}
float penumbra = 0.0;
- if ((light_data.size > 0.0) && p_soft_shadowing) {
+ if (p_soft_shadowing) {
+ const bool use_soft_shadows = (light_data.size > 0.0);
+ const uint ray_count = AA_SAMPLES;
+ const uint total_ray_count = use_soft_shadows ? params.ray_count : ray_count;
+ const uint shadowing_rays_check_penumbra_denom = 2;
+ const uint shadowing_ray_count = max(1, params.ray_count / ray_count);
+ const float shadowing_ray_count_sqrt = sqrt(float(total_ray_count));
+
+ // Setup tangent pass to calculate AA samples over the current texel.
+ vec3 aux = p_normal.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
+ vec3 tangent = normalize(cross(p_normal, aux));
+ vec3 bitan = normalize(cross(p_normal, tangent));
+
+ // Setup light tangent pass to calculate samples over disk aligned towards the light
vec3 light_to_point = -r_light_dir;
- vec3 aux = light_to_point.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
- vec3 light_to_point_tan = normalize(cross(light_to_point, aux));
+ vec3 light_aux = light_to_point.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
+ vec3 light_to_point_tan = normalize(cross(light_to_point, light_aux));
vec3 light_to_point_bitan = normalize(cross(light_to_point, light_to_point_tan));
- const uint shadowing_rays_check_penumbra_denom = 2;
- uint shadowing_ray_count = p_soft_shadowing ? params.ray_count : 1;
-
uint hits = 0;
- vec3 light_disk_to_point = light_to_point;
- for (uint j = 0; j < shadowing_ray_count; j++) {
- // Optimization:
- // Once already traced an important proportion of rays, if all are hits or misses,
- // assume we're not in the penumbra so we can infer the rest would have the same result
- if (p_soft_shadowing) {
- if (j == shadowing_ray_count / shadowing_rays_check_penumbra_denom) {
- if (hits == j) {
- // Assume totally lit
- hits = shadowing_ray_count;
- break;
- } else if (hits == 0) {
- // Assume totally dark
- hits = 0;
- break;
+ for (uint i = 0; i < ray_count; i++) {
+ // Create a random sample within the texel.
+ vec2 disk_sample = (halton_map[i] - vec2(0.5)) * p_texel_size * light_data.shadow_blur;
+ // Align the sample to world space.
+ vec3 disk_aligned = (disk_sample.x * tangent + disk_sample.y * bitan);
+ vec3 origin = p_position - disk_aligned;
+ vec3 light_dir = normalize(light_pos - origin);
+
+ if (use_soft_shadows) {
+ uint soft_shadow_hits = 0;
+ for (uint j = 0; j < shadowing_ray_count; j++) {
+ // Optimization:
+ // Once already traced an important proportion of rays, if all are hits or misses,
+ // assume we're not in the penumbra so we can infer the rest would have the same result.
+ if (j == shadowing_ray_count / shadowing_rays_check_penumbra_denom) {
+ if (soft_shadow_hits == j) {
+ // Assume totally lit
+ soft_shadow_hits = shadowing_ray_count;
+ break;
+ } else if (soft_shadow_hits == 0) {
+ // Assume totally dark
+ soft_shadow_hits = 0;
+ break;
+ }
}
- }
- }
-
- float r = randomize(r_noise);
- float a = randomize(r_noise) * 2.0 * PI;
- vec2 disk_sample = (r * vec2(cos(a), sin(a))) * soft_shadowing_disk_size * light_data.shadow_blur;
- light_disk_to_point = normalize(light_to_point + disk_sample.x * light_to_point_tan + disk_sample.y * light_to_point_bitan);
- if (trace_ray_any_hit(p_position - light_disk_to_point * bake_params.bias, p_position - light_disk_to_point * dist) == RAY_MISS) {
- hits++;
+ float a = randomize(r_noise) * 2.0 * PI;
+ float vogel_index = float(total_ray_count - 1 - (i * shadowing_ray_count + j)); // Start from (total_ray_count - 1) so we check the outer points first.
+ vec2 light_disk_sample = (get_vogel_disk(vogel_index, a, shadowing_ray_count_sqrt)) * soft_shadowing_disk_size * light_data.shadow_blur;
+ vec3 light_disk_to_point = normalize(light_to_point + light_disk_sample.x * light_to_point_tan + light_disk_sample.y * light_to_point_bitan);
+ // Offset the ray origin for AA, offset the light position for soft shadows.
+ if (trace_ray_any_hit(origin - light_disk_to_point * (bake_params.bias + length(disk_sample)), p_position - light_disk_to_point * dist) == RAY_MISS) {
+ soft_shadow_hits++;
+ }
+ }
+ hits += soft_shadow_hits;
+ } else {
+ // Offset the ray origin based on the disk. Also increase the bias for further samples to avoid bleeding.
+ if (trace_ray_any_hit(origin + light_dir * (bake_params.bias + length(disk_sample)), light_pos) == RAY_MISS) {
+ hits++;
+ }
}
}
-
- penumbra = float(hits) / float(shadowing_ray_count);
+ penumbra = float(hits) / float(total_ray_count);
} else {
if (trace_ray_any_hit(p_position + r_light_dir * bake_params.bias, light_pos) == RAY_MISS) {
penumbra = 1.0;
@@ -469,7 +524,7 @@ vec3 trace_environment_color(vec3 ray_dir) {
return textureLod(sampler2D(environment, linear_sampler), st / vec2(PI * 2.0, PI), 0.0).rgb;
}
-vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise) {
+vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise, float p_texel_size) {
// The lower limit considers the case where the lightmapper might have bounces disabled but light probes are requested.
vec3 position = p_position;
vec3 ray_dir = p_ray_dir;
@@ -501,7 +556,7 @@ vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise) {
for (uint i = 0; i < bake_params.light_count; i++) {
vec3 light;
vec3 light_dir;
- trace_direct_light(position, normal, i, false, light, light_dir, r_noise);
+ trace_direct_light(position, normal, i, false, light, light_dir, r_noise, p_texel_size);
direct_light += light * lights.data[i].indirect_energy;
}
@@ -565,6 +620,14 @@ void main() {
return; //empty texel, no process
}
vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
+ vec4 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0).xyzw;
+
+ if (neighbor_position.w < 0.001) {
+ // Empty texel, try again.
+ neighbor_position.xyz = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0).xyz;
+ }
+ float texel_size_world_space = distance(position, neighbor_position.xyz);
+
vec3 light_for_texture = vec3(0.0);
vec3 light_for_bounces = vec3(0.0);
@@ -581,21 +644,26 @@ void main() {
for (uint i = 0; i < bake_params.light_count; i++) {
vec3 light;
vec3 light_dir;
- trace_direct_light(position, normal, i, true, light, light_dir, noise);
+ trace_direct_light(position, normal, i, true, light, light_dir, noise, texel_size_world_space);
if (lights.data[i].static_bake) {
light_for_texture += light;
#ifdef USE_SH_LIGHTMAPS
+ // These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
+ // LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
+ // L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
+ // Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
+
float c[4] = float[](
- 0.282095, //l0
- 0.488603 * light_dir.y, //l1n1
- 0.488603 * light_dir.z, //l1n0
- 0.488603 * light_dir.x //l1p1
+ 0.25, //l0
+ light_dir.y, //l1n1
+ light_dir.z, //l1n0
+ light_dir.x //l1p1
);
for (uint j = 0; j < 4; j++) {
- sh_accum[j].rgb += light * c[j] * 8.0;
+ sh_accum[j].rgb += light * c[j] * bake_params.exposure_normalization;
}
#endif
}
@@ -639,21 +707,29 @@ void main() {
}
vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
+ int neighbor_offset = atlas_pos.x < bake_params.atlas_size.x - 1 ? 1 : -1;
+ vec3 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(neighbor_offset, 0), params.atlas_slice), 0).xyz;
+ float texel_size_world_space = distance(position, neighbor_position);
uint noise = random_seed(ivec3(params.ray_from, atlas_pos));
for (uint i = params.ray_from; i < params.ray_to; i++) {
vec3 ray_dir = generate_ray_dir_from_normal(normal, noise);
- vec3 light = trace_indirect_light(position, ray_dir, noise);
+ vec3 light = trace_indirect_light(position, ray_dir, noise, texel_size_world_space);
#ifdef USE_SH_LIGHTMAPS
+ // These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
+ // LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
+ // L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
+ // Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
+
float c[4] = float[](
- 0.282095, //l0
- 0.488603 * ray_dir.y, //l1n1
- 0.488603 * ray_dir.z, //l1n0
- 0.488603 * ray_dir.x //l1p1
+ 0.25, //l0
+ ray_dir.y, //l1n1
+ ray_dir.z, //l1n0
+ ray_dir.x //l1p1
);
for (uint j = 0; j < 4; j++) {
- sh_accum[j].rgb += light * c[j] * 8.0;
+ sh_accum[j].rgb += light * c[j];
}
#else
light_accum += light;
@@ -736,7 +812,7 @@ void main() {
uint noise = random_seed(ivec3(params.ray_from, probe_index, 49502741 /* some prime */));
for (uint i = params.ray_from; i < params.ray_to; i++) {
vec3 ray_dir = generate_sphere_uniform_direction(noise);
- vec3 light = trace_indirect_light(position, ray_dir, noise);
+ vec3 light = trace_indirect_light(position, ray_dir, noise, 0.0);
float c[9] = float[](
0.282095, //l0
@@ -849,10 +925,10 @@ void main() {
// Half the size of the patch window around each pixel that is weighted to compute the denoised pixel.
// A value of 1 represents a 3x3 window, a value of 2 a 5x5 window, etc.
- const int HALF_PATCH_WINDOW = 4;
+ const int HALF_PATCH_WINDOW = 3;
// Half the size of the search window around each pixel that is denoised and weighted to compute the denoised pixel.
- const int HALF_SEARCH_WINDOW = 10;
+ const int HALF_SEARCH_WINDOW = denoise_params.half_search_window;
// For all of the following sigma values, smaller values will give less weight to pixels that have a bigger distance
// in the feature being evaluated. Therefore, smaller values are likely to cause more noise to appear, but will also
@@ -962,4 +1038,28 @@ void main() {
imageStore(dest_light, ivec3(atlas_pos, lightmap_slice), vec4(denoised_rgb, input_light.a));
}
#endif
+
+#ifdef MODE_PACK_L1_COEFFS
+ vec4 base_coeff = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4), 0);
+
+ for (int i = 1; i < 4; i++) {
+ vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4 + i), 0);
+
+ if (abs(base_coeff.r) > 0.0) {
+ c.r /= (base_coeff.r * 8);
+ }
+
+ if (abs(base_coeff.g) > 0.0) {
+ c.g /= (base_coeff.g * 8);
+ }
+
+ if (abs(base_coeff.b) > 0.0) {
+ c.b /= (base_coeff.b * 8);
+ }
+
+ c.rgb += vec3(0.5);
+ c.rgb = clamp(c.rgb, vec3(0.0), vec3(1.0));
+ imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), c);
+ }
+#endif
}