summaryrefslogtreecommitdiffstats
path: root/thirdparty/rvo2/rvo2_2d/KdTree2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/rvo2/rvo2_2d/KdTree2d.cpp')
-rw-r--r--thirdparty/rvo2/rvo2_2d/KdTree2d.cpp357
1 files changed, 357 insertions, 0 deletions
diff --git a/thirdparty/rvo2/rvo2_2d/KdTree2d.cpp b/thirdparty/rvo2/rvo2_2d/KdTree2d.cpp
new file mode 100644
index 0000000000..184bc74fe2
--- /dev/null
+++ b/thirdparty/rvo2/rvo2_2d/KdTree2d.cpp
@@ -0,0 +1,357 @@
+/*
+ * KdTree2d.cpp
+ * RVO2 Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+#include "KdTree2d.h"
+
+#include "Agent2d.h"
+#include "RVOSimulator2d.h"
+#include "Obstacle2d.h"
+
+namespace RVO2D {
+ KdTree2D::KdTree2D(RVOSimulator2D *sim) : obstacleTree_(NULL), sim_(sim) { }
+
+ KdTree2D::~KdTree2D()
+ {
+ deleteObstacleTree(obstacleTree_);
+ }
+
+ void KdTree2D::buildAgentTree(std::vector<Agent2D *> agents)
+ {
+ agents_.swap(agents);
+
+ if (!agents_.empty()) {
+ agentTree_.resize(2 * agents_.size() - 1);
+ buildAgentTreeRecursive(0, agents_.size(), 0);
+ }
+ }
+
+ void KdTree2D::buildAgentTreeRecursive(size_t begin, size_t end, size_t node)
+ {
+ agentTree_[node].begin = begin;
+ agentTree_[node].end = end;
+ agentTree_[node].minX = agentTree_[node].maxX = agents_[begin]->position_.x();
+ agentTree_[node].minY = agentTree_[node].maxY = agents_[begin]->position_.y();
+
+ for (size_t i = begin + 1; i < end; ++i) {
+ agentTree_[node].maxX = std::max(agentTree_[node].maxX, agents_[i]->position_.x());
+ agentTree_[node].minX = std::min(agentTree_[node].minX, agents_[i]->position_.x());
+ agentTree_[node].maxY = std::max(agentTree_[node].maxY, agents_[i]->position_.y());
+ agentTree_[node].minY = std::min(agentTree_[node].minY, agents_[i]->position_.y());
+ }
+
+ if (end - begin > MAX_LEAF_SIZE) {
+ /* No leaf node. */
+ const bool isVertical = (agentTree_[node].maxX - agentTree_[node].minX > agentTree_[node].maxY - agentTree_[node].minY);
+ const float splitValue = (isVertical ? 0.5f * (agentTree_[node].maxX + agentTree_[node].minX) : 0.5f * (agentTree_[node].maxY + agentTree_[node].minY));
+
+ size_t left = begin;
+ size_t right = end;
+
+ while (left < right) {
+ while (left < right && (isVertical ? agents_[left]->position_.x() : agents_[left]->position_.y()) < splitValue) {
+ ++left;
+ }
+
+ while (right > left && (isVertical ? agents_[right - 1]->position_.x() : agents_[right - 1]->position_.y()) >= splitValue) {
+ --right;
+ }
+
+ if (left < right) {
+ std::swap(agents_[left], agents_[right - 1]);
+ ++left;
+ --right;
+ }
+ }
+
+ if (left == begin) {
+ ++left;
+ ++right;
+ }
+
+ agentTree_[node].left = node + 1;
+ agentTree_[node].right = node + 2 * (left - begin);
+
+ buildAgentTreeRecursive(begin, left, agentTree_[node].left);
+ buildAgentTreeRecursive(left, end, agentTree_[node].right);
+ }
+ }
+
+ void KdTree2D::buildObstacleTree(std::vector<Obstacle2D *> obstacles)
+ {
+ deleteObstacleTree(obstacleTree_);
+
+ obstacleTree_ = buildObstacleTreeRecursive(obstacles);
+ }
+
+
+ KdTree2D::ObstacleTreeNode *KdTree2D::buildObstacleTreeRecursive(const std::vector<Obstacle2D *> &obstacles)
+ {
+ if (obstacles.empty()) {
+ return NULL;
+ }
+ else {
+ ObstacleTreeNode *const node = new ObstacleTreeNode;
+
+ size_t optimalSplit = 0;
+ size_t minLeft = obstacles.size();
+ size_t minRight = obstacles.size();
+
+ for (size_t i = 0; i < obstacles.size(); ++i) {
+ size_t leftSize = 0;
+ size_t rightSize = 0;
+
+ const Obstacle2D *const obstacleI1 = obstacles[i];
+ const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_;
+
+ /* Compute optimal split node. */
+ for (size_t j = 0; j < obstacles.size(); ++j) {
+ if (i == j) {
+ continue;
+ }
+
+ const Obstacle2D *const obstacleJ1 = obstacles[j];
+ const Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_;
+
+ const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
+ const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
+
+ if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) {
+ ++leftSize;
+ }
+ else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) {
+ ++rightSize;
+ }
+ else {
+ ++leftSize;
+ ++rightSize;
+ }
+
+ if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) >= std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) {
+ break;
+ }
+ }
+
+ if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) < std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) {
+ minLeft = leftSize;
+ minRight = rightSize;
+ optimalSplit = i;
+ }
+ }
+
+ /* Build split node. */
+ std::vector<Obstacle2D *> leftObstacles(minLeft);
+ std::vector<Obstacle2D *> rightObstacles(minRight);
+
+ size_t leftCounter = 0;
+ size_t rightCounter = 0;
+ const size_t i = optimalSplit;
+
+ const Obstacle2D *const obstacleI1 = obstacles[i];
+ const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_;
+
+ for (size_t j = 0; j < obstacles.size(); ++j) {
+ if (i == j) {
+ continue;
+ }
+
+ Obstacle2D *const obstacleJ1 = obstacles[j];
+ Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_;
+
+ const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
+ const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
+
+ if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) {
+ leftObstacles[leftCounter++] = obstacles[j];
+ }
+ else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) {
+ rightObstacles[rightCounter++] = obstacles[j];
+ }
+ else {
+ /* Split obstacle j. */
+ const float t = det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleI1->point_) / det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleJ2->point_);
+
+ const Vector2 splitpoint = obstacleJ1->point_ + t * (obstacleJ2->point_ - obstacleJ1->point_);
+
+ Obstacle2D *const newObstacle = new Obstacle2D();
+ newObstacle->point_ = splitpoint;
+ newObstacle->prevObstacle_ = obstacleJ1;
+ newObstacle->nextObstacle_ = obstacleJ2;
+ newObstacle->isConvex_ = true;
+ newObstacle->unitDir_ = obstacleJ1->unitDir_;
+
+ newObstacle->id_ = sim_->obstacles_.size();
+
+ sim_->obstacles_.push_back(newObstacle);
+
+ obstacleJ1->nextObstacle_ = newObstacle;
+ obstacleJ2->prevObstacle_ = newObstacle;
+
+ if (j1LeftOfI > 0.0f) {
+ leftObstacles[leftCounter++] = obstacleJ1;
+ rightObstacles[rightCounter++] = newObstacle;
+ }
+ else {
+ rightObstacles[rightCounter++] = obstacleJ1;
+ leftObstacles[leftCounter++] = newObstacle;
+ }
+ }
+ }
+
+ node->obstacle = obstacleI1;
+ node->left = buildObstacleTreeRecursive(leftObstacles);
+ node->right = buildObstacleTreeRecursive(rightObstacles);
+ return node;
+ }
+ }
+
+ void KdTree2D::computeAgentNeighbors(Agent2D *agent, float &rangeSq) const
+ {
+ queryAgentTreeRecursive(agent, rangeSq, 0);
+ }
+
+ void KdTree2D::computeObstacleNeighbors(Agent2D *agent, float rangeSq) const
+ {
+ queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_);
+ }
+
+ void KdTree2D::deleteObstacleTree(ObstacleTreeNode *node)
+ {
+ if (node != NULL) {
+ deleteObstacleTree(node->left);
+ deleteObstacleTree(node->right);
+ delete node;
+ }
+ }
+
+ void KdTree2D::queryAgentTreeRecursive(Agent2D *agent, float &rangeSq, size_t node) const
+ {
+ if (agentTree_[node].end - agentTree_[node].begin <= MAX_LEAF_SIZE) {
+ for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
+ agent->insertAgentNeighbor(agents_[i], rangeSq);
+ }
+ }
+ else {
+ const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxY));
+
+ const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxY));
+
+ if (distSqLeft < distSqRight) {
+ if (distSqLeft < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
+
+ if (distSqRight < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
+ }
+ }
+ }
+ else {
+ if (distSqRight < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
+
+ if (distSqLeft < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
+ }
+ }
+ }
+
+ }
+ }
+
+ void KdTree2D::queryObstacleTreeRecursive(Agent2D *agent, float rangeSq, const ObstacleTreeNode *node) const
+ {
+ if (node == NULL) {
+ return;
+ }
+ else {
+ const Obstacle2D *const obstacle1 = node->obstacle;
+ const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_;
+
+ const float agentLeftOfLine = leftOf(obstacle1->point_, obstacle2->point_, agent->position_);
+
+ queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->left : node->right));
+
+ const float distSqLine = sqr(agentLeftOfLine) / absSq(obstacle2->point_ - obstacle1->point_);
+
+ if (distSqLine < rangeSq) {
+ if (agentLeftOfLine < 0.0f) {
+ /*
+ * Try obstacle at this node only if agent is on right side of
+ * obstacle (and can see obstacle).
+ */
+ agent->insertObstacleNeighbor(node->obstacle, rangeSq);
+ }
+
+ /* Try other side of line. */
+ queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->right : node->left));
+
+ }
+ }
+ }
+
+ bool KdTree2D::queryVisibility(const Vector2 &q1, const Vector2 &q2, float radius) const
+ {
+ return queryVisibilityRecursive(q1, q2, radius, obstacleTree_);
+ }
+
+ bool KdTree2D::queryVisibilityRecursive(const Vector2 &q1, const Vector2 &q2, float radius, const ObstacleTreeNode *node) const
+ {
+ if (node == NULL) {
+ return true;
+ }
+ else {
+ const Obstacle2D *const obstacle1 = node->obstacle;
+ const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_;
+
+ const float q1LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q1);
+ const float q2LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q2);
+ const float invLengthI = 1.0f / absSq(obstacle2->point_ - obstacle1->point_);
+
+ if (q1LeftOfI >= 0.0f && q2LeftOfI >= 0.0f) {
+ return queryVisibilityRecursive(q1, q2, radius, node->left) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->right));
+ }
+ else if (q1LeftOfI <= 0.0f && q2LeftOfI <= 0.0f) {
+ return queryVisibilityRecursive(q1, q2, radius, node->right) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->left));
+ }
+ else if (q1LeftOfI >= 0.0f && q2LeftOfI <= 0.0f) {
+ /* One can see through obstacle from left to right. */
+ return queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right);
+ }
+ else {
+ const float point1LeftOfQ = leftOf(q1, q2, obstacle1->point_);
+ const float point2LeftOfQ = leftOf(q1, q2, obstacle2->point_);
+ const float invLengthQ = 1.0f / absSq(q2 - q1);
+
+ return (point1LeftOfQ * point2LeftOfQ >= 0.0f && sqr(point1LeftOfQ) * invLengthQ > sqr(radius) && sqr(point2LeftOfQ) * invLengthQ > sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right));
+ }
+ }
+ }
+}