1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
|
#[vertex]
#version 450
#VERSION_DEFINES
/* Include our forward mobile UBOs definitions etc. */
#include "scene_forward_mobile_inc.glsl"
#define SHADER_IS_SRGB false
/* INPUT ATTRIBS */
layout(location = 0) in vec3 vertex_attrib;
//only for pure render depth when normal is not used
#ifdef NORMAL_USED
layout(location = 1) in vec3 normal_attrib;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif
#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
layout(location = 5) in vec2 uv2_attrib;
#endif // MODE_RENDER_MATERIAL
#if defined(CUSTOM0_USED)
layout(location = 6) in vec4 custom0_attrib;
#endif
#if defined(CUSTOM1_USED)
layout(location = 7) in vec4 custom1_attrib;
#endif
#if defined(CUSTOM2_USED)
layout(location = 8) in vec4 custom2_attrib;
#endif
#if defined(CUSTOM3_USED)
layout(location = 9) in vec4 custom3_attrib;
#endif
#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS)
layout(location = 10) in uvec4 bone_attrib;
#endif
#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS)
layout(location = 11) in vec4 weight_attrib;
#endif
/* Varyings */
layout(location = 0) highp out vec3 vertex_interp;
#ifdef NORMAL_USED
layout(location = 1) mediump out vec3 normal_interp;
#endif
#if defined(COLOR_USED)
layout(location = 2) mediump out vec4 color_interp;
#endif
#ifdef UV_USED
layout(location = 3) mediump out vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) mediump out vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) mediump out vec3 tangent_interp;
layout(location = 6) mediump out vec3 binormal_interp;
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) out highp float dp_clip;
#endif
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#define ViewIndex gl_ViewIndex
#else
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif
#else
// Set to zero, not supported in non stereo
#define ViewIndex 0
#endif //USE_MULTIVIEW
invariant gl_Position;
#GLOBALS
void main() {
SceneData scene_data = scene_data_block.data;
vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
bool is_multimesh = bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH);
mat4 model_matrix = draw_call.transform;
mat3 model_normal_matrix;
if (bool(draw_call.flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
model_normal_matrix = transpose(inverse(mat3(model_matrix)));
} else {
model_normal_matrix = mat3(model_matrix);
}
if (is_multimesh) {
//multimesh, instances are for it
mat4 matrix;
#ifdef USE_PARTICLE_TRAILS
uint trail_size = (draw_call.flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK;
uint stride = 3 + 1 + 1; //particles always uses this format
uint offset = trail_size * stride * gl_InstanceIndex;
#ifdef COLOR_USED
vec4 pcolor;
#endif
{
uint boffset = offset + bone_attrib.x * stride;
matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x;
#ifdef COLOR_USED
pcolor = transforms.data[boffset + 3] * weight_attrib.x;
#endif
}
if (weight_attrib.y > 0.001) {
uint boffset = offset + bone_attrib.y * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.y;
#endif
}
if (weight_attrib.z > 0.001) {
uint boffset = offset + bone_attrib.z * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.z;
#endif
}
if (weight_attrib.w > 0.001) {
uint boffset = offset + bone_attrib.w * stride;
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w;
#ifdef COLOR_USED
pcolor += transforms.data[boffset + 3] * weight_attrib.w;
#endif
}
instance_custom = transforms.data[offset + 4];
#ifdef COLOR_USED
color_interp *= pcolor;
#endif
#else
uint stride = 0;
{
//TODO implement a small lookup table for the stride
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
stride += 2;
} else {
stride += 3;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
stride += 1;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
stride += 1;
}
}
uint offset = stride * gl_InstanceIndex;
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
} else {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
offset += 3;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
color_interp *= transforms.data[offset];
#endif
offset += 1;
}
if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
#endif
//transpose
matrix = transpose(matrix);
model_matrix = model_matrix * matrix;
model_normal_matrix = model_normal_matrix * mat3(matrix);
}
vec3 vertex = vertex_attrib;
#ifdef NORMAL_USED
vec3 normal = normal_attrib * 2.0 - 1.0;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
float binormalf = tangent_attrib.a * 2.0 - 1.0;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#ifdef UV_USED
uv_interp = uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#ifdef OVERRIDE_POSITION
vec4 position;
#endif
#ifdef USE_MULTIVIEW
mat4 projection_matrix = scene_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = scene_data.inv_projection_matrix_view[ViewIndex];
#else
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
#endif //USE_MULTIVIEW
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (model_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = model_normal_matrix * normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = model_normal_matrix * tangent;
binormal = model_normal_matrix * binormal;
#endif
#endif
float roughness = 1.0;
mat4 modelview = scene_data.view_matrix * model_matrix;
mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
{
#CODE : VERTEX
}
/* output */
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = (modelview * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = modelview_normal * normal;
#endif
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
#endif
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
#endif
vertex_interp = vertex;
#ifdef NORMAL_USED
normal_interp = normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_DUAL_PARABOLOID
vertex_interp.z *= scene_data.dual_paraboloid_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
vec3 vtx = vertex_interp;
float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / scene_data.z_far);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#endif
#endif //MODE_RENDER_DEPTH
#ifdef OVERRIDE_POSITION
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif // OVERRIDE_POSITION
#ifdef MODE_RENDER_DEPTH
if (scene_data.pancake_shadows) {
if (gl_Position.z <= 0.00001) {
gl_Position.z = 0.00001;
}
}
#endif // MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
if (scene_data.material_uv2_mode) {
vec2 uv_offset = draw_call.lightmap_uv_scale.xy; // we are abusing lightmap_uv_scale here, we shouldn't have a lightmap during a depth pass...
gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
}
#endif // MODE_RENDER_MATERIAL
}
#[fragment]
#version 450
#VERSION_DEFINES
#define SHADER_IS_SRGB false
/* Specialization Constants */
#if !defined(MODE_RENDER_DEPTH)
#if !defined(MODE_UNSHADED)
layout(constant_id = 0) const bool sc_use_light_projector = false;
layout(constant_id = 1) const bool sc_use_light_soft_shadows = false;
layout(constant_id = 2) const bool sc_use_directional_soft_shadows = false;
layout(constant_id = 3) const uint sc_soft_shadow_samples = 4;
layout(constant_id = 4) const uint sc_penumbra_shadow_samples = 4;
layout(constant_id = 5) const uint sc_directional_soft_shadow_samples = 4;
layout(constant_id = 6) const uint sc_directional_penumbra_shadow_samples = 4;
layout(constant_id = 8) const bool sc_projector_use_mipmaps = true;
layout(constant_id = 9) const bool sc_disable_omni_lights = false;
layout(constant_id = 10) const bool sc_disable_spot_lights = false;
layout(constant_id = 11) const bool sc_disable_reflection_probes = false;
layout(constant_id = 12) const bool sc_disable_directional_lights = false;
#endif //!MODE_UNSHADED
layout(constant_id = 7) const bool sc_decal_use_mipmaps = true;
layout(constant_id = 13) const bool sc_disable_decals = false;
layout(constant_id = 14) const bool sc_disable_fog = false;
#endif //!MODE_RENDER_DEPTH
layout(constant_id = 15) const float sc_luminance_multiplier = 2.0;
/* Include our forward mobile UBOs definitions etc. */
#include "scene_forward_mobile_inc.glsl"
/* Varyings */
layout(location = 0) highp in vec3 vertex_interp;
#ifdef NORMAL_USED
layout(location = 1) mediump in vec3 normal_interp;
#endif
#if defined(COLOR_USED)
layout(location = 2) mediump in vec4 color_interp;
#endif
#ifdef UV_USED
layout(location = 3) mediump in vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) mediump in vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) mediump in vec3 tangent_interp;
layout(location = 6) mediump in vec3 binormal_interp;
#endif
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) highp in float dp_clip;
#endif
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#define ViewIndex gl_ViewIndex
#else
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif
#else
// Set to zero, not supported in non stereo
#define ViewIndex 0
#endif //USE_MULTIVIEW
//defines to keep compatibility with vertex
#define model_matrix draw_call.transform
#ifdef USE_MULTIVIEW
#define projection_matrix scene_data.projection_matrix_view[ViewIndex]
#else
#define projection_matrix scene_data.projection_matrix
#endif
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
#define LIGHT_TRANSMITTANCE_USED
#endif
#ifdef MATERIAL_UNIFORMS_USED
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
#GLOBALS
/* clang-format on */
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
layout(location = 0) out vec4 albedo_output_buffer;
layout(location = 1) out vec4 normal_output_buffer;
layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
layout(location = 4) out float depth_output_buffer;
#endif // MODE_RENDER_MATERIAL
#else // RENDER DEPTH
#ifdef MODE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
#else
layout(location = 0) out mediump vec4 frag_color;
#endif // MODE_MULTIPLE_RENDER_TARGETS
#endif // RENDER DEPTH
#include "scene_forward_aa_inc.glsl"
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
// Default to SPECULAR_SCHLICK_GGX.
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
#include "scene_forward_lights_inc.glsl"
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifndef MODE_RENDER_DEPTH
/*
Only supporting normal fog here.
*/
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data_block.data.fog_light_color;
if (scene_data_block.data.fog_aerial_perspective > 0.0) {
vec3 sky_fog_color = vec3(0.0);
vec3 cube_view = scene_data_block.data.radiance_inverse_xform * vertex;
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data_block.data.z_near) / (scene_data_block.data.z_far - scene_data_block.data.z_near));
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
#else
sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
fog_color = mix(fog_color, sky_fog_color, scene_data_block.data.fog_aerial_perspective);
}
if (scene_data_block.data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
vec3 view = normalize(vertex);
for (uint i = 0; i < scene_data_block.data.directional_light_count; i++) {
vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data_block.data.fog_sun_scatter;
}
}
float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data_block.data.fog_density));
if (abs(scene_data_block.data.fog_height_density) >= 0.0001) {
float y = (scene_data_block.data.inv_view_matrix * vec4(vertex, 1.0)).y;
float y_dist = y - scene_data_block.data.fog_height;
float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data_block.data.fog_height_density));
fog_amount = max(vfog_amount, fog_amount);
}
return vec4(fog_color, fog_amount);
}
#endif //!MODE_RENDER DEPTH
void main() {
#ifdef MODE_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
SceneData scene_data = scene_data_block.data;
//lay out everything, whatever is unused is optimized away anyway
vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
vec3 backlight = vec3(0.0);
vec4 transmittance_color = vec4(0.0);
float transmittance_depth = 0.0;
float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
vec4 fog = vec4(0.0);
#if defined(CUSTOM_RADIANCE_USED)
vec4 custom_radiance = vec4(0.0);
#endif
#if defined(CUSTOM_IRRADIANCE_USED)
vec4 custom_irradiance = vec4(0.0);
#endif
float ao = 1.0;
float ao_light_affect = 0.0;
float alpha = 1.0;
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
#ifdef NORMAL_USED
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
#endif //NORMAL_USED
#ifdef UV_USED
vec2 uv = uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(COLOR_USED)
vec4 color = color_interp;
#endif
#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.5);
#endif
float normal_map_depth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size;
float sss_strength = 0.0;
#ifdef ALPHA_SCISSOR_USED
float alpha_scissor_threshold = 1.0;
#endif // ALPHA_SCISSOR_USED
#ifdef ALPHA_HASH_USED
float alpha_hash_scale = 1.0;
#endif // ALPHA_HASH_USED
#ifdef ALPHA_ANTIALIASING_EDGE_USED
float alpha_antialiasing_edge = 0.0;
vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
#endif // ALPHA_ANTIALIASING_EDGE_USED
{
#CODE : FRAGMENT
}
#ifdef LIGHT_TRANSMITTANCE_USED
#ifdef SSS_MODE_SKIN
transmittance_color.a = sss_strength;
#else
transmittance_color.a *= sss_strength;
#endif
#endif
#ifndef USE_SHADOW_TO_OPACITY
#ifdef ALPHA_SCISSOR_USED
if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // ALPHA_SCISSOR_USED
// alpha hash can be used in unison with alpha antialiasing
#ifdef ALPHA_HASH_USED
if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
discard;
}
#endif // ALPHA_HASH_USED
// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
alpha = 1.0;
#endif
#ifdef ALPHA_ANTIALIASING_EDGE_USED
// If alpha scissor is used, we must further the edge threshold, otherwise we won't get any edge feather
#ifdef ALPHA_SCISSOR_USED
alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
#endif
alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
#endif // ALPHA_ANTIALIASING_EDGE_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < scene_data.opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#ifdef NORMAL_MAP_USED
normal_map.xy = normal_map.xy * 2.0 - 1.0;
normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
#ifdef LIGHT_ANISOTROPY_USED
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// FOG //////////////////////
#ifndef MODE_RENDER_DEPTH
#ifndef CUSTOM_FOG_USED
// fog must be processed as early as possible and then packed.
// to maximize VGPR usage
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (!sc_disable_fog && scene_data.fog_enabled) {
fog = fog_process(vertex);
}
#endif //!CUSTOM_FOG_USED
uint fog_rg = packHalf2x16(fog.rg);
uint fog_ba = packHalf2x16(fog.ba);
#endif //!MODE_RENDER_DEPTH
/////////////////////// DECALS ////////////////////////////////
#ifndef MODE_RENDER_DEPTH
vec3 vertex_ddx = dFdx(vertex);
vec3 vertex_ddy = dFdy(vertex);
if (!sc_disable_decals) { //Decals
// must implement
uint decal_indices = draw_call.decals.x;
for (uint i = 0; i < 8; i++) {
uint decal_index = decal_indices & 0xFF;
if (i == 4) {
decal_indices = draw_call.decals.y;
} else {
decal_indices = decal_indices >> 8;
}
if (decal_index == 0xFF) {
break;
}
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
continue; //out of decal
}
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
if (decals.data[decal_index].normal_fade > 0.0) {
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
}
//we need ddx/ddy for mipmaps, so simulate them
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
//has albedo
vec4 decal_albedo;
if (sc_decal_use_mipmaps) {
decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
} else {
decal_albedo = textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, 0.0);
}
decal_albedo *= decals.data[decal_index].modulate;
decal_albedo.a *= fade;
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
vec3 decal_normal;
if (sc_decal_use_mipmaps) {
decal_normal = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
} else {
decal_normal = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, 0.0).xyz;
}
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
//convert to view space, use xzy because y is up
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
}
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
vec3 decal_orm;
if (sc_decal_use_mipmaps) {
decal_orm = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
} else {
decal_orm = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, 0.0).xyz;
}
ao = mix(ao, decal_orm.r, decal_albedo.a);
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
}
}
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
//emission is additive, so its independent from albedo
if (sc_decal_use_mipmaps) {
emission += textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
} else {
emission += textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, 0.0).xyz * decals.data[decal_index].emission_energy * fade;
}
}
}
} //Decals
#endif //!MODE_RENDER_DEPTH
/////////////////////// LIGHTING //////////////////////////////
#ifdef NORMAL_USED
if (scene_data.roughness_limiter_enabled) {
//https://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
float roughness2 = roughness * roughness;
vec3 dndu = dFdx(normal), dndv = dFdy(normal);
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
roughness = sqrt(filteredRoughness2);
}
#endif // NORMAL_USED
//apply energy conservation
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (scene_data.use_reflection_cubemap) {
#ifdef LIGHT_ANISOTROPY_USED
// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
vec3 anisotropic_tangent = cross(anisotropic_direction, view);
vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
vec3 ref_vec = reflect(-view, bent_normal);
#else
vec3 ref_vec = reflect(-view, normal);
#endif
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
#else // USE_RADIANCE_CUBEMAP_ARRAY
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light *= horizon * horizon;
specular_light *= scene_data.ambient_light_color_energy.a;
}
#if defined(CUSTOM_RADIANCE_USED)
specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
#endif // CUSTOM_RADIANCE_USED
#ifndef USE_LIGHTMAP
//lightmap overrides everything
if (scene_data.use_ambient_light) {
ambient_light = scene_data.ambient_light_color_energy.rgb;
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
#else
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
}
}
#endif // !USE_LIGHTMAP
#if defined(CUSTOM_IRRADIANCE_USED)
ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
#endif // CUSTOM_IRRADIANCE_USED
#ifdef LIGHT_CLEARCOAT_USED
if (scene_data.use_reflection_cubemap) {
vec3 n = normalize(normal_interp); // We want to use geometric normal, not normal_map
float NoV = max(dot(n, view), 0.0001);
vec3 ref_vec = reflect(-view, n);
// The clear coat layer assumes an IOR of 1.5 (4% reflectance)
float Fc = clearcoat * (0.04 + 0.96 * SchlickFresnel(NoV));
float attenuation = 1.0 - Fc;
ambient_light *= attenuation;
specular_light *= attenuation;
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
float roughness_lod = mix(0.001, 0.1, clearcoat_roughness) * MAX_ROUGHNESS_LOD;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
float lod, blend;
blend = modf(roughness_lod, lod);
vec3 clearcoat_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
clearcoat_light = mix(clearcoat_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
#else
vec3 clearcoat_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness_lod).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light += clearcoat_light * horizon * horizon * Fc * scene_data.ambient_light_color_energy.a;
}
#endif
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//radiance
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef USE_LIGHTMAP
//lightmap
if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
uint index = draw_call.gi_offset;
vec3 wnormal = mat3(scene_data.inv_view_matrix) * normal;
const float c1 = 0.429043;
const float c2 = 0.511664;
const float c3 = 0.743125;
const float c4 = 0.886227;
const float c5 = 0.247708;
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
c4 * lightmap_captures.data[index].sh[0].rgb -
c5 * lightmap_captures.data[index].sh[6].rgb +
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
} else if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
bool uses_sh = bool(draw_call.flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
uint ofs = draw_call.gi_offset & 0xFFFF;
vec3 uvw;
uvw.xy = uv2 * draw_call.lightmap_uv_scale.zw + draw_call.lightmap_uv_scale.xy;
uvw.z = float((draw_call.gi_offset >> 16) & 0xFFFF);
if (uses_sh) {
uvw.z *= 4.0; //SH textures use 4 times more data
vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
uint idx = draw_call.gi_offset >> 20;
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
ambient_light += lm_light_l0 * 0.282095f;
ambient_light += lm_light_l1n1 * 0.32573 * n.y;
ambient_light += lm_light_l1_0 * 0.32573 * n.z;
ambient_light += lm_light_l1p1 * 0.32573 * n.x;
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
vec3 r = reflect(normalize(-vertex), normal);
specular_light += lm_light_l1n1 * 0.32573 * r.y;
specular_light += lm_light_l1_0 * 0.32573 * r.z;
specular_light += lm_light_l1p1 * 0.32573 * r.x;
}
} else {
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
}
}
// No GI nor non low end mode...
#endif // USE_LIGHTMAP
// skipping ssao, do we remove ssao totally?
if (!sc_disable_reflection_probes) { //Reflection probes
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
uint reflection_indices = draw_call.reflection_probes.x;
for (uint i = 0; i < 8; i++) {
uint reflection_index = reflection_indices & 0xFF;
if (i == 4) {
reflection_indices = draw_call.reflection_probes.y;
} else {
reflection_indices = reflection_indices >> 8;
}
if (reflection_index == 0xFF) {
break;
}
#ifdef LIGHT_ANISOTROPY_USED
// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
vec3 anisotropic_tangent = cross(anisotropic_direction, view);
vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
#else
vec3 bent_normal = normal;
#endif
reflection_process(reflection_index, vertex, bent_normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#if !defined(USE_LIGHTMAP)
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
} //Reflection probes
// finalize ambient light here
ambient_light *= albedo.rgb;
ambient_light *= ao;
// convert ao to direct light ao
ao = mix(1.0, ao, ao_light_affect);
//this saves some VGPRs
vec3 f0 = F0(metallic, specular, albedo);
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * f0 + env.y;
#endif
}
#endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#if !defined(MODE_RENDER_DEPTH)
//this saves some VGPRs
uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
#endif
// LIGHTING
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (!sc_disable_directional_lights) { //directional light
#ifndef SHADOWS_DISABLED
// Do shadow and lighting in two passes to reduce register pressure
uint shadow0 = 0;
uint shadow1 = 0;
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
break;
}
if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) {
continue; //not masked
}
float shadow = 1.0;
// Directional light shadow code is basically the same as forward clustered at this point in time minus `LIGHT_TRANSMITTANCE_USED` support.
// Not sure if there is a reason to change this seeing directional lights are part of our global data
// Should think about whether we may want to move this code into an include file or function??
#ifdef USE_SOFT_SHADOWS
//version with soft shadows, more expensive
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
vec4 pssm_coord;
vec3 light_dir = directional_lights.data[i].direction;
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
}
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
float shadow2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
} else {
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
pssm_blend = sqrt(pssm_blend);
shadow = mix(shadow, shadow2, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
#else
// Soft shadow disabled version
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
vec4 pssm_coord;
float blur_factor;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
blur_factor = 1.0;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
}
pssm_coord /= pssm_coord.w;
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * blur_factor, pssm_coord);
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
float blur_factor2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
blur_factor2 = 1.0;
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * blur_factor2, pssm_coord);
shadow = mix(shadow, shadow2, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
#endif
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
}
}
#endif // SHADOWS_DISABLED
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
break;
}
if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) {
continue; //not masked
}
// We're not doing light transmittence
float shadow = 1.0;
#ifndef SHADOWS_DISABLED
if (i < 4) {
shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
} else {
shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
}
#endif
blur_shadow(shadow);
light_compute(normal, directional_lights.data[i].direction, normalize(view), 0.0, directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/* not supported here
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
transmittance_z,
#endif
*/
#ifdef LIGHT_RIM_USED
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
#ifdef USE_SOFT_SHADOW
directional_lights.data[i].size,
#endif
diffuse_light,
specular_light);
}
} //directional light
if (!sc_disable_omni_lights) { //omni lights
uint light_indices = draw_call.omni_lights.x;
for (uint i = 0; i < 8; i++) {
uint light_index = light_indices & 0xFF;
if (i == 4) {
light_indices = draw_call.omni_lights.y;
} else {
light_indices = light_indices >> 8;
}
if (light_index == 0xFF) {
break;
}
float shadow = light_process_omni_shadow(light_index, vertex, normal);
shadow = blur_shadow(shadow);
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/*
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
#endif
*/
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent,
binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
} //omni lights
if (!sc_disable_spot_lights) { //spot lights
uint light_indices = draw_call.spot_lights.x;
for (uint i = 0; i < 8; i++) {
uint light_index = light_indices & 0xFF;
if (i == 4) {
light_indices = draw_call.spot_lights.y;
} else {
light_indices = light_indices >> 8;
}
if (light_index == 0xFF) {
break;
}
float shadow = light_process_spot_shadow(light_index, vertex, normal);
shadow = blur_shadow(shadow);
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
/*
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_boost,
#endif
*/
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent,
binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
} //spot lights
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < scene_data.opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // USE_SHADOW_TO_OPACITY
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
albedo_output_buffer.rgb = albedo;
albedo_output_buffer.a = alpha;
normal_output_buffer.rgb = normal * 0.5 + 0.5;
normal_output_buffer.a = 0.0;
depth_output_buffer.r = -vertex.z;
orm_output_buffer.r = ao;
orm_output_buffer.g = roughness;
orm_output_buffer.b = metallic;
orm_output_buffer.a = sss_strength;
emission_output_buffer.rgb = emission;
emission_output_buffer.a = 0.0;
#endif // MODE_RENDER_MATERIAL
#else // MODE_RENDER_DEPTH
// multiply by albedo
diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
// apply direct light AO
ao = unpackUnorm4x8(orms).x;
specular_light *= ao;
diffuse_light *= ao;
// apply metallic
metallic = unpackUnorm4x8(orms).z;
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
//restore fog
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
#ifdef MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else // MODE_UNSHADED
#ifdef SSS_MODE_SKIN
sss_strength = -sss_strength;
#endif // SSS_MODE_SKIN
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
specular_buffer = vec4(specular_light, metallic);
#endif // MODE_UNSHADED
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
#else //MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else // MODE_UNSHADED
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
#endif // MODE_UNSHADED
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
// On mobile we use a UNORM buffer with 10bpp which results in a range from 0.0 - 1.0 resulting in HDR breaking
// We divide by sc_luminance_multiplier to support a range from 0.0 - 2.0 both increasing precision on bright and darker images
frag_color.rgb = frag_color.rgb / sc_luminance_multiplier;
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH
}
|