summaryrefslogtreecommitdiffstats
path: root/thirdparty/msdfgen/core/MSDFErrorCorrection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/msdfgen/core/MSDFErrorCorrection.cpp')
-rw-r--r--thirdparty/msdfgen/core/MSDFErrorCorrection.cpp495
1 files changed, 495 insertions, 0 deletions
diff --git a/thirdparty/msdfgen/core/MSDFErrorCorrection.cpp b/thirdparty/msdfgen/core/MSDFErrorCorrection.cpp
new file mode 100644
index 0000000000..7918597fd2
--- /dev/null
+++ b/thirdparty/msdfgen/core/MSDFErrorCorrection.cpp
@@ -0,0 +1,495 @@
+
+#include "MSDFErrorCorrection.h"
+
+#include <cstring>
+#include "arithmetics.hpp"
+#include "equation-solver.h"
+#include "EdgeColor.h"
+#include "bitmap-interpolation.hpp"
+#include "edge-selectors.h"
+#include "contour-combiners.h"
+#include "ShapeDistanceFinder.h"
+#include "generator-config.h"
+
+namespace msdfgen {
+
+#define ARTIFACT_T_EPSILON .01
+#define PROTECTION_RADIUS_TOLERANCE 1.001
+
+#define CLASSIFIER_FLAG_CANDIDATE 0x01
+#define CLASSIFIER_FLAG_ARTIFACT 0x02
+
+const double ErrorCorrectionConfig::defaultMinDeviationRatio = 1.11111111111111111;
+const double ErrorCorrectionConfig::defaultMinImproveRatio = 1.11111111111111111;
+
+/// The base artifact classifier recognizes artifacts based on the contents of the SDF alone.
+class BaseArtifactClassifier {
+public:
+ inline BaseArtifactClassifier(double span, bool protectedFlag) : span(span), protectedFlag(protectedFlag) { }
+ /// Evaluates if the median value xm interpolated at xt in the range between am at at and bm at bt indicates an artifact.
+ inline int rangeTest(double at, double bt, double xt, float am, float bm, float xm) const {
+ // For protected texels, only consider inversion artifacts (interpolated median has different sign than boundaries). For the rest, it is sufficient that the interpolated median is outside its boundaries.
+ if ((am > .5f && bm > .5f && xm <= .5f) || (am < .5f && bm < .5f && xm >= .5f) || (!protectedFlag && median(am, bm, xm) != xm)) {
+ double axSpan = (xt-at)*span, bxSpan = (bt-xt)*span;
+ // Check if the interpolated median's value is in the expected range based on its distance (span) from boundaries a, b.
+ if (!(xm >= am-axSpan && xm <= am+axSpan && xm >= bm-bxSpan && xm <= bm+bxSpan))
+ return CLASSIFIER_FLAG_CANDIDATE|CLASSIFIER_FLAG_ARTIFACT;
+ return CLASSIFIER_FLAG_CANDIDATE;
+ }
+ return 0;
+ }
+ /// Returns true if the combined results of the tests performed on the median value m interpolated at t indicate an artifact.
+ inline bool evaluate(double t, float m, int flags) const {
+ return (flags&2) != 0;
+ }
+private:
+ double span;
+ bool protectedFlag;
+};
+
+/// The shape distance checker evaluates the exact shape distance to find additional artifacts at a significant performance cost.
+template <template <typename> class ContourCombiner, int N>
+class ShapeDistanceChecker {
+public:
+ class ArtifactClassifier : public BaseArtifactClassifier {
+ public:
+ inline ArtifactClassifier(ShapeDistanceChecker *parent, const Vector2 &direction, double span) : BaseArtifactClassifier(span, parent->protectedFlag), parent(parent), direction(direction) { }
+ /// Returns true if the combined results of the tests performed on the median value m interpolated at t indicate an artifact.
+ inline bool evaluate(double t, float m, int flags) const {
+ if (flags&CLASSIFIER_FLAG_CANDIDATE) {
+ // Skip expensive distance evaluation if the point has already been classified as an artifact by the base classifier.
+ if (flags&CLASSIFIER_FLAG_ARTIFACT)
+ return true;
+ Vector2 tVector = t*direction;
+ float oldMSD[N], newMSD[3];
+ // Compute the color that would be currently interpolated at the artifact candidate's position.
+ Point2 sdfCoord = parent->sdfCoord+tVector;
+ interpolate(oldMSD, parent->sdf, sdfCoord);
+ // Compute the color that would be interpolated at the artifact candidate's position if error correction was applied on the current texel.
+ double aWeight = (1-fabs(tVector.x))*(1-fabs(tVector.y));
+ float aPSD = median(parent->msd[0], parent->msd[1], parent->msd[2]);
+ newMSD[0] = float(oldMSD[0]+aWeight*(aPSD-parent->msd[0]));
+ newMSD[1] = float(oldMSD[1]+aWeight*(aPSD-parent->msd[1]));
+ newMSD[2] = float(oldMSD[2]+aWeight*(aPSD-parent->msd[2]));
+ // Compute the evaluated distance (interpolated median) before and after error correction, as well as the exact shape distance.
+ float oldPSD = median(oldMSD[0], oldMSD[1], oldMSD[2]);
+ float newPSD = median(newMSD[0], newMSD[1], newMSD[2]);
+ float refPSD = float(parent->invRange*parent->distanceFinder.distance(parent->shapeCoord+tVector*parent->texelSize)+.5);
+ // Compare the differences of the exact distance and the before and after distances.
+ return parent->minImproveRatio*fabsf(newPSD-refPSD) < double(fabsf(oldPSD-refPSD));
+ }
+ return false;
+ }
+ private:
+ ShapeDistanceChecker *parent;
+ Vector2 direction;
+ };
+ Point2 shapeCoord, sdfCoord;
+ const float *msd;
+ bool protectedFlag;
+ inline ShapeDistanceChecker(const BitmapConstRef<float, N> &sdf, const Shape &shape, const Projection &projection, double invRange, double minImproveRatio) : distanceFinder(shape), sdf(sdf), invRange(invRange), minImproveRatio(minImproveRatio) {
+ texelSize = projection.unprojectVector(Vector2(1));
+ }
+ inline ArtifactClassifier classifier(const Vector2 &direction, double span) {
+ return ArtifactClassifier(this, direction, span);
+ }
+private:
+ ShapeDistanceFinder<ContourCombiner<PseudoDistanceSelector> > distanceFinder;
+ BitmapConstRef<float, N> sdf;
+ double invRange;
+ Vector2 texelSize;
+ double minImproveRatio;
+};
+
+MSDFErrorCorrection::MSDFErrorCorrection() { }
+
+MSDFErrorCorrection::MSDFErrorCorrection(const BitmapRef<byte, 1> &stencil, const Projection &projection, double range) : stencil(stencil), projection(projection) {
+ invRange = 1/range;
+ minDeviationRatio = ErrorCorrectionConfig::defaultMinDeviationRatio;
+ minImproveRatio = ErrorCorrectionConfig::defaultMinImproveRatio;
+ memset(stencil.pixels, 0, sizeof(byte)*stencil.width*stencil.height);
+}
+
+void MSDFErrorCorrection::setMinDeviationRatio(double minDeviationRatio) {
+ this->minDeviationRatio = minDeviationRatio;
+}
+
+void MSDFErrorCorrection::setMinImproveRatio(double minImproveRatio) {
+ this->minImproveRatio = minImproveRatio;
+}
+
+void MSDFErrorCorrection::protectCorners(const Shape &shape) {
+ for (std::vector<Contour>::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
+ if (!contour->edges.empty()) {
+ const EdgeSegment *prevEdge = contour->edges.back();
+ for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) {
+ int commonColor = prevEdge->color&(*edge)->color;
+ // If the color changes from prevEdge to edge, this is a corner.
+ if (!(commonColor&(commonColor-1))) {
+ // Find the four texels that envelop the corner and mark them as protected.
+ Point2 p = projection.project((*edge)->point(0));
+ if (shape.inverseYAxis)
+ p.y = stencil.height-p.y;
+ int l = (int) floor(p.x-.5);
+ int b = (int) floor(p.y-.5);
+ int r = l+1;
+ int t = b+1;
+ // Check that the positions are within bounds.
+ if (l < stencil.width && b < stencil.height && r >= 0 && t >= 0) {
+ if (l >= 0 && b >= 0)
+ *stencil(l, b) |= (byte) PROTECTED;
+ if (r < stencil.width && b >= 0)
+ *stencil(r, b) |= (byte) PROTECTED;
+ if (l >= 0 && t < stencil.height)
+ *stencil(l, t) |= (byte) PROTECTED;
+ if (r < stencil.width && t < stencil.height)
+ *stencil(r, t) |= (byte) PROTECTED;
+ }
+ }
+ prevEdge = *edge;
+ }
+ }
+}
+
+/// Determines if the channel contributes to an edge between the two texels a, b.
+static bool edgeBetweenTexelsChannel(const float *a, const float *b, int channel) {
+ // Find interpolation ratio t (0 < t < 1) where an edge is expected (mix(a[channel], b[channel], t) == 0.5).
+ double t = (a[channel]-.5)/(a[channel]-b[channel]);
+ if (t > 0 && t < 1) {
+ // Interpolate channel values at t.
+ float c[3] = {
+ mix(a[0], b[0], t),
+ mix(a[1], b[1], t),
+ mix(a[2], b[2], t)
+ };
+ // This is only an edge if the zero-distance channel is the median.
+ return median(c[0], c[1], c[2]) == c[channel];
+ }
+ return false;
+}
+
+/// Returns a bit mask of which channels contribute to an edge between the two texels a, b.
+static int edgeBetweenTexels(const float *a, const float *b) {
+ return (
+ RED*edgeBetweenTexelsChannel(a, b, 0)+
+ GREEN*edgeBetweenTexelsChannel(a, b, 1)+
+ BLUE*edgeBetweenTexelsChannel(a, b, 2)
+ );
+}
+
+/// Marks texel as protected if one of its non-median channels is present in the channel mask.
+static void protectExtremeChannels(byte *stencil, const float *msd, float m, int mask) {
+ if (
+ (mask&RED && msd[0] != m) ||
+ (mask&GREEN && msd[1] != m) ||
+ (mask&BLUE && msd[2] != m)
+ )
+ *stencil |= (byte) MSDFErrorCorrection::PROTECTED;
+}
+
+template <int N>
+void MSDFErrorCorrection::protectEdges(const BitmapConstRef<float, N> &sdf) {
+ float radius;
+ // Horizontal texel pairs
+ radius = float(PROTECTION_RADIUS_TOLERANCE*projection.unprojectVector(Vector2(invRange, 0)).length());
+ for (int y = 0; y < sdf.height; ++y) {
+ const float *left = sdf(0, y);
+ const float *right = sdf(1, y);
+ for (int x = 0; x < sdf.width-1; ++x) {
+ float lm = median(left[0], left[1], left[2]);
+ float rm = median(right[0], right[1], right[2]);
+ if (fabsf(lm-.5f)+fabsf(rm-.5f) < radius) {
+ int mask = edgeBetweenTexels(left, right);
+ protectExtremeChannels(stencil(x, y), left, lm, mask);
+ protectExtremeChannels(stencil(x+1, y), right, rm, mask);
+ }
+ left += N, right += N;
+ }
+ }
+ // Vertical texel pairs
+ radius = float(PROTECTION_RADIUS_TOLERANCE*projection.unprojectVector(Vector2(0, invRange)).length());
+ for (int y = 0; y < sdf.height-1; ++y) {
+ const float *bottom = sdf(0, y);
+ const float *top = sdf(0, y+1);
+ for (int x = 0; x < sdf.width; ++x) {
+ float bm = median(bottom[0], bottom[1], bottom[2]);
+ float tm = median(top[0], top[1], top[2]);
+ if (fabsf(bm-.5f)+fabsf(tm-.5f) < radius) {
+ int mask = edgeBetweenTexels(bottom, top);
+ protectExtremeChannels(stencil(x, y), bottom, bm, mask);
+ protectExtremeChannels(stencil(x, y+1), top, tm, mask);
+ }
+ bottom += N, top += N;
+ }
+ }
+ // Diagonal texel pairs
+ radius = float(PROTECTION_RADIUS_TOLERANCE*projection.unprojectVector(Vector2(invRange)).length());
+ for (int y = 0; y < sdf.height-1; ++y) {
+ const float *lb = sdf(0, y);
+ const float *rb = sdf(1, y);
+ const float *lt = sdf(0, y+1);
+ const float *rt = sdf(1, y+1);
+ for (int x = 0; x < sdf.width-1; ++x) {
+ float mlb = median(lb[0], lb[1], lb[2]);
+ float mrb = median(rb[0], rb[1], rb[2]);
+ float mlt = median(lt[0], lt[1], lt[2]);
+ float mrt = median(rt[0], rt[1], rt[2]);
+ if (fabsf(mlb-.5f)+fabsf(mrt-.5f) < radius) {
+ int mask = edgeBetweenTexels(lb, rt);
+ protectExtremeChannels(stencil(x, y), lb, mlb, mask);
+ protectExtremeChannels(stencil(x+1, y+1), rt, mrt, mask);
+ }
+ if (fabsf(mrb-.5f)+fabsf(mlt-.5f) < radius) {
+ int mask = edgeBetweenTexels(rb, lt);
+ protectExtremeChannels(stencil(x+1, y), rb, mrb, mask);
+ protectExtremeChannels(stencil(x, y+1), lt, mlt, mask);
+ }
+ lb += N, rb += N, lt += N, rt += N;
+ }
+ }
+}
+
+void MSDFErrorCorrection::protectAll() {
+ byte *end = stencil.pixels+stencil.width*stencil.height;
+ for (byte *mask = stencil.pixels; mask < end; ++mask)
+ *mask |= (byte) PROTECTED;
+}
+
+/// Returns the median of the linear interpolation of texels a, b at t.
+static float interpolatedMedian(const float *a, const float *b, double t) {
+ return median(
+ mix(a[0], b[0], t),
+ mix(a[1], b[1], t),
+ mix(a[2], b[2], t)
+ );
+}
+/// Returns the median of the bilinear interpolation with the given constant, linear, and quadratic terms at t.
+static float interpolatedMedian(const float *a, const float *l, const float *q, double t) {
+ return float(median(
+ t*(t*q[0]+l[0])+a[0],
+ t*(t*q[1]+l[1])+a[1],
+ t*(t*q[2]+l[2])+a[2]
+ ));
+}
+
+/// Determines if the interpolated median xm is an artifact.
+static bool isArtifact(bool isProtected, double axSpan, double bxSpan, float am, float bm, float xm) {
+ return (
+ // For protected texels, only report an artifact if it would cause fill inversion (change between positive and negative distance).
+ (!isProtected || (am > .5f && bm > .5f && xm <= .5f) || (am < .5f && bm < .5f && xm >= .5f)) &&
+ // This is an artifact if the interpolated median is outside the range of possible values based on its distance from a, b.
+ !(xm >= am-axSpan && xm <= am+axSpan && xm >= bm-bxSpan && xm <= bm+bxSpan)
+ );
+}
+
+/// Checks if a linear interpolation artifact will occur at a point where two specific color channels are equal - such points have extreme median values.
+template <class ArtifactClassifier>
+static bool hasLinearArtifactInner(const ArtifactClassifier &artifactClassifier, float am, float bm, const float *a, const float *b, float dA, float dB) {
+ // Find interpolation ratio t (0 < t < 1) where two color channels are equal (mix(dA, dB, t) == 0).
+ double t = (double) dA/(dA-dB);
+ if (t > ARTIFACT_T_EPSILON && t < 1-ARTIFACT_T_EPSILON) {
+ // Interpolate median at t and let the classifier decide if its value indicates an artifact.
+ float xm = interpolatedMedian(a, b, t);
+ return artifactClassifier.evaluate(t, xm, artifactClassifier.rangeTest(0, 1, t, am, bm, xm));
+ }
+ return false;
+}
+
+/// Checks if a bilinear interpolation artifact will occur at a point where two specific color channels are equal - such points have extreme median values.
+template <class ArtifactClassifier>
+static bool hasDiagonalArtifactInner(const ArtifactClassifier &artifactClassifier, float am, float dm, const float *a, const float *l, const float *q, float dA, float dBC, float dD, double tEx0, double tEx1) {
+ // Find interpolation ratios t (0 < t[i] < 1) where two color channels are equal.
+ double t[2];
+ int solutions = solveQuadratic(t, dD-dBC+dA, dBC-dA-dA, dA);
+ for (int i = 0; i < solutions; ++i) {
+ // Solutions t[i] == 0 and t[i] == 1 are singularities and occur very often because two channels are usually equal at texels.
+ if (t[i] > ARTIFACT_T_EPSILON && t[i] < 1-ARTIFACT_T_EPSILON) {
+ // Interpolate median xm at t.
+ float xm = interpolatedMedian(a, l, q, t[i]);
+ // Determine if xm deviates too much from medians of a, d.
+ int rangeFlags = artifactClassifier.rangeTest(0, 1, t[i], am, dm, xm);
+ // Additionally, check xm against the interpolated medians at the local extremes tEx0, tEx1.
+ double tEnd[2];
+ float em[2];
+ // tEx0
+ if (tEx0 > 0 && tEx0 < 1) {
+ tEnd[0] = 0, tEnd[1] = 1;
+ em[0] = am, em[1] = dm;
+ tEnd[tEx0 > t[i]] = tEx0;
+ em[tEx0 > t[i]] = interpolatedMedian(a, l, q, tEx0);
+ rangeFlags |= artifactClassifier.rangeTest(tEnd[0], tEnd[1], t[i], am, dm, xm);
+ }
+ // tEx1
+ if (tEx1 > 0 && tEx1 < 1) {
+ tEnd[0] = 0, tEnd[1] = 1;
+ em[0] = am, em[1] = dm;
+ tEnd[tEx1 > t[i]] = tEx1;
+ em[tEx1 > t[i]] = interpolatedMedian(a, l, q, tEx1);
+ rangeFlags |= artifactClassifier.rangeTest(tEnd[0], tEnd[1], t[i], am, dm, xm);
+ }
+ if (artifactClassifier.evaluate(t[i], xm, rangeFlags))
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Checks if a linear interpolation artifact will occur inbetween two horizontally or vertically adjacent texels a, b.
+template <class ArtifactClassifier>
+static bool hasLinearArtifact(const ArtifactClassifier &artifactClassifier, float am, const float *a, const float *b) {
+ float bm = median(b[0], b[1], b[2]);
+ return (
+ // Out of the pair, only report artifacts for the texel further from the edge to minimize side effects.
+ fabsf(am-.5f) >= fabsf(bm-.5f) && (
+ // Check points where each pair of color channels meets.
+ hasLinearArtifactInner(artifactClassifier, am, bm, a, b, a[1]-a[0], b[1]-b[0]) ||
+ hasLinearArtifactInner(artifactClassifier, am, bm, a, b, a[2]-a[1], b[2]-b[1]) ||
+ hasLinearArtifactInner(artifactClassifier, am, bm, a, b, a[0]-a[2], b[0]-b[2])
+ )
+ );
+}
+
+/// Checks if a bilinear interpolation artifact will occur inbetween two diagonally adjacent texels a, d (with b, c forming the other diagonal).
+template <class ArtifactClassifier>
+static bool hasDiagonalArtifact(const ArtifactClassifier &artifactClassifier, float am, const float *a, const float *b, const float *c, const float *d) {
+ float dm = median(d[0], d[1], d[2]);
+ // Out of the pair, only report artifacts for the texel further from the edge to minimize side effects.
+ if (fabsf(am-.5f) >= fabsf(dm-.5f)) {
+ float abc[3] = {
+ a[0]-b[0]-c[0],
+ a[1]-b[1]-c[1],
+ a[2]-b[2]-c[2]
+ };
+ // Compute the linear terms for bilinear interpolation.
+ float l[3] = {
+ -a[0]-abc[0],
+ -a[1]-abc[1],
+ -a[2]-abc[2]
+ };
+ // Compute the quadratic terms for bilinear interpolation.
+ float q[3] = {
+ d[0]+abc[0],
+ d[1]+abc[1],
+ d[2]+abc[2]
+ };
+ // Compute interpolation ratios tEx (0 < tEx[i] < 1) for the local extremes of each color channel (the derivative 2*q[i]*tEx[i]+l[i] == 0).
+ double tEx[3] = {
+ -.5*l[0]/q[0],
+ -.5*l[1]/q[1],
+ -.5*l[2]/q[2]
+ };
+ // Check points where each pair of color channels meets.
+ return (
+ hasDiagonalArtifactInner(artifactClassifier, am, dm, a, l, q, a[1]-a[0], b[1]-b[0]+c[1]-c[0], d[1]-d[0], tEx[0], tEx[1]) ||
+ hasDiagonalArtifactInner(artifactClassifier, am, dm, a, l, q, a[2]-a[1], b[2]-b[1]+c[2]-c[1], d[2]-d[1], tEx[1], tEx[2]) ||
+ hasDiagonalArtifactInner(artifactClassifier, am, dm, a, l, q, a[0]-a[2], b[0]-b[2]+c[0]-c[2], d[0]-d[2], tEx[2], tEx[0])
+ );
+ }
+ return false;
+}
+
+template <int N>
+void MSDFErrorCorrection::findErrors(const BitmapConstRef<float, N> &sdf) {
+ // Compute the expected deltas between values of horizontally, vertically, and diagonally adjacent texels.
+ double hSpan = minDeviationRatio*projection.unprojectVector(Vector2(invRange, 0)).length();
+ double vSpan = minDeviationRatio*projection.unprojectVector(Vector2(0, invRange)).length();
+ double dSpan = minDeviationRatio*projection.unprojectVector(Vector2(invRange)).length();
+ // Inspect all texels.
+ for (int y = 0; y < sdf.height; ++y) {
+ for (int x = 0; x < sdf.width; ++x) {
+ const float *c = sdf(x, y);
+ float cm = median(c[0], c[1], c[2]);
+ bool protectedFlag = (*stencil(x, y)&PROTECTED) != 0;
+ const float *l = NULL, *b = NULL, *r = NULL, *t = NULL;
+ // Mark current texel c with the error flag if an artifact occurs when it's interpolated with any of its 8 neighbors.
+ *stencil(x, y) |= (byte) (ERROR*(
+ (x > 0 && ((l = sdf(x-1, y)), hasLinearArtifact(BaseArtifactClassifier(hSpan, protectedFlag), cm, c, l))) ||
+ (y > 0 && ((b = sdf(x, y-1)), hasLinearArtifact(BaseArtifactClassifier(vSpan, protectedFlag), cm, c, b))) ||
+ (x < sdf.width-1 && ((r = sdf(x+1, y)), hasLinearArtifact(BaseArtifactClassifier(hSpan, protectedFlag), cm, c, r))) ||
+ (y < sdf.height-1 && ((t = sdf(x, y+1)), hasLinearArtifact(BaseArtifactClassifier(vSpan, protectedFlag), cm, c, t))) ||
+ (x > 0 && y > 0 && hasDiagonalArtifact(BaseArtifactClassifier(dSpan, protectedFlag), cm, c, l, b, sdf(x-1, y-1))) ||
+ (x < sdf.width-1 && y > 0 && hasDiagonalArtifact(BaseArtifactClassifier(dSpan, protectedFlag), cm, c, r, b, sdf(x+1, y-1))) ||
+ (x > 0 && y < sdf.height-1 && hasDiagonalArtifact(BaseArtifactClassifier(dSpan, protectedFlag), cm, c, l, t, sdf(x-1, y+1))) ||
+ (x < sdf.width-1 && y < sdf.height-1 && hasDiagonalArtifact(BaseArtifactClassifier(dSpan, protectedFlag), cm, c, r, t, sdf(x+1, y+1)))
+ ));
+ }
+ }
+}
+
+template <template <typename> class ContourCombiner, int N>
+void MSDFErrorCorrection::findErrors(const BitmapConstRef<float, N> &sdf, const Shape &shape) {
+ // Compute the expected deltas between values of horizontally, vertically, and diagonally adjacent texels.
+ double hSpan = minDeviationRatio*projection.unprojectVector(Vector2(invRange, 0)).length();
+ double vSpan = minDeviationRatio*projection.unprojectVector(Vector2(0, invRange)).length();
+ double dSpan = minDeviationRatio*projection.unprojectVector(Vector2(invRange)).length();
+#ifdef MSDFGEN_USE_OPENMP
+ #pragma omp parallel
+#endif
+ {
+ ShapeDistanceChecker<ContourCombiner, N> shapeDistanceChecker(sdf, shape, projection, invRange, minImproveRatio);
+ bool rightToLeft = false;
+ // Inspect all texels.
+#ifdef MSDFGEN_USE_OPENMP
+ #pragma omp for
+#endif
+ for (int y = 0; y < sdf.height; ++y) {
+ int row = shape.inverseYAxis ? sdf.height-y-1 : y;
+ for (int col = 0; col < sdf.width; ++col) {
+ int x = rightToLeft ? sdf.width-col-1 : col;
+ if ((*stencil(x, row)&ERROR))
+ continue;
+ const float *c = sdf(x, row);
+ shapeDistanceChecker.shapeCoord = projection.unproject(Point2(x+.5, y+.5));
+ shapeDistanceChecker.sdfCoord = Point2(x+.5, row+.5);
+ shapeDistanceChecker.msd = c;
+ shapeDistanceChecker.protectedFlag = (*stencil(x, row)&PROTECTED) != 0;
+ float cm = median(c[0], c[1], c[2]);
+ const float *l = NULL, *b = NULL, *r = NULL, *t = NULL;
+ // Mark current texel c with the error flag if an artifact occurs when it's interpolated with any of its 8 neighbors.
+ *stencil(x, row) |= (byte) (ERROR*(
+ (x > 0 && ((l = sdf(x-1, row)), hasLinearArtifact(shapeDistanceChecker.classifier(Vector2(-1, 0), hSpan), cm, c, l))) ||
+ (row > 0 && ((b = sdf(x, row-1)), hasLinearArtifact(shapeDistanceChecker.classifier(Vector2(0, -1), vSpan), cm, c, b))) ||
+ (x < sdf.width-1 && ((r = sdf(x+1, row)), hasLinearArtifact(shapeDistanceChecker.classifier(Vector2(+1, 0), hSpan), cm, c, r))) ||
+ (row < sdf.height-1 && ((t = sdf(x, row+1)), hasLinearArtifact(shapeDistanceChecker.classifier(Vector2(0, +1), vSpan), cm, c, t))) ||
+ (x > 0 && row > 0 && hasDiagonalArtifact(shapeDistanceChecker.classifier(Vector2(-1, -1), dSpan), cm, c, l, b, sdf(x-1, row-1))) ||
+ (x < sdf.width-1 && row > 0 && hasDiagonalArtifact(shapeDistanceChecker.classifier(Vector2(+1, -1), dSpan), cm, c, r, b, sdf(x+1, row-1))) ||
+ (x > 0 && row < sdf.height-1 && hasDiagonalArtifact(shapeDistanceChecker.classifier(Vector2(-1, +1), dSpan), cm, c, l, t, sdf(x-1, row+1))) ||
+ (x < sdf.width-1 && row < sdf.height-1 && hasDiagonalArtifact(shapeDistanceChecker.classifier(Vector2(+1, +1), dSpan), cm, c, r, t, sdf(x+1, row+1)))
+ ));
+ }
+ }
+ }
+}
+
+template <int N>
+void MSDFErrorCorrection::apply(const BitmapRef<float, N> &sdf) const {
+ int texelCount = sdf.width*sdf.height;
+ const byte *mask = stencil.pixels;
+ float *texel = sdf.pixels;
+ for (int i = 0; i < texelCount; ++i) {
+ if (*mask&ERROR) {
+ // Set all color channels to the median.
+ float m = median(texel[0], texel[1], texel[2]);
+ texel[0] = m, texel[1] = m, texel[2] = m;
+ }
+ ++mask;
+ texel += N;
+ }
+}
+
+BitmapConstRef<byte, 1> MSDFErrorCorrection::getStencil() const {
+ return stencil;
+}
+
+template void MSDFErrorCorrection::protectEdges(const BitmapConstRef<float, 3> &sdf);
+template void MSDFErrorCorrection::protectEdges(const BitmapConstRef<float, 4> &sdf);
+template void MSDFErrorCorrection::findErrors(const BitmapConstRef<float, 3> &sdf);
+template void MSDFErrorCorrection::findErrors(const BitmapConstRef<float, 4> &sdf);
+template void MSDFErrorCorrection::findErrors<SimpleContourCombiner>(const BitmapConstRef<float, 3> &sdf, const Shape &shape);
+template void MSDFErrorCorrection::findErrors<SimpleContourCombiner>(const BitmapConstRef<float, 4> &sdf, const Shape &shape);
+template void MSDFErrorCorrection::findErrors<OverlappingContourCombiner>(const BitmapConstRef<float, 3> &sdf, const Shape &shape);
+template void MSDFErrorCorrection::findErrors<OverlappingContourCombiner>(const BitmapConstRef<float, 4> &sdf, const Shape &shape);
+template void MSDFErrorCorrection::apply(const BitmapRef<float, 3> &sdf) const;
+template void MSDFErrorCorrection::apply(const BitmapRef<float, 4> &sdf) const;
+
+}