diff options
Diffstat (limited to 'thirdparty/embree/common/simd/arm/sse2neon.h')
-rw-r--r-- | thirdparty/embree/common/simd/arm/sse2neon.h | 2720 |
1 files changed, 2044 insertions, 676 deletions
diff --git a/thirdparty/embree/common/simd/arm/sse2neon.h b/thirdparty/embree/common/simd/arm/sse2neon.h index 43416662d7..b18d41e783 100644 --- a/thirdparty/embree/common/simd/arm/sse2neon.h +++ b/thirdparty/embree/common/simd/arm/sse2neon.h @@ -4,8 +4,6 @@ // This header file provides a simple API translation layer // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions // -// This header file does not yet translate all of the SSE intrinsics. -// // Contributors to this work are: // John W. Ratcliff <jratcliffscarab@gmail.com> // Brandon Rowlett <browlett@nvidia.com> @@ -13,8 +11,8 @@ // Eric van Beurden <evanbeurden@nvidia.com> // Alexander Potylitsin <apotylitsin@nvidia.com> // Hasindu Gamaarachchi <hasindu2008@gmail.com> -// Jim Huang <jserv@biilabs.io> -// Mark Cheng <marktwtn@biilabs.io> +// Jim Huang <jserv@ccns.ncku.edu.tw> +// Mark Cheng <marktwtn@gmail.com> // Malcolm James MacLeod <malcolm@gulden.com> // Devin Hussey (easyaspi314) <husseydevin@gmail.com> // Sebastian Pop <spop@amazon.com> @@ -22,9 +20,12 @@ // Danila Kutenin <danilak@google.com> // François Turban (JishinMaster) <francois.turban@gmail.com> // Pei-Hsuan Hung <afcidk@gmail.com> -// Yang-Hao Yuan <yanghau@biilabs.io> +// Yang-Hao Yuan <yuanyanghau@gmail.com> // Syoyo Fujita <syoyo@lighttransport.com> // Brecht Van Lommel <brecht@blender.org> +// Jonathan Hue <jhue@adobe.com> +// Cuda Chen <clh960524@gmail.com> +// Aymen Qader <aymen.qader@arm.com> /* * sse2neon is freely redistributable under the MIT License. @@ -54,7 +55,7 @@ * This would slow down the computation a bit, but gives consistent result with * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result) */ -/* _mm_min_ps and _mm_max_ps */ +/* _mm_min|max_ps|ss|pd|sd */ #ifndef SSE2NEON_PRECISE_MINMAX #define SSE2NEON_PRECISE_MINMAX (0) #endif @@ -91,9 +92,61 @@ #define _sse2neon_unlikely(x) (x) #endif +/* C language does not allow initializing a variable with a function call. */ +#ifdef __cplusplus +#define _sse2neon_const static const +#else +#define _sse2neon_const const +#endif + #include <stdint.h> #include <stdlib.h> +#if defined(_WIN32) +/* Definitions for _mm_{malloc,free} are provided by <malloc.h> + * from both MinGW-w64 and MSVC. + */ +#define SSE2NEON_ALLOC_DEFINED +#endif + +/* If using MSVC */ +#ifdef _MSC_VER +#include <intrin.h> +#if (defined(_M_AMD64) || defined(__x86_64__)) || \ + (defined(_M_ARM) || defined(__arm__)) +#define SSE2NEON_HAS_BITSCAN64 +#endif +#endif + +/* Compiler barrier */ +#define SSE2NEON_BARRIER() \ + do { \ + __asm__ __volatile__("" ::: "memory"); \ + (void) 0; \ + } while (0) + +/* Memory barriers + * __atomic_thread_fence does not include a compiler barrier; instead, + * the barrier is part of __atomic_load/__atomic_store's "volatile-like" + * semantics. + */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +#include <stdatomic.h> +#endif + +FORCE_INLINE void _sse2neon_smp_mb(void) +{ + SSE2NEON_BARRIER(); +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ + !defined(__STDC_NO_ATOMICS__) + atomic_thread_fence(memory_order_seq_cst); +#elif defined(__GNUC__) || defined(__clang__) + __atomic_thread_fence(__ATOMIC_SEQ_CST); +#else + /* FIXME: MSVC support */ +#endif +} + /* Architecture-specific build options */ /* FIXME: #pragma GCC push_options is only available on GCC */ #if defined(__GNUC__) @@ -114,27 +167,70 @@ #pragma GCC push_options #pragma GCC target("+simd") #endif +#elif __ARM_ARCH == 8 +#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) +#error \ + "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." +#endif +#if !defined(__clang__) +#pragma GCC push_options +#endif #else #error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A." #endif #endif #include <arm_neon.h> +#if !defined(__aarch64__) && (__ARM_ARCH == 8) +#if defined __has_include && __has_include(<arm_acle.h>) +#include <arm_acle.h> +#endif +#endif + +/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD + * and other Arm microarchtectures use. + * From sysctl -a on Apple M1: + * hw.cachelinesize: 128 + */ +#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) +#define SSE2NEON_CACHELINE_SIZE 128 +#else +#define SSE2NEON_CACHELINE_SIZE 64 +#endif /* Rounding functions require either Aarch64 instructions or libm failback */ #if !defined(__aarch64__) #include <math.h> #endif +/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only + * or even not accessible in user mode. + * To write or access to these registers in user mode, + * we have to perform syscall instead. + */ +#if !defined(__aarch64__) +#include <sys/time.h> +#endif + /* "__has_builtin" can be used to query support for built-in functions * provided by gcc/clang and other compilers that support it. */ #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */ /* Compatibility with gcc <= 9 */ -#if __GNUC__ <= 9 +#if defined(__GNUC__) && (__GNUC__ <= 9) #define __has_builtin(x) HAS##x #define HAS__builtin_popcount 1 #define HAS__builtin_popcountll 1 + +// __builtin_shuffle introduced in GCC 4.7.0 +#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) +#define HAS__builtin_shuffle 1 +#else +#define HAS__builtin_shuffle 0 +#endif + +#define HAS__builtin_shufflevector 0 +#define HAS__builtin_nontemporal_store 0 #else #define __has_builtin(x) 0 #endif @@ -159,6 +255,26 @@ #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) +#if __has_builtin(__builtin_shufflevector) +#define _sse2neon_shuffle(type, a, b, ...) \ + __builtin_shufflevector(a, b, __VA_ARGS__) +#elif __has_builtin(__builtin_shuffle) +#define _sse2neon_shuffle(type, a, b, ...) \ + __extension__({ \ + type tmp = {__VA_ARGS__}; \ + __builtin_shuffle(a, b, tmp); \ + }) +#endif + +#ifdef _sse2neon_shuffle +#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) +#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) +#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) +#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) +#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) +#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) +#endif + /* Rounding mode macros. */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 @@ -166,6 +282,13 @@ #define _MM_FROUND_TO_ZERO 0x03 #define _MM_FROUND_CUR_DIRECTION 0x04 #define _MM_FROUND_NO_EXC 0x08 +#define _MM_FROUND_RAISE_EXC 0x00 +#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) #define _MM_ROUND_NEAREST 0x0000 #define _MM_ROUND_DOWN 0x2000 #define _MM_ROUND_UP 0x4000 @@ -198,10 +321,17 @@ typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */ #else typedef float32x4_t __m128d; #endif -// Note: upstream sse2neon declares __m128i as int64x2_t. However, there's -// many places within embree that assume __m128i can be indexed as a -// 4 element u32. -typedef int32x4_t __m128i; /* 128-bit vector containing integers */ +typedef int64x2_t __m128i; /* 128-bit vector containing integers */ + +// __int64 is defined in the Intrinsics Guide which maps to different datatype +// in different data model +#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) +#if (defined(__x86_64__) || defined(__i386__)) +#define __int64 long long +#else +#define __int64 int64_t +#endif +#endif /* type-safe casting between types */ @@ -233,28 +363,28 @@ typedef int32x4_t __m128i; /* 128-bit vector containing integers */ #define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x) #define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x) -#define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x) -#define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x) -#define vreinterpretq_m128i_s32(x) (x) -#define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x) +#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x) +#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x) +#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x) +#define vreinterpretq_m128i_s64(x) (x) -#define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x) -#define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x) -#define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x) -#define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x) +#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x) +#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x) +#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x) +#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x) -#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s32(x) -#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s32(x) +#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x) +#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x) -#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x) -#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x) -#define vreinterpretq_s32_m128i(x) (x) -#define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x) +#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x) +#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x) +#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x) +#define vreinterpretq_s64_m128i(x) (x) -#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x) -#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x) -#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x) -#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x) +#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x) +#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x) +#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x) +#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x) #define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x) #define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x) @@ -394,7 +524,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); // Older gcc does not define vld1q_u8_x4 type #if defined(__GNUC__) && !defined(__clang__) && \ - ((__GNUC__ <= 10 && defined(__arm__)) || \ + ((__GNUC__ <= 12 && defined(__arm__)) || \ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ (__GNUC__ <= 9 && defined(__aarch64__))) FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) @@ -414,6 +544,57 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) } #endif +#if !defined(__aarch64__) +/* emulate vaddv u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); + return vget_lane_u8(vreinterpret_u8_u64(v1), 0); +} +#else +// Wraps vaddv_u8 +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + return vaddv_u8(v8); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); + uint8_t res = 0; + for (int i = 0; i < 8; ++i) + res += tmp[i]; + return res; +} +#else +// Wraps vaddvq_u8 +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + return vaddvq_u8(a); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u16 variant */ +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + uint32x4_t m = vpaddlq_u16(a); + uint64x2_t n = vpaddlq_u32(m); + uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); + + return vget_lane_u32((uint32x2_t) o, 0); +} +#else +// Wraps vaddvq_u16 +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + return vaddvq_u16(a); +} +#endif + /* Function Naming Conventions * The naming convention of SSE intrinsics is straightforward. A generic SSE * intrinsic function is given as follows: @@ -491,16 +672,12 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) +------+------+------+------+------+------+-------------+ */ -/* Constants for use with _mm_prefetch. */ +/* Constants for use with _mm_prefetch. */ enum _mm_hint { - _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ - _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ - _MM_HINT_T1 = 2, /* load data to L2 cache only */ - _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ - _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */ - _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */ - _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */ - _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */ + _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ + _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ + _MM_HINT_T1 = 2, /* load data to L2 cache only */ + _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ }; // The bit field mapping to the FPCR(floating-point control register) @@ -661,7 +838,8 @@ FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y) *sum = t; } -#if defined(__ARM_FEATURE_CRYPTO) +#if defined(__ARM_FEATURE_CRYPTO) && \ + (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)) // Wraps vmull_p64 FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) { @@ -970,6 +1148,11 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) vreinterpretq_m128i_s16(ret); \ }) +/* MMX */ + +//_mm_empty is a no-op on arm +FORCE_INLINE void _mm_empty(void) {} + /* SSE */ // Adds the four single-precision, floating-point values of a and b. @@ -1035,7 +1218,7 @@ FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16( @@ -1050,7 +1233,7 @@ FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( @@ -1333,7 +1516,7 @@ FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) // dst[95:64] := a[95:64] // dst[127:96] := a[127:96] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1349,10 +1532,10 @@ FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpret_m64_s32( vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); #else @@ -1368,7 +1551,7 @@ FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) // dst[31:0] := Convert_Int32_To_FP32(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) { return vreinterpretq_m128_f32( @@ -1377,10 +1560,10 @@ FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si FORCE_INLINE int _mm_cvt_ss2si(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), 0); #else @@ -1399,7 +1582,7 @@ FORCE_INLINE int _mm_cvt_ss2si(__m128 a) // dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1415,7 +1598,7 @@ FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) // dst[95:64] := a[95:64] // dst[127:96] := a[127:96] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1425,7 +1608,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) // Convert packed signed 32-bit integers in a to packed single-precision // (32-bit) floating-point elements, store the results in the lower 2 elements -// of dst, then covert the packed signed 32-bit integers in b to +// of dst, then convert the packed signed 32-bit integers in b to // single-precision (32-bit) floating-point element, and store the results in // the upper 2 elements of dst. // @@ -1434,7 +1617,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) // dst[95:64] := Convert_Int32_To_FP32(b[31:0]) // dst[127:96] := Convert_Int32_To_FP32(b[63:32]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1450,7 +1633,7 @@ FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) // dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1472,23 +1655,11 @@ FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) { - const __m128 i16Min = _mm_set_ps1((float) INT16_MIN); - const __m128 i16Max = _mm_set_ps1((float) INT16_MAX); - const __m128 i32Max = _mm_set_ps1((float) INT32_MAX); - const __m128i maxMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max))); - const __m128i betweenMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max))); - const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask), - _mm_setzero_si128()); - __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX)); - __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN)); - __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a)); - __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt); - return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32))); + return vreinterpret_m64_s16( + vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); } // Convert packed single-precision (32-bit) floating-point elements in a to @@ -1499,7 +1670,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) // Convert packed single-precision (32-bit) floating-point elements in a to @@ -1517,28 +1688,11 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) { - const __m128 i8Min = _mm_set_ps1((float) INT8_MIN); - const __m128 i8Max = _mm_set_ps1((float) INT8_MAX); - const __m128 i32Max = _mm_set_ps1((float) INT32_MAX); - const __m128i maxMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max))); - const __m128i betweenMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max))); - const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask), - _mm_setzero_si128()); - __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX)); - __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN)); - __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a)); - __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt); - int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32)); - int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16)); - uint32_t bitMask[2] = {0xFFFFFFFF, 0}; - int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask)); - - return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0))); + return vreinterpret_m64_s8(vqmovn_s16( + vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); } // Convert packed unsigned 16-bit integers in a to packed single-precision @@ -1550,7 +1704,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) // dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1567,7 +1721,7 @@ FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) // dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_u32( @@ -1581,7 +1735,7 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) // dst[31:0] := Convert_Int32_To_FP32(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) // Convert the signed 64-bit integer b to a single-precision (32-bit) @@ -1591,7 +1745,7 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) // dst[31:0] := Convert_Int64_To_FP32(b[63:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) { return vreinterpretq_m128_f32( @@ -1602,7 +1756,7 @@ FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) // // dst[31:0] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 FORCE_INLINE float _mm_cvtss_f32(__m128 a) { return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -1613,7 +1767,7 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a) // // dst[31:0] := Convert_FP32_To_Int32(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a @@ -1621,10 +1775,10 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a) // // dst[63:0] := Convert_FP32_To_Int64(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); #else float32_t data = vgetq_lane_f32( @@ -1641,7 +1795,7 @@ FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) { return vreinterpret_m64_s32( @@ -1653,7 +1807,7 @@ FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) // // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) { return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); @@ -1667,7 +1821,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) // Convert the lower single-precision (32-bit) floating-point element in a to a @@ -1675,7 +1829,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a @@ -1683,7 +1837,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // // dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) { return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -1725,21 +1879,23 @@ FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 #define _mm_extract_pi16(a, imm) \ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) // Free aligned memory that was allocated with _mm_malloc. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free +#if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void _mm_free(void *addr) { free(addr); } +#endif // Macro: Get the flush zero bits from the MXCSR control and status register. // The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or // _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() { union { @@ -1752,9 +1908,9 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF; @@ -1763,7 +1919,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() // Macro: Get the rounding mode bits from the MXCSR control and status register. // The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, // _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() { union { @@ -1776,9 +1932,9 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif if (r.field.bit22) { @@ -1790,7 +1946,7 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 #define _mm_insert_pi16(a, b, imm) \ __extension__({ \ vreinterpret_m64_s16( \ @@ -1812,7 +1968,7 @@ FORCE_INLINE __m128 _mm_load_ps(const float *p) // dst[95:64] := MEM[mem_addr+31:mem_addr] // dst[127:96] := MEM[mem_addr+31:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 #define _mm_load_ps1 _mm_load1_ps // Loads an single - precision, floating - point value into the low word and @@ -1873,7 +2029,7 @@ FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) // dst[95:64] := MEM[mem_addr+63:mem_addr+32] // dst[127:96] := MEM[mem_addr+31:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps FORCE_INLINE __m128 _mm_loadr_ps(const float *p) { float32x4_t v = vrev64q_f32(vld1q_f32(p)); @@ -1894,7 +2050,7 @@ FORCE_INLINE __m128 _mm_loadu_ps(const float *p) // dst[15:0] := MEM[mem_addr+15:mem_addr] // dst[MAX:16] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 FORCE_INLINE __m128i _mm_loadu_si16(const void *p) { return vreinterpretq_m128i_s16( @@ -1906,7 +2062,7 @@ FORCE_INLINE __m128i _mm_loadu_si16(const void *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[MAX:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 FORCE_INLINE __m128i _mm_loadu_si64(const void *p) { return vreinterpretq_m128i_s64( @@ -1916,6 +2072,7 @@ FORCE_INLINE __m128i _mm_loadu_si64(const void *p) // Allocate aligned blocks of memory. // https://software.intel.com/en-us/ // cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks +#if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void *_mm_malloc(size_t size, size_t align) { void *ptr; @@ -1927,11 +2084,12 @@ FORCE_INLINE void *_mm_malloc(size_t size, size_t align) return ptr; return NULL; } +#endif // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) { int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); @@ -1945,7 +2103,7 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq #define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) // Compare packed signed 16-bit integers in a and b, and store packed maximum @@ -1956,7 +2114,7 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) // dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -1971,7 +2129,7 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) #if SSE2NEON_PRECISE_MINMAX float32x4_t _a = vreinterpretq_f32_m128(a); float32x4_t _b = vreinterpretq_f32_m128(b); - return vbslq_f32(vcltq_f32(_b, _a), _a, _b); + return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b)); #else return vreinterpretq_m128_f32( vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); @@ -1986,7 +2144,7 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) // dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( @@ -2011,7 +2169,7 @@ FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) // dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -2026,7 +2184,7 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) #if SSE2NEON_PRECISE_MINMAX float32x4_t _a = vreinterpretq_f32_m128(a); float32x4_t _b = vreinterpretq_f32_m128(b); - return vbslq_f32(vcltq_f32(_a, _b), _a, _b); + return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b)); #else return vreinterpretq_m128_f32( vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); @@ -2041,7 +2199,7 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) // dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( @@ -2095,7 +2253,7 @@ FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 FORCE_INLINE int _mm_movemask_pi8(__m64 a) { uint8x8_t input = vreinterpret_u8_m64(a); @@ -2159,7 +2317,7 @@ FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) // dst[31:0] := a[31:0] * b[31:0] // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_mul_ps(a, b)); @@ -2168,7 +2326,7 @@ FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16(vshrn_n_u32( @@ -2192,7 +2350,7 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb #define _m_pavgb(a, b) _mm_avg_pu8(a, b) // Average packed unsigned 16-bit integers in a and b, and store the results in @@ -2203,74 +2361,87 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw #define _m_pavgw(a, b) _mm_avg_pu16(a, b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) // Compare packed signed 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw #define _m_pmaxsw(a, b) _mm_max_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub #define _m_pmaxub(a, b) _mm_max_pu8(a, b) // Compare packed signed 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw #define _m_pminsw(a, b) _mm_min_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub #define _m_pminub(a, b) _mm_min_pu8(a, b) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb #define _m_pmovmskb(a) _mm_movemask_pi8(a) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) -// Loads one cache line of data from address p to a location closer to the -// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx -FORCE_INLINE void _mm_prefetch(const void *p, int i) +// Fetch the line of data from memory that contains address p to a location in +// the cache heirarchy specified by the locality hint i. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch +FORCE_INLINE void _mm_prefetch(char const *p, int i) { - (void) i; - __builtin_prefetch(p); + switch (i) { + case _MM_HINT_NTA: + __builtin_prefetch(p, 0, 0); + break; + case _MM_HINT_T0: + __builtin_prefetch(p, 0, 3); + break; + case _MM_HINT_T1: + __builtin_prefetch(p, 0, 2); + break; + case _MM_HINT_T2: + __builtin_prefetch(p, 0, 1); + break; + } } // Compute the absolute differences of packed unsigned 8-bit integers in a and // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw #define _m_psadbw(a, b) _mm_sad_pu8(a, b) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw #define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) // Compute the approximate reciprocal of packed single-precision (32-bit) // floating-point elements in a, and store the results in dst. The maximum // relative error for this approximation is less than 1.5*2^-12. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) { float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); @@ -2290,7 +2461,7 @@ FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) // dst[31:0] := (1.0 / a[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) { return _mm_move_ss(a, _mm_rcp_ps(a)); @@ -2317,7 +2488,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) // (32-bit) floating-point element in a, store the result in the lower element // of dst, and copy the upper 3 packed elements from a to the upper elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) { return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); @@ -2327,7 +2498,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) { uint64x1_t t = vpaddl_u32(vpaddl_u16( @@ -2339,7 +2510,7 @@ FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) // Macro: Set the flush zero bits of the MXCSR control and status register to // the value in unsigned 32-bit integer a. The flush zero may contain any of the // following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) { // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, @@ -2354,17 +2525,17 @@ FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; #if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ #else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ #endif } @@ -2387,7 +2558,7 @@ FORCE_INLINE __m128 _mm_set_ps1(float _w) // the value in unsigned 32-bit integer a. The rounding mode may contain any of // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, // _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) { union { @@ -2400,9 +2571,9 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif switch (rounding) { @@ -2424,19 +2595,18 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) } #if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ #else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ #endif } // Copy single-precision (32-bit) floating-point element a to the lower element // of dst, and zero the upper 3 elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss FORCE_INLINE __m128 _mm_set_ss(float a) { - float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0}; - return vreinterpretq_m128_f32(vld1q_f32(data)); + return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); } // Sets the four single-precision, floating-point values to w. @@ -2449,11 +2619,18 @@ FORCE_INLINE __m128 _mm_set1_ps(float _w) return vreinterpretq_m128_f32(vdupq_n_f32(_w)); } +// FIXME: _mm_setcsr() implementation supports changing the rounding mode only. FORCE_INLINE void _mm_setcsr(unsigned int a) { _MM_SET_ROUNDING_MODE(a); } +// FIXME: _mm_getcsr() implementation supports reading the rounding mode only. +FORCE_INLINE unsigned int _mm_getcsr() +{ + return _MM_GET_ROUNDING_MODE(); +} + // Sets the four single-precision, floating-point values to the four inputs in // reverse order. // https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx @@ -2472,11 +2649,11 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16 -#if __has_builtin(__builtin_shufflevector) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 +#ifdef _sse2neon_shuffle #define _mm_shuffle_pi16(a, imm) \ __extension__({ \ - vreinterpret_m64_s16(__builtin_shufflevector( \ + vreinterpret_m64_s16(vshuffle_s16( \ vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \ }) @@ -2499,25 +2676,48 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) }) #endif -// Guarantees that every preceding store is globally visible before any -// subsequent store. -// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +// Perform a serializing operation on all store-to-memory instructions that were +// issued prior to this instruction. Guarantees that every store instruction +// that precedes, in program order, is globally visible before any store +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence FORCE_INLINE void _mm_sfence(void) { - __sync_synchronize(); + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory and store-to-memory +// instructions that were issued prior to this instruction. Guarantees that +// every memory access that precedes, in program order, the memory fence +// instruction is globally visible before any memory instruction which follows +// the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence +FORCE_INLINE void _mm_mfence(void) +{ + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory instructions that +// were issued prior to this instruction. Guarantees that every load instruction +// that precedes, in program order, is globally visible before any load +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence +FORCE_INLINE void _mm_lfence(void) +{ + _sse2neon_smp_mb(); } // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) // int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_ps(a, b, imm) \ - __extension__({ \ - float32x4_t _input1 = vreinterpretq_f32_m128(a); \ - float32x4_t _input2 = vreinterpretq_f32_m128(b); \ - float32x4_t _shuf = __builtin_shufflevector( \ - _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128_f32(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shuffle_ps(a, b, imm) \ + __extension__({ \ + float32x4_t _input1 = vreinterpretq_f32_m128(a); \ + float32x4_t _input2 = vreinterpretq_f32_m128(b); \ + float32x4_t _shuf = \ + vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128_f32(_shuf); \ }) #else // generic #define _mm_shuffle_ps(a, b, imm) \ @@ -2652,7 +2852,7 @@ FORCE_INLINE void _mm_store_ps(float *p, __m128 a) // MEM[mem_addr+95:mem_addr+64] := a[31:0] // MEM[mem_addr+127:mem_addr+96] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) { float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -2675,7 +2875,7 @@ FORCE_INLINE void _mm_store_ss(float *p, __m128 a) // MEM[mem_addr+95:mem_addr+64] := a[31:0] // MEM[mem_addr+127:mem_addr+96] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps #define _mm_store1_ps _mm_store_ps1 // Stores the upper two single-precision, floating-point values of a to the @@ -2711,7 +2911,7 @@ FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) // MEM[mem_addr+95:mem_addr+64] := a[63:32] // MEM[mem_addr+127:mem_addr+96] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) { float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); @@ -2727,14 +2927,14 @@ FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) } // Stores 16-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) { vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); } // Stores 64-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) { vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); @@ -2742,7 +2942,7 @@ FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) // Store 64-bits of integer data from a into memory using a non-temporal memory // hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) { vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); @@ -2750,11 +2950,11 @@ FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) // Store 128-bits (composed of 4 packed single-precision (32-bit) floating- // point elements) from a into memory using a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) { #if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); + __builtin_nontemporal_store(reinterpret_cast<float32x4_t>(a), (float32x4_t *) p); #else vst1q_f32(p, vreinterpretq_f32_m128(a)); #endif @@ -2782,7 +2982,7 @@ FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) // dst[31:0] := a[31:0] - b[31:0] // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_sub_ps(a, b)); @@ -2791,7 +2991,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the // transposed matrix in these vectors (row0 now contains column 0, etc.). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ do { \ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ @@ -2816,7 +3016,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) #define _mm_ucomineq_ss _mm_comineq_ss // Return vector of type __m128i with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 FORCE_INLINE __m128i _mm_undefined_si128(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2831,7 +3031,7 @@ FORCE_INLINE __m128i _mm_undefined_si128(void) } // Return vector of type __m128 with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps FORCE_INLINE __m128 _mm_undefined_ps(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2944,7 +3144,7 @@ FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) // Add packed double-precision (64-bit) floating-point elements in a and b, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -2967,7 +3167,7 @@ FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) // dst[63:0] := a[63:0] + b[63:0] // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -2986,7 +3186,7 @@ FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) // // dst[63:0] := a[63:0] + b[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( @@ -3016,7 +3216,7 @@ FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) // dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -3025,7 +3225,7 @@ FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) // Add packed unsigned 16-bit integers in a and b using saturation, and store // the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -3049,7 +3249,7 @@ FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) // dst[i+63:i] := a[i+63:i] AND b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( @@ -3072,11 +3272,11 @@ FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) // elements in a and then AND with b, and store the results in dst. // // FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) +// i := j*64 +// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) { // *NOTE* argument swap @@ -3129,17 +3329,17 @@ FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) // Shift a left by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 #define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) // Shift a right by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 #define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) // Cast vector of type __m128d to type __m128. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) { return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); @@ -3147,7 +3347,7 @@ FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) // Cast vector of type __m128d to type __m128i. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) { return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); @@ -3155,7 +3355,7 @@ FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) // Cast vector of type __m128 to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd FORCE_INLINE __m128d _mm_castps_pd(__m128 a) { return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); @@ -3171,7 +3371,7 @@ FORCE_INLINE __m128i _mm_castps_si128(__m128 a) // Cast vector of type __m128i to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) { #if defined(__aarch64__) @@ -3189,13 +3389,29 @@ FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); } -// Cache line containing p is flushed and invalidated from all caches in the -// coherency domain. : -// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +// Invalidate and flush the cache line that contains p from all levels of the +// cache hierarchy. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush +#if defined(__APPLE__) +#include <libkern/OSCacheControl.h> +#endif FORCE_INLINE void _mm_clflush(void const *p) { (void) p; - // no corollary for Neon? + + /* sys_icache_invalidate is supported since macOS 10.5. + * However, it does not work on non-jailbroken iOS devices, although the + * compilation is successful. + */ +#if defined(__APPLE__) + sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); +#elif defined(__GNUC__) || defined(__clang__) + uintptr_t ptr = (uintptr_t) p; + __builtin___clear_cache((char *) ptr, + (char *) ptr + SSE2NEON_CACHELINE_SIZE); +#else + /* FIXME: MSVC support */ +#endif } // Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or @@ -3226,7 +3442,7 @@ FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for equality, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3244,7 +3460,7 @@ FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for equality, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); @@ -3252,7 +3468,7 @@ FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3274,7 +3490,7 @@ FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3333,7 +3549,7 @@ FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3355,7 +3571,7 @@ FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3375,7 +3591,7 @@ FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3397,7 +3613,7 @@ FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than-or-equal, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3451,7 +3667,7 @@ FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3473,7 +3689,7 @@ FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3492,7 +3708,7 @@ FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3510,7 +3726,7 @@ FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-equal, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); @@ -3518,7 +3734,7 @@ FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3543,7 +3759,7 @@ FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than-or-equal, store the result in the lower element of // dst, and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); @@ -3551,7 +3767,7 @@ FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3576,7 +3792,7 @@ FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); @@ -3584,7 +3800,7 @@ FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3609,7 +3825,7 @@ FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); @@ -3617,7 +3833,7 @@ FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3642,7 +3858,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); @@ -3650,7 +3866,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if neither is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3682,7 +3898,7 @@ FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if neither is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3704,7 +3920,7 @@ FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if either is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3737,7 +3953,7 @@ FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if either is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3759,7 +3975,7 @@ FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3774,7 +3990,7 @@ FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3789,7 +4005,7 @@ FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3804,7 +4020,7 @@ FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3819,7 +4035,7 @@ FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for equality, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3840,7 +4056,7 @@ FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for not-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) { return !_mm_comieq_sd(a, b); @@ -3855,7 +4071,7 @@ FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) // dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) { #if defined(__aarch64__) @@ -3885,13 +4101,21 @@ FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) // dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) { +// vrnd32xq_f64 not supported on clang +#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) + float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); + int64x2_t integers = vcvtq_s64_f64(rounded); + return vreinterpretq_m128i_s32( + vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); +#else __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); double d0 = ((double *) &rnd)[0]; double d1 = ((double *) &rnd)[1]; return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); +#endif } // Convert packed double-precision (64-bit) floating-point elements in a to @@ -3903,7 +4127,7 @@ FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) // dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) { __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); @@ -3924,7 +4148,7 @@ FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) // ENDFOR // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) { #if defined(__aarch64__) @@ -3946,7 +4170,7 @@ FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) // dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) { #if defined(__aarch64__) @@ -3972,7 +4196,9 @@ FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) // does not support! It is supported on ARMv8-A however. FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) { -#if defined(__aarch64__) +#if defined(__ARM_FEATURE_FRINT) + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); +#elif defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) switch (_MM_GET_ROUNDING_MODE()) { case _MM_ROUND_NEAREST: return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); @@ -4029,7 +4255,7 @@ FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) // dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) { #if defined(__aarch64__) @@ -4046,7 +4272,7 @@ FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 FORCE_INLINE double _mm_cvtsd_f64(__m128d a) { #if defined(__aarch64__) @@ -4061,7 +4287,7 @@ FORCE_INLINE double _mm_cvtsd_f64(__m128d a) // // dst[31:0] := Convert_FP64_To_Int32(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) { #if defined(__aarch64__) @@ -4078,7 +4304,7 @@ FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) { #if defined(__aarch64__) @@ -4095,14 +4321,14 @@ FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x #define _mm_cvtsd_si64x _mm_cvtsd_si64 // Convert the lower double-precision (64-bit) floating-point element in b to a // single-precision (32-bit) floating-point element, store the result in the // lower element of dst, and copy the upper 3 packed elements from a to the // upper elements of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) { #if defined(__aarch64__) @@ -4119,7 +4345,7 @@ FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) // // dst[31:0] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) { return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); @@ -4129,20 +4355,20 @@ FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) { return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); } // Copy the lower 64-bit integer in a to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) // Convert the signed 32-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) { #if defined(__aarch64__) @@ -4159,7 +4385,7 @@ FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) // Moves 32-bit integer a to the least significant 32 bits of an __m128 object, @@ -4179,7 +4405,7 @@ FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) { #if defined(__aarch64__) @@ -4204,13 +4430,13 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) // Copy 64-bit integer a to the lower element of dst, and zero the upper // element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 #define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd #define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) // Convert the lower single-precision (32-bit) floating-point element in b to a @@ -4221,7 +4447,7 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) // dst[63:0] := Convert_FP32_To_FP64(b[31:0]) // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) { double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); @@ -4236,7 +4462,7 @@ FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) { double a0 = ((double *) &a)[0]; @@ -4246,7 +4472,7 @@ FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) { double a0 = ((double *) &a)[0]; @@ -4268,7 +4494,7 @@ FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) // // dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) { double ret = *((double *) &a); @@ -4280,7 +4506,7 @@ FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) { #if defined(__aarch64__) @@ -4296,7 +4522,7 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) // Divide packed double-precision (64-bit) floating-point elements in a by @@ -4307,7 +4533,7 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) // dst[i+63:i] := a[i+63:i] / b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4327,7 +4553,7 @@ FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) // lower double-precision (64-bit) floating-point element in b, store the result // in the lower element of dst, and copy the upper element from a to the upper // element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4363,7 +4589,7 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) // // dst[127:0] := MEM[mem_addr+127:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd FORCE_INLINE __m128d _mm_load_pd(const double *p) { #if defined(__aarch64__) @@ -4381,7 +4607,7 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 #define _mm_load_pd1 _mm_load1_pd // Load a double-precision (64-bit) floating-point element from memory into the @@ -4391,7 +4617,7 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd FORCE_INLINE __m128d _mm_load_sd(const double *p) { #if defined(__aarch64__) @@ -4416,7 +4642,7 @@ FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd FORCE_INLINE __m128d _mm_load1_pd(const double *p) { #if defined(__aarch64__) @@ -4433,7 +4659,7 @@ FORCE_INLINE __m128d _mm_load1_pd(const double *p) // dst[63:0] := a[63:0] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) { #if defined(__aarch64__) @@ -4446,7 +4672,7 @@ FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) } // Load 64-bit integer from memory into the first element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) { /* Load the lower 64 bits of the value pointed to by p into the @@ -4463,7 +4689,7 @@ FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) { #if defined(__aarch64__) @@ -4483,7 +4709,7 @@ FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) // dst[63:0] := MEM[mem_addr+127:mem_addr+64] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd FORCE_INLINE __m128d _mm_loadr_pd(const double *p) { #if defined(__aarch64__) @@ -4496,7 +4722,7 @@ FORCE_INLINE __m128d _mm_loadr_pd(const double *p) } // Loads two double-precision from unaligned memory, floating-point values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd FORCE_INLINE __m128d _mm_loadu_pd(const double *p) { return _mm_load_pd(p); @@ -4514,7 +4740,7 @@ FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) // dst[31:0] := MEM[mem_addr+31:mem_addr] // dst[MAX:32] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 FORCE_INLINE __m128i _mm_loadu_si32(const void *p) { return vreinterpretq_m128i_s32( @@ -4533,6 +4759,12 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) { int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), vget_low_s16(vreinterpretq_s16_m128i(b))); +#if defined(__aarch64__) + int32x4_t high = + vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); + + return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); +#else int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), vget_high_s16(vreinterpretq_s16_m128i(b))); @@ -4540,13 +4772,14 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); +#endif } // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. mem_addr does not need to be aligned // on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) { int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); @@ -4577,12 +4810,18 @@ FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed maximum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) { #if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b)); +#else return vreinterpretq_m128d_f64( vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif #else uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); @@ -4599,7 +4838,7 @@ FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the maximum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4607,8 +4846,8 @@ FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) #else double *da = (double *) &a; double *db = (double *) &b; - double c[2] = {fmax(da[0], db[0]), da[1]}; - return vld1q_f32((float32_t *) c); + double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); #endif } @@ -4632,12 +4871,18 @@ FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed minimum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) { #if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b)); +#else return vreinterpretq_m128d_f64( vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif #else uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); @@ -4653,7 +4898,7 @@ FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the minimum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4661,8 +4906,8 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) #else double *da = (double *) &a; double *db = (double *) &b; - double c[2] = {fmin(da[0], db[0]), da[1]}; - return vld1q_f32((float32_t *) c); + double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); #endif } @@ -4672,7 +4917,7 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) // dst[63:0] := a[63:0] // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 FORCE_INLINE __m128i _mm_move_epi64(__m128i a) { return vreinterpretq_m128i_s64( @@ -4686,7 +4931,7 @@ FORCE_INLINE __m128i _mm_move_epi64(__m128i a) // dst[63:0] := b[63:0] // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) { return vreinterpretq_m128d_f32( @@ -4780,7 +5025,7 @@ FORCE_INLINE int _mm_movemask_epi8(__m128i a) // Set each bit of mask dst based on the most significant bit of the // corresponding packed double-precision (64-bit) floating-point element in a. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd FORCE_INLINE int _mm_movemask_pd(__m128d a) { uint64x2_t input = vreinterpretq_u64_m128d(a); @@ -4792,7 +5037,7 @@ FORCE_INLINE int _mm_movemask_pd(__m128d a) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) { return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); @@ -4804,7 +5049,7 @@ FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) // dst[63:0] := a[63:0] // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) { return vreinterpretq_m128i_s64( @@ -4826,7 +5071,7 @@ FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) // Multiply packed double-precision (64-bit) floating-point elements in a and b, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4845,7 +5090,7 @@ FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) // Multiply the lower double-precision (64-bit) floating-point element in a and // b, store the result in the lower element of dst, and copy the upper element // from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_mul_pd(a, b)); @@ -4856,7 +5101,7 @@ FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) // // dst[63:0] := a[31:0] * b[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) { return vreinterpret_m64_u64(vget_low_u64( @@ -4892,7 +5137,7 @@ FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) { uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); @@ -4931,7 +5176,7 @@ FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) // Compute the bitwise OR of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( @@ -5001,7 +5246,7 @@ FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) // Pause the processor. This is typically used in spin-wait loops and depending // on the x86 processor typical values are in the 40-100 cycle range. The -// 'yield' instruction isn't a good fit beacuse it's effectively a nop on most +// 'yield' instruction isn't a good fit because it's effectively a nop on most // Arm cores. Experience with several databases has shown has shown an 'isb' is // a reasonable approximation. FORCE_INLINE void _mm_pause() @@ -5013,7 +5258,7 @@ FORCE_INLINE void _mm_pause() // b, then horizontally sum each consecutive 8 differences to produce two // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of 64-bit elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) { uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); @@ -5089,7 +5334,7 @@ FORCE_INLINE __m128i _mm_set_epi8(signed char b15, // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) { double ALIGN_STRUCT(16) data[2] = {e0, e1}; @@ -5102,15 +5347,19 @@ FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 #define _mm_set_pd1 _mm_set1_pd // Copy double-precision (64-bit) floating-point element a to the lower element // of dst, and zero the upper element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd FORCE_INLINE __m128d _mm_set_sd(double a) { +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); +#else return _mm_set_pd(0, a); +#endif } // Sets the 8 signed 16-bit integer values to w. @@ -5147,7 +5396,7 @@ FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) } // Sets the 2 signed 64-bit integer values to i. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) { return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); @@ -5168,7 +5417,7 @@ FORCE_INLINE __m128i _mm_set1_epi8(signed char w) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd FORCE_INLINE __m128d _mm_set1_pd(double d) { #if defined(__aarch64__) @@ -5207,7 +5456,7 @@ FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) } // Set packed 64-bit integers in dst with the supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) { return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); @@ -5242,14 +5491,14 @@ FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) { return _mm_set_pd(e0, e1); } // Return vector of type __m128d with all elements set to zero. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd FORCE_INLINE __m128d _mm_setzero_pd(void) { #if defined(__aarch64__) @@ -5270,14 +5519,14 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - int32x4_t _input = vreinterpretq_s32_m128i(a); \ - int32x4_t _shuf = __builtin_shufflevector( \ - _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ - vreinterpretq_m128i_s32(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + int32x4_t _input = vreinterpretq_s32_m128i(a); \ + int32x4_t _shuf = \ + vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ + vreinterpretq_m128i_s32(_shuf); \ }) #else // generic #define _mm_shuffle_epi32(a, imm) \ @@ -5340,12 +5589,12 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] // dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_pd(a, b, imm8) \ - vreinterpretq_m128d_s64(__builtin_shufflevector( \ - vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \ - ((imm8 & 0x2) >> 1) + 2)) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pd(a, b, imm8) \ + vreinterpretq_m128d_s64( \ + vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ + imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) #else #define _mm_shuffle_pd(a, b, imm8) \ _mm_castsi128_pd(_mm_set_epi64x( \ @@ -5355,15 +5604,15 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shufflehi_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ - _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ - (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ - (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128i_s16(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shufflehi_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = \ + vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ + (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ + (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128i_s16(_shuf); \ }) #else // generic #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) @@ -5371,11 +5620,11 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) +#ifdef _sse2neon_shuffle #define _mm_shufflelo_epi16(a, imm) \ __extension__({ \ int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ + int16x8_t _shuf = vshuffleq_s16( \ _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ vreinterpretq_m128i_s16(_shuf); \ @@ -5396,7 +5645,7 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5419,7 +5668,7 @@ FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5442,7 +5691,7 @@ FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5465,7 +5714,7 @@ FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~15)) @@ -5486,7 +5735,7 @@ FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~31)) @@ -5507,7 +5756,7 @@ FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~63)) @@ -5525,19 +5774,23 @@ FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) // FI // dst[127:0] := a[127:0] << (tmp*8) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128 -FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)}; - return vreinterpretq_m128i_u8( - vld1q_u8(((uint8_t const *) tmp) + (16 - imm))); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 +#define _mm_slli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely(imm == 0)) \ + ret = vreinterpretq_s8_m128i(a); \ + else if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), \ + ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ + vreinterpretq_m128i_s8(ret); \ + }) // Compute the square root of packed double-precision (64-bit) floating-point // elements in a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) { #if defined(__aarch64__) @@ -5552,7 +5805,7 @@ FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) // Compute the square root of the lower double-precision (64-bit) floating-point // element in b, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -5574,7 +5827,7 @@ FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) { int64_t c = (int64_t) vget_low_s64((int64x2_t) count); @@ -5595,7 +5848,7 @@ FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) { int64_t c = (int64_t) vget_low_s64((int64x2_t) count); @@ -5616,7 +5869,7 @@ FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) { const int count = (imm & ~15) ? 15 : imm; @@ -5635,21 +5888,21 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srai_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) == 0)) { \ - ret = a; \ - } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ - ret = vreinterpretq_m128i_s32( \ - vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \ - } else { \ - ret = vreinterpretq_m128i_s32( \ - vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ - } \ - ret; \ +#define _mm_srai_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) == 0)) { \ + ret = a; \ + } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ + ret = vreinterpretq_m128i_s32( \ + vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \ + } else { \ + ret = vreinterpretq_m128i_s32( \ + vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ + } \ + ret; \ }) // Shift packed 16-bit integers in a right by count while shifting in zeros, and @@ -5664,7 +5917,7 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5687,7 +5940,7 @@ FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5710,7 +5963,7 @@ FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5733,17 +5986,17 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16 -#define _mm_srli_epi16(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely(imm & ~15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u16( \ - vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \ - } \ - ret; \ +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 +#define _mm_srli_epi16(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~15)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u16( \ + vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \ + } \ + ret; \ }) // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and @@ -5758,18 +6011,18 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srli_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely(imm & ~31)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u32( \ - vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \ - } \ - ret; \ +#define _mm_srli_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u32( \ + vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \ + } \ + ret; \ }) // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and @@ -5784,17 +6037,17 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64 -#define _mm_srli_epi64(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely(imm & ~63)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u64( \ - vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \ - } \ - ret; \ +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 +#define _mm_srli_epi64(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~63)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u64( \ + vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \ + } \ + ret; \ }) // Shift a right by imm8 bytes while shifting in zeros, and store the results in @@ -5806,19 +6059,22 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // dst[127:0] := a[127:0] >> (tmp*8) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128 -FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)}; - return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm)); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 +#define _mm_srli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), \ + (imm > 15 ? 0 : imm)); \ + vreinterpretq_m128i_s8(ret); \ + }) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary // or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5831,7 +6087,7 @@ FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5847,7 +6103,7 @@ FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // memory. mem_addr does not need to be aligned on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5867,7 +6123,7 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd #define _mm_store1_pd _mm_store_pd1 // Store the upper double-precision (64-bit) floating-point element from a into @@ -5875,7 +6131,7 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) // // MEM[mem_addr+63:mem_addr] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5889,9 +6145,7 @@ FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) // https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) { - uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); - uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); - *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); + vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); } // Store the lower double-precision (64-bit) floating-point element from a into @@ -5899,7 +6153,7 @@ FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) // // MEM[mem_addr+63:mem_addr] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5916,7 +6170,7 @@ FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) // MEM[mem_addr+63:mem_addr] := a[127:64] // MEM[mem_addr+127:mem_addr+64] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) { float32x4_t f = vreinterpretq_f32_m128d(a); @@ -5926,21 +6180,21 @@ FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr does not need to be aligned on any // particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) { _mm_store_pd(mem_addr, a); } // Stores 128-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); } // Stores 32-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) { vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); @@ -5950,11 +6204,11 @@ FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) // elements) from a into memory using a non-temporal memory hint. mem_addr must // be aligned on a 16-byte boundary or a general-protection exception may be // generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) { #if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); + __builtin_nontemporal_store(reinterpret_cast<float32x4_t>(a), (float32x4_t *) p); #elif defined(__aarch64__) vst1q_f64(p, vreinterpretq_f64_m128d(a)); #else @@ -5978,15 +6232,24 @@ FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) // Store 32-bit integer a into memory using a non-temporal hint to minimize // cache pollution. If the cache line containing address mem_addr is already in // the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 FORCE_INLINE void _mm_stream_si32(int *p, int a) { vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); } +// Store 64-bit integer a into memory using a non-temporal hint to minimize +// cache pollution. If the cache line containing address mem_addr is already in +// the cache, the cache will be updated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 +FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) +{ + vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); +} + // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -6020,7 +6283,7 @@ FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -6036,7 +6299,7 @@ FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) // dst[i+63:i] := a[i+63:i] - b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6056,7 +6319,7 @@ FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) // the lower double-precision (64-bit) floating-point element in a, store the // result in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_sub_pd(a, b)); @@ -6066,7 +6329,7 @@ FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) // // dst[63:0] := a[63:0] - b[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( @@ -6135,7 +6398,7 @@ FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) #define _mm_ucomineq_sd _mm_comineq_sd // Return vector of type __m128d with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd FORCE_INLINE __m128d _mm_undefined_pd(void) { #if defined(__GNUC__) || defined(__clang__) @@ -6240,7 +6503,7 @@ FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) // } // dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6343,7 +6606,7 @@ FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) // } // dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6364,7 +6627,7 @@ FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) // dst[i+63:i] := a[i+63:i] XOR b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( @@ -6394,10 +6657,10 @@ FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) { - __m128d mask = _mm_set_pd(1.0f, -1.0f); + _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); #if defined(__aarch64__) return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b), @@ -6410,10 +6673,10 @@ FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) // Alternatively add and subtract packed single-precision (32-bit) // floating-point elements in a to/from packed elements in b, and store the // results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) { - __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f}; + _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); #if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */ return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(mask), @@ -6425,7 +6688,7 @@ FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) // Horizontally add adjacent pairs of double-precision (64-bit) floating-point // elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6459,13 +6722,14 @@ FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) // Horizontally subtract adjacent pairs of double-precision (64-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) { #if defined(__aarch64__) - return vreinterpretq_m128d_f64(vsubq_f64( - vuzp1q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)), - vuzp2q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)))); + float64x2_t a = vreinterpretq_f64_m128d(_a); + float64x2_t b = vreinterpretq_f64_m128d(_b); + return vreinterpretq_m128d_f64( + vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); #else double *da = (double *) &_a; double *db = (double *) &_b; @@ -6474,18 +6738,18 @@ FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) #endif } -// Horizontally substract adjacent pairs of single-precision (32-bit) +// Horizontally subtract adjacent pairs of single-precision (32-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) { + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); #if defined(__aarch64__) - return vreinterpretq_m128_f32(vsubq_f32( - vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)), - vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)))); + return vreinterpretq_m128_f32( + vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); #else - float32x4x2_t c = - vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)); + float32x4x2_t c = vuzpq_f32(a, b); return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); #endif } @@ -6496,7 +6760,7 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) // // dst[127:0] := MEM[mem_addr+127:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 #define _mm_lddqu_si128 _mm_loadu_si128 // Load a double-precision (64-bit) floating-point element from memory into both @@ -6505,15 +6769,15 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd #define _mm_loaddup_pd _mm_load1_pd // Duplicate the low double-precision (64-bit) floating-point element from a, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) { -#if (__aarch64__) +#if defined(__aarch64__) return vreinterpretq_m128d_f64( vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); #else @@ -6524,11 +6788,14 @@ FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) // Duplicate odd-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) { -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); #else float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); @@ -6540,11 +6807,14 @@ FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) // Duplicate even-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) { -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); #else float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -6564,7 +6834,7 @@ FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) // dst[i+15:i] := ABS(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) { return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); @@ -6578,7 +6848,7 @@ FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) // dst[i+31:i] := ABS(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) { return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); @@ -6592,7 +6862,7 @@ FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) // dst[i+7:i] := ABS(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) { return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); @@ -6606,7 +6876,7 @@ FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) // dst[i+15:i] := ABS(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) { return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); @@ -6620,7 +6890,7 @@ FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) // dst[i+31:i] := ABS(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) { return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); @@ -6634,7 +6904,7 @@ FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) // dst[i+7:i] := ABS(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) { return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); @@ -6646,24 +6916,21 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) // tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) // dst[127:0] := tmp[127:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8 -FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) -{ - if (_sse2neon_unlikely(imm & ~31)) - return _mm_setzero_si128(); - int idx; - uint8x16_t tmp[2]; - if (imm >= 16) { - idx = imm - 16; - tmp[0] = vreinterpretq_u8_m128i(a); - tmp[1] = vdupq_n_u8(0); - } else { - idx = imm; - tmp[0] = vreinterpretq_u8_m128i(b); - tmp[1] = vreinterpretq_u8_m128i(a); - } - return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx)); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 +#define _mm_alignr_epi8(a, b, imm) \ + __extension__({ \ + uint8x16_t _a = vreinterpretq_u8_m128i(a); \ + uint8x16_t _b = vreinterpretq_u8_m128i(b); \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) \ + ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + else if (imm >= 16) \ + ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ + else \ + ret = \ + vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ + ret; \ + }) // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift // the result right by imm8 bytes, and store the low 8 bytes in dst. @@ -6671,7 +6938,7 @@ FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) // tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) // dst[63:0] := tmp[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 #define _mm_alignr_pi8(a, b, imm) \ __extension__({ \ __m64 ret; \ @@ -6679,13 +6946,13 @@ FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ } else { \ uint8x8_t tmp_low, tmp_high; \ - if (imm >= 8) { \ - const int idx = imm - 8; \ + if ((imm) >= 8) { \ + const int idx = (imm) -8; \ tmp_low = vreinterpret_u8_m64(a); \ tmp_high = vdup_n_u8(0); \ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ } else { \ - const int idx = imm; \ + const int idx = (imm); \ tmp_low = vreinterpret_u8_m64(b); \ tmp_high = vreinterpret_u8_m64(a); \ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ @@ -6715,14 +6982,18 @@ FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); +#else return vreinterpretq_m128i_s32( vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); +#endif } // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the // signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -6731,7 +7002,7 @@ FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the // signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) { return vreinterpret_m64_s32( @@ -6762,7 +7033,7 @@ FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) // Horizontally add adjacent pairs of signed 16-bit integers in a and b using // saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -6775,101 +7046,96 @@ FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) #endif } -// Computes pairwise difference of each argument as a 16-bit signed or unsigned -// integer values a and b. +// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack +// the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) { - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Subtract - return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357)); + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1])); +#endif } -// Computes pairwise difference of each argument as a 32-bit signed or unsigned -// integer values a and b. +// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack +// the signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) { - int64x2_t a = vreinterpretq_s64_m128i(_a); - int64x2_t b = vreinterpretq_s64_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|b0|b2] - // [a1|a2|b1|b3] - int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b)); - int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32)); - // Subtract - return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13)); + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); +#else + int32x4x2_t c = vuzpq_s32(a, b); + return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1])); +#endif } // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack // the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) { - int32x4_t ab = - vcombine_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b)); - - int16x4_t ab_low_bits = vmovn_s32(ab); - int16x4_t ab_high_bits = vshrn_n_s32(ab, 16); - - return vreinterpret_m64_s16(vsub_s16(ab_low_bits, ab_high_bits)); + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1])); +#endif } // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack // the signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) { -#if defined(__aarch64__) int32x2_t a = vreinterpret_s32_m64(_a); int32x2_t b = vreinterpret_s32_m64(_b); - return vreinterpret_m64_s32(vsub_s32(vtrn1_s32(a, b), vtrn2_s32(a, b))); +#if defined(__aarch64__) + return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); #else - int32x2x2_t trn_ab = - vtrn_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b)); - return vreinterpret_m64_s32(vsub_s32(trn_ab.val[0], trn_ab.val[1])); + int32x2x2_t c = vuzp_s32(a, b); + return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1])); #endif } // Computes saturated pairwise difference of each argument as a 16-bit signed // integer values a and b. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) { -#if defined(__aarch64__) int16x8_t a = vreinterpretq_s16_m128i(_a); int16x8_t b = vreinterpretq_s16_m128i(_b); - return vreinterpretq_s64_s16( +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); #else - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Saturated subtract - return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357)); + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1])); #endif } // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b // using saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); int16x4_t b = vreinterpret_s16_m64(_b); #if defined(__aarch64__) - return vreinterpret_s64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); + return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); #else - int16x4x2_t res = vuzp_s16(a, b); - return vreinterpret_s64_s16(vqsub_s16(res.val[0], res.val[1])); + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1])); #endif } @@ -6921,7 +7187,7 @@ FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) // signed 8-bit integer from b, producing intermediate signed 16-bit integers. // Horizontally add adjacent pairs of intermediate signed 16-bit integers, and // pack the saturated results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) { uint16x4_t a = vreinterpret_u16_m64(_a); @@ -6975,7 +7241,7 @@ FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) // Multiply packed signed 16-bit integers in a and b, producing intermediate // signed 32-bit integers. Truncate each intermediate integer to the 18 most // significant bits, round by adding 1, and store bits [16:1] to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) { int32x4_t mul_extend = @@ -6987,7 +7253,7 @@ FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) // Shuffle packed 8-bit integers in a according to shuffle control mask in the // corresponding 8-bit element of b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) { int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a @@ -7028,11 +7294,11 @@ FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) { const int8x8_t controlMask = - vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t)(0x1 << 7 | 0x07))); + vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07))); int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask); return vreinterpret_m64_s8(res); } @@ -7142,7 +7408,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); #endif - // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a') + // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a') // based on ltMask int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); // res = masked & (~zeroMask) @@ -7166,7 +7432,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -7183,7 +7449,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a') // based on ltMask int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a); // res = masked & (~zeroMask) @@ -7207,7 +7473,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) { int32x2_t a = vreinterpret_s32_m64(_a); @@ -7224,7 +7490,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a') // based on ltMask int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a); // res = masked & (~zeroMask) @@ -7248,7 +7514,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) { int8x8_t a = vreinterpret_s8_m64(_a); @@ -7265,7 +7531,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a') // based on ltMask int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a); // res = masked & (~zeroMask) @@ -7309,7 +7575,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed double-precision (64-bit) floating-point elements from a and b // using control mask imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd #define _mm_blend_pd(a, b, imm) \ __extension__({ \ const uint64_t _mask[2] = { \ @@ -7323,7 +7589,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) { const uint32_t ALIGN_STRUCT(16) @@ -7360,7 +7626,7 @@ FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) // Blend packed double-precision (64-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) { uint64x2_t mask = @@ -7378,7 +7644,7 @@ FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) { // Use a signed shift right to create a mask with the sign bit @@ -7392,7 +7658,7 @@ FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) // Round the packed double-precision (64-bit) floating-point elements in a up // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) { #if defined(__aarch64__) @@ -7406,10 +7672,10 @@ FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) // Round the packed single-precision (32-bit) floating-point elements in a up to // an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); #else float *f = (float *) &a; @@ -7421,7 +7687,7 @@ FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_ceil_pd(b)); @@ -7435,7 +7701,7 @@ FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) // dst[31:0] := CEIL(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_ceil_ps(b)); @@ -7542,7 +7808,7 @@ FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) // Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ @@ -7575,7 +7841,7 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) // Conditionally multiply the packed double-precision (64-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, and // conditionally store the sum in dst using the low 4 bits of imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) { // Generate mask value from constant immediate bit value @@ -7621,7 +7887,7 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) // Conditionally multiply the packed single-precision (32-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, // and conditionally store the sum in dst using the low 4 bits of imm. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) { #if defined(__aarch64__) @@ -7677,7 +7943,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) // Extracts the selected signed or unsigned 8-bit integer from a and zero // extends. // FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) // Extracts the selected single-precision (32-bit) floating-point from a. @@ -7687,7 +7953,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) // Round the packed double-precision (64-bit) floating-point elements in a down // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd FORCE_INLINE __m128d _mm_floor_pd(__m128d a) { #if defined(__aarch64__) @@ -7701,10 +7967,10 @@ FORCE_INLINE __m128d _mm_floor_pd(__m128d a) // Round the packed single-precision (32-bit) floating-point elements in a down // to an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps FORCE_INLINE __m128 _mm_floor_ps(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); #else float *f = (float *) &a; @@ -7716,7 +7982,7 @@ FORCE_INLINE __m128 _mm_floor_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_floor_pd(b)); @@ -7730,7 +7996,7 @@ FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) // dst[31:0] := FLOOR(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_floor_ps(b)); @@ -7769,7 +8035,7 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) // Copy a to tmp, then insert a single-precision (32-bit) floating-point // element from b into tmp using the control in imm8. Store tmp to dst using // the mask in imm8 (elements are zeroed out when the corresponding bit is set). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps #define _mm_insert_ps(a, b, imm8) \ __extension__({ \ float32x4_t tmp1 = \ @@ -7808,7 +8074,7 @@ FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7817,7 +8083,7 @@ FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7826,7 +8092,7 @@ FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( @@ -7851,7 +8117,7 @@ FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7860,7 +8126,7 @@ FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7869,7 +8135,7 @@ FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( @@ -7892,15 +8158,22 @@ FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) // dst[18:16] := index[2:0] // dst[127:19] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) { __m128i dst; uint16_t min, idx = 0; - // Find the minimum value #if defined(__aarch64__) + // Find the minimum value min = vminvq_u16(vreinterpretq_u16_m128i(a)); + + // Get the index of the minimum value + static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; + uint16x8_t minv = vdupq_n_u16(min); + uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); + idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); #else + // Find the minimum value __m64 tmp; tmp = vreinterpret_m64_u16( vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), @@ -7910,7 +8183,6 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) tmp = vreinterpret_m64_u16( vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); -#endif // Get the index of the minimum value int i; for (i = 0; i < 8; i++) { @@ -7920,6 +8192,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) } a = _mm_srli_si128(a, 2); } +#endif // Generate result dst = _mm_setzero_si128(); dst = vreinterpretq_m128i_u16( @@ -7935,7 +8208,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) // quadruplets from a. One quadruplet is selected from b starting at on the // offset specified in imm8. Eight quadruplets are formed from sequential 8-bit // integers selected from a starting at the offset specified in imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) { uint8x16_t _a, _b; @@ -7982,13 +8255,13 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) int16x8_t c04, c15, c26, c37; uint8x8_t low_b = vget_low_u8(_b); - c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); + c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); + uint8x16_t _a_1 = vextq_u8(_a, _a, 1); + c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); + uint8x16_t _a_2 = vextq_u8(_a, _a, 2); + c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); + uint8x16_t _a_3 = vextq_u8(_a, _a, 3); + c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); #if defined(__aarch64__) // |0|4|2|6| c04 = vpaddq_s16(c04, c26); @@ -8056,7 +8329,7 @@ FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) // Round the packed double-precision (64-bit) floating-point elements in a using // the rounding parameter, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) { #if defined(__aarch64__) @@ -8128,7 +8401,7 @@ FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) // software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) switch (rounding) { case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); @@ -8185,7 +8458,7 @@ FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) // the rounding parameter, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) { return _mm_move_sd(a, _mm_round_pd(b, rounding)); @@ -8205,7 +8478,7 @@ FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) // (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress // exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see // _MM_SET_ROUNDING_MODE -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) { return _mm_move_ss(a, _mm_round_ps(b, rounding)); @@ -8217,7 +8490,7 @@ FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) // // dst[127:0] := MEM[mem_addr+127:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) { #if __has_builtin(__builtin_nontemporal_store) @@ -8229,16 +8502,16 @@ FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) // Compute the bitwise NOT of a and then AND with a 128-bit vector containing // all 1's, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones FORCE_INLINE int _mm_test_all_ones(__m128i a) { - return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == + return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == ~(uint64_t) 0; } // Compute the bitwise AND of 128 bits (representing integer data) in a and // mask, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) { int64x2_t a_and_mask = @@ -8251,7 +8524,7 @@ FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) // the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is // zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) { uint64x2_t zf = @@ -8266,12 +8539,11 @@ FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the CF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) { int64x2_t s64 = - vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))), - vreinterpretq_s64_m128i(b)); + vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); } @@ -8280,14 +8552,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 #define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the ZF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) { int64x2_t s64 = @@ -8297,6 +8569,756 @@ FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) /* SSE4.2 */ +const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; +const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; + +/* specify the source data format */ +#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */ +#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */ +#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */ +#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */ + +/* specify the comparison operation */ +#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */ +#define _SIDD_CMP_RANGES 0x04 /* compare ranges */ +#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */ +#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */ + +/* specify the polarity */ +#define _SIDD_POSITIVE_POLARITY 0x00 +#define _SIDD_MASKED_POSITIVE_POLARITY 0x20 +#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */ +#define _SIDD_MASKED_NEGATIVE_POLARITY \ + 0x30 /* negate results only before end of string */ + +/* specify the output selection in _mm_cmpXstri */ +#define _SIDD_LEAST_SIGNIFICANT 0x00 +#define _SIDD_MOST_SIGNIFICANT 0x40 + +/* specify the output selection in _mm_cmpXstrm */ +#define _SIDD_BIT_MASK 0x00 +#define _SIDD_UNIT_MASK 0x40 + +/* Pattern Matching for C macros. + * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms + */ + +/* catenate */ +#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ +#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b) + +#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c) +/* run the 2nd parameter */ +#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__ +/* run the 1st parameter */ +#define SSE2NEON_IIF_1(t, ...) t + +#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b) +#define SSE2NEON_COMPL_0 1 +#define SSE2NEON_COMPL_1 0 + +#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x) +#define SSE2NEON_DEC_1 0 +#define SSE2NEON_DEC_2 1 +#define SSE2NEON_DEC_3 2 +#define SSE2NEON_DEC_4 3 +#define SSE2NEON_DEC_5 4 +#define SSE2NEON_DEC_6 5 +#define SSE2NEON_DEC_7 6 +#define SSE2NEON_DEC_8 7 +#define SSE2NEON_DEC_9 8 +#define SSE2NEON_DEC_10 9 +#define SSE2NEON_DEC_11 10 +#define SSE2NEON_DEC_12 11 +#define SSE2NEON_DEC_13 12 +#define SSE2NEON_DEC_14 13 +#define SSE2NEON_DEC_15 14 +#define SSE2NEON_DEC_16 15 + +/* detection */ +#define SSE2NEON_CHECK_N(x, n, ...) n +#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, ) +#define SSE2NEON_PROBE(x) x, 1, + +#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x)) +#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~) + +#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x)) +#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c)) + +#define SSE2NEON_EAT(...) +#define SSE2NEON_EXPAND(...) __VA_ARGS__ +#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT) + +/* recursion */ +/* deferred expression */ +#define SSE2NEON_EMPTY() +#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY() +#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)() +#define SSE2NEON_EXPAND(...) __VA_ARGS__ + +#define SSE2NEON_EVAL(...) \ + SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__))) +#define SSE2NEON_EVAL1(...) \ + SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__))) +#define SSE2NEON_EVAL2(...) \ + SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__))) +#define SSE2NEON_EVAL3(...) __VA_ARGS__ + +#define SSE2NEON_REPEAT(count, macro, ...) \ + SSE2NEON_WHEN(count) \ + (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \ + SSE2NEON_DEC(count), macro, \ + __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \ + __VA_ARGS__)) +#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT + +#define SSE2NEON_SIZE_OF_byte 8 +#define SSE2NEON_NUMBER_OF_LANES_byte 16 +#define SSE2NEON_SIZE_OF_word 16 +#define SSE2NEON_NUMBER_OF_LANES_word 8 + +#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \ + mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \ + vreinterpretq_##type##_m128i(a))); + +#define SSE2NEON_FILL_LANE(i, type) \ + vec_b[i] = \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)); + +#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \ + number_of_lanes, byte_or_word) \ + do { \ + SSE2NEON_CAT( \ + data_type_prefix, \ + SSE2NEON_CAT(size, \ + SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \ + vec_b[number_of_lanes]; \ + __m128i mask = SSE2NEON_IIF(byte_or_word)( \ + vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \ + vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \ + SSE2NEON_CAT(type_prefix, size))) \ + for (int i = 0; i < number_of_lanes; i++) { \ + mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \ + size)(SSE2NEON_CAT(vbslq_u, size)( \ + SSE2NEON_CAT(vreinterpretq_u, \ + SSE2NEON_CAT(size, _m128i))(mask), \ + SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))), \ + SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))))); \ + } \ + } while (0) + +#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \ + do { \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \ + SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \ + SSE2NEON_CAT(u, size))) \ + } while (0) + +#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_any_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \ + static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_RANGES( \ + a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_ranges_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \ + __m128i b, int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_ordered_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ + } + +static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) + +static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + __m128i tmp = vreinterpretq_m128i_u32( + vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); + uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), + vreinterpretq_u32_m128i(tmp)); +#if defined(__aarch64__) + int t = vaddvq_u32(vec_res) ? 1 : 0; +#else + uint64x2_t sumh = vpaddlq_u32(vec_res); + int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1); +#endif + res |= (t << j); + } + return res; +} + +static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + __m128i tmp = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); + uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), + vreinterpretq_u16_m128i(tmp)); + int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; + res |= (t << j); + } + return res; +} + +#define SSE2NEON_CMP_RANGES_IS_BYTE 1 +#define SSE2NEON_CMP_RANGES_IS_WORD 0 + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ + prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ + prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ + prefix##IMPL(word, uint, u, prefix##IS_WORD) \ + prefix##IMPL(word, int, s, prefix##IS_WORD) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) + +#undef SSE2NEON_CMP_RANGES_IS_BYTE +#undef SSE2NEON_CMP_RANGES_IS_WORD + +static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint8x16_t mtx = + vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x10000 - (1 << la); + int tb = 0x10000 - (1 << lb); + uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi; + uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi; + vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask); + vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask); + vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask); + vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask); + tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask); + tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask); + + res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx)); + res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx)); + res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo); + res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi); + res_lo = vand_u8(res_lo, vec_mask); + res_hi = vand_u8(res_hi, vec_mask); + + int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); + return res; +} + +static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint16x8_t mtx = + vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x100 - (1 << la); + int tb = 0x100 - (1 << lb); + uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b); + uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask); + uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask); + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask); + mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); + mtx = vbslq_u16(vec1, tmp, mtx); + mtx = vandq_u16(mtx, vec_mask); + return _sse2neon_vaddvq_u16(mtx); +} + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0 + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \ + static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \ + int bound, int la, int lb, __m128i mtx[16]) \ + { \ + int res = 0; \ + int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \ + uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \ + vld1_u##size(_sse2neon_cmpestr_mask##size##b), \ + vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \ + uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \ + vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \ + vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \ + vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \ + uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \ + uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \ + for (int j = 0; j < lb; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \ + vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \ + } \ + for (int j = lb; j < bound; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size( \ + vbslq_u##size(vec1, vec_minusone, vec_zero)); \ + } \ + unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \ + (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \ + for (int i = 0; i < bound; i++) { \ + int val = 1; \ + for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \ + val &= ptr[k * bound + j]; \ + res += val << i; \ + } \ + return res; \ + } + +/* clang-format off */ +#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ + prefix##IMPL(8, 16, prefix##IS_UBYTE) \ + prefix##IMPL(16, 8, prefix##IS_UWORD) +/* clang-format on */ + +SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) + +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) + +#define SSE2NEON_CMPESTR_LIST \ + _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \ + _(CMP_UWORD_RANGES, cmp_uword_ranges) \ + _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \ + _(CMP_SWORD_RANGES, cmp_sword_ranges) \ + _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \ + _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered) + +enum { +#define _(name, func_suffix) name, + SSE2NEON_CMPESTR_LIST +#undef _ +}; +typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb); +static cmpestr_func_t _sse2neon_cmpfunc_table[] = { +#define _(name, func_suffix) _sse2neon_##func_suffix, + SSE2NEON_CMPESTR_LIST +#undef _ +}; + +FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) +{ + switch (imm8 & 0x30) { + case _SIDD_NEGATIVE_POLARITY: + res ^= 0xffffffff; + break; + case _SIDD_MASKED_NEGATIVE_POLARITY: + res ^= (1 << lb) - 1; + break; + default: + break; + } + + return res & ((bound == 8) ? 0xFF : 0xFFFF); +} + +FORCE_INLINE int _sse2neon_clz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanForward(&cnt, x)) + return cnt; + return 32; +#else + return x != 0 ? __builtin_clz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanReverse(&cnt, x)) + return 31 - cnt; + return 32; +#else + return x != 0 ? __builtin_ctz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) +{ +#if _MSC_VER + unsigned long cnt; +#ifdef defined(SSE2NEON_HAS_BITSCAN64) + (defined(_M_AMD64) || defined(__x86_64__)) + if((_BitScanForward64(&cnt, x)) + return (int)(cnt); +#else + if (_BitScanForward(&cnt, (unsigned long) (x))) + return (int) cnt; + if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) + return (int) (cnt + 32); +#endif + return 64; +#else + return x != 0 ? __builtin_ctzll(x) : 64; +#endif +} + +#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) + +#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ + const int var = (imm & 0x01) ? 8 : 16 + +#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ + int tmp1 = la ^ (la >> 31); \ + la = tmp1 - (la >> 31); \ + int tmp2 = lb ^ (lb >> 31); \ + lb = tmp2 - (lb >> 31); \ + la = SSE2NEON_MIN(la, bound); \ + lb = SSE2NEON_MIN(lb, bound) + +// Compare all pairs of character in string a and b, +// then aggregate the result. +// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the +// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of +// string a and b. +#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ + SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ + r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) + +#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ + return (r2 == 0) ? bound \ + : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ + : _sse2neon_ctz(r2)) + +#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ + __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + if (imm8 & 0x40) { \ + if (bound == 8) { \ + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ + vld1q_u16(_sse2neon_cmpestr_mask16b)); \ + dst = vreinterpretq_m128i_u16(vbslq_u16( \ + tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ + } else { \ + uint8x16_t vec_r2 = \ + vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ + uint8x16_t tmp = \ + vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ + dst = vreinterpretq_m128i_u8( \ + vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ + } \ + } else { \ + if (bound == 16) { \ + dst = vreinterpretq_m128i_u16( \ + vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ + } else { \ + dst = vreinterpretq_m128i_u8( \ + vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ + } \ + } \ + return dst + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and returns 1 if b did not contain a null character and the +// resulting mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra +FORCE_INLINE int _mm_cmpestra(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + int lb_cpy = lb; + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return !r2 & (lb_cpy > bound); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc +FORCE_INLINE int _mm_cmpestrc(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 != 0; +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri +FORCE_INLINE int _mm_cmpestri(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm +FORCE_INLINE __m128i +_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro +FORCE_INLINE int _mm_cmpestro(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 & 1; +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs +FORCE_INLINE int _mm_cmpestrs(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return la <= (bound - 1); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz +FORCE_INLINE int _mm_cmpestrz(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return lb <= (bound - 1); +} + +#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ + do { \ + if (imm8 & 0x01) { \ + uint16x8_t equal_mask_##str = \ + vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 3; \ + } else { \ + uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ + vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 2; \ + } \ + } while (0) + +#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ + int la, lb; \ + do { \ + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ + } while (0) + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if b did not contain a null character and the resulting +// mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra +FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return !r2 & (lb >= bound); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc +FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 != 0; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri +FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm +FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro +FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 & 1; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs +FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int la; + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); + return la <= (bound - 1); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz +FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int lb; + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); + return lb <= (bound - 1); +} + // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers // in b for greater than. FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) @@ -8320,6 +9342,8 @@ FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32ch(crc, v); #else crc = _mm_crc32_u8(crc, v & 0xff); crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); @@ -8336,6 +9360,8 @@ FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cw(crc, v); #else crc = _mm_crc32_u16(crc, v & 0xffff); crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); @@ -8353,8 +9379,8 @@ FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) : [c] "+r"(crc) : [v] "r"(v)); #else - crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff); - crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff); + crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); + crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); #endif return crc; } @@ -8368,6 +9394,8 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cb(crc, v); #else crc ^= v; for (int bit = 0; bit < 8; bit++) { @@ -8384,7 +9412,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) #if !defined(__ARM_FEATURE_CRYPTO) /* clang-format off */ -#define SSE2NEON_AES_DATA(w) \ +#define SSE2NEON_AES_SBOX(w) \ { \ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ @@ -8424,53 +9452,115 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ w(0xb0), w(0x54), w(0xbb), w(0x16) \ } +#define SSE2NEON_AES_RSBOX(w) \ + { \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ + w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ + w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ + w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ + w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ + w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ + w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ + w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ + w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ + w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ + w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ + w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ + w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ + w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ + w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ + w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ + w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ + w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ + w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ + w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ + w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ + w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ + w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ + w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ + w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ + w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ + w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ + w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ + w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ + w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ + w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ + w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ + w(0x55), w(0x21), w(0x0c), w(0x7d) \ + } /* clang-format on */ /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ #define SSE2NEON_AES_H0(x) (x) -static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); #undef SSE2NEON_AES_H0 +/* x_time function and matrix multiply function */ +#if !defined(__aarch64__) +#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) +#define SSE2NEON_MULTIPLY(x, y) \ + (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ + ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ + ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ + ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) +#endif + // In the absence of crypto extensions, implement aesenc using regular neon // intrinsics instead. See: // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and // https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52 // for more information Reproduced with permission of the author. -FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) +FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) { #if defined(__aarch64__) - static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9, - 0xe, 0x3, 0x8, 0xd, 0x2, 0x7, - 0xc, 0x1, 0x6, 0xb}; - static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc}; + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(EncBlock); + uint8x16_t w = vreinterpretq_u8_m128i(a); - // shift rows + /* shift rows */ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); - // sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0); - - // mix columns - w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b); + /* sub bytes */ + // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and + // look up each of the table. After each lookup, we load the next table + // which locates at the next 64-bytes. In the meantime, the index in the + // table would be smaller than it was, so the index parameters of + // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + /* mix columns */ + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - // add round key + /* add round key */ return vreinterpretq_m128i_u8(w) ^ RoundKey; -#else /* ARMv7-A NEON implementation */ -#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ - (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \ - (b0)) +#else /* ARMv7-A implementation for a table-based AES */ +#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ + (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ + ((uint32_t) (b1) << 8) | (uint32_t) (b0)) +// muliplying 'x' by 2 in GF(2^8) #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) +// muliplying 'x' by 3 in GF(2^8) #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) #define SSE2NEON_AES_U0(p) \ SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) @@ -8480,11 +9570,14 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) #define SSE2NEON_AES_U3(p) \ SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) + + // this generates a table containing every possible permutation of + // shift_rows() and sub_bytes() with mix_columns(). static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { - SSE2NEON_AES_DATA(SSE2NEON_AES_U0), - SSE2NEON_AES_DATA(SSE2NEON_AES_U1), - SSE2NEON_AES_DATA(SSE2NEON_AES_U2), - SSE2NEON_AES_DATA(SSE2NEON_AES_U3), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), }; #undef SSE2NEON_AES_B2W #undef SSE2NEON_AES_F2 @@ -8494,11 +9587,15 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #undef SSE2NEON_AES_U2 #undef SSE2NEON_AES_U3 - uint32_t x0 = _mm_cvtsi128_si32(EncBlock); - uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55)); - uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA)); - uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF)); + uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] + uint32_t x1 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] + uint32_t x2 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] + uint32_t x3 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] + // finish the modulo addition step in mix_columns() __m128i out = _mm_set_epi32( (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), @@ -8513,34 +9610,210 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #endif } +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // inverse mix columns + // muliplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & + 0x1b); // muliplying 'v' by 2 in GF(2^8) + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + + // add round key + return vreinterpretq_m128i_u8(w) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t i, e, f, g, h, v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + // inverse mix columns + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + // Perform the last round of an AES encryption flow on data (state) in a using // the round key in RoundKey, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { +#if defined(__aarch64__) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // shift rows + w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); + + // sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A implementation */ + uint8_t v[16] = { + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], + }; + + return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; +#endif +} + +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ /* FIXME: optimized for NEON */ - uint8_t v[4][4] = { - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]}, + uint8_t v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (int i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ +#if defined(__aarch64__) + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, }; - for (int i = 0; i < 16; i++) - vreinterpretq_nth_u8_m128i(a, i) = - v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i); - return a; + uint8x16_t v = vreinterpretq_u8_m128i(a); + uint8x16_t w; + + // multiplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + // multiplying 'v' by 2 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + return vreinterpretq_m128i_u8(w); + +#else /* ARMv7-A NEON implementation */ + uint8_t i, e, f, g, h, v[4][4]; + vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); +#endif } // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. @@ -8548,19 +9821,43 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ // for details. // -// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx -FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 +FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { - uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55)); - uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF)); +#if defined(__aarch64__) + uint8x16_t _a = vreinterpretq_u8_m128i(a); + uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); + + uint32x4_t select_mask = {0xffffffff, 0x0, 0xffffffff, 0x0}; + uint64x2_t v_mask = vshrq_n_u64(vreinterpretq_u64_u8(v), 32); + uint32x4_t x = vbslq_u32(select_mask, vreinterpretq_u32_u64(v_mask), + vreinterpretq_u32_u8(v)); + uint32x4_t ror_x = vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 24)); + uint32x4_t ror_xor_x = veorq_u32(ror_x, vdupq_n_u32(rcon)); + + return vreinterpretq_m128i_u32(vbslq_u32(select_mask, x, ror_xor_x)); + +#else /* ARMv7-A NEON implementation */ + uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); + uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); for (int i = 0; i < 4; ++i) { - ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]]; - ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]]; + ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; + ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; } return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); +#endif } -#undef SSE2NEON_AES_DATA +#undef SSE2NEON_AES_SBOX +#undef SSE2NEON_AES_RSBOX + +#if defined(__aarch64__) +#undef SSE2NEON_XT +#undef SSE2NEON_MULTIPLY +#endif #else /* __ARM_FEATURE_CRYPTO */ // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and @@ -8576,7 +9873,19 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) vreinterpretq_u8_m128i(b)); } -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8(veorq_u8( + vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + vreinterpretq_u8_m128i(RoundKey))); +} + +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( @@ -8584,6 +9893,27 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) RoundKey); } +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8( + vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^ + vreinterpretq_u8_m128i(RoundKey); +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ + return vreinterpretq_m128i_u8(vaesimcq_u8(a)); +} + +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst." +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { // AESE does ShiftRows and SubBytes on A @@ -8605,7 +9935,7 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) // Perform a carry-less multiplication of two 64-bit integers, selected from a // and b according to imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) { uint64x2_t a = vreinterpretq_u64_m128i(_a); @@ -8640,9 +9970,9 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF; @@ -8650,7 +9980,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() // Count the number of bits set to 1 in unsigned 32-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 FORCE_INLINE int _mm_popcnt_u32(unsigned int a) { #if defined(__aarch64__) @@ -8677,7 +10007,7 @@ FORCE_INLINE int _mm_popcnt_u32(unsigned int a) // Count the number of bits set to 1 in unsigned 64-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) { #if defined(__aarch64__) @@ -8717,17 +10047,55 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; #if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ #else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Return the current 64-bit value of the processor's time-stamp counter. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc + +FORCE_INLINE uint64_t _rdtsc(void) +{ +#if defined(__aarch64__) + uint64_t val; + + /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the + * system counter is at least 56 bits wide; from Armv8.6, the counter + * must be 64 bits wide. So the system counter could be less than 64 + * bits wide and it is attributed with the flag 'cap_user_time_short' + * is true. + */ + __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); + + return val; +#else + uint32_t pmccntr, pmuseren, pmcntenset; + // Read the user mode Performance Monitoring Unit (PMU) + // User Enable Register (PMUSERENR) access permissions. + __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); + if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code. + __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); + if (pmcntenset & 0x80000000UL) { // Is it counting? + __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); + // The counter is set up to count every 64th cycle + return (uint64_t) (pmccntr) << 6; + } + } + + // Fallback to syscall as we can't enable PMUSERENR in user mode. + struct timeval tv; + gettimeofday(&tv, NULL); + return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec; #endif } @@ -8740,4 +10108,4 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) #pragma GCC pop_options #endif -#endif
\ No newline at end of file +#endif |