summaryrefslogtreecommitdiffstats
path: root/drivers/gles3/shaders/sky.glsl
blob: 043023aee0d766fdf848d02538cf6b58576a2d77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/* clang-format off */
#[modes]

mode_background =
mode_cubemap = #define USE_CUBEMAP_PASS

#[specializations]

USE_MULTIVIEW = false
USE_INVERTED_Y = true
APPLY_TONEMAPPING = true
USE_QUARTER_RES_PASS = false
USE_HALF_RES_PASS = false

#[vertex]

layout(location = 0) in vec2 vertex_attrib;

out vec2 uv_interp;
/* clang-format on */

void main() {
#ifdef USE_INVERTED_Y
	uv_interp = vertex_attrib;
#else
	// We're doing clockwise culling so flip the order
	uv_interp = vec2(vertex_attrib.x, vertex_attrib.y * -1.0);
#endif
	gl_Position = vec4(uv_interp, -1.0, 1.0);
}

/* clang-format off */
#[fragment]

#define M_PI 3.14159265359

#include "tonemap_inc.glsl"

in vec2 uv_interp;

/* clang-format on */

uniform samplerCube radiance; //texunit:-1
#ifdef USE_CUBEMAP_PASS
uniform samplerCube half_res; //texunit:-2
uniform samplerCube quarter_res; //texunit:-3
#elif defined(USE_MULTIVIEW)
uniform sampler2DArray half_res; //texunit:-2
uniform sampler2DArray quarter_res; //texunit:-3
#else
uniform sampler2D half_res; //texunit:-2
uniform sampler2D quarter_res; //texunit:-3
#endif

layout(std140) uniform GlobalShaderUniformData { //ubo:1
	vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};

struct DirectionalLightData {
	vec4 direction_energy;
	vec4 color_size;
	bool enabled;
};

layout(std140) uniform DirectionalLights { //ubo:4
	DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;

/* clang-format off */

#ifdef MATERIAL_UNIFORMS_USED
layout(std140) uniform MaterialUniforms{ //ubo:3

#MATERIAL_UNIFORMS

};
#endif
/* clang-format on */
#GLOBALS

#ifdef USE_CUBEMAP_PASS
#define AT_CUBEMAP_PASS true
#else
#define AT_CUBEMAP_PASS false
#endif

#ifdef USE_HALF_RES_PASS
#define AT_HALF_RES_PASS true
#else
#define AT_HALF_RES_PASS false
#endif

#ifdef USE_QUARTER_RES_PASS
#define AT_QUARTER_RES_PASS true
#else
#define AT_QUARTER_RES_PASS false
#endif

// mat4 is a waste of space, but we don't have an easy way to set a mat3 uniform for now
uniform mat4 orientation;
uniform vec4 projection;
uniform vec3 position;
uniform float time;
uniform float sky_energy_multiplier;
uniform float luminance_multiplier;

uniform float fog_aerial_perspective;
uniform vec4 fog_light_color;
uniform float fog_sun_scatter;
uniform bool fog_enabled;
uniform float fog_density;
uniform float fog_sky_affect;
uniform uint directional_light_count;

#ifdef USE_MULTIVIEW
layout(std140) uniform MultiviewData { // ubo:11
	highp mat4 projection_matrix_view[MAX_VIEWS];
	highp mat4 inv_projection_matrix_view[MAX_VIEWS];
	highp vec4 eye_offset[MAX_VIEWS];
}
multiview_data;
#endif

layout(location = 0) out vec4 frag_color;

#ifdef USE_DEBANDING
// https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
vec3 interleaved_gradient_noise(vec2 pos) {
	const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
	float res = fract(magic.z * fract(dot(pos, magic.xy))) * 2.0 - 1.0;
	return vec3(res, -res, res) / 255.0;
}
#endif

#if !defined(DISABLE_FOG)
vec4 fog_process(vec3 view, vec3 sky_color) {
	vec3 fog_color = mix(fog_light_color.rgb, sky_color, fog_aerial_perspective);

	if (fog_sun_scatter > 0.001) {
		vec4 sun_scatter = vec4(0.0);
		float sun_total = 0.0;
		for (uint i = 0u; i < directional_light_count; i++) {
			vec3 light_color = directional_lights.data[i].color_size.xyz * directional_lights.data[i].direction_energy.w;
			float light_amount = pow(max(dot(view, directional_lights.data[i].direction_energy.xyz), 0.0), 8.0);
			fog_color += light_color * light_amount * fog_sun_scatter;
		}
	}

	return vec4(fog_color, 1.0);
}
#endif // !DISABLE_FOG

void main() {
	vec3 cube_normal;
#ifdef USE_MULTIVIEW
	// In multiview our projection matrices will contain positional and rotational offsets that we need to properly unproject.
	vec4 unproject = vec4(uv_interp.xy, -1.0, 1.0); // unproject at the far plane
	vec4 unprojected = multiview_data.inv_projection_matrix_view[ViewIndex] * unproject;
	cube_normal = unprojected.xyz / unprojected.w;

	// Unproject will give us the position between the eyes, need to re-offset.
	cube_normal += multiview_data.eye_offset[ViewIndex].xyz;
#else
	cube_normal.z = -1.0;
	cube_normal.x = (uv_interp.x + projection.x) / projection.y;
	cube_normal.y = (-uv_interp.y - projection.z) / projection.w;
#endif
	cube_normal = mat3(orientation) * cube_normal;
	cube_normal = normalize(cube_normal);

	vec2 uv = gl_FragCoord.xy; // uv_interp * 0.5 + 0.5;

	vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));

	if (panorama_coords.x < 0.0) {
		panorama_coords.x += M_PI * 2.0;
	}

	panorama_coords /= vec2(M_PI * 2.0, M_PI);

	vec3 color = vec3(0.0, 0.0, 0.0);
	float alpha = 1.0; // Only available to subpasses
	vec4 half_res_color = vec4(1.0);
	vec4 quarter_res_color = vec4(1.0);
	vec4 custom_fog = vec4(0.0);

#ifdef USE_CUBEMAP_PASS
#ifdef USES_HALF_RES_COLOR
	half_res_color = texture(samplerCube(half_res, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_normal);
#endif
#ifdef USES_QUARTER_RES_COLOR
	quarter_res_color = texture(samplerCube(quarter_res, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_normal);
#endif
#else
#ifdef USES_HALF_RES_COLOR
#ifdef USE_MULTIVIEW
	half_res_color = textureLod(sampler2DArray(half_res, SAMPLER_LINEAR_CLAMP), vec3(uv, ViewIndex), 0.0);
#else
	half_res_color = textureLod(sampler2D(half_res, SAMPLER_LINEAR_CLAMP), uv, 0.0);
#endif
#endif
#ifdef USES_QUARTER_RES_COLOR
#ifdef USE_MULTIVIEW
	quarter_res_color = textureLod(sampler2DArray(quarter_res, SAMPLER_LINEAR_CLAMP), vec3(uv, ViewIndex), 0.0);
#else
	quarter_res_color = textureLod(sampler2D(quarter_res, SAMPLER_LINEAR_CLAMP), uv, 0.0);
#endif
#endif
#endif

	{
#CODE : SKY
	}

	color *= sky_energy_multiplier;

	// Convert to Linear for tonemapping so color matches scene shader better
	color = srgb_to_linear(color);

#if !defined(DISABLE_FOG) && !defined(USE_CUBEMAP_PASS)

	// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
	if (fog_enabled) {
		vec4 fog = fog_process(cube_normal, color.rgb);
		color.rgb = mix(color.rgb, fog.rgb, fog.a * fog_sky_affect);
	}

	if (custom_fog.a > 0.0) {
		color.rgb = mix(color.rgb, custom_fog.rgb, custom_fog.a);
	}

#endif // DISABLE_FOG

	color *= exposure;
#ifdef APPLY_TONEMAPPING
	color = apply_tonemapping(color, white);
#endif
	color = linear_to_srgb(color);

	frag_color.rgb = color * luminance_multiplier;
	frag_color.a = alpha;

#ifdef USE_DEBANDING
	frag_color.rgb += interleaved_gradient_noise(gl_FragCoord.xy) * sky_energy_multiplier * luminance_multiplier;
#endif
}