summaryrefslogtreecommitdiffstats
path: root/tests/core/math/test_vector2.h
blob: 8e3248f1e4ffcd099458a72d46f8e0d03fa1a556 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/**************************************************************************/
/*  test_vector2.h                                                        */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2024-present Redot Engine contributors                   */
/*                                          (see REDOT_AUTHORS.md)        */
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef TEST_VECTOR2_H
#define TEST_VECTOR2_H

#include "core/math/vector2.h"
#include "core/math/vector2i.h"
#include "tests/test_macros.h"

namespace TestVector2 {

TEST_CASE("[Vector2] Constructor methods") {
	const Vector2 vector_empty = Vector2();
	const Vector2 vector_zero = Vector2(0.0, 0.0);
	CHECK_MESSAGE(
			vector_empty == vector_zero,
			"Vector2 Constructor with no inputs should return a zero Vector2.");
}

TEST_CASE("[Vector2] Angle methods") {
	const Vector2 vector_x = Vector2(1, 0);
	const Vector2 vector_y = Vector2(0, 1);
	CHECK_MESSAGE(
			vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
			"Vector2 angle_to should work as expected.");
	CHECK_MESSAGE(
			vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4),
			"Vector2 angle_to should work as expected.");
	CHECK_MESSAGE(
			vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8),
			"Vector2 angle_to_point should work as expected.");
	CHECK_MESSAGE(
			vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8),
			"Vector2 angle_to_point should work as expected.");
}

TEST_CASE("[Vector2] Axis methods") {
	Vector2 vector = Vector2(1.2, 3.4);
	CHECK_MESSAGE(
			vector.max_axis_index() == Vector2::Axis::AXIS_Y,
			"Vector2 max_axis_index should work as expected.");
	CHECK_MESSAGE(
			vector.min_axis_index() == Vector2::Axis::AXIS_X,
			"Vector2 min_axis_index should work as expected.");
	CHECK_MESSAGE(
			vector[vector.min_axis_index()] == (real_t)1.2,
			"Vector2 array operator should work as expected.");
	vector[Vector2::Axis::AXIS_Y] = 3.7;
	CHECK_MESSAGE(
			vector[Vector2::Axis::AXIS_Y] == (real_t)3.7,
			"Vector2 array operator setter should work as expected.");
}

TEST_CASE("[Vector2] Interpolation methods") {
	const Vector2 vector1 = Vector2(1, 2);
	const Vector2 vector2 = Vector2(4, 5);
	CHECK_MESSAGE(
			vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5),
			"Vector2 lerp should work as expected.");
	CHECK_MESSAGE(
			vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)),
			"Vector2 lerp should work as expected.");
	CHECK_MESSAGE(
			vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)),
			"Vector2 slerp should work as expected.");
	CHECK_MESSAGE(
			vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)),
			"Vector2 slerp should work as expected.");
	CHECK_MESSAGE(
			Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math_SQRT12),
			"Vector2 slerp with non-normalized values should work as expected.");
	CHECK_MESSAGE(
			Vector2(1, 1).slerp(Vector2(2, 2), 0.5).is_equal_approx(Vector2(1.5, 1.5)),
			"Vector2 slerp with colinear inputs should behave as expected.");
	CHECK_MESSAGE(
			Vector2().slerp(Vector2(), 0.5) == Vector2(),
			"Vector2 slerp with both inputs as zero vectors should return a zero vector.");
	CHECK_MESSAGE(
			Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5),
			"Vector2 slerp with one input as zero should behave like a regular lerp.");
	CHECK_MESSAGE(
			Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5),
			"Vector2 slerp with one input as zero should behave like a regular lerp.");
	CHECK_MESSAGE(
			Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)),
			"Vector2 slerp should work as expected.");
	CHECK_MESSAGE(
			vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919),
			"Vector2 slerp with different length input should return a vector with an interpolated length.");
	CHECK_MESSAGE(
			vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
			"Vector2 slerp with different length input should return a vector with an interpolated angle.");
	CHECK_MESSAGE(
			vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
			"Vector2 cubic_interpolate should work as expected.");
	CHECK_MESSAGE(
			vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)),
			"Vector2 cubic_interpolate should work as expected.");
	CHECK_MESSAGE(
			Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0),
			"Vector2 move_toward should work as expected.");
}

TEST_CASE("[Vector2] Length methods") {
	const Vector2 vector1 = Vector2(10, 10);
	const Vector2 vector2 = Vector2(20, 30);
	CHECK_MESSAGE(
			vector1.length_squared() == 200,
			"Vector2 length_squared should work as expected and return exact result.");
	CHECK_MESSAGE(
			vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2),
			"Vector2 length should work as expected.");
	CHECK_MESSAGE(
			vector2.length_squared() == 1300,
			"Vector2 length_squared should work as expected and return exact result.");
	CHECK_MESSAGE(
			vector2.length() == doctest::Approx((real_t)36.05551275463989293119),
			"Vector2 length should work as expected.");
	CHECK_MESSAGE(
			vector1.distance_squared_to(vector2) == 500,
			"Vector2 distance_squared_to should work as expected and return exact result.");
	CHECK_MESSAGE(
			vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409),
			"Vector2 distance_to should work as expected.");
}

TEST_CASE("[Vector2] Limiting methods") {
	const Vector2 vector = Vector2(10, 10);
	CHECK_MESSAGE(
			vector.limit_length().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
			"Vector2 limit_length should work as expected.");
	CHECK_MESSAGE(
			vector.limit_length(5).is_equal_approx(5 * Vector2(Math_SQRT12, Math_SQRT12)),
			"Vector2 limit_length should work as expected.");

	CHECK_MESSAGE(
			Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)),
			"Vector2 clamp should work as expected.");
	CHECK_MESSAGE(
			vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)),
			"Vector2 clamp should work as expected.");
}

TEST_CASE("[Vector2] Normalization methods") {
	CHECK_MESSAGE(
			Vector2(1, 0).is_normalized() == true,
			"Vector2 is_normalized should return true for a normalized vector.");
	CHECK_MESSAGE(
			Vector2(1, 1).is_normalized() == false,
			"Vector2 is_normalized should return false for a non-normalized vector.");
	CHECK_MESSAGE(
			Vector2(1, 0).normalized() == Vector2(1, 0),
			"Vector2 normalized should return the same vector for a normalized vector.");
	CHECK_MESSAGE(
			Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
			"Vector2 normalized should work as expected.");

	Vector2 vector = Vector2(3.2, -5.4);
	vector.normalize();
	CHECK_MESSAGE(
			vector == Vector2(3.2, -5.4).normalized(),
			"Vector2 normalize should convert same way as Vector2 normalized.");
	CHECK_MESSAGE(
			vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)),
			"Vector2 normalize should work as expected.");
}

TEST_CASE("[Vector2] Operators") {
	const Vector2 decimal1 = Vector2(2.3, 4.9);
	const Vector2 decimal2 = Vector2(1.2, 3.4);
	const Vector2 power1 = Vector2(0.75, 1.5);
	const Vector2 power2 = Vector2(0.5, 0.125);
	const Vector2 int1 = Vector2(4, 5);
	const Vector2 int2 = Vector2(1, 2);

	CHECK_MESSAGE(
			(decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)),
			"Vector2 addition should behave as expected.");
	CHECK_MESSAGE(
			(power1 + power2) == Vector2(1.25, 1.625),
			"Vector2 addition with powers of two should give exact results.");
	CHECK_MESSAGE(
			(int1 + int2) == Vector2(5, 7),
			"Vector2 addition with integers should give exact results.");

	CHECK_MESSAGE(
			(decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)),
			"Vector2 subtraction should behave as expected.");
	CHECK_MESSAGE(
			(power1 - power2) == Vector2(0.25, 1.375),
			"Vector2 subtraction with powers of two should give exact results.");
	CHECK_MESSAGE(
			(int1 - int2) == Vector2(3, 3),
			"Vector2 subtraction with integers should give exact results.");

	CHECK_MESSAGE(
			(decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)),
			"Vector2 multiplication should behave as expected.");
	CHECK_MESSAGE(
			(power1 * power2) == Vector2(0.375, 0.1875),
			"Vector2 multiplication with powers of two should give exact results.");
	CHECK_MESSAGE(
			(int1 * int2) == Vector2(4, 10),
			"Vector2 multiplication with integers should give exact results.");

	CHECK_MESSAGE(
			(decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)),
			"Vector2 division should behave as expected.");
	CHECK_MESSAGE(
			(power1 / power2) == Vector2(1.5, 12.0),
			"Vector2 division with powers of two should give exact results.");
	CHECK_MESSAGE(
			(int1 / int2) == Vector2(4, 2.5),
			"Vector2 division with integers should give exact results.");

	CHECK_MESSAGE(
			(decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)),
			"Vector2 multiplication should behave as expected.");
	CHECK_MESSAGE(
			(power1 * 2) == Vector2(1.5, 3),
			"Vector2 multiplication with powers of two should give exact results.");
	CHECK_MESSAGE(
			(int1 * 2) == Vector2(8, 10),
			"Vector2 multiplication with integers should give exact results.");

	CHECK_MESSAGE(
			(decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)),
			"Vector2 division should behave as expected.");
	CHECK_MESSAGE(
			(power1 / 2) == Vector2(0.375, 0.75),
			"Vector2 division with powers of two should give exact results.");
	CHECK_MESSAGE(
			(int1 / 2) == Vector2(2, 2.5),
			"Vector2 division with integers should give exact results.");

	CHECK_MESSAGE(
			((Vector2i)decimal1) == Vector2i(2, 4),
			"Vector2 cast to Vector2i should work as expected.");
	CHECK_MESSAGE(
			((Vector2i)decimal2) == Vector2i(1, 3),
			"Vector2 cast to Vector2i should work as expected.");
	CHECK_MESSAGE(
			Vector2(Vector2i(1, 2)) == Vector2(1, 2),
			"Vector2 constructed from Vector2i should work as expected.");

	CHECK_MESSAGE(
			((String)decimal1) == "(2.3, 4.9)",
			"Vector2 cast to String should work as expected.");
	CHECK_MESSAGE(
			((String)decimal2) == "(1.2, 3.4)",
			"Vector2 cast to String should work as expected.");
	CHECK_MESSAGE(
			((String)Vector2(9.8, 9.9)) == "(9.8, 9.9)",
			"Vector2 cast to String should work as expected.");
#ifdef REAL_T_IS_DOUBLE
	CHECK_MESSAGE(
			((String)Vector2(Math_PI, Math_TAU)) == "(3.14159265358979, 6.28318530717959)",
			"Vector2 cast to String should print the correct amount of digits for real_t = double.");
#else
	CHECK_MESSAGE(
			((String)Vector2(Math_PI, Math_TAU)) == "(3.141593, 6.283185)",
			"Vector2 cast to String should print the correct amount of digits for real_t = float.");
#endif // REAL_T_IS_DOUBLE
}

TEST_CASE("[Vector2] Other methods") {
	const Vector2 vector = Vector2(1.2, 3.4);
	CHECK_MESSAGE(
			vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4),
			"Vector2 aspect should work as expected.");

	CHECK_MESSAGE(
			vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()),
			"Vector2 direction_to should work as expected.");
	CHECK_MESSAGE(
			Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
			"Vector2 direction_to should work as expected.");

	CHECK_MESSAGE(
			vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)),
			"Vector2 posmod should work as expected.");
	CHECK_MESSAGE(
			(-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)),
			"Vector2 posmod should work as expected.");
	CHECK_MESSAGE(
			vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)),
			"Vector2 posmodv should work as expected.");
	CHECK_MESSAGE(
			(-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)),
			"Vector2 posmodv should work as expected.");

	CHECK_MESSAGE(
			vector.rotated(Math_TAU).is_equal_approx(Vector2(1.2, 3.4)),
			"Vector2 rotated should work as expected.");
	CHECK_MESSAGE(
			vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)),
			"Vector2 rotated should work as expected.");
	CHECK_MESSAGE(
			vector.rotated(Math_TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)),
			"Vector2 rotated should work as expected.");
	CHECK_MESSAGE(
			vector.rotated(Math_TAU / 2).is_equal_approx(vector.rotated(Math_TAU / -2)),
			"Vector2 rotated should work as expected.");

	CHECK_MESSAGE(
			vector.snapped(Vector2(1, 1)) == Vector2(1, 3),
			"Vector2 snapped to integers should be the same as rounding.");
	CHECK_MESSAGE(
			Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6),
			"Vector2 snapped to integers should be the same as rounding.");
	CHECK_MESSAGE(
			vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5),
			"Vector2 snapped to 0.25 should give exact results.");

	CHECK_MESSAGE(
			Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))),
			"Vector2 min should return expected value.");

	CHECK_MESSAGE(
			Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))),
			"Vector2 max should return expected value.");
}

TEST_CASE("[Vector2] Plane methods") {
	const Vector2 vector = Vector2(1.2, 3.4);
	const Vector2 vector_y = Vector2(0, 1);
	const Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919);
	const real_t p_d = 99.1;
	CHECK_MESSAGE(
			vector.bounce(vector_y) == Vector2(1.2, -3.4),
			"Vector2 bounce on a plane with normal of the Y axis should.");
	CHECK_MESSAGE(
			vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)),
			"Vector2 bounce with normal should return expected value.");
	CHECK_MESSAGE(
			vector.reflect(vector_y) == Vector2(-1.2, 3.4),
			"Vector2 reflect on a plane with normal of the Y axis should.");
	CHECK_MESSAGE(
			vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)),
			"Vector2 reflect with normal should return expected value.");
	CHECK_MESSAGE(
			vector.project(vector_y) == Vector2(0, 3.4),
			"Vector2 projected on the Y axis should only give the Y component.");
	CHECK_MESSAGE(
			vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)),
			"Vector2 projected on a normal should return expected value.");
	CHECK_MESSAGE(
			vector_normal.plane_project(p_d, vector).is_equal_approx(Vector2(94.187635516479631, 30.951892004882851)),
			"Vector2 plane_project should return expected value.");
	CHECK_MESSAGE(
			vector.slide(vector_y) == Vector2(1.2, 0),
			"Vector2 slide on a plane with normal of the Y axis should set the Y to zero.");
	CHECK_MESSAGE(
			vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)),
			"Vector2 slide with normal should return expected value.");
	// There's probably a better way to test these ones?
#ifdef MATH_CHECKS
	const Vector2 vector_non_normal = Vector2(5.4, 1.6);
	ERR_PRINT_OFF;
	CHECK_MESSAGE(
			vector.bounce(vector_non_normal).is_equal_approx(Vector2()),
			"Vector2 bounce should return empty Vector2 with non-normalized input.");
	CHECK_MESSAGE(
			vector.reflect(vector_non_normal).is_equal_approx(Vector2()),
			"Vector2 reflect should return empty Vector2 with non-normalized input.");
	CHECK_MESSAGE(
			vector.slide(vector_non_normal).is_equal_approx(Vector2()),
			"Vector2 slide should return empty Vector2 with non-normalized input.");
	ERR_PRINT_ON;
#endif // MATH_CHECKS
}

TEST_CASE("[Vector2] Rounding methods") {
	const Vector2 vector1 = Vector2(1.2, 5.6);
	const Vector2 vector2 = Vector2(1.2, -5.6);
	CHECK_MESSAGE(
			vector1.abs() == vector1,
			"Vector2 abs should work as expected.");
	CHECK_MESSAGE(
			vector2.abs() == vector1,
			"Vector2 abs should work as expected.");

	CHECK_MESSAGE(
			vector1.ceil() == Vector2(2, 6),
			"Vector2 ceil should work as expected.");
	CHECK_MESSAGE(
			vector2.ceil() == Vector2(2, -5),
			"Vector2 ceil should work as expected.");

	CHECK_MESSAGE(
			vector1.floor() == Vector2(1, 5),
			"Vector2 floor should work as expected.");
	CHECK_MESSAGE(
			vector2.floor() == Vector2(1, -6),
			"Vector2 floor should work as expected.");

	CHECK_MESSAGE(
			vector1.round() == Vector2(1, 6),
			"Vector2 round should work as expected.");
	CHECK_MESSAGE(
			vector2.round() == Vector2(1, -6),
			"Vector2 round should work as expected.");

	CHECK_MESSAGE(
			vector1.sign() == Vector2(1, 1),
			"Vector2 sign should work as expected.");
	CHECK_MESSAGE(
			vector2.sign() == Vector2(1, -1),
			"Vector2 sign should work as expected.");
}

TEST_CASE("[Vector2] Linear algebra methods") {
	const Vector2 vector_x = Vector2(1, 0);
	const Vector2 vector_y = Vector2(0, 1);
	const Vector2 a = Vector2(3.5, 8.5);
	const Vector2 b = Vector2(5.2, 4.6);
	CHECK_MESSAGE(
			vector_x.cross(vector_y) == 1,
			"Vector2 cross product of X and Y should give 1.");
	CHECK_MESSAGE(
			vector_y.cross(vector_x) == -1,
			"Vector2 cross product of Y and X should give negative 1.");
	CHECK_MESSAGE(
			a.cross(b) == doctest::Approx((real_t)-28.1),
			"Vector2 cross should return expected value.");
	CHECK_MESSAGE(
			Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1),
			"Vector2 cross should return expected value.");

	CHECK_MESSAGE(
			vector_x.dot(vector_y) == 0.0,
			"Vector2 dot product of perpendicular vectors should be zero.");
	CHECK_MESSAGE(
			vector_x.dot(vector_x) == 1.0,
			"Vector2 dot product of identical unit vectors should be one.");
	CHECK_MESSAGE(
			(vector_x * 10).dot(vector_x * 10) == 100.0,
			"Vector2 dot product of same direction vectors should behave as expected.");
	CHECK_MESSAGE(
			a.dot(b) == doctest::Approx((real_t)57.3),
			"Vector2 dot should return expected value.");
	CHECK_MESSAGE(
			Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3),
			"Vector2 dot should return expected value.");
}

TEST_CASE("[Vector2] Finite number checks") {
	const double infinite[] = { NAN, INFINITY, -INFINITY };

	CHECK_MESSAGE(
			Vector2(0, 1).is_finite(),
			"Vector2(0, 1) should be finite");

	for (double x : infinite) {
		CHECK_FALSE_MESSAGE(
				Vector2(x, 1).is_finite(),
				"Vector2 with one component infinite should not be finite.");
		CHECK_FALSE_MESSAGE(
				Vector2(0, x).is_finite(),
				"Vector2 with one component infinite should not be finite.");
	}

	for (double x : infinite) {
		for (double y : infinite) {
			CHECK_FALSE_MESSAGE(
					Vector2(x, y).is_finite(),
					"Vector2 with two components infinite should not be finite.");
		}
	}
}

} // namespace TestVector2

#endif // TEST_VECTOR2_H