summaryrefslogtreecommitdiffstats
path: root/thirdparty/embree/kernels/common/scene_instance_array.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/embree/kernels/common/scene_instance_array.h')
-rw-r--r--thirdparty/embree/kernels/common/scene_instance_array.h385
1 files changed, 385 insertions, 0 deletions
diff --git a/thirdparty/embree/kernels/common/scene_instance_array.h b/thirdparty/embree/kernels/common/scene_instance_array.h
new file mode 100644
index 0000000000..3cf4d68feb
--- /dev/null
+++ b/thirdparty/embree/kernels/common/scene_instance_array.h
@@ -0,0 +1,385 @@
+// Copyright 2009-2021 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "geometry.h"
+#include "accel.h"
+
+namespace embree
+{
+ struct MotionDerivativeCoefficients;
+
+ /*! Instanced acceleration structure */
+ struct InstanceArray : public Geometry
+ {
+ //ALIGNED_STRUCT_(16);
+ static const Geometry::GTypeMask geom_type = Geometry::MTY_INSTANCE_ARRAY;
+
+ public:
+ InstanceArray (Device* device, unsigned int numTimeSteps = 1);
+ ~InstanceArray();
+
+ private:
+ InstanceArray (const InstanceArray& other) DELETED; // do not implement
+ InstanceArray& operator= (const InstanceArray& other) DELETED; // do not implement
+
+ private:
+ LBBox3fa nonlinearBounds(size_t i,
+ const BBox1f& time_range_in,
+ const BBox1f& geom_time_range,
+ float geom_time_segments) const;
+
+ BBox3fa boundSegment(size_t i, size_t itime,
+ BBox3fa const& obbox0, BBox3fa const& obbox1,
+ BBox3fa const& bbox0, BBox3fa const& bbox1,
+ float t_min, float t_max) const;
+
+ /* calculates the (correct) interpolated bounds */
+ __forceinline BBox3fa bounds(size_t i, size_t itime0, size_t itime1, float f) const
+ {
+ if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
+ return xfmBounds(slerp(l2w(i, itime0), l2w(i, itime1), f),
+ lerp(getObjectBounds(i, itime0), getObjectBounds(i, itime1), f));
+ return xfmBounds(lerp(l2w(i, itime0), l2w(i, itime1), f),
+ lerp(getObjectBounds(i, itime0), getObjectBounds(i, itime1), f));
+ }
+
+ public:
+
+ virtual void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num) override;
+ virtual void* getBuffer(RTCBufferType type, unsigned int slot) override;
+ virtual void updateBuffer(RTCBufferType type, unsigned int slot) override;
+
+ virtual void setNumTimeSteps (unsigned int numTimeSteps) override;
+ virtual void setInstancedScene(const Ref<Scene>& scene) override;
+ virtual void setInstancedScenes(const RTCScene* scenes, size_t numScenes) override;
+ virtual AffineSpace3fa getTransform(size_t, float time) override;
+ virtual void setMask (unsigned mask) override;
+ virtual void build() {}
+ virtual void addElementsToCount (GeometryCounts & counts) const override;
+ virtual void commit() override;
+
+ public:
+
+ /*! calculates the bounds of instance */
+ __forceinline BBox3fa bounds(size_t i) const {
+ if (!valid(i))
+ return BBox3fa();
+
+ if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
+ return xfmBounds(quaternionDecompositionToAffineSpace(l2w(i, 0)),getObject(i)->bounds.bounds());
+ return xfmBounds(l2w(i, 0),getObject(i)->bounds.bounds());
+ }
+
+ /*! gets the bounds of the instanced scene */
+ __forceinline BBox3fa getObjectBounds(size_t i, size_t itime) const {
+ if (!valid(i))
+ return BBox3fa();
+
+ return getObject(i)->getBounds(timeStep(itime));
+ }
+
+ /*! calculates the bounds of instance */
+ __forceinline BBox3fa bounds(size_t i, size_t itime) const {
+ if (!valid(i))
+ return BBox3fa();
+
+ if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
+ return xfmBounds(quaternionDecompositionToAffineSpace(l2w(i, itime)),getObjectBounds(i, itime));
+ return xfmBounds(l2w(i, itime),getObjectBounds(i, itime));
+ }
+
+ /*! calculates the linear bounds of the i'th primitive for the specified time range */
+ __forceinline LBBox3fa linearBounds(size_t i, const BBox1f& dt) const {
+ if (!valid(i))
+ return LBBox3fa();
+
+ LBBox3fa lbbox = nonlinearBounds(i, dt, time_range, fnumTimeSegments);
+ return lbbox;
+ }
+
+ /*! calculates the build bounds of the i'th item, if it's valid */
+ __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
+ {
+ if (!valid(i))
+ return false;
+
+ const BBox3fa b = bounds(i);
+ if (bbox) *bbox = b;
+ return isvalid(b);
+ }
+
+ /*! calculates the build bounds of the i'th item at the itime'th time segment, if it's valid */
+ __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
+ {
+ if (!valid(i))
+ return false;
+
+ const LBBox3fa bounds = linearBounds(i,itime);
+ bbox = bounds.bounds ();
+ return isvalid(bounds);
+ }
+
+ /* gets version info of topology */
+ unsigned int getTopologyVersion() const {
+ return numPrimitives;
+ }
+
+ /* returns true if topology changed */
+ bool topologyChanged(unsigned int otherVersion) const {
+ return numPrimitives != otherVersion;
+ }
+
+ /*! check if the i'th primitive is valid between the specified time range */
+ __forceinline bool valid(size_t i) const
+ {
+ if (object) return true;
+ return (object_ids[i] != (unsigned int)(-1));
+ }
+
+ /*! check if the i'th primitive is valid between the specified time range */
+ __forceinline bool valid(size_t i, const range<size_t>& itime_range) const
+ {
+ for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
+ if (!isvalid(bounds(i,itime))) return false;
+
+ return true;
+ }
+
+ __forceinline AffineSpace3fa getLocal2World(size_t i) const
+ {
+ if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
+ return quaternionDecompositionToAffineSpace(l2w(i,0));
+ return l2w(i, 0);
+ }
+
+ __forceinline AffineSpace3fa getLocal2World(size_t i, float t) const
+ {
+ if (numTimeSegments() > 0) {
+ float ftime; const unsigned int itime = timeSegment(t, ftime);
+ if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
+ return slerp(l2w(i, itime+0),l2w(i, itime+1),ftime);
+ return lerp(l2w(i, itime+0),l2w(i, itime+1),ftime);
+ }
+ return getLocal2World(i);
+ }
+
+ __forceinline AffineSpace3fa getWorld2Local(size_t i) const {
+ return rcp(getLocal2World(i));
+ }
+
+ __forceinline AffineSpace3fa getWorld2Local(size_t i, float t) const {
+ return rcp(getLocal2World(i, t));
+ }
+
+ template<int K>
+ __forceinline AffineSpace3vf<K> getWorld2Local(size_t i, const vbool<K>& valid, const vfloat<K>& t) const
+ {
+ if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
+ return getWorld2LocalSlerp<K>(i, valid, t);
+ return getWorld2LocalLerp<K>(i, valid, t);
+ }
+
+ __forceinline float projectedPrimitiveArea(const size_t i) const {
+ return area(bounds(i));
+ }
+
+ inline Accel* getObject(size_t i) const {
+ if (object) {
+ return object;
+ }
+
+ assert(objects);
+ assert(i < numPrimitives);
+ if (object_ids[i] == (unsigned int)(-1))
+ return nullptr;
+
+ assert(object_ids[i] < numObjects);
+ return objects[object_ids[i]];
+ }
+
+ private:
+
+ template<int K>
+ __forceinline AffineSpace3vf<K> getWorld2LocalSlerp(size_t i, const vbool<K>& valid, const vfloat<K>& t) const
+ {
+ vfloat<K> ftime;
+ const vint<K> itime_k = timeSegment<K>(t, ftime);
+ assert(any(valid));
+ const size_t index = bsf(movemask(valid));
+ const int itime = itime_k[index];
+ if (likely(all(valid, itime_k == vint<K>(itime)))) {
+ return rcp(slerp(AffineSpace3vff<K>(l2w(i, itime+0)),
+ AffineSpace3vff<K>(l2w(i, itime+1)),
+ ftime));
+ }
+ else {
+ AffineSpace3vff<K> space0,space1;
+ vbool<K> valid1 = valid;
+ while (any(valid1)) {
+ vbool<K> valid2;
+ const int itime = next_unique(valid1, itime_k, valid2);
+ space0 = select(valid2, AffineSpace3vff<K>(l2w(i, itime+0)), space0);
+ space1 = select(valid2, AffineSpace3vff<K>(l2w(i, itime+1)), space1);
+ }
+ return rcp(slerp(space0, space1, ftime));
+ }
+ }
+
+ template<int K>
+ __forceinline AffineSpace3vf<K> getWorld2LocalLerp(size_t i, const vbool<K>& valid, const vfloat<K>& t) const
+ {
+ vfloat<K> ftime;
+ const vint<K> itime_k = timeSegment<K>(t, ftime);
+ assert(any(valid));
+ const size_t index = bsf(movemask(valid));
+ const int itime = itime_k[index];
+ if (likely(all(valid, itime_k == vint<K>(itime)))) {
+ return rcp(lerp(AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+0)),
+ AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+1)),
+ ftime));
+ } else {
+ AffineSpace3vf<K> space0,space1;
+ vbool<K> valid1 = valid;
+ while (any(valid1)) {
+ vbool<K> valid2;
+ const int itime = next_unique(valid1, itime_k, valid2);
+ space0 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+0)), space0);
+ space1 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)l2w(i, itime+1)), space1);
+ }
+ return rcp(lerp(space0, space1, ftime));
+ }
+ }
+
+ private:
+
+ __forceinline AffineSpace3ff l2w(size_t i, size_t itime) const {
+ if (l2w_buf[itime].getFormat() == RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR) {
+ return *(AffineSpace3ff*)(l2w_buf[itime].getPtr(i));
+ }
+ else if(l2w_buf[itime].getFormat() == RTC_FORMAT_QUATERNION_DECOMPOSITION) {
+ AffineSpace3ff transform;
+ QuaternionDecomposition* qd = (QuaternionDecomposition*)l2w_buf[itime].getPtr(i);
+ transform.l.vx.x = qd->scale_x;
+ transform.l.vy.y = qd->scale_y;
+ transform.l.vz.z = qd->scale_z;
+ transform.l.vy.x = qd->skew_xy;
+ transform.l.vz.x = qd->skew_xz;
+ transform.l.vz.y = qd->skew_yz;
+ transform.l.vx.y = qd->translation_x;
+ transform.l.vx.z = qd->translation_y;
+ transform.l.vy.z = qd->translation_z;
+ transform.p.x = qd->shift_x;
+ transform.p.y = qd->shift_y;
+ transform.p.z = qd->shift_z;
+ // normalize quaternion
+ Quaternion3f q(qd->quaternion_r, qd->quaternion_i, qd->quaternion_j, qd->quaternion_k);
+ q = normalize(q);
+ transform.l.vx.w = q.i;
+ transform.l.vy.w = q.j;
+ transform.l.vz.w = q.k;
+ transform.p.w = q.r;
+ return transform;
+ }
+ else if (l2w_buf[itime].getFormat() == RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR) {
+ AffineSpace3f* l2w = reinterpret_cast<AffineSpace3f*>(l2w_buf[itime].getPtr(i));
+ return AffineSpace3ff(*l2w);
+ }
+ else if (l2w_buf[itime].getFormat() == RTC_FORMAT_FLOAT3X4_ROW_MAJOR) {
+ float* data = reinterpret_cast<float*>(l2w_buf[itime].getPtr(i));
+ AffineSpace3f l2w;
+ l2w.l.vx.x = data[0]; l2w.l.vy.x = data[1]; l2w.l.vz.x = data[2]; l2w.p.x = data[3];
+ l2w.l.vx.y = data[4]; l2w.l.vy.y = data[5]; l2w.l.vz.y = data[6]; l2w.p.y = data[7];
+ l2w.l.vx.z = data[8]; l2w.l.vy.z = data[9]; l2w.l.vz.z = data[10]; l2w.p.z = data[11];
+ return l2w;
+ }
+ assert(false);
+ return AffineSpace3ff();
+ }
+
+ inline AffineSpace3ff l2w(size_t i) const {
+ return l2w(i, 0);
+ }
+
+ private:
+ Accel* object; //!< fast path if only one scene is instanced
+ Accel** objects;
+ uint32_t numObjects;
+ Device::vector<RawBufferView> l2w_buf = device; //!< transformation from local space to world space for each timestep (either normal matrix or quaternion decomposition)
+ BufferView<uint32_t> object_ids; //!< array of scene ids per instance array primitive
+ };
+
+ namespace isa
+ {
+ struct InstanceArrayISA : public InstanceArray
+ {
+ InstanceArrayISA (Device* device)
+ : InstanceArray(device) {}
+
+ LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const {
+ return linearBounds(primID,time_range);
+ }
+
+ PrimInfo createPrimRefArray(PrimRef* prims, const range<size_t>& r, size_t k, unsigned int geomID) const
+ {
+ PrimInfo pinfo(empty);
+ for (size_t j = r.begin(); j < r.end(); j++) {
+ BBox3fa bounds = empty;
+ if (!buildBounds(j, &bounds) || !valid(j))
+ continue;
+ const PrimRef prim(bounds, geomID, unsigned(j));
+ pinfo.add_center2(prim);
+ prims[k++] = prim;
+ }
+ return pinfo;
+ }
+
+ PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
+ {
+ PrimInfo pinfo(empty);
+ for (size_t j = r.begin(); j < r.end(); j++) {
+ BBox3fa bounds = empty;
+ if (!buildBounds(j, itime, bounds))
+ continue;
+ const PrimRef prim(bounds, geomID, unsigned(j));
+ pinfo.add_center2(prim);
+ prims[k++] = prim;
+ }
+ return pinfo;
+ }
+
+ PrimInfo createPrimRefArrayMB(PrimRef* prims, const BBox1f& time_range, const range<size_t>& r, size_t k, unsigned int geomID) const
+ {
+ PrimInfo pinfo(empty);
+ const BBox1f t0t1 = BBox1f::intersect(getTimeRange(), time_range);
+ if (t0t1.empty()) return pinfo;
+
+ for (size_t j = r.begin(); j < r.end(); j++) {
+ LBBox3fa lbounds = linearBounds(j, t0t1);
+ if (!isvalid(lbounds.bounds()))
+ continue;
+ const PrimRef prim(lbounds.bounds(), geomID, unsigned(j));
+ pinfo.add_center2(prim);
+ prims[k++] = prim;
+ }
+ return pinfo;
+ }
+
+ PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
+ {
+ PrimInfoMB pinfo(empty);
+ for (size_t j = r.begin(); j < r.end(); j++) {
+ if (!valid(j, timeSegmentRange(t0t1)))
+ continue;
+ const PrimRefMB prim(linearBounds(j, t0t1), this->numTimeSegments(), this->time_range, this->numTimeSegments(), geomID, unsigned(j));
+ pinfo.add_primref(prim);
+ prims[k++] = prim;
+ }
+ return pinfo;
+ }
+ };
+ }
+
+ DECLARE_ISA_FUNCTION(InstanceArray*, createInstanceArray, Device*);
+}