diff options
Diffstat (limited to 'thirdparty/astcenc/astcenc_color_quantize.cpp')
-rw-r--r-- | thirdparty/astcenc/astcenc_color_quantize.cpp | 2071 |
1 files changed, 2071 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_color_quantize.cpp b/thirdparty/astcenc/astcenc_color_quantize.cpp new file mode 100644 index 0000000000..edcfe4f853 --- /dev/null +++ b/thirdparty/astcenc/astcenc_color_quantize.cpp @@ -0,0 +1,2071 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions for color quantization. + * + * The design of the color quantization functionality requires the caller to use higher level error + * analysis to determine the base encoding that should be used. This earlier analysis will select + * the basic type of the endpoint that should be used: + * + * * Mode: LDR or HDR + * * Quantization level + * * Channel count: L, LA, RGB, or RGBA + * * Endpoint 2 type: Direct color endcode, or scaled from endpoint 1. + * + * However, this leaves a number of decisions about exactly how to pack the endpoints open. In + * particular we need to determine if blue contraction can be used, or/and if delta encoding can be + * used. If they can be applied these will allow us to maintain higher precision in the endpoints + * without needing additional storage. + */ + +#include <stdio.h> +#include <assert.h> + +#include "astcenc_internal.h" + +/** + * @brief Determine the quantized value given a quantization level. + * + * @param quant_level The quantization level to use. + * @param value The value to convert. This may be outside of the 0-255 range and will be + * clamped before the value is looked up. + * + * @return The encoded quantized value. These are not necessarily in order; the compressor + * scrambles the values slightly to make hardware implementation easier. + */ +static inline uint8_t quant_color( + quant_method quant_level, + int value +) { + return color_unquant_to_uquant_tables[quant_level - QUANT_6][value]; +} + +/** + * @brief Quantize an LDR RGB color. + * + * Since this is a fall-back encoding, we cannot actually fail but must produce a sensible result. + * For this encoding @c color0 cannot be larger than @c color1. If @c color0 is actually larger + * than @c color1, @c color0 is reduced and @c color1 is increased until the constraint is met. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1). + * @param quant_level The quantization level to use. + */ +static void quantize_rgb( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r0 = astc::clamp255f(color0.lane<0>() * scale); + float g0 = astc::clamp255f(color0.lane<1>() * scale); + float b0 = astc::clamp255f(color0.lane<2>() * scale); + + float r1 = astc::clamp255f(color1.lane<0>() * scale); + float g1 = astc::clamp255f(color1.lane<1>() * scale); + float b1 = astc::clamp255f(color1.lane<2>() * scale); + + int ri0, gi0, bi0, ri1, gi1, bi1; + float rgb0_addon = 0.5f; + float rgb1_addon = 0.5f; + do + { + ri0 = quant_color(quant_level, astc::max(astc::flt2int_rd(r0 + rgb0_addon), 0)); + gi0 = quant_color(quant_level, astc::max(astc::flt2int_rd(g0 + rgb0_addon), 0)); + bi0 = quant_color(quant_level, astc::max(astc::flt2int_rd(b0 + rgb0_addon), 0)); + ri1 = quant_color(quant_level, astc::min(astc::flt2int_rd(r1 + rgb1_addon), 255)); + gi1 = quant_color(quant_level, astc::min(astc::flt2int_rd(g1 + rgb1_addon), 255)); + bi1 = quant_color(quant_level, astc::min(astc::flt2int_rd(b1 + rgb1_addon), 255)); + + rgb0_addon -= 0.2f; + rgb1_addon += 0.2f; + } while (ri0 + gi0 + bi0 > ri1 + gi1 + bi1); + + output[0] = static_cast<uint8_t>(ri0); + output[1] = static_cast<uint8_t>(ri1); + output[2] = static_cast<uint8_t>(gi0); + output[3] = static_cast<uint8_t>(gi1); + output[4] = static_cast<uint8_t>(bi0); + output[5] = static_cast<uint8_t>(bi1); +} + +/** + * @brief Quantize an LDR RGBA color. + * + * Since this is a fall-back encoding, we cannot actually fail but must produce a sensible result. + * For this encoding @c color0.rgb cannot be larger than @c color1.rgb (this indicates blue + * contraction). If @c color0.rgb is actually larger than @c color1.rgb, @c color0.rgb is reduced + * and @c color1.rgb is increased until the constraint is met. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1, a0, a1). + * @param quant_level The quantization level to use. + */ +static void quantize_rgba( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[6] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[7] = quant_color(quant_level, astc::flt2int_rtn(a1)); + + quantize_rgb(color0, color1, output, quant_level); +} + +/** + * @brief Try to quantize an LDR RGB color using blue-contraction. + * + * Blue-contraction is only usable if encoded color 1 is larger than color 0. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r1, r0, g1, g0, b1, b0). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgb_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r0 = color0.lane<0>() * scale; + float g0 = color0.lane<1>() * scale; + float b0 = color0.lane<2>() * scale; + + float r1 = color1.lane<0>() * scale; + float g1 = color1.lane<1>() * scale; + float b1 = color1.lane<2>() * scale; + + // Apply inverse blue-contraction. This can produce an overflow; which means BC cannot be used. + r0 += (r0 - b0); + g0 += (g0 - b0); + r1 += (r1 - b1); + g1 += (g1 - b1); + + if (r0 < 0.0f || r0 > 255.0f || g0 < 0.0f || g0 > 255.0f || b0 < 0.0f || b0 > 255.0f || + r1 < 0.0f || r1 > 255.0f || g1 < 0.0f || g1 > 255.0f || b1 < 0.0f || b1 > 255.0f) + { + return false; + } + + // Quantize the inverse-blue-contracted color + int ri0 = quant_color(quant_level, astc::flt2int_rtn(r0)); + int gi0 = quant_color(quant_level, astc::flt2int_rtn(g0)); + int bi0 = quant_color(quant_level, astc::flt2int_rtn(b0)); + + int ri1 = quant_color(quant_level, astc::flt2int_rtn(r1)); + int gi1 = quant_color(quant_level, astc::flt2int_rtn(g1)); + int bi1 = quant_color(quant_level, astc::flt2int_rtn(b1)); + + // If color #1 is not larger than color #0 then blue-contraction cannot be used. Note that + // blue-contraction and quantization change this order, which is why we must test afterwards. + if (ri1 + gi1 + bi1 <= ri0 + gi0 + bi0) + { + return false; + } + + output[0] = static_cast<uint8_t>(ri1); + output[1] = static_cast<uint8_t>(ri0); + output[2] = static_cast<uint8_t>(gi1); + output[3] = static_cast<uint8_t>(gi0); + output[4] = static_cast<uint8_t>(bi1); + output[5] = static_cast<uint8_t>(bi0); + + return true; +} + +/** + * @brief Try to quantize an LDR RGBA color using blue-contraction. + * + * Blue-contraction is only usable if encoded color 1 RGB is larger than color 0 RGB. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r1, r0, g1, g0, b1, b0, a1, a0). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static int try_quantize_rgba_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[6] = quant_color(quant_level, astc::flt2int_rtn(a1)); + output[7] = quant_color(quant_level, astc::flt2int_rtn(a0)); + + return try_quantize_rgb_blue_contract(color0, color1, output, quant_level); +} + +/** + * @brief Try to quantize an LDR RGB color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgb_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r0 = astc::clamp255f(color0.lane<0>() * scale); + float g0 = astc::clamp255f(color0.lane<1>() * scale); + float b0 = astc::clamp255f(color0.lane<2>() * scale); + + float r1 = astc::clamp255f(color1.lane<0>() * scale); + float g1 = astc::clamp255f(color1.lane<1>() * scale); + float b1 = astc::clamp255f(color1.lane<2>() * scale); + + // Transform r0 to unorm9 + int r0a = astc::flt2int_rtn(r0); + int g0a = astc::flt2int_rtn(g0); + int b0a = astc::flt2int_rtn(b0); + + r0a <<= 1; + g0a <<= 1; + b0a <<= 1; + + // Mask off the top bit + int r0b = r0a & 0xFF; + int g0b = g0a & 0xFF; + int b0b = b0a & 0xFF; + + // Quantize then unquantize in order to get a value that we take differences against + int r0be = quant_color(quant_level, r0b); + int g0be = quant_color(quant_level, g0b); + int b0be = quant_color(quant_level, b0b); + + r0b = r0be | (r0a & 0x100); + g0b = g0be | (g0a & 0x100); + b0b = b0be | (b0a & 0x100); + + // Get hold of the second value + int r1d = astc::flt2int_rtn(r1); + int g1d = astc::flt2int_rtn(g1); + int b1d = astc::flt2int_rtn(b1); + + r1d <<= 1; + g1d <<= 1; + b1d <<= 1; + + // ... and take differences + r1d -= r0b; + g1d -= g0b; + b1d -= b0b; + + // Check if the difference is too large to be encodable + if (r1d > 63 || g1d > 63 || b1d > 63 || r1d < -64 || g1d < -64 || b1d < -64) + { + return false; + } + + // Insert top bit of the base into the offset + r1d &= 0x7F; + g1d &= 0x7F; + b1d &= 0x7F; + + r1d |= (r0b & 0x100) >> 1; + g1d |= (g0b & 0x100) >> 1; + b1d |= (b0b & 0x100) >> 1; + + // Then quantize and unquantize; if this causes either top two bits to flip, then encoding fails + // since we have then corrupted either the top bit of the base or the sign bit of the offset + int r1de = quant_color(quant_level, r1d); + int g1de = quant_color(quant_level, g1d); + int b1de = quant_color(quant_level, b1d); + + if (((r1d ^ r1de) | (g1d ^ g1de) | (b1d ^ b1de)) & 0xC0) + { + return false; + } + + // If the sum of offsets triggers blue-contraction then encoding fails + vint4 ep0(r0be, g0be, b0be, 0); + vint4 ep1(r1de, g1de, b1de, 0); + bit_transfer_signed(ep1, ep0); + if (hadd_rgb_s(ep1) < 0) + { + return false; + } + + // Check that the offsets produce legitimate sums as well + ep0 = ep0 + ep1; + if (any((ep0 < vint4(0)) | (ep0 > vint4(0xFF)))) + { + return false; + } + + output[0] = static_cast<uint8_t>(r0be); + output[1] = static_cast<uint8_t>(r1de); + output[2] = static_cast<uint8_t>(g0be); + output[3] = static_cast<uint8_t>(g1de); + output[4] = static_cast<uint8_t>(b0be); + output[5] = static_cast<uint8_t>(b1de); + + return true; +} + +static bool try_quantize_rgb_delta_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + // Note: Switch around endpoint colors already at start + float scale = 1.0f / 257.0f; + + float r1 = color0.lane<0>() * scale; + float g1 = color0.lane<1>() * scale; + float b1 = color0.lane<2>() * scale; + + float r0 = color1.lane<0>() * scale; + float g0 = color1.lane<1>() * scale; + float b0 = color1.lane<2>() * scale; + + // Apply inverse blue-contraction. This can produce an overflow; which means BC cannot be used. + r0 += (r0 - b0); + g0 += (g0 - b0); + r1 += (r1 - b1); + g1 += (g1 - b1); + + if (r0 < 0.0f || r0 > 255.0f || g0 < 0.0f || g0 > 255.0f || b0 < 0.0f || b0 > 255.0f || + r1 < 0.0f || r1 > 255.0f || g1 < 0.0f || g1 > 255.0f || b1 < 0.0f || b1 > 255.0f) + { + return false; + } + + // Transform r0 to unorm9 + int r0a = astc::flt2int_rtn(r0); + int g0a = astc::flt2int_rtn(g0); + int b0a = astc::flt2int_rtn(b0); + r0a <<= 1; + g0a <<= 1; + b0a <<= 1; + + // Mask off the top bit + int r0b = r0a & 0xFF; + int g0b = g0a & 0xFF; + int b0b = b0a & 0xFF; + + // Quantize, then unquantize in order to get a value that we take differences against. + int r0be = quant_color(quant_level, r0b); + int g0be = quant_color(quant_level, g0b); + int b0be = quant_color(quant_level, b0b); + + r0b = r0be | (r0a & 0x100); + g0b = g0be | (g0a & 0x100); + b0b = b0be | (b0a & 0x100); + + // Get hold of the second value + int r1d = astc::flt2int_rtn(r1); + int g1d = astc::flt2int_rtn(g1); + int b1d = astc::flt2int_rtn(b1); + + r1d <<= 1; + g1d <<= 1; + b1d <<= 1; + + // .. and take differences! + r1d -= r0b; + g1d -= g0b; + b1d -= b0b; + + // Check if the difference is too large to be encodable + if (r1d > 63 || g1d > 63 || b1d > 63 || r1d < -64 || g1d < -64 || b1d < -64) + { + return false; + } + + // Insert top bit of the base into the offset + r1d &= 0x7F; + g1d &= 0x7F; + b1d &= 0x7F; + + r1d |= (r0b & 0x100) >> 1; + g1d |= (g0b & 0x100) >> 1; + b1d |= (b0b & 0x100) >> 1; + + // Then quantize and unquantize; if this causes any of the top two bits to flip, + // then encoding fails, since we have then corrupted either the top bit of the base + // or the sign bit of the offset. + int r1de = quant_color(quant_level, r1d); + int g1de = quant_color(quant_level, g1d); + int b1de = quant_color(quant_level, b1d); + + if (((r1d ^ r1de) | (g1d ^ g1de) | (b1d ^ b1de)) & 0xC0) + { + return false; + } + + // If the sum of offsets does not trigger blue-contraction then encoding fails + vint4 ep0(r0be, g0be, b0be, 0); + vint4 ep1(r1de, g1de, b1de, 0); + bit_transfer_signed(ep1, ep0); + if (hadd_rgb_s(ep1) >= 0) + { + return false; + } + + // Check that the offsets produce legitimate sums as well + ep0 = ep0 + ep1; + if (any((ep0 < vint4(0)) | (ep0 > vint4(0xFF)))) + { + return false; + } + + output[0] = static_cast<uint8_t>(r0be); + output[1] = static_cast<uint8_t>(r1de); + output[2] = static_cast<uint8_t>(g0be); + output[3] = static_cast<uint8_t>(g1de); + output[4] = static_cast<uint8_t>(b0be); + output[5] = static_cast<uint8_t>(b1de); + + return true; +} + +/** + * @brief Try to quantize an LDR A color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (x, x, x, x, x, x, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_alpha_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + int a0a = astc::flt2int_rtn(a0); + a0a <<= 1; + int a0b = a0a & 0xFF; + int a0be = quant_color(quant_level, a0b); + a0b = a0be; + a0b |= a0a & 0x100; + int a1d = astc::flt2int_rtn(a1); + a1d <<= 1; + a1d -= a0b; + + if (a1d > 63 || a1d < -64) + { + return false; + } + + a1d &= 0x7F; + a1d |= (a0b & 0x100) >> 1; + + int a1de = quant_color(quant_level, a1d); + int a1du = a1de; + if ((a1d ^ a1du) & 0xC0) + { + return false; + } + + a1du &= 0x7F; + if (a1du & 0x40) + { + a1du -= 0x80; + } + + a1du += a0b; + if (a1du < 0 || a1du > 0x1FF) + { + return false; + } + + output[6] = static_cast<uint8_t>(a0be); + output[7] = static_cast<uint8_t>(a1de); + + return true; +} + +/** + * @brief Try to quantize an LDR LA color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (l0, l1, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_luminance_alpha_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[4], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float l0 = astc::clamp255f(hadd_rgb_s(color0) * ((1.0f / 3.0f) * scale)); + float l1 = astc::clamp255f(hadd_rgb_s(color1) * ((1.0f / 3.0f) * scale)); + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + int l0a = astc::flt2int_rtn(l0); + int a0a = astc::flt2int_rtn(a0); + l0a <<= 1; + a0a <<= 1; + + int l0b = l0a & 0xFF; + int a0b = a0a & 0xFF; + int l0be = quant_color(quant_level, l0b); + int a0be = quant_color(quant_level, a0b); + l0b = l0be; + a0b = a0be; + l0b |= l0a & 0x100; + a0b |= a0a & 0x100; + + int l1d = astc::flt2int_rtn(l1); + int a1d = astc::flt2int_rtn(a1); + l1d <<= 1; + a1d <<= 1; + l1d -= l0b; + a1d -= a0b; + + if (l1d > 63 || l1d < -64) + { + return false; + } + + if (a1d > 63 || a1d < -64) + { + return false; + } + + l1d &= 0x7F; + a1d &= 0x7F; + l1d |= (l0b & 0x100) >> 1; + a1d |= (a0b & 0x100) >> 1; + + int l1de = quant_color(quant_level, l1d); + int a1de = quant_color(quant_level, a1d); + int l1du = l1de; + int a1du = a1de; + + if ((l1d ^ l1du) & 0xC0) + { + return false; + } + + if ((a1d ^ a1du) & 0xC0) + { + return false; + } + + l1du &= 0x7F; + a1du &= 0x7F; + + if (l1du & 0x40) + { + l1du -= 0x80; + } + + if (a1du & 0x40) + { + a1du -= 0x80; + } + + l1du += l0b; + a1du += a0b; + + if (l1du < 0 || l1du > 0x1FF) + { + return false; + } + + if (a1du < 0 || a1du > 0x1FF) + { + return false; + } + + output[0] = static_cast<uint8_t>(l0be); + output[1] = static_cast<uint8_t>(l1de); + output[2] = static_cast<uint8_t>(a0be); + output[3] = static_cast<uint8_t>(a1de); + + return true; +} + +/** + * @brief Try to quantize an LDR RGBA color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, b0, b1, g0, g1, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgba_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + return try_quantize_rgb_delta(color0, color1, output, quant_level) && + try_quantize_alpha_delta(color0, color1, output, quant_level); +} + + +/** + * @brief Try to quantize an LDR RGBA color using delta and blue contract encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, b0, b1, g0, g1, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgba_delta_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + // Note that we swap the color0 and color1 ordering for alpha to match RGB blue-contract + return try_quantize_rgb_delta_blue_contract(color0, color1, output, quant_level) && + try_quantize_alpha_delta(color1, color0, output, quant_level); +} + +/** + * @brief Quantize an LDR RGB color using scale encoding. + * + * @param color The input unquantized color endpoint and scale factor. + * @param[out] output The output endpoints, returned as (r0, g0, b0, s). + * @param quant_level The quantization level to use. + */ +static void quantize_rgbs( + vfloat4 color, + uint8_t output[4], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r = astc::clamp255f(color.lane<0>() * scale); + float g = astc::clamp255f(color.lane<1>() * scale); + float b = astc::clamp255f(color.lane<2>() * scale); + + int ri = quant_color(quant_level, astc::flt2int_rtn(r)); + int gi = quant_color(quant_level, astc::flt2int_rtn(g)); + int bi = quant_color(quant_level, astc::flt2int_rtn(b)); + + float oldcolorsum = hadd_rgb_s(color) * scale; + float newcolorsum = static_cast<float>(ri + gi + bi); + + float scalea = astc::clamp1f(color.lane<3>() * (oldcolorsum + 1e-10f) / (newcolorsum + 1e-10f)); + int scale_idx = astc::flt2int_rtn(scalea * 256.0f); + scale_idx = astc::clamp(scale_idx, 0, 255); + + output[0] = static_cast<uint8_t>(ri); + output[1] = static_cast<uint8_t>(gi); + output[2] = static_cast<uint8_t>(bi); + output[3] = quant_color(quant_level, scale_idx); +} + +/** + * @brief Quantize an LDR RGBA color using scale encoding. + * + * @param color The input unquantized color endpoint and scale factor. + * @param[out] output The output endpoints, returned as (r0, g0, b0, s, a0, a1). + * @param quant_level The quantization level to use. + */ +static void quantize_rgbs_alpha( + vfloat4 color0, + vfloat4 color1, + vfloat4 color, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[4] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[5] = quant_color(quant_level, astc::flt2int_rtn(a1)); + + quantize_rgbs(color, output, quant_level); +} + +/** + * @brief Quantize a LDR L color. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (l0, l1). + * @param quant_level The quantization level to use. + */ +static void quantize_luminance( + vfloat4 color0, + vfloat4 color1, + uint8_t output[2], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + color0 = color0 * scale; + color1 = color1 * scale; + + float lum0 = astc::clamp255f(hadd_rgb_s(color0) * (1.0f / 3.0f)); + float lum1 = astc::clamp255f(hadd_rgb_s(color1) * (1.0f / 3.0f)); + + if (lum0 > lum1) + { + float avg = (lum0 + lum1) * 0.5f; + lum0 = avg; + lum1 = avg; + } + + output[0] = quant_color(quant_level, astc::flt2int_rtn(lum0)); + output[1] = quant_color(quant_level, astc::flt2int_rtn(lum1)); +} + +/** + * @brief Quantize a LDR LA color. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (l0, l1, a0, a1). + * @param quant_level The quantization level to use. + */ +static void quantize_luminance_alpha( + vfloat4 color0, + vfloat4 color1, + uint8_t output[4], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + color0 = color0 * scale; + color1 = color1 * scale; + + float lum0 = astc::clamp255f(hadd_rgb_s(color0) * (1.0f / 3.0f)); + float lum1 = astc::clamp255f(hadd_rgb_s(color1) * (1.0f / 3.0f)); + + float a0 = astc::clamp255f(color0.lane<3>()); + float a1 = astc::clamp255f(color1.lane<3>()); + + // If endpoints are close then pull apart slightly; this gives > 8 bit normal map precision. + if (quant_level > 18) + { + if (fabsf(lum0 - lum1) < 3.0f) + { + if (lum0 < lum1) + { + lum0 -= 0.5f; + lum1 += 0.5f; + } + else + { + lum0 += 0.5f; + lum1 -= 0.5f; + } + + lum0 = astc::clamp255f(lum0); + lum1 = astc::clamp255f(lum1); + } + + if (fabsf(a0 - a1) < 3.0f) + { + if (a0 < a1) + { + a0 -= 0.5f; + a1 += 0.5f; + } + else + { + a0 += 0.5f; + a1 -= 0.5f; + } + + a0 = astc::clamp255f(a0); + a1 = astc::clamp255f(a1); + } + } + + output[0] = quant_color(quant_level, astc::flt2int_rtn(lum0)); + output[1] = quant_color(quant_level, astc::flt2int_rtn(lum1)); + output[2] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[3] = quant_color(quant_level, astc::flt2int_rtn(a1)); +} + +/** + * @brief Quantize and unquantize a value ensuring top two bits are the same. + * + * @param quant_level The quantization level to use. + * @param value The input unquantized value. + * @param[out] quant_value The quantized value. + */ +static inline void quantize_and_unquantize_retain_top_two_bits( + quant_method quant_level, + uint8_t value, + uint8_t& quant_value +) { + int perform_loop; + uint8_t quantval; + + do + { + quantval = quant_color(quant_level, value); + + // Perform looping if the top two bits were modified by quant/unquant + perform_loop = (value & 0xC0) != (quantval & 0xC0); + + if ((quantval & 0xC0) > (value & 0xC0)) + { + // Quant/unquant rounded UP so that the top two bits changed; + // decrement the input in hopes that this will avoid rounding up. + value--; + } + else if ((quantval & 0xC0) < (value & 0xC0)) + { + // Quant/unquant rounded DOWN so that the top two bits changed; + // decrement the input in hopes that this will avoid rounding down. + value--; + } + } while (perform_loop); + + quant_value = quantval; +} + +/** + * @brief Quantize and unquantize a value ensuring top four bits are the same. + * + * @param quant_level The quantization level to use. + * @param value The input unquantized value. + * @param[out] quant_value The quantized value in 0-255 range. + */ +static inline void quantize_and_unquantize_retain_top_four_bits( + quant_method quant_level, + uint8_t value, + uint8_t& quant_value +) { + uint8_t perform_loop; + uint8_t quantval; + + do + { + quantval = quant_color(quant_level, value); + // Perform looping if the top four bits were modified by quant/unquant + perform_loop = (value & 0xF0) != (quantval & 0xF0); + + if ((quantval & 0xF0) > (value & 0xF0)) + { + // Quant/unquant rounded UP so that the top four bits changed; + // decrement the input value in hopes that this will avoid rounding up. + value--; + } + else if ((quantval & 0xF0) < (value & 0xF0)) + { + // Quant/unquant rounded DOWN so that the top four bits changed; + // decrement the input value in hopes that this will avoid rounding down. + value--; + } + } while (perform_loop); + + quant_value = quantval; +} + +/** + * @brief Quantize a HDR RGB color using RGB + offset. + * + * @param color The input unquantized color endpoint and offset. + * @param[out] output The output endpoints, returned as packed RGBS with some mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgbo( + vfloat4 color, + uint8_t output[4], + quant_method quant_level +) { + color.set_lane<0>(color.lane<0>() + color.lane<3>()); + color.set_lane<1>(color.lane<1>() + color.lane<3>()); + color.set_lane<2>(color.lane<2>() + color.lane<3>()); + + color = clamp(0.0f, 65535.0f, color); + + vfloat4 color_bak = color; + + int majcomp; + if (color.lane<0>() > color.lane<1>() && color.lane<0>() > color.lane<2>()) + { + majcomp = 0; // red is largest component + } + else if (color.lane<1>() > color.lane<2>()) + { + majcomp = 1; // green is largest component + } + else + { + majcomp = 2; // blue is largest component + } + + // swap around the red component and the largest component. + switch (majcomp) + { + case 1: + color = color.swz<1, 0, 2, 3>(); + break; + case 2: + color = color.swz<2, 1, 0, 3>(); + break; + default: + break; + } + + static const int mode_bits[5][3] { + {11, 5, 7}, + {11, 6, 5}, + {10, 5, 8}, + {9, 6, 7}, + {8, 7, 6} + }; + + static const float mode_cutoffs[5][2] { + {1024, 4096}, + {2048, 1024}, + {2048, 16384}, + {8192, 16384}, + {32768, 16384} + }; + + static const float mode_rscales[5] { + 32.0f, + 32.0f, + 64.0f, + 128.0f, + 256.0f, + }; + + static const float mode_scales[5] { + 1.0f / 32.0f, + 1.0f / 32.0f, + 1.0f / 64.0f, + 1.0f / 128.0f, + 1.0f / 256.0f, + }; + + float r_base = color.lane<0>(); + float g_base = color.lane<0>() - color.lane<1>() ; + float b_base = color.lane<0>() - color.lane<2>() ; + float s_base = color.lane<3>() ; + + for (int mode = 0; mode < 5; mode++) + { + if (g_base > mode_cutoffs[mode][0] || b_base > mode_cutoffs[mode][0] || s_base > mode_cutoffs[mode][1]) + { + continue; + } + + // Encode the mode into a 4-bit vector + int mode_enc = mode < 4 ? (mode | (majcomp << 2)) : (majcomp | 0xC); + + float mode_scale = mode_scales[mode]; + float mode_rscale = mode_rscales[mode]; + + int gb_intcutoff = 1 << mode_bits[mode][1]; + int s_intcutoff = 1 << mode_bits[mode][2]; + + // Quantize and unquantize R + int r_intval = astc::flt2int_rtn(r_base * mode_scale); + + int r_lowbits = r_intval & 0x3f; + + r_lowbits |= (mode_enc & 3) << 6; + + uint8_t r_quantval; + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(r_lowbits), r_quantval); + + r_intval = (r_intval & ~0x3f) | (r_quantval & 0x3f); + float r_fval = static_cast<float>(r_intval) * mode_rscale; + + // Recompute G and B, then quantize and unquantize them + float g_fval = r_fval - color.lane<1>() ; + float b_fval = r_fval - color.lane<2>() ; + + g_fval = astc::clamp(g_fval, 0.0f, 65535.0f); + b_fval = astc::clamp(b_fval, 0.0f, 65535.0f); + + int g_intval = astc::flt2int_rtn(g_fval * mode_scale); + int b_intval = astc::flt2int_rtn(b_fval * mode_scale); + + if (g_intval >= gb_intcutoff || b_intval >= gb_intcutoff) + { + continue; + } + + int g_lowbits = g_intval & 0x1f; + int b_lowbits = b_intval & 0x1f; + + int bit0 = 0; + int bit1 = 0; + int bit2 = 0; + int bit3 = 0; + + switch (mode) + { + case 0: + case 2: + bit0 = (r_intval >> 9) & 1; + break; + case 1: + case 3: + bit0 = (r_intval >> 8) & 1; + break; + case 4: + case 5: + bit0 = (g_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 0: + case 1: + case 2: + case 3: + bit2 = (r_intval >> 7) & 1; + break; + case 4: + case 5: + bit2 = (b_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 0: + case 2: + bit1 = (r_intval >> 8) & 1; + break; + case 1: + case 3: + case 4: + case 5: + bit1 = (g_intval >> 5) & 1; + break; + } + + switch (mode) + { + case 0: + bit3 = (r_intval >> 10) & 1; + break; + case 2: + bit3 = (r_intval >> 6) & 1; + break; + case 1: + case 3: + case 4: + case 5: + bit3 = (b_intval >> 5) & 1; + break; + } + + g_lowbits |= (mode_enc & 0x4) << 5; + b_lowbits |= (mode_enc & 0x8) << 4; + + g_lowbits |= bit0 << 6; + g_lowbits |= bit1 << 5; + b_lowbits |= bit2 << 6; + b_lowbits |= bit3 << 5; + + uint8_t g_quantval; + uint8_t b_quantval; + + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(g_lowbits), g_quantval); + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(b_lowbits), b_quantval); + + g_intval = (g_intval & ~0x1f) | (g_quantval & 0x1f); + b_intval = (b_intval & ~0x1f) | (b_quantval & 0x1f); + + g_fval = static_cast<float>(g_intval) * mode_rscale; + b_fval = static_cast<float>(b_intval) * mode_rscale; + + // Recompute the scale value, based on the errors introduced to red, green and blue + + // If the error is positive, then the R,G,B errors combined have raised the color + // value overall; as such, the scale value needs to be increased. + float rgb_errorsum = (r_fval - color.lane<0>() ) + (r_fval - g_fval - color.lane<1>() ) + (r_fval - b_fval - color.lane<2>() ); + + float s_fval = s_base + rgb_errorsum * (1.0f / 3.0f); + s_fval = astc::clamp(s_fval, 0.0f, 1e9f); + + int s_intval = astc::flt2int_rtn(s_fval * mode_scale); + + if (s_intval >= s_intcutoff) + { + continue; + } + + int s_lowbits = s_intval & 0x1f; + + int bit4; + int bit5; + int bit6; + switch (mode) + { + case 1: + bit6 = (r_intval >> 9) & 1; + break; + default: + bit6 = (s_intval >> 5) & 1; + break; + } + + switch (mode) + { + case 4: + bit5 = (r_intval >> 7) & 1; + break; + case 1: + bit5 = (r_intval >> 10) & 1; + break; + default: + bit5 = (s_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 2: + bit4 = (s_intval >> 7) & 1; + break; + default: + bit4 = (r_intval >> 6) & 1; + break; + } + + s_lowbits |= bit6 << 5; + s_lowbits |= bit5 << 6; + s_lowbits |= bit4 << 7; + + uint8_t s_quantval; + + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(s_lowbits), s_quantval); + + output[0] = r_quantval; + output[1] = g_quantval; + output[2] = b_quantval; + output[3] = s_quantval; + return; + } + + // Failed to encode any of the modes above? In that case encode using mode #5 + float vals[4]; + vals[0] = color_bak.lane<0>(); + vals[1] = color_bak.lane<1>(); + vals[2] = color_bak.lane<2>(); + vals[3] = color_bak.lane<3>(); + + int ivals[4]; + float cvals[3]; + + for (int i = 0; i < 3; i++) + { + vals[i] = astc::clamp(vals[i], 0.0f, 65020.0f); + ivals[i] = astc::flt2int_rtn(vals[i] * (1.0f / 512.0f)); + cvals[i] = static_cast<float>(ivals[i]) * 512.0f; + } + + float rgb_errorsum = (cvals[0] - vals[0]) + (cvals[1] - vals[1]) + (cvals[2] - vals[2]); + vals[3] += rgb_errorsum * (1.0f / 3.0f); + + vals[3] = astc::clamp(vals[3], 0.0f, 65020.0f); + ivals[3] = astc::flt2int_rtn(vals[3] * (1.0f / 512.0f)); + + int encvals[4]; + encvals[0] = (ivals[0] & 0x3f) | 0xC0; + encvals[1] = (ivals[1] & 0x7f) | 0x80; + encvals[2] = (ivals[2] & 0x7f) | 0x80; + encvals[3] = (ivals[3] & 0x7f) | ((ivals[0] & 0x40) << 1); + + for (uint8_t i = 0; i < 4; i++) + { + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(encvals[i]), output[i]); + } + + return; +} + +/** + * @brief Quantize a HDR RGB color using direct RGB encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGB+RGB pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgb( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + // Note: color*.lane<3> is not used so we can ignore it + color0 = clamp(0.0f, 65535.0f, color0); + color1 = clamp(0.0f, 65535.0f, color1); + + vfloat4 color0_bak = color0; + vfloat4 color1_bak = color1; + + int majcomp; + if (color1.lane<0>() > color1.lane<1>() && color1.lane<0>() > color1.lane<2>()) + { + majcomp = 0; + } + else if (color1.lane<1>() > color1.lane<2>()) + { + majcomp = 1; + } + else + { + majcomp = 2; + } + + // Swizzle the components + switch (majcomp) + { + case 1: // red-green swap + color0 = color0.swz<1, 0, 2, 3>(); + color1 = color1.swz<1, 0, 2, 3>(); + break; + case 2: // red-blue swap + color0 = color0.swz<2, 1, 0, 3>(); + color1 = color1.swz<2, 1, 0, 3>(); + break; + default: + break; + } + + float a_base = color1.lane<0>(); + a_base = astc::clamp(a_base, 0.0f, 65535.0f); + + float b0_base = a_base - color1.lane<1>(); + float b1_base = a_base - color1.lane<2>(); + float c_base = a_base - color0.lane<0>(); + float d0_base = a_base - b0_base - c_base - color0.lane<1>(); + float d1_base = a_base - b1_base - c_base - color0.lane<2>(); + + // Number of bits in the various fields in the various modes + static const int mode_bits[8][4] { + {9, 7, 6, 7}, + {9, 8, 6, 6}, + {10, 6, 7, 7}, + {10, 7, 7, 6}, + {11, 8, 6, 5}, + {11, 6, 8, 6}, + {12, 7, 7, 5}, + {12, 6, 7, 6} + }; + + // Cutoffs to use for the computed values of a,b,c,d, assuming the + // range 0..65535 are LNS values corresponding to fp16. + static const float mode_cutoffs[8][4] { + {16384, 8192, 8192, 8}, // mode 0: 9,7,6,7 + {32768, 8192, 4096, 8}, // mode 1: 9,8,6,6 + {4096, 8192, 4096, 4}, // mode 2: 10,6,7,7 + {8192, 8192, 2048, 4}, // mode 3: 10,7,7,6 + {8192, 2048, 512, 2}, // mode 4: 11,8,6,5 + {2048, 8192, 1024, 2}, // mode 5: 11,6,8,6 + {2048, 2048, 256, 1}, // mode 6: 12,7,7,5 + {1024, 2048, 512, 1}, // mode 7: 12,6,7,6 + }; + + static const float mode_scales[8] { + 1.0f / 128.0f, + 1.0f / 128.0f, + 1.0f / 64.0f, + 1.0f / 64.0f, + 1.0f / 32.0f, + 1.0f / 32.0f, + 1.0f / 16.0f, + 1.0f / 16.0f, + }; + + // Scaling factors when going from what was encoded in the mode to 16 bits. + static const float mode_rscales[8] { + 128.0f, + 128.0f, + 64.0f, + 64.0f, + 32.0f, + 32.0f, + 16.0f, + 16.0f + }; + + // Try modes one by one, with the highest-precision mode first. + for (int mode = 7; mode >= 0; mode--) + { + // For each mode, test if we can in fact accommodate the computed b, c, and d values. + // If we clearly can't, then we skip to the next mode. + + float b_cutoff = mode_cutoffs[mode][0]; + float c_cutoff = mode_cutoffs[mode][1]; + float d_cutoff = mode_cutoffs[mode][2]; + + if (b0_base > b_cutoff || b1_base > b_cutoff || c_base > c_cutoff || fabsf(d0_base) > d_cutoff || fabsf(d1_base) > d_cutoff) + { + continue; + } + + float mode_scale = mode_scales[mode]; + float mode_rscale = mode_rscales[mode]; + + int b_intcutoff = 1 << mode_bits[mode][1]; + int c_intcutoff = 1 << mode_bits[mode][2]; + int d_intcutoff = 1 << (mode_bits[mode][3] - 1); + + // Quantize and unquantize A, with the assumption that its high bits can be handled safely. + int a_intval = astc::flt2int_rtn(a_base * mode_scale); + int a_lowbits = a_intval & 0xFF; + + int a_quantval = quant_color(quant_level, a_lowbits); + int a_uquantval = a_quantval; + a_intval = (a_intval & ~0xFF) | a_uquantval; + float a_fval = static_cast<float>(a_intval) * mode_rscale; + + // Recompute C, then quantize and unquantize it + float c_fval = a_fval - color0.lane<0>(); + c_fval = astc::clamp(c_fval, 0.0f, 65535.0f); + + int c_intval = astc::flt2int_rtn(c_fval * mode_scale); + + if (c_intval >= c_intcutoff) + { + continue; + } + + int c_lowbits = c_intval & 0x3f; + + c_lowbits |= (mode & 1) << 7; + c_lowbits |= (a_intval & 0x100) >> 2; + + uint8_t c_quantval; + + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(c_lowbits), c_quantval); + + c_intval = (c_intval & ~0x3F) | (c_quantval & 0x3F); + c_fval = static_cast<float>(c_intval) * mode_rscale; + + // Recompute B0 and B1, then quantize and unquantize them + float b0_fval = a_fval - color1.lane<1>(); + float b1_fval = a_fval - color1.lane<2>(); + + b0_fval = astc::clamp(b0_fval, 0.0f, 65535.0f); + b1_fval = astc::clamp(b1_fval, 0.0f, 65535.0f); + int b0_intval = astc::flt2int_rtn(b0_fval * mode_scale); + int b1_intval = astc::flt2int_rtn(b1_fval * mode_scale); + + if (b0_intval >= b_intcutoff || b1_intval >= b_intcutoff) + { + continue; + } + + int b0_lowbits = b0_intval & 0x3f; + int b1_lowbits = b1_intval & 0x3f; + + int bit0 = 0; + int bit1 = 0; + switch (mode) + { + case 0: + case 1: + case 3: + case 4: + case 6: + bit0 = (b0_intval >> 6) & 1; + break; + case 2: + case 5: + case 7: + bit0 = (a_intval >> 9) & 1; + break; + } + + switch (mode) + { + case 0: + case 1: + case 3: + case 4: + case 6: + bit1 = (b1_intval >> 6) & 1; + break; + case 2: + bit1 = (c_intval >> 6) & 1; + break; + case 5: + case 7: + bit1 = (a_intval >> 10) & 1; + break; + } + + b0_lowbits |= bit0 << 6; + b1_lowbits |= bit1 << 6; + + b0_lowbits |= ((mode >> 1) & 1) << 7; + b1_lowbits |= ((mode >> 2) & 1) << 7; + + uint8_t b0_quantval; + uint8_t b1_quantval; + + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(b0_lowbits), b0_quantval); + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(b1_lowbits), b1_quantval); + + b0_intval = (b0_intval & ~0x3f) | (b0_quantval & 0x3f); + b1_intval = (b1_intval & ~0x3f) | (b1_quantval & 0x3f); + b0_fval = static_cast<float>(b0_intval) * mode_rscale; + b1_fval = static_cast<float>(b1_intval) * mode_rscale; + + // Recompute D0 and D1, then quantize and unquantize them + float d0_fval = a_fval - b0_fval - c_fval - color0.lane<1>(); + float d1_fval = a_fval - b1_fval - c_fval - color0.lane<2>(); + + d0_fval = astc::clamp(d0_fval, -65535.0f, 65535.0f); + d1_fval = astc::clamp(d1_fval, -65535.0f, 65535.0f); + + int d0_intval = astc::flt2int_rtn(d0_fval * mode_scale); + int d1_intval = astc::flt2int_rtn(d1_fval * mode_scale); + + if (abs(d0_intval) >= d_intcutoff || abs(d1_intval) >= d_intcutoff) + { + continue; + } + + int d0_lowbits = d0_intval & 0x1f; + int d1_lowbits = d1_intval & 0x1f; + + int bit2 = 0; + int bit3 = 0; + int bit4; + int bit5; + switch (mode) + { + case 0: + case 2: + bit2 = (d0_intval >> 6) & 1; + break; + case 1: + case 4: + bit2 = (b0_intval >> 7) & 1; + break; + case 3: + bit2 = (a_intval >> 9) & 1; + break; + case 5: + bit2 = (c_intval >> 7) & 1; + break; + case 6: + case 7: + bit2 = (a_intval >> 11) & 1; + break; + } + switch (mode) + { + case 0: + case 2: + bit3 = (d1_intval >> 6) & 1; + break; + case 1: + case 4: + bit3 = (b1_intval >> 7) & 1; + break; + case 3: + case 5: + case 6: + case 7: + bit3 = (c_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 4: + case 6: + bit4 = (a_intval >> 9) & 1; + bit5 = (a_intval >> 10) & 1; + break; + default: + bit4 = (d0_intval >> 5) & 1; + bit5 = (d1_intval >> 5) & 1; + break; + } + + d0_lowbits |= bit2 << 6; + d1_lowbits |= bit3 << 6; + d0_lowbits |= bit4 << 5; + d1_lowbits |= bit5 << 5; + + d0_lowbits |= (majcomp & 1) << 7; + d1_lowbits |= ((majcomp >> 1) & 1) << 7; + + uint8_t d0_quantval; + uint8_t d1_quantval; + + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(d0_lowbits), d0_quantval); + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(d1_lowbits), d1_quantval); + + output[0] = static_cast<uint8_t>(a_quantval); + output[1] = c_quantval; + output[2] = b0_quantval; + output[3] = b1_quantval; + output[4] = d0_quantval; + output[5] = d1_quantval; + return; + } + + // If neither of the modes fit we will use a flat representation for storing data, using 8 bits + // for red and green, and 7 bits for blue. This gives color accuracy roughly similar to LDR + // 4:4:3 which is not at all great but usable. This representation is used if the light color is + // more than 4x the color value of the dark color. + float vals[6]; + vals[0] = color0_bak.lane<0>(); + vals[1] = color1_bak.lane<0>(); + vals[2] = color0_bak.lane<1>(); + vals[3] = color1_bak.lane<1>(); + vals[4] = color0_bak.lane<2>(); + vals[5] = color1_bak.lane<2>(); + + for (int i = 0; i < 6; i++) + { + vals[i] = astc::clamp(vals[i], 0.0f, 65020.0f); + } + + for (int i = 0; i < 4; i++) + { + int idx = astc::flt2int_rtn(vals[i] * 1.0f / 256.0f); + output[i] = quant_color(quant_level, idx); + } + + for (int i = 4; i < 6; i++) + { + int idx = astc::flt2int_rtn(vals[i] * 1.0f / 512.0f) + 128; + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(idx), output[i]); + } + + return; +} + +/** + * @brief Quantize a HDR RGB + LDR A color using direct RGBA encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgb_ldr_alpha( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[6] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[7] = quant_color(quant_level, astc::flt2int_rtn(a1)); + + quantize_hdr_rgb(color0, color1, output, quant_level); +} + +/** + * @brief Quantize a HDR L color using the large range encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed (l0, l1). + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_luminance_large_range( + vfloat4 color0, + vfloat4 color1, + uint8_t output[2], + quant_method quant_level +) { + float lum0 = hadd_rgb_s(color0) * (1.0f / 3.0f); + float lum1 = hadd_rgb_s(color1) * (1.0f / 3.0f); + + if (lum1 < lum0) + { + float avg = (lum0 + lum1) * 0.5f; + lum0 = avg; + lum1 = avg; + } + + int ilum1 = astc::flt2int_rtn(lum1); + int ilum0 = astc::flt2int_rtn(lum0); + + // Find the closest encodable point in the upper half of the code-point space + int upper_v0 = (ilum0 + 128) >> 8; + int upper_v1 = (ilum1 + 128) >> 8; + + upper_v0 = astc::clamp(upper_v0, 0, 255); + upper_v1 = astc::clamp(upper_v1, 0, 255); + + // Find the closest encodable point in the lower half of the code-point space + int lower_v0 = (ilum1 + 256) >> 8; + int lower_v1 = ilum0 >> 8; + + lower_v0 = astc::clamp(lower_v0, 0, 255); + lower_v1 = astc::clamp(lower_v1, 0, 255); + + // Determine the distance between the point in code-point space and the input value + int upper0_dec = upper_v0 << 8; + int upper1_dec = upper_v1 << 8; + int lower0_dec = (lower_v1 << 8) + 128; + int lower1_dec = (lower_v0 << 8) - 128; + + int upper0_diff = upper0_dec - ilum0; + int upper1_diff = upper1_dec - ilum1; + int lower0_diff = lower0_dec - ilum0; + int lower1_diff = lower1_dec - ilum1; + + int upper_error = (upper0_diff * upper0_diff) + (upper1_diff * upper1_diff); + int lower_error = (lower0_diff * lower0_diff) + (lower1_diff * lower1_diff); + + int v0, v1; + if (upper_error < lower_error) + { + v0 = upper_v0; + v1 = upper_v1; + } + else + { + v0 = lower_v0; + v1 = lower_v1; + } + + // OK; encode + output[0] = quant_color(quant_level, v0); + output[1] = quant_color(quant_level, v1); +} + +/** + * @brief Quantize a HDR L color using the small range encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed (l0, l1) with mode bits. + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_hdr_luminance_small_range( + vfloat4 color0, + vfloat4 color1, + uint8_t output[2], + quant_method quant_level +) { + float lum0 = hadd_rgb_s(color0) * (1.0f / 3.0f); + float lum1 = hadd_rgb_s(color1) * (1.0f / 3.0f); + + if (lum1 < lum0) + { + float avg = (lum0 + lum1) * 0.5f; + lum0 = avg; + lum1 = avg; + } + + int ilum1 = astc::flt2int_rtn(lum1); + int ilum0 = astc::flt2int_rtn(lum0); + + // Difference of more than a factor-of-2 results in immediate failure + if (ilum1 - ilum0 > 2048) + { + return false; + } + + int lowval, highval, diffval; + int v0, v1; + int v0e, v1e; + int v0d, v1d; + + // Try to encode the high-precision submode + lowval = (ilum0 + 16) >> 5; + highval = (ilum1 + 16) >> 5; + + lowval = astc::clamp(lowval, 0, 2047); + highval = astc::clamp(highval, 0, 2047); + + v0 = lowval & 0x7F; + v0e = quant_color(quant_level, v0); + v0d = v0e; + + if (v0d < 0x80) + { + lowval = (lowval & ~0x7F) | v0d; + diffval = highval - lowval; + if (diffval >= 0 && diffval <= 15) + { + v1 = ((lowval >> 3) & 0xF0) | diffval; + v1e = quant_color(quant_level, v1); + v1d = v1e; + if ((v1d & 0xF0) == (v1 & 0xF0)) + { + output[0] = static_cast<uint8_t>(v0e); + output[1] = static_cast<uint8_t>(v1e); + return true; + } + } + } + + // Try to encode the low-precision submode + lowval = (ilum0 + 32) >> 6; + highval = (ilum1 + 32) >> 6; + + lowval = astc::clamp(lowval, 0, 1023); + highval = astc::clamp(highval, 0, 1023); + + v0 = (lowval & 0x7F) | 0x80; + v0e = quant_color(quant_level, v0); + v0d = v0e; + if ((v0d & 0x80) == 0) + { + return false; + } + + lowval = (lowval & ~0x7F) | (v0d & 0x7F); + diffval = highval - lowval; + if (diffval < 0 || diffval > 31) + { + return false; + } + + v1 = ((lowval >> 2) & 0xE0) | diffval; + v1e = quant_color(quant_level, v1); + v1d = v1e; + if ((v1d & 0xE0) != (v1 & 0xE0)) + { + return false; + } + + output[0] = static_cast<uint8_t>(v0e); + output[1] = static_cast<uint8_t>(v1e); + return true; +} + +/** + * @brief Quantize a HDR A color using either delta or direct RGBA encoding. + * + * @param alpha0 The input unquantized color0 endpoint. + * @param alpha1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_alpha( + float alpha0, + float alpha1, + uint8_t output[2], + quant_method quant_level +) { + alpha0 = astc::clamp(alpha0, 0.0f, 65280.0f); + alpha1 = astc::clamp(alpha1, 0.0f, 65280.0f); + + int ialpha0 = astc::flt2int_rtn(alpha0); + int ialpha1 = astc::flt2int_rtn(alpha1); + + int val0, val1, diffval; + int v6, v7; + int v6e, v7e; + int v6d, v7d; + + // Try to encode one of the delta submodes, in decreasing-precision order + for (int i = 2; i >= 0; i--) + { + val0 = (ialpha0 + (128 >> i)) >> (8 - i); + val1 = (ialpha1 + (128 >> i)) >> (8 - i); + + v6 = (val0 & 0x7F) | ((i & 1) << 7); + v6e = quant_color(quant_level, v6); + v6d = v6e; + + if ((v6 ^ v6d) & 0x80) + { + continue; + } + + val0 = (val0 & ~0x7f) | (v6d & 0x7f); + diffval = val1 - val0; + int cutoff = 32 >> i; + int mask = 2 * cutoff - 1; + + if (diffval < -cutoff || diffval >= cutoff) + { + continue; + } + + v7 = ((i & 2) << 6) | ((val0 >> 7) << (6 - i)) | (diffval & mask); + v7e = quant_color(quant_level, v7); + v7d = v7e; + + static const int testbits[3] { 0xE0, 0xF0, 0xF8 }; + + if ((v7 ^ v7d) & testbits[i]) + { + continue; + } + + output[0] = static_cast<uint8_t>(v6e); + output[1] = static_cast<uint8_t>(v7e); + return; + } + + // Could not encode any of the delta modes; instead encode a flat value + val0 = (ialpha0 + 256) >> 9; + val1 = (ialpha1 + 256) >> 9; + v6 = val0 | 0x80; + v7 = val1 | 0x80; + + output[0] = quant_color(quant_level, v6); + output[1] = quant_color(quant_level, v7); + + return; +} + +/** + * @brief Quantize a HDR RGBA color using either delta or direct RGBA encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgb_alpha( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + quantize_hdr_rgb(color0, color1, output, quant_level); + quantize_hdr_alpha(color0.lane<3>(), color1.lane<3>(), output + 6, quant_level); +} + +/* See header for documentation. */ +uint8_t pack_color_endpoints( + vfloat4 color0, + vfloat4 color1, + vfloat4 rgbs_color, + vfloat4 rgbo_color, + int format, + uint8_t* output, + quant_method quant_level +) { + assert(QUANT_6 <= quant_level && quant_level <= QUANT_256); + + // We do not support negative colors + color0 = max(color0, 0.0f); + color1 = max(color1, 0.0f); + + uint8_t retval = 0; + + switch (format) + { + case FMT_RGB: + if (quant_level <= QUANT_160) + { + if (try_quantize_rgb_delta_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGB_DELTA; + break; + } + if (try_quantize_rgb_delta(color0, color1, output, quant_level)) + { + retval = FMT_RGB_DELTA; + break; + } + } + if (quant_level < QUANT_256 && try_quantize_rgb_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGB; + break; + } + quantize_rgb(color0, color1, output, quant_level); + retval = FMT_RGB; + break; + + case FMT_RGBA: + if (quant_level <= QUANT_160) + { + if (try_quantize_rgba_delta_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGBA_DELTA; + break; + } + if (try_quantize_rgba_delta(color0, color1, output, quant_level)) + { + retval = FMT_RGBA_DELTA; + break; + } + } + if (quant_level < QUANT_256 && try_quantize_rgba_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGBA; + break; + } + quantize_rgba(color0, color1, output, quant_level); + retval = FMT_RGBA; + break; + + case FMT_RGB_SCALE: + quantize_rgbs(rgbs_color, output, quant_level); + retval = FMT_RGB_SCALE; + break; + + case FMT_HDR_RGB_SCALE: + quantize_hdr_rgbo(rgbo_color, output, quant_level); + retval = FMT_HDR_RGB_SCALE; + break; + + case FMT_HDR_RGB: + quantize_hdr_rgb(color0, color1, output, quant_level); + retval = FMT_HDR_RGB; + break; + + case FMT_RGB_SCALE_ALPHA: + quantize_rgbs_alpha(color0, color1, rgbs_color, output, quant_level); + retval = FMT_RGB_SCALE_ALPHA; + break; + + case FMT_HDR_LUMINANCE_SMALL_RANGE: + case FMT_HDR_LUMINANCE_LARGE_RANGE: + if (try_quantize_hdr_luminance_small_range(color0, color1, output, quant_level)) + { + retval = FMT_HDR_LUMINANCE_SMALL_RANGE; + break; + } + quantize_hdr_luminance_large_range(color0, color1, output, quant_level); + retval = FMT_HDR_LUMINANCE_LARGE_RANGE; + break; + + case FMT_LUMINANCE: + quantize_luminance(color0, color1, output, quant_level); + retval = FMT_LUMINANCE; + break; + + case FMT_LUMINANCE_ALPHA: + if (quant_level <= 18) + { + if (try_quantize_luminance_alpha_delta(color0, color1, output, quant_level)) + { + retval = FMT_LUMINANCE_ALPHA_DELTA; + break; + } + } + quantize_luminance_alpha(color0, color1, output, quant_level); + retval = FMT_LUMINANCE_ALPHA; + break; + + case FMT_HDR_RGB_LDR_ALPHA: + quantize_hdr_rgb_ldr_alpha(color0, color1, output, quant_level); + retval = FMT_HDR_RGB_LDR_ALPHA; + break; + + case FMT_HDR_RGBA: + quantize_hdr_rgb_alpha(color0, color1, output, quant_level); + retval = FMT_HDR_RGBA; + break; + } + + return retval; +} + +#endif |