summaryrefslogtreecommitdiffstats
path: root/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/common/convolution.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/common/convolution.cpp200
1 files changed, 0 insertions, 200 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp b/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp
deleted file mode 100644
index 0c5c02bcd1..0000000000
--- a/thirdparty/oidn/mkl-dnn/src/common/convolution.cpp
+++ /dev/null
@@ -1,200 +0,0 @@
-/*******************************************************************************
-* Copyright 2016-2018 Intel Corporation
-*
-* Licensed under the Apache License, Version 2.0 (the "License");
-* you may not use this file except in compliance with the License.
-* You may obtain a copy of the License at
-*
-* http://www.apache.org/licenses/LICENSE-2.0
-*
-* Unless required by applicable law or agreed to in writing, software
-* distributed under the License is distributed on an "AS IS" BASIS,
-* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-* See the License for the specific language governing permissions and
-* limitations under the License.
-*******************************************************************************/
-
-#include <assert.h>
-#include "mkldnn.h"
-
-#include "c_types_map.hpp"
-#include "type_helpers.hpp"
-#include "utils.hpp"
-
-using namespace mkldnn::impl;
-using namespace mkldnn::impl::utils;
-using namespace mkldnn::impl::status;
-using namespace mkldnn::impl::prop_kind;
-using namespace mkldnn::impl::alg_kind;
-using namespace mkldnn::impl::types;
-
-namespace mkldnn {
-namespace impl {
-status_t conv_desc_init(convolution_desc_t *conv_desc,
- prop_kind_t prop_kind, alg_kind_t alg_kind,
- const memory_desc_t *src_desc, const memory_desc_t *weights_desc,
- const memory_desc_t *bias_desc, const memory_desc_t *dst_desc,
- const dims_t strides, const dims_t dilates,
- const dims_t padding_l, const dims_t padding_r,
- padding_kind_t padding_kind) {
- bool args_ok = true
- && !any_null(conv_desc, src_desc, weights_desc, dst_desc, strides,
- padding_l)
- && one_of(alg_kind, convolution_auto, convolution_direct, convolution_winograd)
- && one_of(padding_kind, padding_kind::padding_zero);
- if (!args_ok) return invalid_arguments;
-
- if (padding_r == nullptr) padding_r = padding_l;
-
- auto cd = convolution_desc_t();
- cd.primitive_kind = primitive_kind::convolution;
- cd.prop_kind = prop_kind;
- cd.alg_kind = alg_kind;
-
- cd.diff_src_desc = cd.src_desc = zero_md();
- cd.diff_dst_desc = cd.dst_desc = zero_md();
- cd.diff_weights_desc = cd.weights_desc = zero_md();
- cd.diff_bias_desc = cd.bias_desc = zero_md();
-
- const bool is_fwd = one_of(prop_kind, forward_training, forward_inference);
- const bool with_bias =
- bias_desc && bias_desc->format_kind != format_kind::undef;
- const bool with_groups = weights_desc->ndims == src_desc->ndims + 1;
-
- (prop_kind == backward_data ? cd.diff_src_desc : cd.src_desc) = *src_desc;
- (is_fwd ? cd.dst_desc : cd.diff_dst_desc) = *dst_desc;
- (prop_kind == backward_weights ? cd.diff_weights_desc : cd.weights_desc) =
- *weights_desc;
- if (with_bias)
- (prop_kind == backward_weights ? cd.diff_bias_desc : cd.bias_desc) =
- *bias_desc;
-
- int sp_dims = src_desc->ndims - 2;
- utils::array_copy(cd.strides, strides, sp_dims);
- utils::array_copy(cd.padding[0], padding_l, sp_dims);
- utils::array_copy(cd.padding[1], padding_r, sp_dims);
- if (dilates)
- utils::array_copy(cd.dilates, dilates, sp_dims);
- else
- utils::array_set(cd.dilates, 0, sp_dims);
-
- cd.padding_kind = padding_kind;
- cd.accum_data_type = types::default_accum_data_type(src_desc->data_type,
- weights_desc->data_type, dst_desc->data_type, prop_kind);
-
- const int g = with_groups ? weights_desc->dims[0] : 1;
- const int bias_dim = prop_kind == backward_data
- ? src_desc->dims[1]
- : dst_desc->dims[1];
-
- bool consistency = true
- && memory_desc_wrapper(weights_desc).nelems()
- && src_desc->ndims == dst_desc->ndims
- && utils::one_of(src_desc->ndims, 3, 4, 5)
- && utils::one_of(weights_desc->ndims, src_desc->ndims,
- src_desc->ndims + 1)
- && (with_bias ? bias_desc->ndims == 1 : true)
- && (with_bias ? bias_desc->dims[0] == bias_dim : true)
- && src_desc->dims[0] == dst_desc->dims[0]
- && src_desc->dims[1] == g * weights_desc->dims[with_groups + 1]
- && dst_desc->dims[1] == g * weights_desc->dims[with_groups + 0];
- for (int i = 2; i < src_desc->ndims; ++i)
- {
- int src = src_desc->dims[i];
- int ker = weights_desc->dims[with_groups + i];
- int dil = cd.dilates[i - 2];
- int pad_l = padding_l[i - 2];
- int pad_r = padding_r[i - 2];
- int str = strides[i - 2];
- int dst = dst_desc->dims[i];
- int ker_range = 1 + (ker - 1) * (dil + 1);
-
- if (str < 1) return invalid_arguments;
- consistency = consistency
- && dil >= 0
- && pad_l >= 0
- && pad_r + str > 0
- && (src - ker_range + pad_l + pad_r) / str + 1 == dst;
- }
- if (!consistency) return invalid_arguments;
-
- *conv_desc = cd;
- return success;
-}
-}
-}
-
-status_t mkldnn_convolution_forward_desc_init(convolution_desc_t *conv_desc,
- prop_kind_t prop_kind, alg_kind_t alg_kind,
- const memory_desc_t *src_desc, const memory_desc_t *weights_desc,
- const memory_desc_t *bias_desc, const memory_desc_t *dst_desc,
- const dims_t strides, const dims_t padding_l, const dims_t padding_r,
- padding_kind_t padding_kind) {
- if (!one_of(prop_kind, forward_training, forward_inference))
- return invalid_arguments;
- return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc,
- weights_desc, bias_desc, dst_desc, strides, nullptr,
- padding_l, padding_r, padding_kind);
-}
-
-status_t mkldnn_dilated_convolution_forward_desc_init(
- convolution_desc_t *conv_desc, prop_kind_t prop_kind,
- alg_kind_t alg_kind, const memory_desc_t *src_desc,
- const memory_desc_t *weights_desc, const memory_desc_t *bias_desc,
- const memory_desc_t *dst_desc, const dims_t strides,
- const dims_t dilates, const dims_t padding_l,
- const dims_t padding_r, padding_kind_t padding_kind) {
- if (!one_of(prop_kind, forward_training, forward_inference))
- return invalid_arguments;
- return mkldnn::impl::conv_desc_init(conv_desc, prop_kind, alg_kind, src_desc,
- weights_desc, bias_desc, dst_desc, strides, dilates,
- padding_l, padding_r, padding_kind);
-}
-
-status_t mkldnn_convolution_backward_data_desc_init(
- convolution_desc_t *conv_desc, alg_kind_t alg_kind,
- const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc,
- const memory_desc_t *diff_dst_desc, const dims_t strides,
- const dims_t padding_l, const dims_t padding_r,
- padding_kind_t padding_kind) {
- return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc,
- weights_desc, nullptr, diff_dst_desc, strides, nullptr,
- padding_l, padding_r, padding_kind);
-}
-
-status_t mkldnn_dilated_convolution_backward_data_desc_init(
- convolution_desc_t *conv_desc, alg_kind_t alg_kind,
- const memory_desc_t *diff_src_desc, const memory_desc_t *weights_desc,
- const memory_desc_t *diff_dst_desc, const dims_t strides,
- const dims_t dilates, const dims_t padding_l, const dims_t padding_r,
- padding_kind_t padding_kind) {
- return mkldnn::impl::conv_desc_init(conv_desc, backward_data, alg_kind, diff_src_desc,
- weights_desc, nullptr, diff_dst_desc, strides, dilates,
- padding_l, padding_r, padding_kind);
-}
-
-status_t mkldnn_convolution_backward_weights_desc_init(
- convolution_desc_t *conv_desc, alg_kind_t alg_kind,
- const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc,
- const memory_desc_t *diff_bias_desc,
- const memory_desc_t *diff_dst_desc, const dims_t strides,
- const dims_t padding_l, const dims_t padding_r,
- padding_kind_t padding_kind) {
- return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc,
- diff_weights_desc, diff_bias_desc, diff_dst_desc, strides,
- nullptr, padding_l, padding_r, padding_kind);
-}
-
-status_t mkldnn_dilated_convolution_backward_weights_desc_init(
- convolution_desc_t *conv_desc, alg_kind_t alg_kind,
- const memory_desc_t *src_desc, const memory_desc_t *diff_weights_desc,
- const memory_desc_t *diff_bias_desc,
- const memory_desc_t *diff_dst_desc, const dims_t strides,
- const dims_t dilates, const dims_t padding_l, const dims_t padding_r,
- padding_kind_t padding_kind) {
- return mkldnn::impl::conv_desc_init(conv_desc, backward_weights, alg_kind, src_desc,
- diff_weights_desc, diff_bias_desc, diff_dst_desc, strides,
- dilates, padding_l, padding_r, padding_kind);
-}
-
-// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s