summaryrefslogtreecommitdiffstats
path: root/thirdparty/oidn/mkl-dnn/src/cpu/ref_batch_normalization.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/ref_batch_normalization.cpp')
-rw-r--r--thirdparty/oidn/mkl-dnn/src/cpu/ref_batch_normalization.cpp265
1 files changed, 0 insertions, 265 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/ref_batch_normalization.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/ref_batch_normalization.cpp
deleted file mode 100644
index d79b1a034b..0000000000
--- a/thirdparty/oidn/mkl-dnn/src/cpu/ref_batch_normalization.cpp
+++ /dev/null
@@ -1,265 +0,0 @@
-/*******************************************************************************
-* Copyright 2016-2018 Intel Corporation
-*
-* Licensed under the Apache License, Version 2.0 (the "License");
-* you may not use this file except in compliance with the License.
-* You may obtain a copy of the License at
-*
-* http://www.apache.org/licenses/LICENSE-2.0
-*
-* Unless required by applicable law or agreed to in writing, software
-* distributed under the License is distributed on an "AS IS" BASIS,
-* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-* See the License for the specific language governing permissions and
-* limitations under the License.
-*******************************************************************************/
-
-#include <assert.h>
-#include <math.h>
-
-#include "c_types_map.hpp"
-#include "type_helpers.hpp"
-#include "mkldnn_thread.hpp"
-#include "simple_q10n.hpp"
-
-#include "ref_batch_normalization.hpp"
-
-namespace mkldnn {
-namespace impl {
-namespace cpu {
-
-template <impl::data_type_t data_type>
-void ref_batch_normalization_fwd_t<data_type>::execute_forward(
- const exec_ctx_t &ctx) const {
- /* fast return */
- if (this->pd()->has_zero_dim_memory()) return;
-
- auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
- auto scaleshift = CTX_IN_MEM(const float *, MKLDNN_ARG_SCALE_SHIFT);
-
- auto mean = pd()->stats_is_src()
- ? const_cast<float *>(CTX_IN_MEM(const float *, MKLDNN_ARG_MEAN))
- : CTX_OUT_MEM(float *, MKLDNN_ARG_MEAN);
- auto variance = pd()->stats_is_src()
- ? const_cast<float *>(CTX_IN_MEM(const float *, MKLDNN_ARG_VARIANCE))
- : CTX_OUT_MEM(float *, MKLDNN_ARG_VARIANCE);
-
- auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
- auto ws = CTX_OUT_MEM(uint8_t *, MKLDNN_ARG_WORKSPACE);
-
- const memory_desc_wrapper data_d(pd()->src_md());
- const memory_desc_wrapper scaleshift_d(pd()->weights_md());
-
- const dim_t N = pd()->MB();
- const dim_t C = pd()->C();
- dim_t H = 1, W = 1, D = 1;
- const bool has_spatial = utils::one_of(data_d.ndims(), 4, 5);
- if (has_spatial) {
- D = pd()->D();
- H = pd()->H();
- W = pd()->W();
- }
-
- const float eps = pd()->desc()->batch_norm_epsilon;
- const bool use_scaleshift = pd()->use_scaleshift();;
- const bool save_stats = pd()->is_training();
- const bool is_training = pd()->is_training();
- const bool fuse_bn_relu = pd()->fuse_bn_relu();
- const bool calculate_stats = !pd()->stats_is_src();
-
- const bool with_relu = pd()->with_relu_post_op();
- auto maybe_post_op = [&](float res) {
- return (with_relu && res < 0.0f) ? 0.0f : res;
- };
- const bool is_3d = data_d.ndims() == 5;
-
- auto data_offset = [&](const memory_desc_wrapper &data_d, dim_t n, dim_t c,
- dim_t d, dim_t h, dim_t w) {
- if (has_spatial) {
- if (is_3d)
- return data_d.off(n, c, d, h, w);
- else
- return data_d.off(n, c, h, w);
- } else
- return data_d.off(n, c);
- };
-
- parallel_nd(C, [&](dim_t c) {
- float v_mean = calculate_stats ? 0 : mean[c];
- float v_variance = calculate_stats ? 0 : variance[c];
-
- if (calculate_stats) {
- for (dim_t n = 0; n < N; ++n)
- for (dim_t d = 0; d < D; ++d)
- for (dim_t h = 0; h < H; ++h)
- for (dim_t w = 0; w < W; ++w)
- v_mean += src[data_offset(data_d, n, c, d, h, w)];
- v_mean /= W*N*H*D;
-
- for (dim_t n = 0; n < N; ++n)
- for (dim_t d = 0; d < D; ++d)
- for (dim_t h = 0; h < H; ++h)
- for (dim_t w = 0; w < W; ++w) {
- float m = src[data_offset(data_d, n, c, d, h, w)] - v_mean;
- v_variance += m*m;
- }
- v_variance /= W*H*N*D;
- }
-
- float sqrt_variance = sqrtf(v_variance + eps);
- float sm = (use_scaleshift
- ? scaleshift[scaleshift_d.off(0, c)]
- : 1.0f) / sqrt_variance;
- float sv = use_scaleshift ? scaleshift[scaleshift_d.off(1, c)] : 0;
-
- for (dim_t n = 0; n < N; ++n)
- for (dim_t d = 0; d < D; ++d)
- for (dim_t h = 0; h < H; ++h)
- for (dim_t w = 0; w < W; ++w) {
- auto d_off = data_offset(data_d,n,c,d,h,w);
- float bn_res = sm * ((float)src[d_off] - v_mean) + sv;
- if (fuse_bn_relu) {
- if (bn_res <= 0) {
- bn_res = 0;
- if (is_training)
- ws[d_off] = 0;
- } else {
- if (is_training)
- ws[d_off] = 1;
- }
- }
- if (data_type == data_type::s8) {
- dst[d_off] = qz_a1b0<float, data_t>()(maybe_post_op(bn_res));
- } else {
- dst[d_off] = static_cast<data_t>(maybe_post_op(bn_res));
- }
- }
-
- if (calculate_stats) {
- if (save_stats) {
- mean[c] = v_mean;
- variance[c] = v_variance;
- }
- }
- });
-}
-
-template struct ref_batch_normalization_fwd_t<data_type::f32>;
-template struct ref_batch_normalization_fwd_t<data_type::s8>;
-
-template <impl::data_type_t data_type>
-void ref_batch_normalization_bwd_t<data_type>::execute_backward(
- const exec_ctx_t &ctx) const {
- auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
- auto mean = CTX_IN_MEM(const data_t *, MKLDNN_ARG_MEAN);
- auto variance = CTX_IN_MEM(const data_t *, MKLDNN_ARG_VARIANCE);
- auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
- auto scaleshift = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SCALE_SHIFT);
- auto ws = CTX_IN_MEM(const uint8_t *, MKLDNN_ARG_WORKSPACE);
-
- auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
- auto diff_scaleshift = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SCALE_SHIFT);
-
- const memory_desc_wrapper data_d(pd()->src_md());
- const memory_desc_wrapper diff_data_d(pd()->diff_src_md());
- const memory_desc_wrapper scaleshift_d(pd()->weights_md());
- const memory_desc_wrapper diff_scaleshift_d(pd()->diff_weights_md());
-
- const dim_t C = pd()->C();
-
- /* fast return */
- if (this->pd()->has_zero_dim_memory()) {
- if (diff_scaleshift) {
- for (dim_t c = 0; c < C; ++c) {
- diff_scaleshift[diff_scaleshift_d.off(0, c)] = 0;
- diff_scaleshift[diff_scaleshift_d.off(1, c)] = 0;
- }
- }
- return;
- }
-
- const dim_t N = pd()->MB();
- dim_t H = 1, W = 1, D = 1;
- const bool has_spatial = utils::one_of(data_d.ndims(), 4, 5);
- if (has_spatial) {
- D = pd()->D();
- H = pd()->H();
- W = pd()->W();
- }
-
- const float eps = pd()->desc()->batch_norm_epsilon;
- const bool use_scaleshift = pd()->use_scaleshift();
- const bool calculate_diff_stats = !pd()->use_global_stats();
- const bool fuse_bn_relu = pd()->fuse_bn_relu();
-
- const bool is_3d = data_d.ndims() == 5;
-
- auto data_offset = [&](const memory_desc_wrapper &data_d, dim_t n, dim_t c,
- dim_t d, dim_t h, dim_t w) {
- if (has_spatial) {
- if (is_3d)
- return data_d.off(n, c, d, h, w);
- else
- return data_d.off(n, c, h, w);
- } else
- return data_d.off(n, c);
- };
-
- parallel_nd(C, [&](dim_t c) {
- data_t v_mean = mean[c];
- data_t v_variance = variance[c];
- data_t sqrt_variance = static_cast<data_t>(1.0f / sqrtf(v_variance + eps));
- data_t gamma = use_scaleshift ? scaleshift[scaleshift_d.off(0, c)] : 1;
- data_t diff_gamma = data_t(0);
- data_t diff_beta = data_t(0);
- diff_gamma = 0.0;
- diff_beta = 0.0;
-
- for (dim_t n = 0; n < N; ++n)
- for (dim_t d = 0; d < D; ++d)
- for (dim_t h = 0; h < H; ++h)
- for (dim_t w = 0; w < W; ++w) {
- const size_t s_off = data_offset(data_d, n, c, d, h, w);
- data_t dd = diff_dst[data_offset(diff_data_d, n, c, d, h, w)];
- if (fuse_bn_relu && !ws[s_off])
- dd = 0;
-
- diff_gamma += (src[s_off] - v_mean) * dd;
- diff_beta += dd;
- }
- diff_gamma *= sqrt_variance;
-
- if (diff_scaleshift) {
- diff_scaleshift[diff_scaleshift_d.off(0, c)] = diff_gamma;
- diff_scaleshift[diff_scaleshift_d.off(1, c)] = diff_beta;
- }
-
- for (dim_t n = 0; n < N; ++n)
- for (dim_t d = 0; d < D; ++d)
- for (dim_t h = 0; h < H; ++h)
- for (dim_t w = 0; w < W; ++w) {
- const size_t s_off = data_offset(data_d, n, c, d, h, w);
- const size_t dd_off = data_offset(diff_data_d, n, c, d, h, w);
- data_t dd = diff_dst[dd_off];
- if (fuse_bn_relu && !ws[s_off])
- dd = 0;
-
- data_t v_diff_src = dd;
- if (calculate_diff_stats) {
- v_diff_src -= diff_beta/(D*W*H*N) +
- (src[s_off] - v_mean) *
- diff_gamma*sqrt_variance/(D*W*H*N);
- }
- v_diff_src *= gamma*sqrt_variance;
- diff_src[dd_off] = v_diff_src;
- }
- });
-}
-
-template struct ref_batch_normalization_bwd_t<data_type::f32>;
-
-}
-}
-}
-
-// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s