summaryrefslogtreecommitdiffstats
path: root/thirdparty/embree/common/simd/arm/sse2neon.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/embree/common/simd/arm/sse2neon.h')
-rw-r--r--thirdparty/embree/common/simd/arm/sse2neon.h2720
1 files changed, 2044 insertions, 676 deletions
diff --git a/thirdparty/embree/common/simd/arm/sse2neon.h b/thirdparty/embree/common/simd/arm/sse2neon.h
index 43416662d7..b18d41e783 100644
--- a/thirdparty/embree/common/simd/arm/sse2neon.h
+++ b/thirdparty/embree/common/simd/arm/sse2neon.h
@@ -4,8 +4,6 @@
// This header file provides a simple API translation layer
// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
//
-// This header file does not yet translate all of the SSE intrinsics.
-//
// Contributors to this work are:
// John W. Ratcliff <jratcliffscarab@gmail.com>
// Brandon Rowlett <browlett@nvidia.com>
@@ -13,8 +11,8 @@
// Eric van Beurden <evanbeurden@nvidia.com>
// Alexander Potylitsin <apotylitsin@nvidia.com>
// Hasindu Gamaarachchi <hasindu2008@gmail.com>
-// Jim Huang <jserv@biilabs.io>
-// Mark Cheng <marktwtn@biilabs.io>
+// Jim Huang <jserv@ccns.ncku.edu.tw>
+// Mark Cheng <marktwtn@gmail.com>
// Malcolm James MacLeod <malcolm@gulden.com>
// Devin Hussey (easyaspi314) <husseydevin@gmail.com>
// Sebastian Pop <spop@amazon.com>
@@ -22,9 +20,12 @@
// Danila Kutenin <danilak@google.com>
// François Turban (JishinMaster) <francois.turban@gmail.com>
// Pei-Hsuan Hung <afcidk@gmail.com>
-// Yang-Hao Yuan <yanghau@biilabs.io>
+// Yang-Hao Yuan <yuanyanghau@gmail.com>
// Syoyo Fujita <syoyo@lighttransport.com>
// Brecht Van Lommel <brecht@blender.org>
+// Jonathan Hue <jhue@adobe.com>
+// Cuda Chen <clh960524@gmail.com>
+// Aymen Qader <aymen.qader@arm.com>
/*
* sse2neon is freely redistributable under the MIT License.
@@ -54,7 +55,7 @@
* This would slow down the computation a bit, but gives consistent result with
* x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
*/
-/* _mm_min_ps and _mm_max_ps */
+/* _mm_min|max_ps|ss|pd|sd */
#ifndef SSE2NEON_PRECISE_MINMAX
#define SSE2NEON_PRECISE_MINMAX (0)
#endif
@@ -91,9 +92,61 @@
#define _sse2neon_unlikely(x) (x)
#endif
+/* C language does not allow initializing a variable with a function call. */
+#ifdef __cplusplus
+#define _sse2neon_const static const
+#else
+#define _sse2neon_const const
+#endif
+
#include <stdint.h>
#include <stdlib.h>
+#if defined(_WIN32)
+/* Definitions for _mm_{malloc,free} are provided by <malloc.h>
+ * from both MinGW-w64 and MSVC.
+ */
+#define SSE2NEON_ALLOC_DEFINED
+#endif
+
+/* If using MSVC */
+#ifdef _MSC_VER
+#include <intrin.h>
+#if (defined(_M_AMD64) || defined(__x86_64__)) || \
+ (defined(_M_ARM) || defined(__arm__))
+#define SSE2NEON_HAS_BITSCAN64
+#endif
+#endif
+
+/* Compiler barrier */
+#define SSE2NEON_BARRIER() \
+ do { \
+ __asm__ __volatile__("" ::: "memory"); \
+ (void) 0; \
+ } while (0)
+
+/* Memory barriers
+ * __atomic_thread_fence does not include a compiler barrier; instead,
+ * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
+ * semantics.
+ */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
+#include <stdatomic.h>
+#endif
+
+FORCE_INLINE void _sse2neon_smp_mb(void)
+{
+ SSE2NEON_BARRIER();
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \
+ !defined(__STDC_NO_ATOMICS__)
+ atomic_thread_fence(memory_order_seq_cst);
+#elif defined(__GNUC__) || defined(__clang__)
+ __atomic_thread_fence(__ATOMIC_SEQ_CST);
+#else
+ /* FIXME: MSVC support */
+#endif
+}
+
/* Architecture-specific build options */
/* FIXME: #pragma GCC push_options is only available on GCC */
#if defined(__GNUC__)
@@ -114,27 +167,70 @@
#pragma GCC push_options
#pragma GCC target("+simd")
#endif
+#elif __ARM_ARCH == 8
+#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
+#error \
+ "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON."
+#endif
+#if !defined(__clang__)
+#pragma GCC push_options
+#endif
#else
#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
#endif
#endif
#include <arm_neon.h>
+#if !defined(__aarch64__) && (__ARM_ARCH == 8)
+#if defined __has_include && __has_include(<arm_acle.h>)
+#include <arm_acle.h>
+#endif
+#endif
+
+/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD
+ * and other Arm microarchtectures use.
+ * From sysctl -a on Apple M1:
+ * hw.cachelinesize: 128
+ */
+#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__))
+#define SSE2NEON_CACHELINE_SIZE 128
+#else
+#define SSE2NEON_CACHELINE_SIZE 64
+#endif
/* Rounding functions require either Aarch64 instructions or libm failback */
#if !defined(__aarch64__)
#include <math.h>
#endif
+/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only
+ * or even not accessible in user mode.
+ * To write or access to these registers in user mode,
+ * we have to perform syscall instead.
+ */
+#if !defined(__aarch64__)
+#include <sys/time.h>
+#endif
+
/* "__has_builtin" can be used to query support for built-in functions
* provided by gcc/clang and other compilers that support it.
*/
#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
/* Compatibility with gcc <= 9 */
-#if __GNUC__ <= 9
+#if defined(__GNUC__) && (__GNUC__ <= 9)
#define __has_builtin(x) HAS##x
#define HAS__builtin_popcount 1
#define HAS__builtin_popcountll 1
+
+// __builtin_shuffle introduced in GCC 4.7.0
+#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7))
+#define HAS__builtin_shuffle 1
+#else
+#define HAS__builtin_shuffle 0
+#endif
+
+#define HAS__builtin_shufflevector 0
+#define HAS__builtin_nontemporal_store 0
#else
#define __has_builtin(x) 0
#endif
@@ -159,6 +255,26 @@
#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
+#if __has_builtin(__builtin_shufflevector)
+#define _sse2neon_shuffle(type, a, b, ...) \
+ __builtin_shufflevector(a, b, __VA_ARGS__)
+#elif __has_builtin(__builtin_shuffle)
+#define _sse2neon_shuffle(type, a, b, ...) \
+ __extension__({ \
+ type tmp = {__VA_ARGS__}; \
+ __builtin_shuffle(a, b, tmp); \
+ })
+#endif
+
+#ifdef _sse2neon_shuffle
+#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__)
+#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__)
+#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__)
+#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__)
+#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__)
+#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__)
+#endif
+
/* Rounding mode macros. */
#define _MM_FROUND_TO_NEAREST_INT 0x00
#define _MM_FROUND_TO_NEG_INF 0x01
@@ -166,6 +282,13 @@
#define _MM_FROUND_TO_ZERO 0x03
#define _MM_FROUND_CUR_DIRECTION 0x04
#define _MM_FROUND_NO_EXC 0x08
+#define _MM_FROUND_RAISE_EXC 0x00
+#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
#define _MM_ROUND_NEAREST 0x0000
#define _MM_ROUND_DOWN 0x2000
#define _MM_ROUND_UP 0x4000
@@ -198,10 +321,17 @@ typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
#else
typedef float32x4_t __m128d;
#endif
-// Note: upstream sse2neon declares __m128i as int64x2_t. However, there's
-// many places within embree that assume __m128i can be indexed as a
-// 4 element u32.
-typedef int32x4_t __m128i; /* 128-bit vector containing integers */
+typedef int64x2_t __m128i; /* 128-bit vector containing integers */
+
+// __int64 is defined in the Intrinsics Guide which maps to different datatype
+// in different data model
+#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64))
+#if (defined(__x86_64__) || defined(__i386__))
+#define __int64 long long
+#else
+#define __int64 int64_t
+#endif
+#endif
/* type-safe casting between types */
@@ -233,28 +363,28 @@ typedef int32x4_t __m128i; /* 128-bit vector containing integers */
#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
-#define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x)
-#define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x)
-#define vreinterpretq_m128i_s32(x) (x)
-#define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x)
+#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
+#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
+#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
+#define vreinterpretq_m128i_s64(x) (x)
-#define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x)
-#define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x)
-#define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x)
-#define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x)
+#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
+#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
+#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
+#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
-#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s32(x)
-#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s32(x)
+#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
+#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
-#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x)
-#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x)
-#define vreinterpretq_s32_m128i(x) (x)
-#define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x)
+#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
+#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
+#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
+#define vreinterpretq_s64_m128i(x) (x)
-#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x)
-#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x)
-#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x)
-#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x)
+#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
+#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
+#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
+#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
@@ -394,7 +524,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
// Older gcc does not define vld1q_u8_x4 type
#if defined(__GNUC__) && !defined(__clang__) && \
- ((__GNUC__ <= 10 && defined(__arm__)) || \
+ ((__GNUC__ <= 12 && defined(__arm__)) || \
(__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
(__GNUC__ <= 9 && defined(__aarch64__)))
FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
@@ -414,6 +544,57 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
}
#endif
+#if !defined(__aarch64__)
+/* emulate vaddv u8 variant */
+FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
+{
+ const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8)));
+ return vget_lane_u8(vreinterpret_u8_u64(v1), 0);
+}
+#else
+// Wraps vaddv_u8
+FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
+{
+ return vaddv_u8(v8);
+}
+#endif
+
+#if !defined(__aarch64__)
+/* emulate vaddvq u8 variant */
+FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
+{
+ uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a));
+ uint8_t res = 0;
+ for (int i = 0; i < 8; ++i)
+ res += tmp[i];
+ return res;
+}
+#else
+// Wraps vaddvq_u8
+FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
+{
+ return vaddvq_u8(a);
+}
+#endif
+
+#if !defined(__aarch64__)
+/* emulate vaddvq u16 variant */
+FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
+{
+ uint32x4_t m = vpaddlq_u16(a);
+ uint64x2_t n = vpaddlq_u32(m);
+ uint64x1_t o = vget_low_u64(n) + vget_high_u64(n);
+
+ return vget_lane_u32((uint32x2_t) o, 0);
+}
+#else
+// Wraps vaddvq_u16
+FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
+{
+ return vaddvq_u16(a);
+}
+#endif
+
/* Function Naming Conventions
* The naming convention of SSE intrinsics is straightforward. A generic SSE
* intrinsic function is given as follows:
@@ -491,16 +672,12 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
+------+------+------+------+------+------+-------------+
*/
-/* Constants for use with _mm_prefetch. */
+/* Constants for use with _mm_prefetch. */
enum _mm_hint {
- _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
- _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
- _MM_HINT_T1 = 2, /* load data to L2 cache only */
- _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
- _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */
- _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */
- _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */
- _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */
+ _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
+ _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
+ _MM_HINT_T1 = 2, /* load data to L2 cache only */
+ _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
};
// The bit field mapping to the FPCR(floating-point control register)
@@ -661,7 +838,8 @@ FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
*sum = t;
}
-#if defined(__ARM_FEATURE_CRYPTO)
+#if defined(__ARM_FEATURE_CRYPTO) && \
+ (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64))
// Wraps vmull_p64
FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
@@ -970,6 +1148,11 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
vreinterpretq_m128i_s16(ret); \
})
+/* MMX */
+
+//_mm_empty is a no-op on arm
+FORCE_INLINE void _mm_empty(void) {}
+
/* SSE */
// Adds the four single-precision, floating-point values of a and b.
@@ -1035,7 +1218,7 @@ FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16
FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
{
return vreinterpret_m64_u16(
@@ -1050,7 +1233,7 @@ FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8
FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
{
return vreinterpret_m64_u8(
@@ -1333,7 +1516,7 @@ FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
// dst[95:64] := a[95:64]
// dst[127:96] := a[127:96]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps
FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
{
return vreinterpretq_m128_f32(
@@ -1349,10 +1532,10 @@ FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi
FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
{
-#if defined(__aarch64__)
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
return vreinterpret_m64_s32(
vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
#else
@@ -1368,7 +1551,7 @@ FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss
FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
{
return vreinterpretq_m128_f32(
@@ -1377,10 +1560,10 @@ FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
// Convert the lower single-precision (32-bit) floating-point element in a to a
// 32-bit integer, and store the result in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si
FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
{
-#if defined(__aarch64__)
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
0);
#else
@@ -1399,7 +1582,7 @@ FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps
FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
{
return vreinterpretq_m128_f32(
@@ -1415,7 +1598,7 @@ FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
// dst[95:64] := a[95:64]
// dst[127:96] := a[127:96]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps
FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
{
return vreinterpretq_m128_f32(
@@ -1425,7 +1608,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
// Convert packed signed 32-bit integers in a to packed single-precision
// (32-bit) floating-point elements, store the results in the lower 2 elements
-// of dst, then covert the packed signed 32-bit integers in b to
+// of dst, then convert the packed signed 32-bit integers in b to
// single-precision (32-bit) floating-point element, and store the results in
// the upper 2 elements of dst.
//
@@ -1434,7 +1617,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
// dst[95:64] := Convert_Int32_To_FP32(b[31:0])
// dst[127:96] := Convert_Int32_To_FP32(b[63:32])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps
FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
{
return vreinterpretq_m128_f32(vcvtq_f32_s32(
@@ -1450,7 +1633,7 @@ FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps
FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
{
return vreinterpretq_m128_f32(vcvtq_f32_s32(
@@ -1472,23 +1655,11 @@ FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16
FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
{
- const __m128 i16Min = _mm_set_ps1((float) INT16_MIN);
- const __m128 i16Max = _mm_set_ps1((float) INT16_MAX);
- const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
- const __m128i maxMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max)));
- const __m128i betweenMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max)));
- const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
- _mm_setzero_si128());
- __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX));
- __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN));
- __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
- __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
- return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32)));
+ return vreinterpret_m64_s16(
+ vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
}
// Convert packed single-precision (32-bit) floating-point elements in a to
@@ -1499,7 +1670,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32
#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
// Convert packed single-precision (32-bit) floating-point elements in a to
@@ -1517,28 +1688,11 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8
FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
{
- const __m128 i8Min = _mm_set_ps1((float) INT8_MIN);
- const __m128 i8Max = _mm_set_ps1((float) INT8_MAX);
- const __m128 i32Max = _mm_set_ps1((float) INT32_MAX);
- const __m128i maxMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max)));
- const __m128i betweenMask = _mm_castps_si128(
- _mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max)));
- const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask),
- _mm_setzero_si128());
- __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX));
- __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN));
- __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a));
- __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt);
- int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32));
- int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16));
- uint32_t bitMask[2] = {0xFFFFFFFF, 0};
- int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask));
-
- return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0)));
+ return vreinterpret_m64_s8(vqmovn_s16(
+ vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0))));
}
// Convert packed unsigned 16-bit integers in a to packed single-precision
@@ -1550,7 +1704,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps
FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
{
return vreinterpretq_m128_f32(
@@ -1567,7 +1721,7 @@ FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps
FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
{
return vreinterpretq_m128_f32(vcvtq_f32_u32(
@@ -1581,7 +1735,7 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
// dst[31:0] := Convert_Int32_To_FP32(b[31:0])
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss
#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
// Convert the signed 64-bit integer b to a single-precision (32-bit)
@@ -1591,7 +1745,7 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
// dst[31:0] := Convert_Int64_To_FP32(b[63:0])
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss
FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
{
return vreinterpretq_m128_f32(
@@ -1602,7 +1756,7 @@ FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
//
// dst[31:0] := a[31:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32
FORCE_INLINE float _mm_cvtss_f32(__m128 a)
{
return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
@@ -1613,7 +1767,7 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a)
//
// dst[31:0] := Convert_FP32_To_Int32(a[31:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32
#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
// Convert the lower single-precision (32-bit) floating-point element in a to a
@@ -1621,10 +1775,10 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a)
//
// dst[63:0] := Convert_FP32_To_Int64(a[31:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64
FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
{
-#if defined(__aarch64__)
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
#else
float32_t data = vgetq_lane_f32(
@@ -1641,7 +1795,7 @@ FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi
FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
{
return vreinterpret_m64_s32(
@@ -1653,7 +1807,7 @@ FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
//
// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si
FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
{
return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
@@ -1667,7 +1821,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32
#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
// Convert the lower single-precision (32-bit) floating-point element in a to a
@@ -1675,7 +1829,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
//
// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32
#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
// Convert the lower single-precision (32-bit) floating-point element in a to a
@@ -1683,7 +1837,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
//
// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64
FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
{
return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
@@ -1725,21 +1879,23 @@ FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
// Extract a 16-bit integer from a, selected with imm8, and store the result in
// the lower element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16
#define _mm_extract_pi16(a, imm) \
(int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
// Free aligned memory that was allocated with _mm_malloc.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free
+#if !defined(SSE2NEON_ALLOC_DEFINED)
FORCE_INLINE void _mm_free(void *addr)
{
free(addr);
}
+#endif
// Macro: Get the flush zero bits from the MXCSR control and status register.
// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
// _MM_FLUSH_ZERO_OFF
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE
FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
{
union {
@@ -1752,9 +1908,9 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
} r;
#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
@@ -1763,7 +1919,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
// Macro: Get the rounding mode bits from the MXCSR control and status register.
// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE
FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
{
union {
@@ -1776,9 +1932,9 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
} r;
#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
if (r.field.bit22) {
@@ -1790,7 +1946,7 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
// Copy a to dst, and insert the 16-bit integer i into dst at the location
// specified by imm8.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16
#define _mm_insert_pi16(a, b, imm) \
__extension__({ \
vreinterpret_m64_s16( \
@@ -1812,7 +1968,7 @@ FORCE_INLINE __m128 _mm_load_ps(const float *p)
// dst[95:64] := MEM[mem_addr+31:mem_addr]
// dst[127:96] := MEM[mem_addr+31:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1
#define _mm_load_ps1 _mm_load1_ps
// Loads an single - precision, floating - point value into the low word and
@@ -1873,7 +2029,7 @@ FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
// dst[95:64] := MEM[mem_addr+63:mem_addr+32]
// dst[127:96] := MEM[mem_addr+31:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps
FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
{
float32x4_t v = vrev64q_f32(vld1q_f32(p));
@@ -1894,7 +2050,7 @@ FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
// dst[15:0] := MEM[mem_addr+15:mem_addr]
// dst[MAX:16] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16
FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
{
return vreinterpretq_m128i_s16(
@@ -1906,7 +2062,7 @@ FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
// dst[63:0] := MEM[mem_addr+63:mem_addr]
// dst[MAX:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64
FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
{
return vreinterpretq_m128i_s64(
@@ -1916,6 +2072,7 @@ FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
// Allocate aligned blocks of memory.
// https://software.intel.com/en-us/
// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
+#if !defined(SSE2NEON_ALLOC_DEFINED)
FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
{
void *ptr;
@@ -1927,11 +2084,12 @@ FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
return ptr;
return NULL;
}
+#endif
// Conditionally store 8-bit integer elements from a into memory using mask
// (elements are not stored when the highest bit is not set in the corresponding
// element) and a non-temporal memory hint.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64
FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
{
int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
@@ -1945,7 +2103,7 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
// Conditionally store 8-bit integer elements from a into memory using mask
// (elements are not stored when the highest bit is not set in the corresponding
// element) and a non-temporal memory hint.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq
#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
// Compare packed signed 16-bit integers in a and b, and store packed maximum
@@ -1956,7 +2114,7 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16
FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
{
return vreinterpret_m64_s16(
@@ -1971,7 +2129,7 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
#if SSE2NEON_PRECISE_MINMAX
float32x4_t _a = vreinterpretq_f32_m128(a);
float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_b, _a), _a, _b);
+ return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b));
#else
return vreinterpretq_m128_f32(
vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
@@ -1986,7 +2144,7 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8
FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
{
return vreinterpret_m64_u8(
@@ -2011,7 +2169,7 @@ FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16
FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
{
return vreinterpret_m64_s16(
@@ -2026,7 +2184,7 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
#if SSE2NEON_PRECISE_MINMAX
float32x4_t _a = vreinterpretq_f32_m128(a);
float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_a, _b), _a, _b);
+ return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b));
#else
return vreinterpretq_m128_f32(
vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
@@ -2041,7 +2199,7 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8
FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
{
return vreinterpret_m64_u8(
@@ -2095,7 +2253,7 @@ FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
// Create mask from the most significant bit of each 8-bit element in a, and
// store the result in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8
FORCE_INLINE int _mm_movemask_pi8(__m64 a)
{
uint8x8_t input = vreinterpret_u8_m64(a);
@@ -2159,7 +2317,7 @@ FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
// dst[31:0] := a[31:0] * b[31:0]
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss
FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
{
return _mm_move_ss(a, _mm_mul_ps(a, b));
@@ -2168,7 +2326,7 @@ FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
// Multiply the packed unsigned 16-bit integers in a and b, producing
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
// integers in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16
FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
{
return vreinterpret_m64_u16(vshrn_n_u32(
@@ -2192,7 +2350,7 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb
#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
// Average packed unsigned 16-bit integers in a and b, and store the results in
@@ -2203,74 +2361,87 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw
#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
// Extract a 16-bit integer from a, selected with imm8, and store the result in
// the lower element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw
#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
// Copy a to dst, and insert the 16-bit integer i into dst at the location
// specified by imm8.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw
#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
// Compare packed signed 16-bit integers in a and b, and store packed maximum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw
#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub
#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
// Compare packed signed 16-bit integers in a and b, and store packed minimum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw
#define _m_pminsw(a, b) _mm_min_pi16(a, b)
// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub
#define _m_pminub(a, b) _mm_min_pu8(a, b)
// Create mask from the most significant bit of each 8-bit element in a, and
// store the result in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb
#define _m_pmovmskb(a) _mm_movemask_pi8(a)
// Multiply the packed unsigned 16-bit integers in a and b, producing
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
// integers in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw
#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
-// Loads one cache line of data from address p to a location closer to the
-// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
-FORCE_INLINE void _mm_prefetch(const void *p, int i)
+// Fetch the line of data from memory that contains address p to a location in
+// the cache heirarchy specified by the locality hint i.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch
+FORCE_INLINE void _mm_prefetch(char const *p, int i)
{
- (void) i;
- __builtin_prefetch(p);
+ switch (i) {
+ case _MM_HINT_NTA:
+ __builtin_prefetch(p, 0, 0);
+ break;
+ case _MM_HINT_T0:
+ __builtin_prefetch(p, 0, 3);
+ break;
+ case _MM_HINT_T1:
+ __builtin_prefetch(p, 0, 2);
+ break;
+ case _MM_HINT_T2:
+ __builtin_prefetch(p, 0, 1);
+ break;
+ }
}
// Compute the absolute differences of packed unsigned 8-bit integers in a and
// b, then horizontally sum each consecutive 8 differences to produce four
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
// 16 bits of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw
#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
// Shuffle 16-bit integers in a using the control in imm8, and store the results
// in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw
#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
// Compute the approximate reciprocal of packed single-precision (32-bit)
// floating-point elements in a, and store the results in dst. The maximum
// relative error for this approximation is less than 1.5*2^-12.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps
FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
{
float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
@@ -2290,7 +2461,7 @@ FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
// dst[31:0] := (1.0 / a[31:0])
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss
FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
{
return _mm_move_ss(a, _mm_rcp_ps(a));
@@ -2317,7 +2488,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
// (32-bit) floating-point element in a, store the result in the lower element
// of dst, and copy the upper 3 packed elements from a to the upper elements of
// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss
FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
{
return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
@@ -2327,7 +2498,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
// b, then horizontally sum each consecutive 8 differences to produce four
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
// 16 bits of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8
FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
{
uint64x1_t t = vpaddl_u32(vpaddl_u16(
@@ -2339,7 +2510,7 @@ FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
// Macro: Set the flush zero bits of the MXCSR control and status register to
// the value in unsigned 32-bit integer a. The flush zero may contain any of the
// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE
FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
{
// AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
@@ -2354,17 +2525,17 @@ FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
} r;
#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
#if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
+ __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
#else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
+ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
#endif
}
@@ -2387,7 +2558,7 @@ FORCE_INLINE __m128 _mm_set_ps1(float _w)
// the value in unsigned 32-bit integer a. The rounding mode may contain any of
// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
// _MM_ROUND_TOWARD_ZERO
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE
FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
{
union {
@@ -2400,9 +2571,9 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
} r;
#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
switch (rounding) {
@@ -2424,19 +2595,18 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
}
#if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
+ __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
#else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
+ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
#endif
}
// Copy single-precision (32-bit) floating-point element a to the lower element
// of dst, and zero the upper 3 elements.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss
FORCE_INLINE __m128 _mm_set_ss(float a)
{
- float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
- return vreinterpretq_m128_f32(vld1q_f32(data));
+ return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0));
}
// Sets the four single-precision, floating-point values to w.
@@ -2449,11 +2619,18 @@ FORCE_INLINE __m128 _mm_set1_ps(float _w)
return vreinterpretq_m128_f32(vdupq_n_f32(_w));
}
+// FIXME: _mm_setcsr() implementation supports changing the rounding mode only.
FORCE_INLINE void _mm_setcsr(unsigned int a)
{
_MM_SET_ROUNDING_MODE(a);
}
+// FIXME: _mm_getcsr() implementation supports reading the rounding mode only.
+FORCE_INLINE unsigned int _mm_getcsr()
+{
+ return _MM_GET_ROUNDING_MODE();
+}
+
// Sets the four single-precision, floating-point values to the four inputs in
// reverse order.
// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
@@ -2472,11 +2649,11 @@ FORCE_INLINE __m128 _mm_setzero_ps(void)
// Shuffle 16-bit integers in a using the control in imm8, and store the results
// in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16
-#if __has_builtin(__builtin_shufflevector)
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16
+#ifdef _sse2neon_shuffle
#define _mm_shuffle_pi16(a, imm) \
__extension__({ \
- vreinterpret_m64_s16(__builtin_shufflevector( \
+ vreinterpret_m64_s16(vshuffle_s16( \
vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \
})
@@ -2499,25 +2676,48 @@ FORCE_INLINE __m128 _mm_setzero_ps(void)
})
#endif
-// Guarantees that every preceding store is globally visible before any
-// subsequent store.
-// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
+// Perform a serializing operation on all store-to-memory instructions that were
+// issued prior to this instruction. Guarantees that every store instruction
+// that precedes, in program order, is globally visible before any store
+// instruction which follows the fence in program order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence
FORCE_INLINE void _mm_sfence(void)
{
- __sync_synchronize();
+ _sse2neon_smp_mb();
+}
+
+// Perform a serializing operation on all load-from-memory and store-to-memory
+// instructions that were issued prior to this instruction. Guarantees that
+// every memory access that precedes, in program order, the memory fence
+// instruction is globally visible before any memory instruction which follows
+// the fence in program order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence
+FORCE_INLINE void _mm_mfence(void)
+{
+ _sse2neon_smp_mb();
+}
+
+// Perform a serializing operation on all load-from-memory instructions that
+// were issued prior to this instruction. Guarantees that every load instruction
+// that precedes, in program order, is globally visible before any load
+// instruction which follows the fence in program order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence
+FORCE_INLINE void _mm_lfence(void)
+{
+ _sse2neon_smp_mb();
}
// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
// int imm)
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- float32x4_t _input1 = vreinterpretq_f32_m128(a); \
- float32x4_t _input2 = vreinterpretq_f32_m128(b); \
- float32x4_t _shuf = __builtin_shufflevector( \
- _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128_f32(_shuf); \
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_ps(a, b, imm) \
+ __extension__({ \
+ float32x4_t _input1 = vreinterpretq_f32_m128(a); \
+ float32x4_t _input2 = vreinterpretq_f32_m128(b); \
+ float32x4_t _shuf = \
+ vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
+ (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
+ vreinterpretq_m128_f32(_shuf); \
})
#else // generic
#define _mm_shuffle_ps(a, b, imm) \
@@ -2652,7 +2852,7 @@ FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
// MEM[mem_addr+95:mem_addr+64] := a[31:0]
// MEM[mem_addr+127:mem_addr+96] := a[31:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1
FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
{
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
@@ -2675,7 +2875,7 @@ FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
// MEM[mem_addr+95:mem_addr+64] := a[31:0]
// MEM[mem_addr+127:mem_addr+96] := a[31:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps
#define _mm_store1_ps _mm_store_ps1
// Stores the upper two single-precision, floating-point values of a to the
@@ -2711,7 +2911,7 @@ FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
// MEM[mem_addr+95:mem_addr+64] := a[63:32]
// MEM[mem_addr+127:mem_addr+96] := a[31:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps
FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
{
float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
@@ -2727,14 +2927,14 @@ FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
}
// Stores 16-bits of integer data a at the address p.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16
FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
{
vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
}
// Stores 64-bits of integer data a at the address p.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64
FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
{
vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
@@ -2742,7 +2942,7 @@ FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
// Store 64-bits of integer data from a into memory using a non-temporal memory
// hint.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi
FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
{
vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
@@ -2750,11 +2950,11 @@ FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
// point elements) from a into memory using a non-temporal memory hint.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps
FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
{
#if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, (float32x4_t *) p);
+ __builtin_nontemporal_store(reinterpret_cast<float32x4_t>(a), (float32x4_t *) p);
#else
vst1q_f32(p, vreinterpretq_f32_m128(a));
#endif
@@ -2782,7 +2982,7 @@ FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
// dst[31:0] := a[31:0] - b[31:0]
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss
FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
{
return _mm_move_ss(a, _mm_sub_ps(a, b));
@@ -2791,7 +2991,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
// transposed matrix in these vectors (row0 now contains column 0, etc.).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
do { \
float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
@@ -2816,7 +3016,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
#define _mm_ucomineq_ss _mm_comineq_ss
// Return vector of type __m128i with undefined elements.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128
FORCE_INLINE __m128i _mm_undefined_si128(void)
{
#if defined(__GNUC__) || defined(__clang__)
@@ -2831,7 +3031,7 @@ FORCE_INLINE __m128i _mm_undefined_si128(void)
}
// Return vector of type __m128 with undefined elements.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps
FORCE_INLINE __m128 _mm_undefined_ps(void)
{
#if defined(__GNUC__) || defined(__clang__)
@@ -2944,7 +3144,7 @@ FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
// Add packed double-precision (64-bit) floating-point elements in a and b, and
// store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd
FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -2967,7 +3167,7 @@ FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
// dst[63:0] := a[63:0] + b[63:0]
// dst[127:64] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd
FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -2986,7 +3186,7 @@ FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
//
// dst[63:0] := a[63:0] + b[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64
FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
{
return vreinterpret_m64_s64(
@@ -3016,7 +3216,7 @@ FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8
FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
{
return vreinterpretq_m128i_s8(
@@ -3025,7 +3225,7 @@ FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
// Add packed unsigned 16-bit integers in a and b using saturation, and store
// the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16
FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u16(
@@ -3049,7 +3249,7 @@ FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
// dst[i+63:i] := a[i+63:i] AND b[i+63:i]
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd
FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
{
return vreinterpretq_m128d_s64(
@@ -3072,11 +3272,11 @@ FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
// elements in a and then AND with b, and store the results in dst.
//
// FOR j := 0 to 1
-// i := j*64
-// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
+// i := j*64
+// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd
FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
{
// *NOTE* argument swap
@@ -3129,17 +3329,17 @@ FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
// Shift a left by imm8 bytes while shifting in zeros, and store the results in
// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128
#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
// Shift a right by imm8 bytes while shifting in zeros, and store the results in
// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128
#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
// Cast vector of type __m128d to type __m128. This intrinsic is only used for
// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps
FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
{
return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
@@ -3147,7 +3347,7 @@ FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128
FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
{
return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
@@ -3155,7 +3355,7 @@ FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd
FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
{
return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
@@ -3171,7 +3371,7 @@ FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
// compilation and does not generate any instructions, thus it has zero latency.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd
FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
{
#if defined(__aarch64__)
@@ -3189,13 +3389,29 @@ FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
}
-// Cache line containing p is flushed and invalidated from all caches in the
-// coherency domain. :
-// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
+// Invalidate and flush the cache line that contains p from all levels of the
+// cache hierarchy.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush
+#if defined(__APPLE__)
+#include <libkern/OSCacheControl.h>
+#endif
FORCE_INLINE void _mm_clflush(void const *p)
{
(void) p;
- // no corollary for Neon?
+
+ /* sys_icache_invalidate is supported since macOS 10.5.
+ * However, it does not work on non-jailbroken iOS devices, although the
+ * compilation is successful.
+ */
+#if defined(__APPLE__)
+ sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE);
+#elif defined(__GNUC__) || defined(__clang__)
+ uintptr_t ptr = (uintptr_t) p;
+ __builtin___clear_cache((char *) ptr,
+ (char *) ptr + SSE2NEON_CACHELINE_SIZE);
+#else
+ /* FIXME: MSVC support */
+#endif
}
// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
@@ -3226,7 +3442,7 @@ FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for equality, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd
FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3244,7 +3460,7 @@ FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for equality, store the result in the lower element of dst, and copy the
// upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd
FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
@@ -3252,7 +3468,7 @@ FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for greater-than-or-equal, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd
FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3274,7 +3490,7 @@ FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for greater-than-or-equal, store the result in the lower element of dst,
// and copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd
FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3333,7 +3549,7 @@ FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for greater-than, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd
FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3355,7 +3571,7 @@ FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for greater-than, store the result in the lower element of dst, and copy
// the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd
FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3375,7 +3591,7 @@ FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for less-than-or-equal, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd
FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3397,7 +3613,7 @@ FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for less-than-or-equal, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd
FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3451,7 +3667,7 @@ FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for less-than, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd
FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3473,7 +3689,7 @@ FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for less-than, store the result in the lower element of dst, and copy the
// upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd
FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3492,7 +3708,7 @@ FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for not-equal, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd
FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3510,7 +3726,7 @@ FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for not-equal, store the result in the lower element of dst, and copy the
// upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd
FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
@@ -3518,7 +3734,7 @@ FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for not-greater-than-or-equal, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd
FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3543,7 +3759,7 @@ FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for not-greater-than-or-equal, store the result in the lower element of
// dst, and copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd
FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
@@ -3551,7 +3767,7 @@ FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for not-greater-than, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd
FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3576,7 +3792,7 @@ FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for not-greater-than, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd
FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
@@ -3584,7 +3800,7 @@ FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for not-less-than-or-equal, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd
FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3609,7 +3825,7 @@ FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for not-less-than-or-equal, store the result in the lower element of dst,
// and copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd
FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
@@ -3617,7 +3833,7 @@ FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// for not-less-than, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd
FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3642,7 +3858,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b for not-less-than, store the result in the lower element of dst, and copy
// the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd
FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
@@ -3650,7 +3866,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// to see if neither is NaN, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd
FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3682,7 +3898,7 @@ FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b to see if neither is NaN, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd
FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3704,7 +3920,7 @@ FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
// Compare packed double-precision (64-bit) floating-point elements in a and b
// to see if either is NaN, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd
FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3737,7 +3953,7 @@ FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b to see if either is NaN, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd
FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3759,7 +3975,7 @@ FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point element in a and b
// for greater-than-or-equal, and return the boolean result (0 or 1).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd
FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3774,7 +3990,7 @@ FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point element in a and b
// for greater-than, and return the boolean result (0 or 1).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd
FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3789,7 +4005,7 @@ FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point element in a and b
// for less-than-or-equal, and return the boolean result (0 or 1).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd
FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3804,7 +4020,7 @@ FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point element in a and b
// for less-than, and return the boolean result (0 or 1).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd
FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3819,7 +4035,7 @@ FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point element in a and b
// for equality, and return the boolean result (0 or 1).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd
FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -3840,7 +4056,7 @@ FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point element in a and b
// for not-equal, and return the boolean result (0 or 1).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd
FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
{
return !_mm_comieq_sd(a, b);
@@ -3855,7 +4071,7 @@ FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd
FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
{
#if defined(__aarch64__)
@@ -3885,13 +4101,21 @@ FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32
FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
{
+// vrnd32xq_f64 not supported on clang
+#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__)
+ float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a));
+ int64x2_t integers = vcvtq_s64_f64(rounded);
+ return vreinterpretq_m128i_s32(
+ vcombine_s32(vmovn_s64(integers), vdup_n_s32(0)));
+#else
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
double d0 = ((double *) &rnd)[0];
double d1 = ((double *) &rnd)[1];
return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
+#endif
}
// Convert packed double-precision (64-bit) floating-point elements in a to
@@ -3903,7 +4127,7 @@ FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32
FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
{
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
@@ -3924,7 +4148,7 @@ FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
// ENDFOR
// dst[127:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps
FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
{
#if defined(__aarch64__)
@@ -3946,7 +4170,7 @@ FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd
FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
{
#if defined(__aarch64__)
@@ -3972,7 +4196,9 @@ FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
// does not support! It is supported on ARMv8-A however.
FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
{
-#if defined(__aarch64__)
+#if defined(__ARM_FEATURE_FRINT)
+ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a)));
+#elif defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
switch (_MM_GET_ROUNDING_MODE()) {
case _MM_ROUND_NEAREST:
return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
@@ -4029,7 +4255,7 @@ FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd
FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
{
#if defined(__aarch64__)
@@ -4046,7 +4272,7 @@ FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
//
// dst[63:0] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64
FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
{
#if defined(__aarch64__)
@@ -4061,7 +4287,7 @@ FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
//
// dst[31:0] := Convert_FP64_To_Int32(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32
FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
{
#if defined(__aarch64__)
@@ -4078,7 +4304,7 @@ FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
//
// dst[63:0] := Convert_FP64_To_Int64(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64
FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
{
#if defined(__aarch64__)
@@ -4095,14 +4321,14 @@ FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
//
// dst[63:0] := Convert_FP64_To_Int64(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x
#define _mm_cvtsd_si64x _mm_cvtsd_si64
// Convert the lower double-precision (64-bit) floating-point element in b to a
// single-precision (32-bit) floating-point element, store the result in the
// lower element of dst, and copy the upper 3 packed elements from a to the
// upper elements of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss
FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
{
#if defined(__aarch64__)
@@ -4119,7 +4345,7 @@ FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
//
// dst[31:0] := a[31:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32
FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
{
return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
@@ -4129,20 +4355,20 @@ FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
//
// dst[63:0] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64
FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
{
return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
}
// Copy the lower 64-bit integer in a to dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
// Convert the signed 32-bit integer b to a double-precision (64-bit)
// floating-point element, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd
FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
{
#if defined(__aarch64__)
@@ -4159,7 +4385,7 @@ FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
//
// dst[63:0] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
@@ -4179,7 +4405,7 @@ FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
// Convert the signed 64-bit integer b to a double-precision (64-bit)
// floating-point element, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd
FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
{
#if defined(__aarch64__)
@@ -4204,13 +4430,13 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
// Copy 64-bit integer a to the lower element of dst, and zero the upper
// element.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128
#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
// Convert the signed 64-bit integer b to a double-precision (64-bit)
// floating-point element, store the result in the lower element of dst, and
// copy the upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd
#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
// Convert the lower single-precision (32-bit) floating-point element in b to a
@@ -4221,7 +4447,7 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
// dst[63:0] := Convert_FP32_To_FP64(b[31:0])
// dst[127:64] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd
FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
{
double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
@@ -4236,7 +4462,7 @@ FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
// Convert packed double-precision (64-bit) floating-point elements in a to
// packed 32-bit integers with truncation, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32
FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
{
double a0 = ((double *) &a)[0];
@@ -4246,7 +4472,7 @@ FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
// Convert packed double-precision (64-bit) floating-point elements in a to
// packed 32-bit integers with truncation, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32
FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
{
double a0 = ((double *) &a)[0];
@@ -4268,7 +4494,7 @@ FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
//
// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32
FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
{
double ret = *((double *) &a);
@@ -4280,7 +4506,7 @@ FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
//
// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64
FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
{
#if defined(__aarch64__)
@@ -4296,7 +4522,7 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
//
// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x
#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
// Divide packed double-precision (64-bit) floating-point elements in a by
@@ -4307,7 +4533,7 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
// dst[i+63:i] := a[i+63:i] / b[i+63:i]
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd
FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -4327,7 +4553,7 @@ FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
// lower double-precision (64-bit) floating-point element in b, store the result
// in the lower element of dst, and copy the upper element from a to the upper
// element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd
FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -4363,7 +4589,7 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
//
// dst[127:0] := MEM[mem_addr+127:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd
FORCE_INLINE __m128d _mm_load_pd(const double *p)
{
#if defined(__aarch64__)
@@ -4381,7 +4607,7 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p)
// dst[63:0] := MEM[mem_addr+63:mem_addr]
// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1
#define _mm_load_pd1 _mm_load1_pd
// Load a double-precision (64-bit) floating-point element from memory into the
@@ -4391,7 +4617,7 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p)
// dst[63:0] := MEM[mem_addr+63:mem_addr]
// dst[127:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd
FORCE_INLINE __m128d _mm_load_sd(const double *p)
{
#if defined(__aarch64__)
@@ -4416,7 +4642,7 @@ FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
// dst[63:0] := MEM[mem_addr+63:mem_addr]
// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd
FORCE_INLINE __m128d _mm_load1_pd(const double *p)
{
#if defined(__aarch64__)
@@ -4433,7 +4659,7 @@ FORCE_INLINE __m128d _mm_load1_pd(const double *p)
// dst[63:0] := a[63:0]
// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd
FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
{
#if defined(__aarch64__)
@@ -4446,7 +4672,7 @@ FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
}
// Load 64-bit integer from memory into the first element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64
FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
{
/* Load the lower 64 bits of the value pointed to by p into the
@@ -4463,7 +4689,7 @@ FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
// dst[63:0] := MEM[mem_addr+63:mem_addr]
// dst[127:64] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd
FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
{
#if defined(__aarch64__)
@@ -4483,7 +4709,7 @@ FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
// dst[63:0] := MEM[mem_addr+127:mem_addr+64]
// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd
FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
{
#if defined(__aarch64__)
@@ -4496,7 +4722,7 @@ FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
}
// Loads two double-precision from unaligned memory, floating-point values.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd
FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
{
return _mm_load_pd(p);
@@ -4514,7 +4740,7 @@ FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
// dst[31:0] := MEM[mem_addr+31:mem_addr]
// dst[MAX:32] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32
FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
{
return vreinterpretq_m128i_s32(
@@ -4533,6 +4759,12 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
{
int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
vget_low_s16(vreinterpretq_s16_m128i(b)));
+#if defined(__aarch64__)
+ int32x4_t high =
+ vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b));
+
+ return vreinterpretq_m128i_s32(vpaddq_s32(low, high));
+#else
int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
vget_high_s16(vreinterpretq_s16_m128i(b)));
@@ -4540,13 +4772,14 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
+#endif
}
// Conditionally store 8-bit integer elements from a into memory using mask
// (elements are not stored when the highest bit is not set in the corresponding
// element) and a non-temporal memory hint. mem_addr does not need to be aligned
// on any particular boundary.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128
FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
{
int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
@@ -4577,12 +4810,18 @@ FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
// Compare packed double-precision (64-bit) floating-point elements in a and b,
// and store packed maximum values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd
FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
+#if SSE2NEON_PRECISE_MINMAX
+ float64x2_t _a = vreinterpretq_f64_m128d(a);
+ float64x2_t _b = vreinterpretq_f64_m128d(b);
+ return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b));
+#else
return vreinterpretq_m128d_f64(
vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#endif
#else
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
@@ -4599,7 +4838,7 @@ FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b, store the maximum value in the lower element of dst, and copy the upper
// element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd
FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -4607,8 +4846,8 @@ FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
#else
double *da = (double *) &a;
double *db = (double *) &b;
- double c[2] = {fmax(da[0], db[0]), da[1]};
- return vld1q_f32((float32_t *) c);
+ double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]};
+ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
#endif
}
@@ -4632,12 +4871,18 @@ FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
// Compare packed double-precision (64-bit) floating-point elements in a and b,
// and store packed minimum values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd
FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
+#if SSE2NEON_PRECISE_MINMAX
+ float64x2_t _a = vreinterpretq_f64_m128d(a);
+ float64x2_t _b = vreinterpretq_f64_m128d(b);
+ return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b));
+#else
return vreinterpretq_m128d_f64(
vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#endif
#else
uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
@@ -4653,7 +4898,7 @@ FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
// Compare the lower double-precision (64-bit) floating-point elements in a and
// b, store the minimum value in the lower element of dst, and copy the upper
// element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd
FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -4661,8 +4906,8 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
#else
double *da = (double *) &a;
double *db = (double *) &b;
- double c[2] = {fmin(da[0], db[0]), da[1]};
- return vld1q_f32((float32_t *) c);
+ double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]};
+ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
#endif
}
@@ -4672,7 +4917,7 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
// dst[63:0] := a[63:0]
// dst[127:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64
FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
{
return vreinterpretq_m128i_s64(
@@ -4686,7 +4931,7 @@ FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
// dst[63:0] := b[63:0]
// dst[127:64] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd
FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
{
return vreinterpretq_m128d_f32(
@@ -4780,7 +5025,7 @@ FORCE_INLINE int _mm_movemask_epi8(__m128i a)
// Set each bit of mask dst based on the most significant bit of the
// corresponding packed double-precision (64-bit) floating-point element in a.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd
FORCE_INLINE int _mm_movemask_pd(__m128d a)
{
uint64x2_t input = vreinterpretq_u64_m128d(a);
@@ -4792,7 +5037,7 @@ FORCE_INLINE int _mm_movemask_pd(__m128d a)
//
// dst[63:0] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64
FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
{
return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
@@ -4804,7 +5049,7 @@ FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
// dst[63:0] := a[63:0]
// dst[127:64] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64
FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
{
return vreinterpretq_m128i_s64(
@@ -4826,7 +5071,7 @@ FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
// Multiply packed double-precision (64-bit) floating-point elements in a and b,
// and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd
FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -4845,7 +5090,7 @@ FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
// Multiply the lower double-precision (64-bit) floating-point element in a and
// b, store the result in the lower element of dst, and copy the upper element
// from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd
FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_mul_pd(a, b));
@@ -4856,7 +5101,7 @@ FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
//
// dst[63:0] := a[31:0] * b[31:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32
FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
{
return vreinterpret_m64_u64(vget_low_u64(
@@ -4892,7 +5137,7 @@ FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
// Multiply the packed unsigned 16-bit integers in a and b, producing
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
// integers in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16
FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
{
uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
@@ -4931,7 +5176,7 @@ FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
// Compute the bitwise OR of packed double-precision (64-bit) floating-point
// elements in a and b, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd
FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
{
return vreinterpretq_m128d_s64(
@@ -5001,7 +5246,7 @@ FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
// Pause the processor. This is typically used in spin-wait loops and depending
// on the x86 processor typical values are in the 40-100 cycle range. The
-// 'yield' instruction isn't a good fit beacuse it's effectively a nop on most
+// 'yield' instruction isn't a good fit because it's effectively a nop on most
// Arm cores. Experience with several databases has shown has shown an 'isb' is
// a reasonable approximation.
FORCE_INLINE void _mm_pause()
@@ -5013,7 +5258,7 @@ FORCE_INLINE void _mm_pause()
// b, then horizontally sum each consecutive 8 differences to produce two
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
// 16 bits of 64-bit elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8
FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
{
uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
@@ -5089,7 +5334,7 @@ FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
// Set packed double-precision (64-bit) floating-point elements in dst with the
// supplied values.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd
FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
{
double ALIGN_STRUCT(16) data[2] = {e0, e1};
@@ -5102,15 +5347,19 @@ FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
// Broadcast double-precision (64-bit) floating-point value a to all elements of
// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1
#define _mm_set_pd1 _mm_set1_pd
// Copy double-precision (64-bit) floating-point element a to the lower element
// of dst, and zero the upper element.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd
FORCE_INLINE __m128d _mm_set_sd(double a)
{
+#if defined(__aarch64__)
+ return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0));
+#else
return _mm_set_pd(0, a);
+#endif
}
// Sets the 8 signed 16-bit integer values to w.
@@ -5147,7 +5396,7 @@ FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
}
// Sets the 2 signed 64-bit integer values to i.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x
FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
{
return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
@@ -5168,7 +5417,7 @@ FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
// Broadcast double-precision (64-bit) floating-point value a to all elements of
// dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd
FORCE_INLINE __m128d _mm_set1_pd(double d)
{
#if defined(__aarch64__)
@@ -5207,7 +5456,7 @@ FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
}
// Set packed 64-bit integers in dst with the supplied values in reverse order.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64
FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
{
return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
@@ -5242,14 +5491,14 @@ FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
// Set packed double-precision (64-bit) floating-point elements in dst with the
// supplied values in reverse order.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd
FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
{
return _mm_set_pd(e0, e1);
}
// Return vector of type __m128d with all elements set to zero.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd
FORCE_INLINE __m128d _mm_setzero_pd(void)
{
#if defined(__aarch64__)
@@ -5270,14 +5519,14 @@ FORCE_INLINE __m128i _mm_setzero_si128(void)
// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
// __constrange(0,255) int imm)
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- int32x4_t _input = vreinterpretq_s32_m128i(a); \
- int32x4_t _shuf = __builtin_shufflevector( \
- _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
- vreinterpretq_m128i_s32(_shuf); \
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_epi32(a, imm) \
+ __extension__({ \
+ int32x4_t _input = vreinterpretq_s32_m128i(a); \
+ int32x4_t _shuf = \
+ vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
+ ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
+ vreinterpretq_m128i_s32(_shuf); \
})
#else // generic
#define _mm_shuffle_epi32(a, imm) \
@@ -5340,12 +5589,12 @@ FORCE_INLINE __m128i _mm_setzero_si128(void)
// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64]
// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shuffle_pd(a, b, imm8) \
- vreinterpretq_m128d_s64(__builtin_shufflevector( \
- vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \
- ((imm8 & 0x2) >> 1) + 2))
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_pd(a, b, imm8) \
+ vreinterpretq_m128d_s64( \
+ vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \
+ imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2))
#else
#define _mm_shuffle_pd(a, b, imm8) \
_mm_castsi128_pd(_mm_set_epi64x( \
@@ -5355,15 +5604,15 @@ FORCE_INLINE __m128i _mm_setzero_si128(void)
// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
// __constrange(0,255) int imm)
-#if __has_builtin(__builtin_shufflevector)
-#define _mm_shufflehi_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
- (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
- (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128i_s16(_shuf); \
+#ifdef _sse2neon_shuffle
+#define _mm_shufflehi_epi16(a, imm) \
+ __extension__({ \
+ int16x8_t _input = vreinterpretq_s16_m128i(a); \
+ int16x8_t _shuf = \
+ vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
+ (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
+ (((imm) >> 6) & 0x3) + 4); \
+ vreinterpretq_m128i_s16(_shuf); \
})
#else // generic
#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
@@ -5371,11 +5620,11 @@ FORCE_INLINE __m128i _mm_setzero_si128(void)
// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
// __constrange(0,255) int imm)
-#if __has_builtin(__builtin_shufflevector)
+#ifdef _sse2neon_shuffle
#define _mm_shufflelo_epi16(a, imm) \
__extension__({ \
int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
+ int16x8_t _shuf = vshuffleq_s16( \
_input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
(((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
vreinterpretq_m128i_s16(_shuf); \
@@ -5396,7 +5645,7 @@ FORCE_INLINE __m128i _mm_setzero_si128(void)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16
FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
{
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
@@ -5419,7 +5668,7 @@ FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32
FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
{
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
@@ -5442,7 +5691,7 @@ FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64
FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
{
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
@@ -5465,7 +5714,7 @@ FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16
FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
{
if (_sse2neon_unlikely(imm & ~15))
@@ -5486,7 +5735,7 @@ FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32
FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
{
if (_sse2neon_unlikely(imm & ~31))
@@ -5507,7 +5756,7 @@ FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64
FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
{
if (_sse2neon_unlikely(imm & ~63))
@@ -5525,19 +5774,23 @@ FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
// FI
// dst[127:0] := a[127:0] << (tmp*8)
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128
-FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm)
-{
- if (_sse2neon_unlikely(imm & ~15))
- return _mm_setzero_si128();
- uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)};
- return vreinterpretq_m128i_u8(
- vld1q_u8(((uint8_t const *) tmp) + (16 - imm)));
-}
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128
+#define _mm_slli_si128(a, imm) \
+ __extension__({ \
+ int8x16_t ret; \
+ if (_sse2neon_unlikely(imm == 0)) \
+ ret = vreinterpretq_s8_m128i(a); \
+ else if (_sse2neon_unlikely((imm) & ~15)) \
+ ret = vdupq_n_s8(0); \
+ else \
+ ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), \
+ ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \
+ vreinterpretq_m128i_s8(ret); \
+ })
// Compute the square root of packed double-precision (64-bit) floating-point
// elements in a, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd
FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
{
#if defined(__aarch64__)
@@ -5552,7 +5805,7 @@ FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
// Compute the square root of the lower double-precision (64-bit) floating-point
// element in b, store the result in the lower element of dst, and copy the
// upper element from a to the upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd
FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -5574,7 +5827,7 @@ FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16
FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
{
int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
@@ -5595,7 +5848,7 @@ FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32
FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
{
int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
@@ -5616,7 +5869,7 @@ FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16
FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
{
const int count = (imm & ~15) ? 15 : imm;
@@ -5635,21 +5888,21 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32
// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_srai_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely((imm) == 0)) { \
- ret = a; \
- } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
- ret = vreinterpretq_m128i_s32( \
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
- } else { \
- ret = vreinterpretq_m128i_s32( \
- vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
- } \
- ret; \
+#define _mm_srai_epi32(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely((imm) == 0)) { \
+ ret = a; \
+ } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
+ ret = vreinterpretq_m128i_s32( \
+ vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \
+ } else { \
+ ret = vreinterpretq_m128i_s32( \
+ vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
+ } \
+ ret; \
})
// Shift packed 16-bit integers in a right by count while shifting in zeros, and
@@ -5664,7 +5917,7 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16
FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
{
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
@@ -5687,7 +5940,7 @@ FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32
FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
{
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
@@ -5710,7 +5963,7 @@ FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64
FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
{
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
@@ -5733,17 +5986,17 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
-#define _mm_srli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely(imm & ~15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u16( \
- vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \
- } \
- ret; \
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16
+#define _mm_srli_epi16(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely((imm) & ~15)) { \
+ ret = _mm_setzero_si128(); \
+ } else { \
+ ret = vreinterpretq_m128i_u16( \
+ vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \
+ } \
+ ret; \
})
// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
@@ -5758,18 +6011,18 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32
// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_srli_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely(imm & ~31)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u32( \
- vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \
- } \
- ret; \
+#define _mm_srli_epi32(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely((imm) & ~31)) { \
+ ret = _mm_setzero_si128(); \
+ } else { \
+ ret = vreinterpretq_m128i_u32( \
+ vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \
+ } \
+ ret; \
})
// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
@@ -5784,17 +6037,17 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
-#define _mm_srli_epi64(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (_sse2neon_unlikely(imm & ~63)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u64( \
- vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \
- } \
- ret; \
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64
+#define _mm_srli_epi64(a, imm) \
+ __extension__({ \
+ __m128i ret; \
+ if (_sse2neon_unlikely((imm) & ~63)) { \
+ ret = _mm_setzero_si128(); \
+ } else { \
+ ret = vreinterpretq_m128i_u64( \
+ vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \
+ } \
+ ret; \
})
// Shift a right by imm8 bytes while shifting in zeros, and store the results in
@@ -5806,19 +6059,22 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
// FI
// dst[127:0] := a[127:0] >> (tmp*8)
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128
-FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm)
-{
- if (_sse2neon_unlikely(imm & ~15))
- return _mm_setzero_si128();
- uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)};
- return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm));
-}
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128
+#define _mm_srli_si128(a, imm) \
+ __extension__({ \
+ int8x16_t ret; \
+ if (_sse2neon_unlikely((imm) & ~15)) \
+ ret = vdupq_n_s8(0); \
+ else \
+ ret = vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), \
+ (imm > 15 ? 0 : imm)); \
+ vreinterpretq_m128i_s8(ret); \
+ })
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
// or a general-protection exception may be generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd
FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
@@ -5831,7 +6087,7 @@ FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
// Store the lower double-precision (64-bit) floating-point element from a into
// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
// boundary or a general-protection exception may be generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1
FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
@@ -5847,7 +6103,7 @@ FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
// Store the lower double-precision (64-bit) floating-point element from a into
// memory. mem_addr does not need to be aligned on any particular boundary.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd
FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
@@ -5867,7 +6123,7 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
// Store the lower double-precision (64-bit) floating-point element from a into
// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
// boundary or a general-protection exception may be generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd
#define _mm_store1_pd _mm_store_pd1
// Store the upper double-precision (64-bit) floating-point element from a into
@@ -5875,7 +6131,7 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
//
// MEM[mem_addr+63:mem_addr] := a[127:64]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd
FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
@@ -5889,9 +6145,7 @@ FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
{
- uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
- uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
- *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
+ vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b)));
}
// Store the lower double-precision (64-bit) floating-point element from a into
@@ -5899,7 +6153,7 @@ FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
//
// MEM[mem_addr+63:mem_addr] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd
FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
{
#if defined(__aarch64__)
@@ -5916,7 +6170,7 @@ FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
// MEM[mem_addr+63:mem_addr] := a[127:64]
// MEM[mem_addr+127:mem_addr+64] := a[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd
FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
{
float32x4_t f = vreinterpretq_f32_m128d(a);
@@ -5926,21 +6180,21 @@ FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
// elements) from a into memory. mem_addr does not need to be aligned on any
// particular boundary.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd
FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
{
_mm_store_pd(mem_addr, a);
}
// Stores 128-bits of integer data a at the address p.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128
FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
{
vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
}
// Stores 32-bits of integer data a at the address p.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32
FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
{
vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
@@ -5950,11 +6204,11 @@ FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
// elements) from a into memory using a non-temporal memory hint. mem_addr must
// be aligned on a 16-byte boundary or a general-protection exception may be
// generated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd
FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
{
#if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, (float32x4_t *) p);
+ __builtin_nontemporal_store(reinterpret_cast<float32x4_t>(a), (float32x4_t *) p);
#elif defined(__aarch64__)
vst1q_f64(p, vreinterpretq_f64_m128d(a));
#else
@@ -5978,15 +6232,24 @@ FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
// Store 32-bit integer a into memory using a non-temporal hint to minimize
// cache pollution. If the cache line containing address mem_addr is already in
// the cache, the cache will be updated.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32
FORCE_INLINE void _mm_stream_si32(int *p, int a)
{
vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
}
+// Store 64-bit integer a into memory using a non-temporal hint to minimize
+// cache pollution. If the cache line containing address mem_addr is already in
+// the cache, the cache will be updated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64
+FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a)
+{
+ vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a));
+}
+
// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
// store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16
FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
{
return vreinterpretq_m128i_s16(
@@ -6020,7 +6283,7 @@ FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
// store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8
FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
{
return vreinterpretq_m128i_s8(
@@ -6036,7 +6299,7 @@ FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
// dst[i+63:i] := a[i+63:i] - b[i+63:i]
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd
FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -6056,7 +6319,7 @@ FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
// the lower double-precision (64-bit) floating-point element in a, store the
// result in the lower element of dst, and copy the upper element from a to the
// upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd
FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_sub_pd(a, b));
@@ -6066,7 +6329,7 @@ FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
//
// dst[63:0] := a[63:0] - b[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64
FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
{
return vreinterpret_m64_s64(
@@ -6135,7 +6398,7 @@ FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
#define _mm_ucomineq_sd _mm_comineq_sd
// Return vector of type __m128d with undefined elements.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd
FORCE_INLINE __m128d _mm_undefined_pd(void)
{
#if defined(__GNUC__) || defined(__clang__)
@@ -6240,7 +6503,7 @@ FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
// }
// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd
FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -6343,7 +6606,7 @@ FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
// }
// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0])
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd
FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -6364,7 +6627,7 @@ FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
// dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd
FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
{
return vreinterpretq_m128d_s64(
@@ -6394,10 +6657,10 @@ FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd
FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
{
- __m128d mask = _mm_set_pd(1.0f, -1.0f);
+ _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f);
#if defined(__aarch64__)
return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
vreinterpretq_f64_m128d(b),
@@ -6410,10 +6673,10 @@ FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
// Alternatively add and subtract packed single-precision (32-bit)
// floating-point elements in a to/from packed elements in b, and store the
// results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps
FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
{
- __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f};
+ _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f);
#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */
return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
vreinterpretq_f32_m128(mask),
@@ -6425,7 +6688,7 @@ FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
// elements in a and b, and pack the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd
FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
{
#if defined(__aarch64__)
@@ -6459,13 +6722,14 @@ FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
// Horizontally subtract adjacent pairs of double-precision (64-bit)
// floating-point elements in a and b, and pack the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd
FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
{
#if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vsubq_f64(
- vuzp1q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)),
- vuzp2q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b))));
+ float64x2_t a = vreinterpretq_f64_m128d(_a);
+ float64x2_t b = vreinterpretq_f64_m128d(_b);
+ return vreinterpretq_m128d_f64(
+ vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b)));
#else
double *da = (double *) &_a;
double *db = (double *) &_b;
@@ -6474,18 +6738,18 @@ FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
#endif
}
-// Horizontally substract adjacent pairs of single-precision (32-bit)
+// Horizontally subtract adjacent pairs of single-precision (32-bit)
// floating-point elements in a and b, and pack the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps
FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
{
+ float32x4_t a = vreinterpretq_f32_m128(_a);
+ float32x4_t b = vreinterpretq_f32_m128(_b);
#if defined(__aarch64__)
- return vreinterpretq_m128_f32(vsubq_f32(
- vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)),
- vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b))));
+ return vreinterpretq_m128_f32(
+ vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b)));
#else
- float32x4x2_t c =
- vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b));
+ float32x4x2_t c = vuzpq_f32(a, b);
return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
#endif
}
@@ -6496,7 +6760,7 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
//
// dst[127:0] := MEM[mem_addr+127:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128
#define _mm_lddqu_si128 _mm_loadu_si128
// Load a double-precision (64-bit) floating-point element from memory into both
@@ -6505,15 +6769,15 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
// dst[63:0] := MEM[mem_addr+63:mem_addr]
// dst[127:64] := MEM[mem_addr+63:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd
#define _mm_loaddup_pd _mm_load1_pd
// Duplicate the low double-precision (64-bit) floating-point element from a,
// and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd
FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
{
-#if (__aarch64__)
+#if defined(__aarch64__)
return vreinterpretq_m128d_f64(
vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
#else
@@ -6524,11 +6788,14 @@ FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
// Duplicate odd-indexed single-precision (32-bit) floating-point elements
// from a, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps
FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
{
-#if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(
+ vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
+#elif defined(_sse2neon_shuffle)
+ return vreinterpretq_m128_f32(vshuffleq_s32(
vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
#else
float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
@@ -6540,11 +6807,14 @@ FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
// Duplicate even-indexed single-precision (32-bit) floating-point elements
// from a, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps
FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
{
-#if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
+#if defined(__aarch64__)
+ return vreinterpretq_m128_f32(
+ vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
+#elif defined(_sse2neon_shuffle)
+ return vreinterpretq_m128_f32(vshuffleq_s32(
vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
#else
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
@@ -6564,7 +6834,7 @@ FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
// dst[i+15:i] := ABS(a[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16
FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
{
return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
@@ -6578,7 +6848,7 @@ FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
// dst[i+31:i] := ABS(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32
FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
{
return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
@@ -6592,7 +6862,7 @@ FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
// dst[i+7:i] := ABS(a[i+7:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8
FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
{
return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
@@ -6606,7 +6876,7 @@ FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
// dst[i+15:i] := ABS(a[i+15:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16
FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
{
return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
@@ -6620,7 +6890,7 @@ FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
// dst[i+31:i] := ABS(a[i+31:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32
FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
{
return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
@@ -6634,7 +6904,7 @@ FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
// dst[i+7:i] := ABS(a[i+7:i])
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8
FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
{
return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
@@ -6646,24 +6916,21 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8)
// dst[127:0] := tmp[127:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8
-FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm)
-{
- if (_sse2neon_unlikely(imm & ~31))
- return _mm_setzero_si128();
- int idx;
- uint8x16_t tmp[2];
- if (imm >= 16) {
- idx = imm - 16;
- tmp[0] = vreinterpretq_u8_m128i(a);
- tmp[1] = vdupq_n_u8(0);
- } else {
- idx = imm;
- tmp[0] = vreinterpretq_u8_m128i(b);
- tmp[1] = vreinterpretq_u8_m128i(a);
- }
- return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx));
-}
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8
+#define _mm_alignr_epi8(a, b, imm) \
+ __extension__({ \
+ uint8x16_t _a = vreinterpretq_u8_m128i(a); \
+ uint8x16_t _b = vreinterpretq_u8_m128i(b); \
+ __m128i ret; \
+ if (_sse2neon_unlikely((imm) & ~31)) \
+ ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
+ else if (imm >= 16) \
+ ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \
+ else \
+ ret = \
+ vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \
+ ret; \
+ })
// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
// the result right by imm8 bytes, and store the low 8 bytes in dst.
@@ -6671,7 +6938,7 @@ FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm)
// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8)
// dst[63:0] := tmp[63:0]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8
#define _mm_alignr_pi8(a, b, imm) \
__extension__({ \
__m64 ret; \
@@ -6679,13 +6946,13 @@ FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm)
ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
} else { \
uint8x8_t tmp_low, tmp_high; \
- if (imm >= 8) { \
- const int idx = imm - 8; \
+ if ((imm) >= 8) { \
+ const int idx = (imm) -8; \
tmp_low = vreinterpret_u8_m64(a); \
tmp_high = vdup_n_u8(0); \
ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
} else { \
- const int idx = imm; \
+ const int idx = (imm); \
tmp_low = vreinterpret_u8_m64(b); \
tmp_high = vreinterpret_u8_m64(a); \
ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
@@ -6715,14 +6982,18 @@ FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
{
int32x4_t a = vreinterpretq_s32_m128i(_a);
int32x4_t b = vreinterpretq_s32_m128i(_b);
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s32(vpaddq_s32(a, b));
+#else
return vreinterpretq_m128i_s32(
vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
+#endif
}
// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
// signed 16-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16
FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
{
return vreinterpret_m64_s16(
@@ -6731,7 +7002,7 @@ FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
// signed 32-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32
FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
{
return vreinterpret_m64_s32(
@@ -6762,7 +7033,7 @@ FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
// saturation, and pack the signed 16-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16
FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
{
int16x4_t a = vreinterpret_s16_m64(_a);
@@ -6775,101 +7046,96 @@ FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
#endif
}
-// Computes pairwise difference of each argument as a 16-bit signed or unsigned
-// integer values a and b.
+// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
+// the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16
FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
{
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Subtract
- return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
+ int16x8_t a = vreinterpretq_s16_m128i(_a);
+ int16x8_t b = vreinterpretq_s16_m128i(_b);
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s16(
+ vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
+#else
+ int16x8x2_t c = vuzpq_s16(a, b);
+ return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1]));
+#endif
}
-// Computes pairwise difference of each argument as a 32-bit signed or unsigned
-// integer values a and b.
+// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
+// the signed 32-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32
FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
{
- int64x2_t a = vreinterpretq_s64_m128i(_a);
- int64x2_t b = vreinterpretq_s64_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|b0|b2]
- // [a1|a2|b1|b3]
- int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
- int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
- // Subtract
- return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
+ int32x4_t a = vreinterpretq_s32_m128i(_a);
+ int32x4_t b = vreinterpretq_s32_m128i(_b);
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s32(
+ vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b)));
+#else
+ int32x4x2_t c = vuzpq_s32(a, b);
+ return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1]));
+#endif
}
// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
// the signed 16-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16
FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
{
- int32x4_t ab =
- vcombine_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b));
-
- int16x4_t ab_low_bits = vmovn_s32(ab);
- int16x4_t ab_high_bits = vshrn_n_s32(ab, 16);
-
- return vreinterpret_m64_s16(vsub_s16(ab_low_bits, ab_high_bits));
+ int16x4_t a = vreinterpret_s16_m64(_a);
+ int16x4_t b = vreinterpret_s16_m64(_b);
+#if defined(__aarch64__)
+ return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
+#else
+ int16x4x2_t c = vuzp_s16(a, b);
+ return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1]));
+#endif
}
// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
// the signed 32-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32
FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
{
-#if defined(__aarch64__)
int32x2_t a = vreinterpret_s32_m64(_a);
int32x2_t b = vreinterpret_s32_m64(_b);
- return vreinterpret_m64_s32(vsub_s32(vtrn1_s32(a, b), vtrn2_s32(a, b)));
+#if defined(__aarch64__)
+ return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b)));
#else
- int32x2x2_t trn_ab =
- vtrn_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b));
- return vreinterpret_m64_s32(vsub_s32(trn_ab.val[0], trn_ab.val[1]));
+ int32x2x2_t c = vuzp_s32(a, b);
+ return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1]));
#endif
}
// Computes saturated pairwise difference of each argument as a 16-bit signed
// integer values a and b.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16
FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
{
-#if defined(__aarch64__)
int16x8_t a = vreinterpretq_s16_m128i(_a);
int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
+#if defined(__aarch64__)
+ return vreinterpretq_m128i_s16(
vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
#else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated subtract
- return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
+ int16x8x2_t c = vuzpq_s16(a, b);
+ return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1]));
#endif
}
// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
// using saturation, and pack the signed 16-bit results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16
FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
{
int16x4_t a = vreinterpret_s16_m64(_a);
int16x4_t b = vreinterpret_s16_m64(_b);
#if defined(__aarch64__)
- return vreinterpret_s64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
+ return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
#else
- int16x4x2_t res = vuzp_s16(a, b);
- return vreinterpret_s64_s16(vqsub_s16(res.val[0], res.val[1]));
+ int16x4x2_t c = vuzp_s16(a, b);
+ return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1]));
#endif
}
@@ -6921,7 +7187,7 @@ FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
// pack the saturated results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16
FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
{
uint16x4_t a = vreinterpret_u16_m64(_a);
@@ -6975,7 +7241,7 @@ FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
// Multiply packed signed 16-bit integers in a and b, producing intermediate
// signed 32-bit integers. Truncate each intermediate integer to the 18 most
// significant bits, round by adding 1, and store bits [16:1] to dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16
FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
{
int32x4_t mul_extend =
@@ -6987,7 +7253,7 @@ FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
// Shuffle packed 8-bit integers in a according to shuffle control mask in the
// corresponding 8-bit element of b, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8
FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
{
int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
@@ -7028,11 +7294,11 @@ FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8
FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
{
const int8x8_t controlMask =
- vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t)(0x1 << 7 | 0x07)));
+ vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07)));
int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
return vreinterpret_m64_s8(res);
}
@@ -7142,7 +7408,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
#endif
- // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a')
+ // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a')
// based on ltMask
int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
// res = masked & (~zeroMask)
@@ -7166,7 +7432,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16
FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
{
int16x4_t a = vreinterpret_s16_m64(_a);
@@ -7183,7 +7449,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
#endif
- // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a')
+ // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a')
// based on ltMask
int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
// res = masked & (~zeroMask)
@@ -7207,7 +7473,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32
FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
{
int32x2_t a = vreinterpret_s32_m64(_a);
@@ -7224,7 +7490,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
#endif
- // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a')
+ // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a')
// based on ltMask
int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
// res = masked & (~zeroMask)
@@ -7248,7 +7514,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
// FI
// ENDFOR
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8
FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
{
int8x8_t a = vreinterpret_s8_m64(_a);
@@ -7265,7 +7531,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
#endif
- // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a')
+ // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a')
// based on ltMask
int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
// res = masked & (~zeroMask)
@@ -7309,7 +7575,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
// Blend packed double-precision (64-bit) floating-point elements from a and b
// using control mask imm8, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd
#define _mm_blend_pd(a, b, imm) \
__extension__({ \
const uint64_t _mask[2] = { \
@@ -7323,7 +7589,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
// Blend packed single-precision (32-bit) floating-point elements from a and b
// using mask, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps
FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
{
const uint32_t ALIGN_STRUCT(16)
@@ -7360,7 +7626,7 @@ FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
// Blend packed double-precision (64-bit) floating-point elements from a and b
// using mask, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd
FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
{
uint64x2_t mask =
@@ -7378,7 +7644,7 @@ FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
// Blend packed single-precision (32-bit) floating-point elements from a and b
// using mask, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps
FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
{
// Use a signed shift right to create a mask with the sign bit
@@ -7392,7 +7658,7 @@ FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
// Round the packed double-precision (64-bit) floating-point elements in a up
// to an integer value, and store the results as packed double-precision
// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd
FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
{
#if defined(__aarch64__)
@@ -7406,10 +7672,10 @@ FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
// Round the packed single-precision (32-bit) floating-point elements in a up to
// an integer value, and store the results as packed single-precision
// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps
FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
{
-#if defined(__aarch64__)
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
#else
float *f = (float *) &a;
@@ -7421,7 +7687,7 @@ FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
// an integer value, store the result as a double-precision floating-point
// element in the lower element of dst, and copy the upper element from a to the
// upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd
FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_ceil_pd(b));
@@ -7435,7 +7701,7 @@ FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
// dst[31:0] := CEIL(b[31:0])
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss
FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
{
return _mm_move_ss(a, _mm_ceil_ps(b));
@@ -7542,7 +7808,7 @@ FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
// and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16
FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
{
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */
@@ -7575,7 +7841,7 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
// Conditionally multiply the packed double-precision (64-bit) floating-point
// elements in a and b using the high 4 bits in imm8, sum the four products, and
// conditionally store the sum in dst using the low 4 bits of imm8.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd
FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
{
// Generate mask value from constant immediate bit value
@@ -7621,7 +7887,7 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
// Conditionally multiply the packed single-precision (32-bit) floating-point
// elements in a and b using the high 4 bits in imm8, sum the four products,
// and conditionally store the sum in dst using the low 4 bits of imm.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps
FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
{
#if defined(__aarch64__)
@@ -7677,7 +7943,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
// Extracts the selected signed or unsigned 8-bit integer from a and zero
// extends.
// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8
#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
// Extracts the selected single-precision (32-bit) floating-point from a.
@@ -7687,7 +7953,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
// Round the packed double-precision (64-bit) floating-point elements in a down
// to an integer value, and store the results as packed double-precision
// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd
FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
{
#if defined(__aarch64__)
@@ -7701,10 +7967,10 @@ FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
// Round the packed single-precision (32-bit) floating-point elements in a down
// to an integer value, and store the results as packed single-precision
// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps
FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
{
-#if defined(__aarch64__)
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
#else
float *f = (float *) &a;
@@ -7716,7 +7982,7 @@ FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
// an integer value, store the result as a double-precision floating-point
// element in the lower element of dst, and copy the upper element from a to the
// upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd
FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
{
return _mm_move_sd(a, _mm_floor_pd(b));
@@ -7730,7 +7996,7 @@ FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
// dst[31:0] := FLOOR(b[31:0])
// dst[127:32] := a[127:32]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss
FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
{
return _mm_move_ss(a, _mm_floor_ps(b));
@@ -7769,7 +8035,7 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
// Copy a to tmp, then insert a single-precision (32-bit) floating-point
// element from b into tmp using the control in imm8. Store tmp to dst using
// the mask in imm8 (elements are zeroed out when the corresponding bit is set).
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps
#define _mm_insert_ps(a, b, imm8) \
__extension__({ \
float32x4_t tmp1 = \
@@ -7808,7 +8074,7 @@ FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
// Compare packed signed 8-bit integers in a and b, and store packed maximum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8
FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
{
return vreinterpretq_m128i_s8(
@@ -7817,7 +8083,7 @@ FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16
FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u16(
@@ -7826,7 +8092,7 @@ FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u32(
@@ -7851,7 +8117,7 @@ FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
// Compare packed signed 8-bit integers in a and b, and store packed minimum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8
FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
{
return vreinterpretq_m128i_s8(
@@ -7860,7 +8126,7 @@ FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16
FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u16(
@@ -7869,7 +8135,7 @@ FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
// values in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
{
return vreinterpretq_m128i_u32(
@@ -7892,15 +8158,22 @@ FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
// dst[18:16] := index[2:0]
// dst[127:19] := 0
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16
FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
{
__m128i dst;
uint16_t min, idx = 0;
- // Find the minimum value
#if defined(__aarch64__)
+ // Find the minimum value
min = vminvq_u16(vreinterpretq_u16_m128i(a));
+
+ // Get the index of the minimum value
+ static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7};
+ uint16x8_t minv = vdupq_n_u16(min);
+ uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a));
+ idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq));
#else
+ // Find the minimum value
__m64 tmp;
tmp = vreinterpret_m64_u16(
vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
@@ -7910,7 +8183,6 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
tmp = vreinterpret_m64_u16(
vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
-#endif
// Get the index of the minimum value
int i;
for (i = 0; i < 8; i++) {
@@ -7920,6 +8192,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
}
a = _mm_srli_si128(a, 2);
}
+#endif
// Generate result
dst = _mm_setzero_si128();
dst = vreinterpretq_m128i_u16(
@@ -7935,7 +8208,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
// quadruplets from a. One quadruplet is selected from b starting at on the
// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
// integers selected from a starting at the offset specified in imm8.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8
FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
{
uint8x16_t _a, _b;
@@ -7982,13 +8255,13 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
int16x8_t c04, c15, c26, c37;
uint8x8_t low_b = vget_low_u8(_b);
- c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- _a = vextq_u8(_a, _a, 1);
- c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- _a = vextq_u8(_a, _a, 1);
- c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
- _a = vextq_u8(_a, _a, 1);
- c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b)));
+ c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b));
+ uint8x16_t _a_1 = vextq_u8(_a, _a, 1);
+ c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b));
+ uint8x16_t _a_2 = vextq_u8(_a, _a, 2);
+ c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b));
+ uint8x16_t _a_3 = vextq_u8(_a, _a, 3);
+ c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b));
#if defined(__aarch64__)
// |0|4|2|6|
c04 = vpaddq_s16(c04, c26);
@@ -8056,7 +8329,7 @@ FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
// Round the packed double-precision (64-bit) floating-point elements in a using
// the rounding parameter, and store the results as packed double-precision
// floating-point elements in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd
FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
{
#if defined(__aarch64__)
@@ -8128,7 +8401,7 @@ FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
{
-#if defined(__aarch64__)
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
switch (rounding) {
case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
@@ -8185,7 +8458,7 @@ FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
// the rounding parameter, store the result as a double-precision floating-point
// element in the lower element of dst, and copy the upper element from a to the
// upper element of dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd
FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
{
return _mm_move_sd(a, _mm_round_pd(b, rounding));
@@ -8205,7 +8478,7 @@ FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress
// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
// _MM_SET_ROUNDING_MODE
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss
FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
{
return _mm_move_ss(a, _mm_round_ps(b, rounding));
@@ -8217,7 +8490,7 @@ FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
//
// dst[127:0] := MEM[mem_addr+127:mem_addr]
//
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128
FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
{
#if __has_builtin(__builtin_nontemporal_store)
@@ -8229,16 +8502,16 @@ FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
// all 1's, and return 1 if the result is zero, otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones
FORCE_INLINE int _mm_test_all_ones(__m128i a)
{
- return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
+ return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
~(uint64_t) 0;
}
// Compute the bitwise AND of 128 bits (representing integer data) in a and
// mask, and return 1 if the result is zero, otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros
FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
{
int64x2_t a_and_mask =
@@ -8251,7 +8524,7 @@ FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
// otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero
FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
{
uint64x2_t zf =
@@ -8266,12 +8539,11 @@ FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
// otherwise set CF to 0. Return the CF value.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128
FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
{
int64x2_t s64 =
- vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))),
- vreinterpretq_s64_m128i(b));
+ vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a));
return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
}
@@ -8280,14 +8552,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
// otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128
#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
// otherwise set CF to 0. Return the ZF value.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128
FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
{
int64x2_t s64 =
@@ -8297,6 +8569,756 @@ FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
/* SSE4.2 */
+const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = {
+ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+};
+const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = {
+ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+};
+
+/* specify the source data format */
+#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */
+#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */
+#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */
+#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */
+
+/* specify the comparison operation */
+#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */
+#define _SIDD_CMP_RANGES 0x04 /* compare ranges */
+#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */
+#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */
+
+/* specify the polarity */
+#define _SIDD_POSITIVE_POLARITY 0x00
+#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
+#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */
+#define _SIDD_MASKED_NEGATIVE_POLARITY \
+ 0x30 /* negate results only before end of string */
+
+/* specify the output selection in _mm_cmpXstri */
+#define _SIDD_LEAST_SIGNIFICANT 0x00
+#define _SIDD_MOST_SIGNIFICANT 0x40
+
+/* specify the output selection in _mm_cmpXstrm */
+#define _SIDD_BIT_MASK 0x00
+#define _SIDD_UNIT_MASK 0x40
+
+/* Pattern Matching for C macros.
+ * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
+ */
+
+/* catenate */
+#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__
+#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b)
+
+#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c)
+/* run the 2nd parameter */
+#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__
+/* run the 1st parameter */
+#define SSE2NEON_IIF_1(t, ...) t
+
+#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b)
+#define SSE2NEON_COMPL_0 1
+#define SSE2NEON_COMPL_1 0
+
+#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x)
+#define SSE2NEON_DEC_1 0
+#define SSE2NEON_DEC_2 1
+#define SSE2NEON_DEC_3 2
+#define SSE2NEON_DEC_4 3
+#define SSE2NEON_DEC_5 4
+#define SSE2NEON_DEC_6 5
+#define SSE2NEON_DEC_7 6
+#define SSE2NEON_DEC_8 7
+#define SSE2NEON_DEC_9 8
+#define SSE2NEON_DEC_10 9
+#define SSE2NEON_DEC_11 10
+#define SSE2NEON_DEC_12 11
+#define SSE2NEON_DEC_13 12
+#define SSE2NEON_DEC_14 13
+#define SSE2NEON_DEC_15 14
+#define SSE2NEON_DEC_16 15
+
+/* detection */
+#define SSE2NEON_CHECK_N(x, n, ...) n
+#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, )
+#define SSE2NEON_PROBE(x) x, 1,
+
+#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x))
+#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~)
+
+#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x))
+#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c))
+
+#define SSE2NEON_EAT(...)
+#define SSE2NEON_EXPAND(...) __VA_ARGS__
+#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT)
+
+/* recursion */
+/* deferred expression */
+#define SSE2NEON_EMPTY()
+#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY()
+#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)()
+#define SSE2NEON_EXPAND(...) __VA_ARGS__
+
+#define SSE2NEON_EVAL(...) \
+ SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__)))
+#define SSE2NEON_EVAL1(...) \
+ SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__)))
+#define SSE2NEON_EVAL2(...) \
+ SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__)))
+#define SSE2NEON_EVAL3(...) __VA_ARGS__
+
+#define SSE2NEON_REPEAT(count, macro, ...) \
+ SSE2NEON_WHEN(count) \
+ (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \
+ SSE2NEON_DEC(count), macro, \
+ __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \
+ __VA_ARGS__))
+#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT
+
+#define SSE2NEON_SIZE_OF_byte 8
+#define SSE2NEON_NUMBER_OF_LANES_byte 16
+#define SSE2NEON_SIZE_OF_word 16
+#define SSE2NEON_NUMBER_OF_LANES_word 8
+
+#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \
+ mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \
+ vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \
+ vreinterpretq_##type##_m128i(a)));
+
+#define SSE2NEON_FILL_LANE(i, type) \
+ vec_b[i] = \
+ vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i));
+
+#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \
+ number_of_lanes, byte_or_word) \
+ do { \
+ SSE2NEON_CAT( \
+ data_type_prefix, \
+ SSE2NEON_CAT(size, \
+ SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \
+ vec_b[number_of_lanes]; \
+ __m128i mask = SSE2NEON_IIF(byte_or_word)( \
+ vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \
+ vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \
+ SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \
+ SSE2NEON_CAT(type_prefix, size))) \
+ for (int i = 0; i < number_of_lanes; i++) { \
+ mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \
+ size)(SSE2NEON_CAT(vbslq_u, size)( \
+ SSE2NEON_CAT(vreinterpretq_u, \
+ SSE2NEON_CAT(size, _m128i))(mask), \
+ SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \
+ vec_b[i], \
+ SSE2NEON_CAT( \
+ vreinterpretq_, \
+ SSE2NEON_CAT(type_prefix, \
+ SSE2NEON_CAT(size, _m128i(a))))), \
+ SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \
+ vec_b[i], \
+ SSE2NEON_CAT( \
+ vreinterpretq_, \
+ SSE2NEON_CAT(type_prefix, \
+ SSE2NEON_CAT(size, _m128i(a))))))); \
+ } \
+ } while (0)
+
+#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \
+ do { \
+ SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \
+ SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \
+ SSE2NEON_CAT(u, size))) \
+ } while (0)
+
+#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \
+ static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \
+ int lb) \
+ { \
+ __m128i mtx[16]; \
+ PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
+ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \
+ return SSE2NEON_CAT( \
+ _sse2neon_aggregate_equal_any_, \
+ SSE2NEON_CAT( \
+ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
+ SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \
+ type))))(la, lb, mtx); \
+ }
+
+#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \
+ static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \
+ int lb) \
+ { \
+ __m128i mtx[16]; \
+ PCMPSTR_RANGES( \
+ a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
+ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \
+ return SSE2NEON_CAT( \
+ _sse2neon_aggregate_ranges_, \
+ SSE2NEON_CAT( \
+ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
+ SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \
+ type))))(la, lb, mtx); \
+ }
+
+#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \
+ static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \
+ __m128i b, int lb) \
+ { \
+ __m128i mtx[16]; \
+ PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
+ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \
+ return SSE2NEON_CAT( \
+ _sse2neon_aggregate_equal_ordered_, \
+ SSE2NEON_CAT( \
+ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
+ SSE2NEON_CAT(x, \
+ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \
+ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \
+ }
+
+static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16])
+{
+ int res = 0;
+ int m = (1 << la) - 1;
+ uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
+ uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
+ uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
+ uint8x16_t vec = vcombine_u8(t_lo, t_hi);
+ for (int j = 0; j < lb; j++) {
+ mtx[j] = vreinterpretq_m128i_u8(
+ vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
+ mtx[j] = vreinterpretq_m128i_u8(
+ vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
+ int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0;
+ res |= (tmp << j);
+ }
+ return res;
+}
+
+static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16])
+{
+ int res = 0;
+ int m = (1 << la) - 1;
+ uint16x8_t vec =
+ vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
+ for (int j = 0; j < lb; j++) {
+ mtx[j] = vreinterpretq_m128i_u16(
+ vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
+ mtx[j] = vreinterpretq_m128i_u16(
+ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
+ int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0;
+ res |= (tmp << j);
+ }
+ return res;
+}
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \
+ prefix##IMPL(byte) \
+ prefix##IMPL(word)
+/* clang-format on */
+
+SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_)
+
+static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16])
+{
+ int res = 0;
+ int m = (1 << la) - 1;
+ uint16x8_t vec =
+ vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
+ for (int j = 0; j < lb; j++) {
+ mtx[j] = vreinterpretq_m128i_u16(
+ vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
+ mtx[j] = vreinterpretq_m128i_u16(
+ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
+ __m128i tmp = vreinterpretq_m128i_u32(
+ vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16));
+ uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]),
+ vreinterpretq_u32_m128i(tmp));
+#if defined(__aarch64__)
+ int t = vaddvq_u32(vec_res) ? 1 : 0;
+#else
+ uint64x2_t sumh = vpaddlq_u32(vec_res);
+ int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1);
+#endif
+ res |= (t << j);
+ }
+ return res;
+}
+
+static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16])
+{
+ int res = 0;
+ int m = (1 << la) - 1;
+ uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
+ uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
+ uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
+ uint8x16_t vec = vcombine_u8(t_lo, t_hi);
+ for (int j = 0; j < lb; j++) {
+ mtx[j] = vreinterpretq_m128i_u8(
+ vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
+ mtx[j] = vreinterpretq_m128i_u8(
+ vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
+ __m128i tmp = vreinterpretq_m128i_u16(
+ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8));
+ uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]),
+ vreinterpretq_u16_m128i(tmp));
+ int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0;
+ res |= (t << j);
+ }
+ return res;
+}
+
+#define SSE2NEON_CMP_RANGES_IS_BYTE 1
+#define SSE2NEON_CMP_RANGES_IS_WORD 0
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \
+ prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \
+ prefix##IMPL(byte, int, s, prefix##IS_BYTE) \
+ prefix##IMPL(word, uint, u, prefix##IS_WORD) \
+ prefix##IMPL(word, int, s, prefix##IS_WORD)
+/* clang-format on */
+
+SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_)
+
+#undef SSE2NEON_CMP_RANGES_IS_BYTE
+#undef SSE2NEON_CMP_RANGES_IS_WORD
+
+static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb)
+{
+ uint8x16_t mtx =
+ vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b));
+ int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
+ int m1 = 0x10000 - (1 << la);
+ int tb = 0x10000 - (1 << lb);
+ uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi;
+ uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi;
+ vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
+ vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask);
+ vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask);
+ vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask);
+ vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask);
+ tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask);
+ tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask);
+
+ res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx));
+ res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx));
+ res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo);
+ res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi);
+ res_lo = vand_u8(res_lo, vec_mask);
+ res_hi = vand_u8(res_hi, vec_mask);
+
+ int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8);
+ return res;
+}
+
+static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb)
+{
+ uint16x8_t mtx =
+ vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
+ int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
+ int m1 = 0x100 - (1 << la);
+ int tb = 0x100 - (1 << lb);
+ uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b);
+ uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask);
+ uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask);
+ uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask);
+ mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx);
+ mtx = vbslq_u16(vec1, tmp, mtx);
+ mtx = vandq_u16(mtx, vec_mask);
+ return _sse2neon_vaddvq_u16(mtx);
+}
+
+#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1
+#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0
+
+#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \
+ static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \
+ int bound, int la, int lb, __m128i mtx[16]) \
+ { \
+ int res = 0; \
+ int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \
+ uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \
+ vld1_u##size(_sse2neon_cmpestr_mask##size##b), \
+ vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \
+ uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \
+ vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \
+ vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \
+ vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \
+ uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \
+ uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \
+ for (int j = 0; j < lb; j++) { \
+ mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \
+ vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \
+ } \
+ for (int j = lb; j < bound; j++) { \
+ mtx[j] = vreinterpretq_m128i_u##size( \
+ vbslq_u##size(vec1, vec_minusone, vec_zero)); \
+ } \
+ unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \
+ (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \
+ for (int i = 0; i < bound; i++) { \
+ int val = 1; \
+ for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \
+ val &= ptr[k * bound + j]; \
+ res += val << i; \
+ } \
+ return res; \
+ }
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \
+ prefix##IMPL(8, 16, prefix##IS_UBYTE) \
+ prefix##IMPL(16, 8, prefix##IS_UWORD)
+/* clang-format on */
+
+SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_)
+
+#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE
+#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \
+ prefix##IMPL(byte) \
+ prefix##IMPL(word)
+/* clang-format on */
+
+SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_)
+
+#define SSE2NEON_CMPESTR_LIST \
+ _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \
+ _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \
+ _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \
+ _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \
+ _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \
+ _(CMP_UWORD_RANGES, cmp_uword_ranges) \
+ _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \
+ _(CMP_SWORD_RANGES, cmp_sword_ranges) \
+ _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \
+ _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \
+ _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \
+ _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \
+ _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
+ _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \
+ _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
+ _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered)
+
+enum {
+#define _(name, func_suffix) name,
+ SSE2NEON_CMPESTR_LIST
+#undef _
+};
+typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb);
+static cmpestr_func_t _sse2neon_cmpfunc_table[] = {
+#define _(name, func_suffix) _sse2neon_##func_suffix,
+ SSE2NEON_CMPESTR_LIST
+#undef _
+};
+
+FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound)
+{
+ switch (imm8 & 0x30) {
+ case _SIDD_NEGATIVE_POLARITY:
+ res ^= 0xffffffff;
+ break;
+ case _SIDD_MASKED_NEGATIVE_POLARITY:
+ res ^= (1 << lb) - 1;
+ break;
+ default:
+ break;
+ }
+
+ return res & ((bound == 8) ? 0xFF : 0xFFFF);
+}
+
+FORCE_INLINE int _sse2neon_clz(unsigned int x)
+{
+#if _MSC_VER
+ DWORD cnt = 0;
+ if (_BitScanForward(&cnt, x))
+ return cnt;
+ return 32;
+#else
+ return x != 0 ? __builtin_clz(x) : 32;
+#endif
+}
+
+FORCE_INLINE int _sse2neon_ctz(unsigned int x)
+{
+#if _MSC_VER
+ DWORD cnt = 0;
+ if (_BitScanReverse(&cnt, x))
+ return 31 - cnt;
+ return 32;
+#else
+ return x != 0 ? __builtin_ctz(x) : 32;
+#endif
+}
+
+FORCE_INLINE int _sse2neon_ctzll(unsigned long long x)
+{
+#if _MSC_VER
+ unsigned long cnt;
+#ifdef defined(SSE2NEON_HAS_BITSCAN64)
+ (defined(_M_AMD64) || defined(__x86_64__))
+ if((_BitScanForward64(&cnt, x))
+ return (int)(cnt);
+#else
+ if (_BitScanForward(&cnt, (unsigned long) (x)))
+ return (int) cnt;
+ if (_BitScanForward(&cnt, (unsigned long) (x >> 32)))
+ return (int) (cnt + 32);
+#endif
+ return 64;
+#else
+ return x != 0 ? __builtin_ctzll(x) : 64;
+#endif
+}
+
+#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y)
+
+#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \
+ const int var = (imm & 0x01) ? 8 : 16
+
+#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \
+ int tmp1 = la ^ (la >> 31); \
+ la = tmp1 - (la >> 31); \
+ int tmp2 = lb ^ (lb >> 31); \
+ lb = tmp2 - (lb >> 31); \
+ la = SSE2NEON_MIN(la, bound); \
+ lb = SSE2NEON_MIN(lb, bound)
+
+// Compare all pairs of character in string a and b,
+// then aggregate the result.
+// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the
+// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of
+// string a and b.
+#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \
+ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \
+ SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \
+ int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \
+ r2 = _sse2neon_sido_negative(r2, lb, imm8, bound)
+
+#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \
+ return (r2 == 0) ? bound \
+ : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \
+ : _sse2neon_ctz(r2))
+
+#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \
+ __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
+ if (imm8 & 0x40) { \
+ if (bound == 8) { \
+ uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \
+ vld1q_u16(_sse2neon_cmpestr_mask16b)); \
+ dst = vreinterpretq_m128i_u16(vbslq_u16( \
+ tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \
+ } else { \
+ uint8x16_t vec_r2 = \
+ vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \
+ uint8x16_t tmp = \
+ vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \
+ dst = vreinterpretq_m128i_u8( \
+ vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \
+ } \
+ } else { \
+ if (bound == 16) { \
+ dst = vreinterpretq_m128i_u16( \
+ vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \
+ } else { \
+ dst = vreinterpretq_m128i_u8( \
+ vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \
+ } \
+ } \
+ return dst
+
+// Compare packed strings in a and b with lengths la and lb using the control
+// in imm8, and returns 1 if b did not contain a null character and the
+// resulting mask was zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra
+FORCE_INLINE int _mm_cmpestra(__m128i a,
+ int la,
+ __m128i b,
+ int lb,
+ const int imm8)
+{
+ int lb_cpy = lb;
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+ return !r2 & (lb_cpy > bound);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc
+FORCE_INLINE int _mm_cmpestrc(__m128i a,
+ int la,
+ __m128i b,
+ int lb,
+ const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+ return r2 != 0;
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control
+// in imm8, and store the generated index in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri
+FORCE_INLINE int _mm_cmpestri(__m128i a,
+ int la,
+ __m128i b,
+ int lb,
+ const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+ SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control
+// in imm8, and store the generated mask in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm
+FORCE_INLINE __m128i
+_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+ SSE2NEON_CMPSTR_GENERATE_MASK(dst);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns bit 0 of the resulting bit mask.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro
+FORCE_INLINE int _mm_cmpestro(__m128i a,
+ int la,
+ __m128i b,
+ int lb,
+ const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+ return r2 & 1;
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns 1 if any character in a was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs
+FORCE_INLINE int _mm_cmpestrs(__m128i a,
+ int la,
+ __m128i b,
+ int lb,
+ const int imm8)
+{
+ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+ return la <= (bound - 1);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns 1 if any character in b was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz
+FORCE_INLINE int _mm_cmpestrz(__m128i a,
+ int la,
+ __m128i b,
+ int lb,
+ const int imm8)
+{
+ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+ return lb <= (bound - 1);
+}
+
+#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \
+ do { \
+ if (imm8 & 0x01) { \
+ uint16x8_t equal_mask_##str = \
+ vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \
+ uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \
+ uint64_t matches_##str = \
+ vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \
+ len = _sse2neon_ctzll(matches_##str) >> 3; \
+ } else { \
+ uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \
+ vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \
+ uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \
+ uint64_t matches_##str = \
+ vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \
+ len = _sse2neon_ctzll(matches_##str) >> 2; \
+ } \
+ } while (0)
+
+#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \
+ int la, lb; \
+ do { \
+ SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \
+ SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \
+ } while (0)
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if b did not contain a null character and the resulting
+// mask was zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra
+FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+ return !r2 & (lb >= bound);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc
+FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+ return r2 != 0;
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and store the generated index in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri
+FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+ SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and store the generated mask in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm
+FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+ SSE2NEON_CMPSTR_GENERATE_MASK(dst);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns bit 0 of the resulting bit mask.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro
+FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+ return r2 & 1;
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if any character in a was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs
+FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+ int la;
+ SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);
+ return la <= (bound - 1);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if any character in b was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz
+FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8)
+{
+ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+ int lb;
+ SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);
+ return lb <= (bound - 1);
+}
+
// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
// in b for greater than.
FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
@@ -8320,6 +9342,8 @@ FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
__asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
: [c] "+r"(crc)
: [v] "r"(v));
+#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
+ crc = __crc32ch(crc, v);
#else
crc = _mm_crc32_u8(crc, v & 0xff);
crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
@@ -8336,6 +9360,8 @@ FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
__asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
: [c] "+r"(crc)
: [v] "r"(v));
+#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
+ crc = __crc32cw(crc, v);
#else
crc = _mm_crc32_u16(crc, v & 0xffff);
crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
@@ -8353,8 +9379,8 @@ FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
: [c] "+r"(crc)
: [v] "r"(v));
#else
- crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
- crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
+ crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff);
+ crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff);
#endif
return crc;
}
@@ -8368,6 +9394,8 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
__asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
: [c] "+r"(crc)
: [v] "r"(v));
+#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
+ crc = __crc32cb(crc, v);
#else
crc ^= v;
for (int bit = 0; bit < 8; bit++) {
@@ -8384,7 +9412,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
#if !defined(__ARM_FEATURE_CRYPTO)
/* clang-format off */
-#define SSE2NEON_AES_DATA(w) \
+#define SSE2NEON_AES_SBOX(w) \
{ \
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
@@ -8424,53 +9452,115 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
w(0xb0), w(0x54), w(0xbb), w(0x16) \
}
+#define SSE2NEON_AES_RSBOX(w) \
+ { \
+ w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \
+ w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \
+ w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \
+ w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \
+ w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \
+ w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \
+ w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \
+ w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \
+ w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \
+ w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \
+ w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \
+ w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \
+ w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \
+ w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \
+ w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \
+ w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \
+ w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \
+ w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \
+ w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \
+ w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \
+ w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \
+ w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \
+ w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \
+ w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \
+ w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \
+ w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \
+ w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \
+ w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \
+ w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \
+ w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \
+ w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \
+ w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \
+ w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \
+ w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \
+ w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \
+ w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \
+ w(0x55), w(0x21), w(0x0c), w(0x7d) \
+ }
/* clang-format on */
/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
#define SSE2NEON_AES_H0(x) (x)
-static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0);
+static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0);
+static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0);
#undef SSE2NEON_AES_H0
+/* x_time function and matrix multiply function */
+#if !defined(__aarch64__)
+#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b))
+#define SSE2NEON_MULTIPLY(x, y) \
+ (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \
+ ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \
+ ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \
+ ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x))))))
+#endif
+
// In the absence of crypto extensions, implement aesenc using regular neon
// intrinsics instead. See:
// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
// for more information Reproduced with permission of the author.
-FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
+FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey)
{
#if defined(__aarch64__)
- static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
- 0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
- 0xc, 0x1, 0x6, 0xb};
- static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
- 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};
+ static const uint8_t shift_rows[] = {
+ 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
+ 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
+ };
+ static const uint8_t ror32by8[] = {
+ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
+ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
+ };
uint8x16_t v;
- uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
+ uint8x16_t w = vreinterpretq_u8_m128i(a);
- // shift rows
+ /* shift rows */
w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
- // sub bytes
- v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0);
-
- // mix columns
- w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b);
+ /* sub bytes */
+ // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and
+ // look up each of the table. After each lookup, we load the next table
+ // which locates at the next 64-bytes. In the meantime, the index in the
+ // table would be smaller than it was, so the index parameters of
+ // `vqtbx4q_u8()` need to be added the same constant as the loaded tables.
+ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
+ // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))'
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
+
+ /* mix columns */
+ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
- // add round key
+ /* add round key */
return vreinterpretq_m128i_u8(w) ^ RoundKey;
-#else /* ARMv7-A NEON implementation */
-#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
- (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \
- (b0))
+#else /* ARMv7-A implementation for a table-based AES */
+#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
+ (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \
+ ((uint32_t) (b1) << 8) | (uint32_t) (b0))
+// muliplying 'x' by 2 in GF(2^8)
#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
+// muliplying 'x' by 3 in GF(2^8)
#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
#define SSE2NEON_AES_U0(p) \
SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
@@ -8480,11 +9570,14 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
#define SSE2NEON_AES_U3(p) \
SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
+
+ // this generates a table containing every possible permutation of
+ // shift_rows() and sub_bytes() with mix_columns().
static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
- SSE2NEON_AES_DATA(SSE2NEON_AES_U0),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U1),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U2),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U3),
+ SSE2NEON_AES_SBOX(SSE2NEON_AES_U0),
+ SSE2NEON_AES_SBOX(SSE2NEON_AES_U1),
+ SSE2NEON_AES_SBOX(SSE2NEON_AES_U2),
+ SSE2NEON_AES_SBOX(SSE2NEON_AES_U3),
};
#undef SSE2NEON_AES_B2W
#undef SSE2NEON_AES_F2
@@ -8494,11 +9587,15 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
#undef SSE2NEON_AES_U2
#undef SSE2NEON_AES_U3
- uint32_t x0 = _mm_cvtsi128_si32(EncBlock);
- uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55));
- uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA));
- uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF));
+ uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0]
+ uint32_t x1 =
+ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32]
+ uint32_t x2 =
+ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64]
+ uint32_t x3 =
+ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96]
+ // finish the modulo addition step in mix_columns()
__m128i out = _mm_set_epi32(
(aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
@@ -8513,34 +9610,210 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
#endif
}
+// Perform one round of an AES decryption flow on data (state) in a using the
+// round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
+FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
+{
+#if defined(__aarch64__)
+ static const uint8_t inv_shift_rows[] = {
+ 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
+ 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
+ };
+ static const uint8_t ror32by8[] = {
+ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
+ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
+ };
+
+ uint8x16_t v;
+ uint8x16_t w = vreinterpretq_u8_m128i(a);
+
+ // inverse shift rows
+ w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
+
+ // inverse sub bytes
+ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
+
+ // inverse mix columns
+ // muliplying 'v' by 4 in GF(2^8)
+ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+ w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
+ v ^= w;
+ v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
+
+ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) &
+ 0x1b); // muliplying 'v' by 2 in GF(2^8)
+ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
+ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
+
+ // add round key
+ return vreinterpretq_m128i_u8(w) ^ RoundKey;
+
+#else /* ARMv7-A NEON implementation */
+ /* FIXME: optimized for NEON */
+ uint8_t i, e, f, g, h, v[4][4];
+ uint8_t *_a = (uint8_t *) &a;
+ for (i = 0; i < 16; ++i) {
+ v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
+ }
+
+ // inverse mix columns
+ for (i = 0; i < 4; ++i) {
+ e = v[i][0];
+ f = v[i][1];
+ g = v[i][2];
+ h = v[i][3];
+
+ v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
+ SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
+ v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
+ SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
+ v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
+ SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
+ v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
+ SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
+ }
+
+ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
+#endif
+}
+
// Perform the last round of an AES encryption flow on data (state) in a using
// the round key in RoundKey, and store the result in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
{
+#if defined(__aarch64__)
+ static const uint8_t shift_rows[] = {
+ 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
+ 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
+ };
+
+ uint8x16_t v;
+ uint8x16_t w = vreinterpretq_u8_m128i(a);
+
+ // shift rows
+ w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
+
+ // sub bytes
+ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
+
+ // add round key
+ return vreinterpretq_m128i_u8(v) ^ RoundKey;
+
+#else /* ARMv7-A implementation */
+ uint8_t v[16] = {
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)],
+ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)],
+ };
+
+ return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey;
+#endif
+}
+
+// Perform the last round of an AES decryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
+FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
+{
+#if defined(__aarch64__)
+ static const uint8_t inv_shift_rows[] = {
+ 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
+ 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
+ };
+
+ uint8x16_t v;
+ uint8x16_t w = vreinterpretq_u8_m128i(a);
+
+ // inverse shift rows
+ w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
+
+ // inverse sub bytes
+ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
+
+ // add round key
+ return vreinterpretq_m128i_u8(v) ^ RoundKey;
+
+#else /* ARMv7-A NEON implementation */
/* FIXME: optimized for NEON */
- uint8_t v[4][4] = {
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
- {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
+ uint8_t v[4][4];
+ uint8_t *_a = (uint8_t *) &a;
+ for (int i = 0; i < 16; ++i) {
+ v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
+ }
+
+ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
+#endif
+}
+
+// Perform the InvMixColumns transformation on a and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
+FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
+{
+#if defined(__aarch64__)
+ static const uint8_t ror32by8[] = {
+ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
+ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
};
- for (int i = 0; i < 16; i++)
- vreinterpretq_nth_u8_m128i(a, i) =
- v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i);
- return a;
+ uint8x16_t v = vreinterpretq_u8_m128i(a);
+ uint8x16_t w;
+
+ // multiplying 'v' by 4 in GF(2^8)
+ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+ w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
+ v ^= w;
+ v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
+
+ // multiplying 'v' by 2 in GF(2^8)
+ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
+ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
+ return vreinterpretq_m128i_u8(w);
+
+#else /* ARMv7-A NEON implementation */
+ uint8_t i, e, f, g, h, v[4][4];
+ vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a));
+ for (i = 0; i < 4; ++i) {
+ e = v[i][0];
+ f = v[i][1];
+ g = v[i][2];
+ h = v[i][3];
+
+ v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
+ SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
+ v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
+ SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
+ v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
+ SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
+ v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
+ SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
+ }
+
+ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v));
+#endif
}
// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
@@ -8548,19 +9821,43 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
// for details.
//
-// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx
-FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon)
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
+FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
{
- uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55));
- uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF));
+#if defined(__aarch64__)
+ uint8x16_t _a = vreinterpretq_u8_m128i(a);
+ uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80);
+ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0);
+
+ uint32x4_t select_mask = {0xffffffff, 0x0, 0xffffffff, 0x0};
+ uint64x2_t v_mask = vshrq_n_u64(vreinterpretq_u64_u8(v), 32);
+ uint32x4_t x = vbslq_u32(select_mask, vreinterpretq_u32_u64(v_mask),
+ vreinterpretq_u32_u8(v));
+ uint32x4_t ror_x = vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 24));
+ uint32x4_t ror_xor_x = veorq_u32(ror_x, vdupq_n_u32(rcon));
+
+ return vreinterpretq_m128i_u32(vbslq_u32(select_mask, x, ror_xor_x));
+
+#else /* ARMv7-A NEON implementation */
+ uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));
+ uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));
for (int i = 0; i < 4; ++i) {
- ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]];
- ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]];
+ ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]];
+ ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]];
}
return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
+#endif
}
-#undef SSE2NEON_AES_DATA
+#undef SSE2NEON_AES_SBOX
+#undef SSE2NEON_AES_RSBOX
+
+#if defined(__aarch64__)
+#undef SSE2NEON_XT
+#undef SSE2NEON_MULTIPLY
+#endif
#else /* __ARM_FEATURE_CRYPTO */
// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
@@ -8576,7 +9873,19 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
vreinterpretq_u8_m128i(b));
}
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
+// Perform one round of an AES decryption flow on data (state) in a using the
+// round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
+FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
+{
+ return vreinterpretq_m128i_u8(veorq_u8(
+ vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
+ vreinterpretq_u8_m128i(RoundKey)));
+}
+
+// Perform the last round of an AES encryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
{
return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
@@ -8584,6 +9893,27 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
RoundKey);
}
+// Perform the last round of an AES decryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
+FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
+{
+ return vreinterpretq_m128i_u8(
+ vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
+ vreinterpretq_u8_m128i(RoundKey);
+}
+
+// Perform the InvMixColumns transformation on a and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
+FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
+{
+ return vreinterpretq_m128i_u8(vaesimcq_u8(a));
+}
+
+// Assist in expanding the AES cipher key by computing steps towards generating
+// a round key for encryption cipher using data from a and an 8-bit round
+// constant specified in imm8, and store the result in dst."
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
{
// AESE does ShiftRows and SubBytes on A
@@ -8605,7 +9935,7 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
// Perform a carry-less multiplication of two 64-bit integers, selected from a
// and b according to imm8, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128
FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
{
uint64x2_t a = vreinterpretq_u64_m128i(_a);
@@ -8640,9 +9970,9 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode()
} r;
#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
@@ -8650,7 +9980,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode()
// Count the number of bits set to 1 in unsigned 32-bit integer a, and
// return that count in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32
FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
{
#if defined(__aarch64__)
@@ -8677,7 +10007,7 @@ FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
// Count the number of bits set to 1 in unsigned 64-bit integer a, and
// return that count in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64
FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
{
#if defined(__aarch64__)
@@ -8717,17 +10047,55 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
} r;
#if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
#else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
#endif
r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
#if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
+ __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
#else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
+ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
+#endif
+}
+
+// Return the current 64-bit value of the processor's time-stamp counter.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc
+
+FORCE_INLINE uint64_t _rdtsc(void)
+{
+#if defined(__aarch64__)
+ uint64_t val;
+
+ /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the
+ * system counter is at least 56 bits wide; from Armv8.6, the counter
+ * must be 64 bits wide. So the system counter could be less than 64
+ * bits wide and it is attributed with the flag 'cap_user_time_short'
+ * is true.
+ */
+ __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val));
+
+ return val;
+#else
+ uint32_t pmccntr, pmuseren, pmcntenset;
+ // Read the user mode Performance Monitoring Unit (PMU)
+ // User Enable Register (PMUSERENR) access permissions.
+ __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
+ if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code.
+ __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
+ if (pmcntenset & 0x80000000UL) { // Is it counting?
+ __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
+ // The counter is set up to count every 64th cycle
+ return (uint64_t) (pmccntr) << 6;
+ }
+ }
+
+ // Fallback to syscall as we can't enable PMUSERENR in user mode.
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec;
#endif
}
@@ -8740,4 +10108,4 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
#pragma GCC pop_options
#endif
-#endif \ No newline at end of file
+#endif