summaryrefslogtreecommitdiffstats
path: root/thirdparty/amd-fsr2/shaders/ffx_fsr1.h
blob: 1ac23cf3de3d6493b9345166faea9dca90d87980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifdef __clang__
#pragma clang diagnostic ignored "-Wunused-variable"
#endif

/// Setup required constant values for EASU (works on CPU or GPU).
///
/// @param [out] con0
/// @param [out] con1
/// @param [out] con2
/// @param [out] con3
/// @param [in] inputViewportInPixelsX                  The rendered image resolution being upscaled in X dimension.
/// @param [in] inputViewportInPixelsY                  The rendered image resolution being upscaled in Y dimension.
/// @param [in] inputSizeInPixelsX                      The resolution of the resource containing the input image (useful for dynamic resolution) in X dimension.
/// @param [in] inputSizeInPixelsY                      The resolution of the resource containing the input image (useful for dynamic resolution) in Y dimension.
/// @param [in] outputSizeInPixelsX                     The display resolution which the input image gets upscaled to in X dimension.
/// @param [in] outputSizeInPixelsY                     The display resolution which the input image gets upscaled to in Y dimension.
/// 
/// @ingroup FSR1
FFX_STATIC void ffxFsrPopulateEasuConstants(
    FFX_PARAMETER_INOUT FfxUInt32x4 con0,
    FFX_PARAMETER_INOUT FfxUInt32x4 con1,
    FFX_PARAMETER_INOUT FfxUInt32x4 con2,
    FFX_PARAMETER_INOUT FfxUInt32x4 con3,
    FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsY,
    FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsY,
    FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsY)
{
    // Output integer position to a pixel position in viewport.
    con0[0] = ffxAsUInt32(inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX));
    con0[1] = ffxAsUInt32(inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY));
    con0[2] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX) - FfxFloat32(0.5));
    con0[3] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY) - FfxFloat32(0.5));

    // Viewport pixel position to normalized image space.
    // This is used to get upper-left of 'F' tap.
    con1[0] = ffxAsUInt32(ffxReciprocal(inputSizeInPixelsX));
    con1[1] = ffxAsUInt32(ffxReciprocal(inputSizeInPixelsY));

    // Centers of gather4, first offset from upper-left of 'F'.
    //      +---+---+
    //      |   |   |
    //      +--(0)--+
    //      | b | c |
    //  +---F---+---+---+
    //  | e | f | g | h |
    //  +--(1)--+--(2)--+
    //  | i | j | k | l |
    //  +---+---+---+---+
    //      | n | o |
    //      +--(3)--+
    //      |   |   |
    //      +---+---+
    con1[2] = ffxAsUInt32(FfxFloat32(1.0) * ffxReciprocal(inputSizeInPixelsX));
    con1[3] = ffxAsUInt32(FfxFloat32(-1.0) * ffxReciprocal(inputSizeInPixelsY));

    // These are from (0) instead of 'F'.
    con2[0] = ffxAsUInt32(FfxFloat32(-1.0) * ffxReciprocal(inputSizeInPixelsX));
    con2[1] = ffxAsUInt32(FfxFloat32(2.0) * ffxReciprocal(inputSizeInPixelsY));
    con2[2] = ffxAsUInt32(FfxFloat32(1.0) * ffxReciprocal(inputSizeInPixelsX));
    con2[3] = ffxAsUInt32(FfxFloat32(2.0) * ffxReciprocal(inputSizeInPixelsY));
    con3[0] = ffxAsUInt32(FfxFloat32(0.0) * ffxReciprocal(inputSizeInPixelsX));
    con3[1] = ffxAsUInt32(FfxFloat32(4.0) * ffxReciprocal(inputSizeInPixelsY));
    con3[2] = con3[3] = 0;
}

/// Setup required constant values for EASU (works on CPU or GPU).
///
/// @param [out] con0
/// @param [out] con1
/// @param [out] con2
/// @param [out] con3
/// @param [in] inputViewportInPixelsX              The resolution of the input in the X dimension.
/// @param [in] inputViewportInPixelsY              The resolution of the input in the Y dimension.
/// @param [in] inputSizeInPixelsX                  The input size in pixels in the X dimension.
/// @param [in] inputSizeInPixelsY                  The input size in pixels in the Y dimension.
/// @param [in] outputSizeInPixelsX                 The output size in pixels in the X dimension.
/// @param [in] outputSizeInPixelsY                 The output size in pixels in the Y dimension.
/// @param [in] inputOffsetInPixelsX                The input image offset in the X dimension into the resource containing it (useful for dynamic resolution).
/// @param [in] inputOffsetInPixelsY                The input image offset in the Y dimension into the resource containing it (useful for dynamic resolution).
///
/// @ingroup FSR1
FFX_STATIC void ffxFsrPopulateEasuConstantsOffset(
    FFX_PARAMETER_INOUT FfxUInt32x4 con0,
    FFX_PARAMETER_INOUT FfxUInt32x4 con1,
    FFX_PARAMETER_INOUT FfxUInt32x4 con2,
    FFX_PARAMETER_INOUT FfxUInt32x4 con3,
    FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsY,
    FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsY,
    FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsY,
    FFX_PARAMETER_IN FfxFloat32 inputOffsetInPixelsX,
    FFX_PARAMETER_IN FfxFloat32 inputOffsetInPixelsY)
{
    ffxFsrPopulateEasuConstants(
        con0,
        con1,
        con2,
        con3,
        inputViewportInPixelsX,
        inputViewportInPixelsY,
        inputSizeInPixelsX,
        inputSizeInPixelsY,
        outputSizeInPixelsX,
        outputSizeInPixelsY);

    // override 
    con0[2] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX) - FfxFloat32(0.5) + inputOffsetInPixelsX);
    con0[3] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY) - FfxFloat32(0.5) + inputOffsetInPixelsY);
}

#if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT)
// Input callback prototypes, need to be implemented by calling shader
FfxFloat32x4 FsrEasuRF(FfxFloat32x2 p);
FfxFloat32x4 FsrEasuGF(FfxFloat32x2 p);
FfxFloat32x4 FsrEasuBF(FfxFloat32x2 p);

// Filtering for a given tap for the scalar.
void fsrEasuTapFloat(
    FFX_PARAMETER_INOUT FfxFloat32x3 accumulatedColor,   // Accumulated color, with negative lobe.
    FFX_PARAMETER_INOUT FfxFloat32 accumulatedWeight,    // Accumulated weight.
    FFX_PARAMETER_IN FfxFloat32x2 pixelOffset,           // Pixel offset from resolve position to tap.
    FFX_PARAMETER_IN FfxFloat32x2 gradientDirection,     // Gradient direction.
    FFX_PARAMETER_IN FfxFloat32x2 length,                // Length.
    FFX_PARAMETER_IN FfxFloat32 negativeLobeStrength,    // Negative lobe strength.
    FFX_PARAMETER_IN FfxFloat32 clippingPoint,           // Clipping point.
    FFX_PARAMETER_IN FfxFloat32x3 color)                 // Tap color.
{
    // Rotate offset by direction.
    FfxFloat32x2 rotatedOffset;
    rotatedOffset.x = (pixelOffset.x * (gradientDirection.x)) + (pixelOffset.y * gradientDirection.y);
    rotatedOffset.y = (pixelOffset.x * (-gradientDirection.y)) + (pixelOffset.y * gradientDirection.x);

    // Anisotropy.
    rotatedOffset *= length;

    // Compute distance^2.
    FfxFloat32 distanceSquared = rotatedOffset.x * rotatedOffset.x + rotatedOffset.y * rotatedOffset.y;

    // Limit to the window as at corner, 2 taps can easily be outside.
    distanceSquared = ffxMin(distanceSquared, clippingPoint);

    // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x.
    //  (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2
    //  |_______________________________________|   |_______________|
    //                   base                             window
    // The general form of the 'base' is,
    //  (a*(b*x^2-1)^2-(a-1))
    // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe.
    FfxFloat32 weightB = FfxFloat32(2.0 / 5.0) * distanceSquared + FfxFloat32(-1.0);
    FfxFloat32 weightA = negativeLobeStrength * distanceSquared + FfxFloat32(-1.0);
    weightB *= weightB;
    weightA *= weightA;
    weightB = FfxFloat32(25.0 / 16.0) * weightB + FfxFloat32(-(25.0 / 16.0 - 1.0));
    FfxFloat32 weight = weightB * weightA;

    // Do weighted average.
    accumulatedColor += color * weight;
    accumulatedWeight += weight;
}

// Accumulate direction and length.
void fsrEasuSetFloat(
    FFX_PARAMETER_INOUT FfxFloat32x2 direction,
    FFX_PARAMETER_INOUT FfxFloat32 length,
    FFX_PARAMETER_IN FfxFloat32x2 pp,
    FFX_PARAMETER_IN FfxBoolean biS,
    FFX_PARAMETER_IN FfxBoolean biT,
    FFX_PARAMETER_IN FfxBoolean biU,
    FFX_PARAMETER_IN FfxBoolean biV,
    FFX_PARAMETER_IN FfxFloat32 lA,
    FFX_PARAMETER_IN FfxFloat32 lB,
    FFX_PARAMETER_IN FfxFloat32 lC,
    FFX_PARAMETER_IN FfxFloat32 lD,
    FFX_PARAMETER_IN FfxFloat32 lE)
{
    // Compute bilinear weight, branches factor out as predicates are compiler time immediates.
    //  s t
    //  u v
    FfxFloat32 weight = FfxFloat32(0.0);
    if (biS)
        weight = (FfxFloat32(1.0) - pp.x) * (FfxFloat32(1.0) - pp.y);
    if (biT)
        weight = pp.x * (FfxFloat32(1.0) - pp.y);
    if (biU)
        weight = (FfxFloat32(1.0) - pp.x) * pp.y;
    if (biV)
        weight = pp.x * pp.y;

    // Direction is the '+' diff.
    //    a
    //  b c d
    //    e
    // Then takes magnitude from abs average of both sides of 'c'.
    // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms.
    FfxFloat32 dc = lD - lC;
    FfxFloat32 cb = lC - lB;
    FfxFloat32 lengthX = max(abs(dc), abs(cb));
    lengthX = ffxApproximateReciprocal(lengthX);
    FfxFloat32 directionX = lD - lB;
    direction.x += directionX * weight;
    lengthX = ffxSaturate(abs(directionX) * lengthX);
    lengthX *= lengthX;
    length += lengthX * weight;

    // Repeat for the y axis.
    FfxFloat32 ec = lE - lC;
    FfxFloat32 ca = lC - lA;
    FfxFloat32 lengthY = max(abs(ec), abs(ca));
    lengthY = ffxApproximateReciprocal(lengthY);
    FfxFloat32 directionY = lE - lA;
    direction.y += directionY * weight;
    lengthY = ffxSaturate(abs(directionY) * lengthY);
    lengthY *= lengthY;
    length += lengthY * weight;
}

/// Apply edge-aware spatial upsampling using 32bit floating point precision calculations.
///
/// @param [out] outPixel               The computed color of a pixel.
/// @param [in]  integerPosition        Integer pixel position within the output.
/// @param [in]  con0                   The first constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
/// @param [in]  con1                   The second constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
/// @param [in]  con2                   The third constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
/// @param [in]  con3                   The fourth constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
/// 
/// @ingroup FSR
void ffxFsrEasuFloat(
    FFX_PARAMETER_OUT FfxFloat32x3 pix,
    FFX_PARAMETER_IN FfxUInt32x2 ip,
    FFX_PARAMETER_IN FfxUInt32x4 con0,
    FFX_PARAMETER_IN FfxUInt32x4 con1,
    FFX_PARAMETER_IN FfxUInt32x4 con2,
    FFX_PARAMETER_IN FfxUInt32x4 con3)
{
    // Get position of 'f'.
    FfxFloat32x2 pp = FfxFloat32x2(ip) * ffxAsFloat(con0.xy) + ffxAsFloat(con0.zw);
    FfxFloat32x2 fp = floor(pp);
    pp -= fp;

    // 12-tap kernel.
    //    b c
    //  e f g h
    //  i j k l
    //    n o
    // Gather 4 ordering.
    //  a b
    //  r g
    // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions,
    //    a b    <- unused (z)
    //    r g
    //  a b a b
    //  r g r g
    //    a b
    //    r g    <- unused (z)
    // Allowing dead-code removal to remove the 'z's.
    FfxFloat32x2 p0 = fp * ffxAsFloat(con1.xy) + ffxAsFloat(con1.zw);

    // These are from p0 to avoid pulling two constants on pre-Navi hardware.
    FfxFloat32x2 p1    = p0 + ffxAsFloat(con2.xy);
    FfxFloat32x2 p2    = p0 + ffxAsFloat(con2.zw);
    FfxFloat32x2 p3    = p0 + ffxAsFloat(con3.xy);
    FfxFloat32x4 bczzR = FsrEasuRF(p0);
    FfxFloat32x4 bczzG = FsrEasuGF(p0);
    FfxFloat32x4 bczzB = FsrEasuBF(p0);
    FfxFloat32x4 ijfeR = FsrEasuRF(p1);
    FfxFloat32x4 ijfeG = FsrEasuGF(p1);
    FfxFloat32x4 ijfeB = FsrEasuBF(p1);
    FfxFloat32x4 klhgR = FsrEasuRF(p2);
    FfxFloat32x4 klhgG = FsrEasuGF(p2);
    FfxFloat32x4 klhgB = FsrEasuBF(p2);
    FfxFloat32x4 zzonR = FsrEasuRF(p3);
    FfxFloat32x4 zzonG = FsrEasuGF(p3);
    FfxFloat32x4 zzonB = FsrEasuBF(p3);

    // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD).
    FfxFloat32x4 bczzL = bczzB * ffxBroadcast4(0.5) + (bczzR * ffxBroadcast4(0.5) + bczzG);
    FfxFloat32x4 ijfeL = ijfeB * ffxBroadcast4(0.5) + (ijfeR * ffxBroadcast4(0.5) + ijfeG);
    FfxFloat32x4 klhgL = klhgB * ffxBroadcast4(0.5) + (klhgR * ffxBroadcast4(0.5) + klhgG);
    FfxFloat32x4 zzonL = zzonB * ffxBroadcast4(0.5) + (zzonR * ffxBroadcast4(0.5) + zzonG);

    // Rename.
    FfxFloat32 bL = bczzL.x;
    FfxFloat32 cL = bczzL.y;
    FfxFloat32 iL = ijfeL.x;
    FfxFloat32 jL = ijfeL.y;
    FfxFloat32 fL = ijfeL.z;
    FfxFloat32 eL = ijfeL.w;
    FfxFloat32 kL = klhgL.x;
    FfxFloat32 lL = klhgL.y;
    FfxFloat32 hL = klhgL.z;
    FfxFloat32 gL = klhgL.w;
    FfxFloat32 oL = zzonL.z;
    FfxFloat32 nL = zzonL.w;

    // Accumulate for bilinear interpolation.
    FfxFloat32x2 dir = ffxBroadcast2(0.0);
    FfxFloat32  len = FfxFloat32(0.0);
    fsrEasuSetFloat(dir, len, pp, FFX_TRUE,  FFX_FALSE, FFX_FALSE, FFX_FALSE, bL, eL, fL, gL, jL);
    fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_TRUE,  FFX_FALSE, FFX_FALSE, cL, fL, gL, hL, kL);
    fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_FALSE, FFX_TRUE,  FFX_FALSE, fL, iL, jL, kL, nL);
    fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_FALSE, FFX_FALSE, FFX_TRUE,  gL, jL, kL, lL, oL);

    // Normalize with approximation, and cleanup close to zero.
    FfxFloat32x2 dir2 = dir * dir;
    FfxFloat32 dirR = dir2.x + dir2.y;
    FfxUInt32 zro  = dirR < FfxFloat32(1.0 / 32768.0);
    dirR = ffxApproximateReciprocalSquareRoot(dirR);
    dirR = zro ? FfxFloat32(1.0) : dirR;
    dir.x = zro ? FfxFloat32(1.0) : dir.x;
    dir *= ffxBroadcast2(dirR);

    // Transform from {0 to 2} to {0 to 1} range, and shape with square.
    len = len * FfxFloat32(0.5);
    len *= len;

    // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}.
    FfxFloat32 stretch = (dir.x * dir.x + dir.y * dir.y) * ffxApproximateReciprocal(max(abs(dir.x), abs(dir.y)));

    // Anisotropic length after rotation,
    //  x := 1.0 lerp to 'stretch' on edges
    //  y := 1.0 lerp to 2x on edges
    FfxFloat32x2 len2 = FfxFloat32x2(FfxFloat32(1.0) + (stretch - FfxFloat32(1.0)) * len, FfxFloat32(1.0) + FfxFloat32(-0.5) * len);

    // Based on the amount of 'edge',
    // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}.
    FfxFloat32 lob = FfxFloat32(0.5) + FfxFloat32((1.0 / 4.0 - 0.04) - 0.5) * len;

    // Set distance^2 clipping point to the end of the adjustable window.
    FfxFloat32 clp = ffxApproximateReciprocal(lob);

    // Accumulation mixed with min/max of 4 nearest.
    //    b c
    //  e f g h
    //  i j k l
    //    n o
    FfxFloat32x3 min4 =
        ffxMin(ffxMin3(FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z), FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w), FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)),
               FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x));
    FfxFloat32x3 max4 =
        max(ffxMax3(FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z), FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w), FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)), FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x));

    // Accumulation.
    FfxFloat32x3 aC = ffxBroadcast3(0.0);
    FfxFloat32  aW = FfxFloat32(0.0);
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, -1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(bczzR.x, bczzG.x, bczzB.x));  // b
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, -1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(bczzR.y, bczzG.y, bczzB.y));  // c
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(-1.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.x, ijfeG.x, ijfeB.x));  // i
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y));   // j
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z));   // f
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(-1.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.w, ijfeG.w, ijfeB.w));  // e
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x));   // k
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(2.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.y, klhgG.y, klhgB.y));   // l
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(2.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.z, klhgG.z, klhgB.z));   // h
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w));   // g
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.z, zzonG.z, zzonB.z));   // o
    fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.w, zzonG.w, zzonB.w));   // n

    // Normalize and dering.
    pix = ffxMin(max4, max(min4, aC * ffxBroadcast3(rcp(aW))));
}
#endif // #if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT)

#if defined(FFX_GPU) && FFX_HALF == 1 && defined(FFX_FSR_EASU_HALF)
// Input callback prototypes, need to be implemented by calling shader
FfxFloat16x4 FsrEasuRH(FfxFloat32x2 p);
FfxFloat16x4 FsrEasuGH(FfxFloat32x2 p);
FfxFloat16x4 FsrEasuBH(FfxFloat32x2 p);

// This runs 2 taps in parallel.
void FsrEasuTapH(
    FFX_PARAMETER_INOUT FfxFloat16x2 aCR,
    FFX_PARAMETER_INOUT FfxFloat16x2 aCG,
    FFX_PARAMETER_INOUT FfxFloat16x2 aCB,
    FFX_PARAMETER_INOUT FfxFloat16x2 aW,
    FFX_PARAMETER_IN FfxFloat16x2 offX,
    FFX_PARAMETER_IN FfxFloat16x2 offY,
    FFX_PARAMETER_IN FfxFloat16x2 dir,
    FFX_PARAMETER_IN FfxFloat16x2 len,
    FFX_PARAMETER_IN FfxFloat16 lob,
    FFX_PARAMETER_IN FfxFloat16 clp,
    FFX_PARAMETER_IN FfxFloat16x2 cR,
    FFX_PARAMETER_IN FfxFloat16x2 cG,
    FFX_PARAMETER_IN FfxFloat16x2 cB)
{
    FfxFloat16x2 vX, vY;
    vX = offX * dir.xx + offY * dir.yy;
    vY = offX * (-dir.yy) + offY * dir.xx;
    vX *= len.x;
    vY *= len.y;
    FfxFloat16x2 d2 = vX * vX + vY * vY;
    d2              = min(d2, FFX_BROADCAST_FLOAT16X2(clp));
    FfxFloat16x2 wB = FFX_BROADCAST_FLOAT16X2(2.0 / 5.0) * d2 + FFX_BROADCAST_FLOAT16X2(-1.0);
    FfxFloat16x2 wA = FFX_BROADCAST_FLOAT16X2(lob) * d2 + FFX_BROADCAST_FLOAT16X2(-1.0);
    wB *= wB;
    wA *= wA;
    wB             = FFX_BROADCAST_FLOAT16X2(25.0 / 16.0) * wB + FFX_BROADCAST_FLOAT16X2(-(25.0 / 16.0 - 1.0));
    FfxFloat16x2 w = wB * wA;
    aCR += cR * w;
    aCG += cG * w;
    aCB += cB * w;
    aW += w;
}

// This runs 2 taps in parallel.
void FsrEasuSetH(
    FFX_PARAMETER_INOUT FfxFloat16x2 dirPX,
    FFX_PARAMETER_INOUT FfxFloat16x2  dirPY,
    FFX_PARAMETER_INOUT FfxFloat16x2 lenP,
    FFX_PARAMETER_IN FfxFloat16x2 pp,
    FFX_PARAMETER_IN FfxBoolean biST,
    FFX_PARAMETER_IN FfxBoolean biUV,
    FFX_PARAMETER_IN FfxFloat16x2 lA,
    FFX_PARAMETER_IN FfxFloat16x2 lB,
    FFX_PARAMETER_IN FfxFloat16x2 lC,
    FFX_PARAMETER_IN FfxFloat16x2 lD,
    FFX_PARAMETER_IN FfxFloat16x2 lE)
{
    FfxFloat16x2 w = FFX_BROADCAST_FLOAT16X2(0.0);
    
    if (biST)
        w = (FfxFloat16x2(1.0, 0.0) + FfxFloat16x2(-pp.x, pp.x)) * FFX_BROADCAST_FLOAT16X2(FFX_BROADCAST_FLOAT16(1.0) - pp.y);

    if (biUV)
        w = (FfxFloat16x2(1.0, 0.0) + FfxFloat16x2(-pp.x, pp.x)) * FFX_BROADCAST_FLOAT16X2(pp.y);

    // ABS is not free in the packed FP16 path.
    FfxFloat16x2 dc   = lD - lC;
    FfxFloat16x2 cb   = lC - lB;
    FfxFloat16x2 lenX = max(abs(dc), abs(cb));
    lenX              = ffxReciprocalHalf(lenX);

    FfxFloat16x2 dirX = lD - lB;
    dirPX += dirX * w;
    lenX = ffxSaturate(abs(dirX) * lenX);
    lenX *= lenX;
    lenP += lenX * w;
    FfxFloat16x2 ec   = lE - lC;
    FfxFloat16x2 ca   = lC - lA;
    FfxFloat16x2 lenY = max(abs(ec), abs(ca));
    lenY              = ffxReciprocalHalf(lenY);
    FfxFloat16x2 dirY = lE - lA;
    dirPY += dirY * w;
    lenY = ffxSaturate(abs(dirY) * lenY);
    lenY *= lenY;
    lenP += lenY * w;
}

void FsrEasuH(
    FFX_PARAMETER_OUT FfxFloat16x3 pix, 
    FFX_PARAMETER_IN FfxUInt32x2 ip,
    FFX_PARAMETER_IN FfxUInt32x4 con0,
    FFX_PARAMETER_IN FfxUInt32x4 con1,
    FFX_PARAMETER_IN FfxUInt32x4 con2,
    FFX_PARAMETER_IN FfxUInt32x4 con3)
{
    FfxFloat32x2 pp = FfxFloat32x2(ip) * ffxAsFloat(con0.xy) + ffxAsFloat(con0.zw);
    FfxFloat32x2 fp = floor(pp);
    pp -= fp;
    FfxFloat16x2 ppp = FfxFloat16x2(pp);

    FfxFloat32x2 p0    = fp * ffxAsFloat(con1.xy) + ffxAsFloat(con1.zw);
    FfxFloat32x2 p1    = p0 + ffxAsFloat(con2.xy);
    FfxFloat32x2 p2    = p0 + ffxAsFloat(con2.zw);
    FfxFloat32x2 p3    = p0 + ffxAsFloat(con3.xy);
    FfxFloat16x4 bczzR = FsrEasuRH(p0);
    FfxFloat16x4 bczzG = FsrEasuGH(p0);
    FfxFloat16x4 bczzB = FsrEasuBH(p0);
    FfxFloat16x4 ijfeR = FsrEasuRH(p1);
    FfxFloat16x4 ijfeG = FsrEasuGH(p1);
    FfxFloat16x4 ijfeB = FsrEasuBH(p1);
    FfxFloat16x4 klhgR = FsrEasuRH(p2);
    FfxFloat16x4 klhgG = FsrEasuGH(p2);
    FfxFloat16x4 klhgB = FsrEasuBH(p2);
    FfxFloat16x4 zzonR = FsrEasuRH(p3);
    FfxFloat16x4 zzonG = FsrEasuGH(p3);
    FfxFloat16x4 zzonB = FsrEasuBH(p3);

    FfxFloat16x4 bczzL = bczzB * FFX_BROADCAST_FLOAT16X4(0.5) + (bczzR * FFX_BROADCAST_FLOAT16X4(0.5) + bczzG);
    FfxFloat16x4 ijfeL = ijfeB * FFX_BROADCAST_FLOAT16X4(0.5) + (ijfeR * FFX_BROADCAST_FLOAT16X4(0.5) + ijfeG);
    FfxFloat16x4 klhgL = klhgB * FFX_BROADCAST_FLOAT16X4(0.5) + (klhgR * FFX_BROADCAST_FLOAT16X4(0.5) + klhgG);
    FfxFloat16x4 zzonL = zzonB * FFX_BROADCAST_FLOAT16X4(0.5) + (zzonR * FFX_BROADCAST_FLOAT16X4(0.5) + zzonG);
    FfxFloat16   bL    = bczzL.x;
    FfxFloat16   cL    = bczzL.y;
    FfxFloat16   iL    = ijfeL.x;
    FfxFloat16   jL    = ijfeL.y;
    FfxFloat16   fL    = ijfeL.z;
    FfxFloat16   eL    = ijfeL.w;
    FfxFloat16   kL    = klhgL.x;
    FfxFloat16   lL    = klhgL.y;
    FfxFloat16   hL    = klhgL.z;
    FfxFloat16   gL    = klhgL.w;
    FfxFloat16   oL    = zzonL.z;
    FfxFloat16   nL    = zzonL.w;

    // This part is different, accumulating 2 taps in parallel.
    FfxFloat16x2 dirPX = FFX_BROADCAST_FLOAT16X2(0.0);
    FfxFloat16x2 dirPY = FFX_BROADCAST_FLOAT16X2(0.0);
    FfxFloat16x2 lenP  = FFX_BROADCAST_FLOAT16X2(0.0);
    FsrEasuSetH(dirPX,
                dirPY,
                lenP,
                ppp,
                FfxUInt32(true),
                FfxUInt32(false),
                FfxFloat16x2(bL, cL),
                FfxFloat16x2(eL, fL),
                FfxFloat16x2(fL, gL),
                FfxFloat16x2(gL, hL),
                FfxFloat16x2(jL, kL));
    FsrEasuSetH(dirPX,
                dirPY,
                lenP,
                ppp,
                FfxUInt32(false),
                FfxUInt32(true),
                FfxFloat16x2(fL, gL),
                FfxFloat16x2(iL, jL),
                FfxFloat16x2(jL, kL),
                FfxFloat16x2(kL, lL),
                FfxFloat16x2(nL, oL));
    FfxFloat16x2 dir = FfxFloat16x2(dirPX.r + dirPX.g, dirPY.r + dirPY.g);
    FfxFloat16   len = lenP.r + lenP.g;

    FfxFloat16x2 dir2 = dir * dir;
    FfxFloat16   dirR = dir2.x + dir2.y;
    FfxBoolean   zro  = FfxBoolean(dirR < FFX_BROADCAST_FLOAT16(1.0 / 32768.0));
    dirR              = ffxApproximateReciprocalSquareRootHalf(dirR);
    dirR              = (zro > 0) ? FFX_BROADCAST_FLOAT16(1.0) : dirR;
    dir.x             = (zro > 0) ? FFX_BROADCAST_FLOAT16(1.0) : dir.x;
    dir *= FFX_BROADCAST_FLOAT16X2(dirR);
    len = len * FFX_BROADCAST_FLOAT16(0.5);
    len *= len;
    FfxFloat16   stretch = (dir.x * dir.x + dir.y * dir.y) * ffxApproximateReciprocalHalf(max(abs(dir.x), abs(dir.y)));
    FfxFloat16x2 len2 =
        FfxFloat16x2(FFX_BROADCAST_FLOAT16(1.0) + (stretch - FFX_BROADCAST_FLOAT16(1.0)) * len, FFX_BROADCAST_FLOAT16(1.0) + FFX_BROADCAST_FLOAT16(-0.5) * len);
    FfxFloat16 lob = FFX_BROADCAST_FLOAT16(0.5) + FFX_BROADCAST_FLOAT16((1.0 / 4.0 - 0.04) - 0.5) * len;
    FfxFloat16 clp = ffxApproximateReciprocalHalf(lob);

    // FP16 is different, using packed trick to do min and max in same operation.
    FfxFloat16x2 bothR =
        max(max(FfxFloat16x2(-ijfeR.z, ijfeR.z), FfxFloat16x2(-klhgR.w, klhgR.w)), max(FfxFloat16x2(-ijfeR.y, ijfeR.y), FfxFloat16x2(-klhgR.x, klhgR.x)));
    FfxFloat16x2 bothG =
        max(max(FfxFloat16x2(-ijfeG.z, ijfeG.z), FfxFloat16x2(-klhgG.w, klhgG.w)), max(FfxFloat16x2(-ijfeG.y, ijfeG.y), FfxFloat16x2(-klhgG.x, klhgG.x)));
    FfxFloat16x2 bothB =
        max(max(FfxFloat16x2(-ijfeB.z, ijfeB.z), FfxFloat16x2(-klhgB.w, klhgB.w)), max(FfxFloat16x2(-ijfeB.y, ijfeB.y), FfxFloat16x2(-klhgB.x, klhgB.x)));

    // This part is different for FP16, working pairs of taps at a time.
    FfxFloat16x2 pR = FFX_BROADCAST_FLOAT16X2(0.0);
    FfxFloat16x2 pG = FFX_BROADCAST_FLOAT16X2(0.0);
    FfxFloat16x2 pB = FFX_BROADCAST_FLOAT16X2(0.0);
    FfxFloat16x2 pW = FFX_BROADCAST_FLOAT16X2(0.0);
    FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(0.0, 1.0) - ppp.xx, FfxFloat16x2(-1.0, -1.0) - ppp.yy, dir, len2, lob, clp, bczzR.xy, bczzG.xy, bczzB.xy);
    FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(-1.0, 0.0) - ppp.xx, FfxFloat16x2(1.0, 1.0) - ppp.yy, dir, len2, lob, clp, ijfeR.xy, ijfeG.xy, ijfeB.xy);
    FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(0.0, -1.0) - ppp.xx, FfxFloat16x2(0.0, 0.0) - ppp.yy, dir, len2, lob, clp, ijfeR.zw, ijfeG.zw, ijfeB.zw);
    FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(1.0, 2.0) - ppp.xx, FfxFloat16x2(1.0, 1.0) - ppp.yy, dir, len2, lob, clp, klhgR.xy, klhgG.xy, klhgB.xy);
    FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(2.0, 1.0) - ppp.xx, FfxFloat16x2(0.0, 0.0) - ppp.yy, dir, len2, lob, clp, klhgR.zw, klhgG.zw, klhgB.zw);
    FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(1.0, 0.0) - ppp.xx, FfxFloat16x2(2.0, 2.0) - ppp.yy, dir, len2, lob, clp, zzonR.zw, zzonG.zw, zzonB.zw);
    FfxFloat16x3 aC = FfxFloat16x3(pR.x + pR.y, pG.x + pG.y, pB.x + pB.y);
    FfxFloat16   aW = pW.x + pW.y;

    // Slightly different for FP16 version due to combined min and max.
    pix = min(FfxFloat16x3(bothR.y, bothG.y, bothB.y), max(-FfxFloat16x3(bothR.x, bothG.x, bothB.x), aC * FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(aW))));
}
#endif // #if defined(FFX_GPU) && defined(FFX_HALF) && defined(FFX_FSR_EASU_HALF)

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                      FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING
//
//------------------------------------------------------------------------------------------------------------------------------
// CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness.
// RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping.
// RCAS also has a built in process to limit sharpening of what it detects as possible noise.
// RCAS sharper does not support scaling, as it should be applied after EASU scaling.
// Pass EASU output straight into RCAS, no color conversions necessary.
//------------------------------------------------------------------------------------------------------------------------------
// RCAS is based on the following logic.
// RCAS uses a 5 tap filter in a cross pattern (same as CAS),
//    w                n
//  w 1 w  for taps  w m e 
//    w                s
// Where 'w' is the negative lobe weight.
//  output = (w*(n+e+w+s)+m)/(4*w+1)
// RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range,
//  0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s)
//  1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1)
// Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount.
// This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues.
// So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps.
// As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation.
// This stabilizes RCAS.
// RCAS does a simple highpass which is normalized against the local contrast then shaped,
//       0.25
//  0.25  -1  0.25
//       0.25
// This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges.
//
//  GLSL example for the required callbacks :
// 
//  FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p){return FfxFloat16x4(imageLoad(imgSrc,FfxInt32x2(p)));}
//  void FsrRcasInputH(inout FfxFloat16 r,inout FfxFloat16 g,inout FfxFloat16 b)
//  {
//    //do any simple input color conversions here or leave empty if none needed
//  }
//  
//  FsrRcasCon need to be called from the CPU or GPU to set up constants.
//  Including a GPU example here, the 'con' value would be stored out to a constant buffer.
// 
//  FfxUInt32x4 con;
//  FsrRcasCon(con,
//   0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
// ---------------
// RCAS sharpening supports a CAS-like pass-through alpha via,
//  #define FSR_RCAS_PASSTHROUGH_ALPHA 1
// RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise.
// Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define,
//  #define FSR_RCAS_DENOISE 1
//==============================================================================================================================
// This is set at the limit of providing unnatural results for sharpening.
#define FSR_RCAS_LIMIT (0.25-(1.0/16.0))
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                      CONSTANT SETUP
//==============================================================================================================================
// Call to setup required constant values (works on CPU or GPU).
 FFX_STATIC void FsrRcasCon(FfxUInt32x4 con,
                            // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
                            FfxFloat32 sharpness)
 {
     // Transform from stops to linear value.
     sharpness = exp2(-sharpness);
     FfxFloat32x2 hSharp  = {sharpness, sharpness};
     con[0] = ffxAsUInt32(sharpness);
     con[1] = packHalf2x16(hSharp);
     con[2] = 0;
     con[3] = 0;
 }
 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                   NON-PACKED 32-BIT VERSION
//==============================================================================================================================
#if defined(FFX_GPU)&&defined(FSR_RCAS_F)
 // Input callback prototypes that need to be implemented by calling shader
 FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p);
 void FsrRcasInputF(inout FfxFloat32 r,inout FfxFloat32 g,inout FfxFloat32 b);
//------------------------------------------------------------------------------------------------------------------------------
 void FsrRcasF(out FfxFloat32 pixR,  // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
               out FfxFloat32 pixG,
               out FfxFloat32 pixB,
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
               out FfxFloat32 pixA,
#endif
               FfxUInt32x2 ip,  // Integer pixel position in output.
               FfxUInt32x4 con)
 {  // Constant generated by RcasSetup().
     // Algorithm uses minimal 3x3 pixel neighborhood.
     //    b
     //  d e f
     //    h
     FfxInt32x2   sp = FfxInt32x2(ip);
     FfxFloat32x3 b  = FsrRcasLoadF(sp + FfxInt32x2(0, -1)).rgb;
     FfxFloat32x3 d  = FsrRcasLoadF(sp + FfxInt32x2(-1, 0)).rgb;
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
     FfxFloat32x4 ee = FsrRcasLoadF(sp);
     FfxFloat32x3 e  = ee.rgb;
     pixA            = ee.a;
#else
     FfxFloat32x3 e = FsrRcasLoadF(sp).rgb;
#endif
     FfxFloat32x3 f = FsrRcasLoadF(sp + FfxInt32x2(1, 0)).rgb;
     FfxFloat32x3 h = FsrRcasLoadF(sp + FfxInt32x2(0, 1)).rgb;
     // Rename (32-bit) or regroup (16-bit).
     FfxFloat32 bR = b.r;
     FfxFloat32 bG = b.g;
     FfxFloat32 bB = b.b;
     FfxFloat32 dR = d.r;
     FfxFloat32 dG = d.g;
     FfxFloat32 dB = d.b;
     FfxFloat32 eR = e.r;
     FfxFloat32 eG = e.g;
     FfxFloat32 eB = e.b;
     FfxFloat32 fR = f.r;
     FfxFloat32 fG = f.g;
     FfxFloat32 fB = f.b;
     FfxFloat32 hR = h.r;
     FfxFloat32 hG = h.g;
     FfxFloat32 hB = h.b;
     // Run optional input transform.
     FsrRcasInputF(bR, bG, bB);
     FsrRcasInputF(dR, dG, dB);
     FsrRcasInputF(eR, eG, eB);
     FsrRcasInputF(fR, fG, fB);
     FsrRcasInputF(hR, hG, hB);
     // Luma times 2.
     FfxFloat32 bL = bB * FfxFloat32(0.5) + (bR * FfxFloat32(0.5) + bG);
     FfxFloat32 dL = dB * FfxFloat32(0.5) + (dR * FfxFloat32(0.5) + dG);
     FfxFloat32 eL = eB * FfxFloat32(0.5) + (eR * FfxFloat32(0.5) + eG);
     FfxFloat32 fL = fB * FfxFloat32(0.5) + (fR * FfxFloat32(0.5) + fG);
     FfxFloat32 hL = hB * FfxFloat32(0.5) + (hR * FfxFloat32(0.5) + hG);
     // Noise detection.
     FfxFloat32 nz = FfxFloat32(0.25) * bL + FfxFloat32(0.25) * dL + FfxFloat32(0.25) * fL + FfxFloat32(0.25) * hL - eL;
     nz            = ffxSaturate(abs(nz) * ffxApproximateReciprocalMedium(ffxMax3(ffxMax3(bL, dL, eL), fL, hL) - ffxMin3(ffxMin3(bL, dL, eL), fL, hL)));
     nz            = FfxFloat32(-0.5) * nz + FfxFloat32(1.0);
     // Min and max of ring.
     FfxFloat32 mn4R = ffxMin(ffxMin3(bR, dR, fR), hR);
     FfxFloat32 mn4G = ffxMin(ffxMin3(bG, dG, fG), hG);
     FfxFloat32 mn4B = ffxMin(ffxMin3(bB, dB, fB), hB);
     FfxFloat32 mx4R = max(ffxMax3(bR, dR, fR), hR);
     FfxFloat32 mx4G = max(ffxMax3(bG, dG, fG), hG);
     FfxFloat32 mx4B = max(ffxMax3(bB, dB, fB), hB);
     // Immediate constants for peak range.
     FfxFloat32x2 peakC = FfxFloat32x2(1.0, -1.0 * 4.0);
     // Limiters, these need to be high precision RCPs.
     FfxFloat32 hitMinR = mn4R * rcp(FfxFloat32(4.0) * mx4R);
     FfxFloat32 hitMinG = mn4G * rcp(FfxFloat32(4.0) * mx4G);
     FfxFloat32 hitMinB = mn4B * rcp(FfxFloat32(4.0) * mx4B);
     FfxFloat32 hitMaxR = (peakC.x - mx4R) * rcp(FfxFloat32(4.0) * mn4R + peakC.y);
     FfxFloat32 hitMaxG = (peakC.x - mx4G) * rcp(FfxFloat32(4.0) * mn4G + peakC.y);
     FfxFloat32 hitMaxB = (peakC.x - mx4B) * rcp(FfxFloat32(4.0) * mn4B + peakC.y);
     FfxFloat32 lobeR   = max(-hitMinR, hitMaxR);
     FfxFloat32 lobeG   = max(-hitMinG, hitMaxG);
     FfxFloat32 lobeB   = max(-hitMinB, hitMaxB);
     FfxFloat32 lobe    = max(FfxFloat32(-FSR_RCAS_LIMIT), ffxMin(ffxMax3(lobeR, lobeG, lobeB), FfxFloat32(0.0))) * ffxAsFloat
     (con.x);
 // Apply noise removal.
#ifdef FSR_RCAS_DENOISE
     lobe *= nz;
#endif
     // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
     FfxFloat32 rcpL = ffxApproximateReciprocalMedium(FfxFloat32(4.0) * lobe + FfxFloat32(1.0));
     pixR            = (lobe * bR + lobe * dR + lobe * hR + lobe * fR + eR) * rcpL;
     pixG            = (lobe * bG + lobe * dG + lobe * hG + lobe * fG + eG) * rcpL;
     pixB            = (lobe * bB + lobe * dB + lobe * hB + lobe * fB + eB) * rcpL;
     return;
 }
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                  NON-PACKED 16-BIT VERSION
//==============================================================================================================================
#if defined(FFX_GPU) && FFX_HALF == 1 && defined(FSR_RCAS_H)
 // Input callback prototypes that need to be implemented by calling shader
 FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p);
 void FsrRcasInputH(inout FfxFloat16 r,inout FfxFloat16 g,inout FfxFloat16 b);
//------------------------------------------------------------------------------------------------------------------------------
 void FsrRcasH(
 out FfxFloat16 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
 out FfxFloat16 pixG,
 out FfxFloat16 pixB,
 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
  out FfxFloat16 pixA,
 #endif
 FfxUInt32x2 ip, // Integer pixel position in output.
 FfxUInt32x4 con){ // Constant generated by RcasSetup().
  // Sharpening algorithm uses minimal 3x3 pixel neighborhood.
  //    b 
  //  d e f
  //    h
  FfxInt16x2 sp=FfxInt16x2(ip);
  FfxFloat16x3 b=FsrRcasLoadH(sp+FfxInt16x2( 0,-1)).rgb;
  FfxFloat16x3 d=FsrRcasLoadH(sp+FfxInt16x2(-1, 0)).rgb;
  #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
   FfxFloat16x4 ee=FsrRcasLoadH(sp);
   FfxFloat16x3 e=ee.rgb;pixA=ee.a;
  #else
   FfxFloat16x3 e=FsrRcasLoadH(sp).rgb;
  #endif
  FfxFloat16x3 f=FsrRcasLoadH(sp+FfxInt16x2( 1, 0)).rgb;
  FfxFloat16x3 h=FsrRcasLoadH(sp+FfxInt16x2( 0, 1)).rgb;
  // Rename (32-bit) or regroup (16-bit).
  FfxFloat16 bR=b.r;
  FfxFloat16 bG=b.g;
  FfxFloat16 bB=b.b;
  FfxFloat16 dR=d.r;
  FfxFloat16 dG=d.g;
  FfxFloat16 dB=d.b;
  FfxFloat16 eR=e.r;
  FfxFloat16 eG=e.g;
  FfxFloat16 eB=e.b;
  FfxFloat16 fR=f.r;
  FfxFloat16 fG=f.g;
  FfxFloat16 fB=f.b;
  FfxFloat16 hR=h.r;
  FfxFloat16 hG=h.g;
  FfxFloat16 hB=h.b;
  // Run optional input transform.
  FsrRcasInputH(bR,bG,bB);
  FsrRcasInputH(dR,dG,dB);
  FsrRcasInputH(eR,eG,eB);
  FsrRcasInputH(fR,fG,fB);
  FsrRcasInputH(hR,hG,hB);
  // Luma times 2.
  FfxFloat16 bL=bB*FFX_BROADCAST_FLOAT16(0.5)+(bR*FFX_BROADCAST_FLOAT16(0.5)+bG);
  FfxFloat16 dL=dB*FFX_BROADCAST_FLOAT16(0.5)+(dR*FFX_BROADCAST_FLOAT16(0.5)+dG);
  FfxFloat16 eL=eB*FFX_BROADCAST_FLOAT16(0.5)+(eR*FFX_BROADCAST_FLOAT16(0.5)+eG);
  FfxFloat16 fL=fB*FFX_BROADCAST_FLOAT16(0.5)+(fR*FFX_BROADCAST_FLOAT16(0.5)+fG);
  FfxFloat16 hL=hB*FFX_BROADCAST_FLOAT16(0.5)+(hR*FFX_BROADCAST_FLOAT16(0.5)+hG);
  // Noise detection.
  FfxFloat16 nz=FFX_BROADCAST_FLOAT16(0.25)*bL+FFX_BROADCAST_FLOAT16(0.25)*dL+FFX_BROADCAST_FLOAT16(0.25)*fL+FFX_BROADCAST_FLOAT16(0.25)*hL-eL;
  nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL)));
  nz=FFX_BROADCAST_FLOAT16(-0.5)*nz+FFX_BROADCAST_FLOAT16(1.0);
  // Min and max of ring.
  FfxFloat16 mn4R=min(ffxMin3Half(bR,dR,fR),hR);
  FfxFloat16 mn4G=min(ffxMin3Half(bG,dG,fG),hG);
  FfxFloat16 mn4B=min(ffxMin3Half(bB,dB,fB),hB);
  FfxFloat16 mx4R=max(ffxMax3Half(bR,dR,fR),hR);
  FfxFloat16 mx4G=max(ffxMax3Half(bG,dG,fG),hG);
  FfxFloat16 mx4B=max(ffxMax3Half(bB,dB,fB),hB);
  // Immediate constants for peak range.
  FfxFloat16x2 peakC=FfxFloat16x2(1.0,-1.0*4.0);
  // Limiters, these need to be high precision RCPs.
  FfxFloat16 hitMinR=mn4R*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4R);
  FfxFloat16 hitMinG=mn4G*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4G);
  FfxFloat16 hitMinB=mn4B*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4B);
  FfxFloat16 hitMaxR=(peakC.x-mx4R)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4R+peakC.y);
  FfxFloat16 hitMaxG=(peakC.x-mx4G)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4G+peakC.y);
  FfxFloat16 hitMaxB=(peakC.x-mx4B)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4B+peakC.y);
  FfxFloat16 lobeR=max(-hitMinR,hitMaxR);
  FfxFloat16 lobeG=max(-hitMinG,hitMaxG);
  FfxFloat16 lobeB=max(-hitMinB,hitMaxB);
  FfxFloat16 lobe=max(FFX_BROADCAST_FLOAT16(-FSR_RCAS_LIMIT),min(ffxMax3Half(lobeR,lobeG,lobeB),FFX_BROADCAST_FLOAT16(0.0)))*FFX_UINT32_TO_FLOAT16X2(con.y).x;
  // Apply noise removal.
  #ifdef FSR_RCAS_DENOISE
   lobe*=nz;
  #endif
  // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
  FfxFloat16 rcpL=ffxApproximateReciprocalMediumHalf(FFX_BROADCAST_FLOAT16(4.0)*lobe+FFX_BROADCAST_FLOAT16(1.0));
  pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
  pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
  pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//                                                     PACKED 16-BIT VERSION
//==============================================================================================================================
#if defined(FFX_GPU)&& FFX_HALF == 1 && defined(FSR_RCAS_HX2)
 // Input callback prototypes that need to be implemented by the calling shader
 FfxFloat16x4 FsrRcasLoadHx2(FfxInt16x2 p);
 void FsrRcasInputHx2(inout FfxFloat16x2 r,inout FfxFloat16x2 g,inout FfxFloat16x2 b);
//------------------------------------------------------------------------------------------------------------------------------
 // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store.
 void FsrRcasDepackHx2(out FfxFloat16x4 pix0,out FfxFloat16x4 pix1,FfxFloat16x2 pixR,FfxFloat16x2 pixG,FfxFloat16x2 pixB){
  #ifdef FFX_HLSL
   // Invoke a slower path for DX only, since it won't allow uninitialized values.
   pix0.a=pix1.a=0.0;
  #endif
  pix0.rgb=FfxFloat16x3(pixR.x,pixG.x,pixB.x);
  pix1.rgb=FfxFloat16x3(pixR.y,pixG.y,pixB.y);}
//------------------------------------------------------------------------------------------------------------------------------
 void FsrRcasHx2(
 // Output values are for 2 8x8 tiles in a 16x8 region.
 //  pix<R,G,B>.x =  left 8x8 tile
 //  pix<R,G,B>.y = right 8x8 tile
 // This enables later processing to easily be packed as well.
 out FfxFloat16x2 pixR,
 out FfxFloat16x2 pixG,
 out FfxFloat16x2 pixB,
 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
  out FfxFloat16x2 pixA,
 #endif
 FfxUInt32x2 ip, // Integer pixel position in output.
 FfxUInt32x4 con){ // Constant generated by RcasSetup().
  // No scaling algorithm uses minimal 3x3 pixel neighborhood.
  FfxInt16x2 sp0=FfxInt16x2(ip);
  FfxFloat16x3 b0=FsrRcasLoadHx2(sp0+FfxInt16x2( 0,-1)).rgb;
  FfxFloat16x3 d0=FsrRcasLoadHx2(sp0+FfxInt16x2(-1, 0)).rgb;
  #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
   FfxFloat16x4 ee0=FsrRcasLoadHx2(sp0);
   FfxFloat16x3 e0=ee0.rgb;pixA.r=ee0.a;
  #else
   FfxFloat16x3 e0=FsrRcasLoadHx2(sp0).rgb;
  #endif
  FfxFloat16x3 f0=FsrRcasLoadHx2(sp0+FfxInt16x2( 1, 0)).rgb;
  FfxFloat16x3 h0=FsrRcasLoadHx2(sp0+FfxInt16x2( 0, 1)).rgb;
  FfxInt16x2 sp1=sp0+FfxInt16x2(8,0);
  FfxFloat16x3 b1=FsrRcasLoadHx2(sp1+FfxInt16x2( 0,-1)).rgb;
  FfxFloat16x3 d1=FsrRcasLoadHx2(sp1+FfxInt16x2(-1, 0)).rgb;
  #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
   FfxFloat16x4 ee1=FsrRcasLoadHx2(sp1);
   FfxFloat16x3 e1=ee1.rgb;pixA.g=ee1.a;
  #else
   FfxFloat16x3 e1=FsrRcasLoadHx2(sp1).rgb;
  #endif
  FfxFloat16x3 f1=FsrRcasLoadHx2(sp1+FfxInt16x2( 1, 0)).rgb;
  FfxFloat16x3 h1=FsrRcasLoadHx2(sp1+FfxInt16x2( 0, 1)).rgb;
  // Arrays of Structures to Structures of Arrays conversion.
  FfxFloat16x2 bR=FfxFloat16x2(b0.r,b1.r);
  FfxFloat16x2 bG=FfxFloat16x2(b0.g,b1.g);
  FfxFloat16x2 bB=FfxFloat16x2(b0.b,b1.b);
  FfxFloat16x2 dR=FfxFloat16x2(d0.r,d1.r);
  FfxFloat16x2 dG=FfxFloat16x2(d0.g,d1.g);
  FfxFloat16x2 dB=FfxFloat16x2(d0.b,d1.b);
  FfxFloat16x2 eR=FfxFloat16x2(e0.r,e1.r);
  FfxFloat16x2 eG=FfxFloat16x2(e0.g,e1.g);
  FfxFloat16x2 eB=FfxFloat16x2(e0.b,e1.b);
  FfxFloat16x2 fR=FfxFloat16x2(f0.r,f1.r);
  FfxFloat16x2 fG=FfxFloat16x2(f0.g,f1.g);
  FfxFloat16x2 fB=FfxFloat16x2(f0.b,f1.b);
  FfxFloat16x2 hR=FfxFloat16x2(h0.r,h1.r);
  FfxFloat16x2 hG=FfxFloat16x2(h0.g,h1.g);
  FfxFloat16x2 hB=FfxFloat16x2(h0.b,h1.b);
  // Run optional input transform.
  FsrRcasInputHx2(bR,bG,bB);
  FsrRcasInputHx2(dR,dG,dB);
  FsrRcasInputHx2(eR,eG,eB);
  FsrRcasInputHx2(fR,fG,fB);
  FsrRcasInputHx2(hR,hG,hB);
  // Luma times 2.
  FfxFloat16x2 bL=bB*FFX_BROADCAST_FLOAT16X2(0.5)+(bR*FFX_BROADCAST_FLOAT16X2(0.5)+bG);
  FfxFloat16x2 dL=dB*FFX_BROADCAST_FLOAT16X2(0.5)+(dR*FFX_BROADCAST_FLOAT16X2(0.5)+dG);
  FfxFloat16x2 eL=eB*FFX_BROADCAST_FLOAT16X2(0.5)+(eR*FFX_BROADCAST_FLOAT16X2(0.5)+eG);
  FfxFloat16x2 fL=fB*FFX_BROADCAST_FLOAT16X2(0.5)+(fR*FFX_BROADCAST_FLOAT16X2(0.5)+fG);
  FfxFloat16x2 hL=hB*FFX_BROADCAST_FLOAT16X2(0.5)+(hR*FFX_BROADCAST_FLOAT16X2(0.5)+hG);
  // Noise detection.
  FfxFloat16x2 nz=FFX_BROADCAST_FLOAT16X2(0.25)*bL+FFX_BROADCAST_FLOAT16X2(0.25)*dL+FFX_BROADCAST_FLOAT16X2(0.25)*fL+FFX_BROADCAST_FLOAT16X2(0.25)*hL-eL;
  nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL)));
  nz=FFX_BROADCAST_FLOAT16X2(-0.5)*nz+FFX_BROADCAST_FLOAT16X2(1.0);
  // Min and max of ring.
  FfxFloat16x2 mn4R=min(ffxMin3Half(bR,dR,fR),hR);
  FfxFloat16x2 mn4G=min(ffxMin3Half(bG,dG,fG),hG);
  FfxFloat16x2 mn4B=min(ffxMin3Half(bB,dB,fB),hB);
  FfxFloat16x2 mx4R=max(ffxMax3Half(bR,dR,fR),hR);
  FfxFloat16x2 mx4G=max(ffxMax3Half(bG,dG,fG),hG);
  FfxFloat16x2 mx4B=max(ffxMax3Half(bB,dB,fB),hB);
  // Immediate constants for peak range.
  FfxFloat16x2 peakC=FfxFloat16x2(1.0,-1.0*4.0);
  // Limiters, these need to be high precision RCPs.
  FfxFloat16x2 hitMinR=mn4R*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4R);
  FfxFloat16x2 hitMinG=mn4G*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4G);
  FfxFloat16x2 hitMinB=mn4B*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4B);
  FfxFloat16x2 hitMaxR=(peakC.x-mx4R)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4R+peakC.y);
  FfxFloat16x2 hitMaxG=(peakC.x-mx4G)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4G+peakC.y);
  FfxFloat16x2 hitMaxB=(peakC.x-mx4B)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4B+peakC.y);
  FfxFloat16x2 lobeR=max(-hitMinR,hitMaxR);
  FfxFloat16x2 lobeG=max(-hitMinG,hitMaxG);
  FfxFloat16x2 lobeB=max(-hitMinB,hitMaxB);
  FfxFloat16x2 lobe=max(FFX_BROADCAST_FLOAT16X2(-FSR_RCAS_LIMIT),min(ffxMax3Half(lobeR,lobeG,lobeB),FFX_BROADCAST_FLOAT16X2(0.0)))*FFX_BROADCAST_FLOAT16X2(FFX_UINT32_TO_FLOAT16X2(con.y).x);
  // Apply noise removal.
  #ifdef FSR_RCAS_DENOISE
   lobe*=nz;
  #endif
  // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
  FfxFloat16x2 rcpL=ffxApproximateReciprocalMediumHalf(FFX_BROADCAST_FLOAT16X2(4.0)*lobe+FFX_BROADCAST_FLOAT16X2(1.0));
  pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
  pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
  pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                          FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR
//
//------------------------------------------------------------------------------------------------------------------------------
// Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts.
// Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel.
// The 'Lfga*()' functions provide a convenient way to introduce grain.
// These functions limit grain based on distance to signal limits.
// This is done so that the grain is temporally energy preserving, and thus won't modify image tonality.
// Grain application should be done in a linear colorspace.
// The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased).
//------------------------------------------------------------------------------------------------------------------------------
// Usage,
//   FsrLfga*(
//    color, // In/out linear colorspace color {0 to 1} ranged.
//    grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain.
//    amount); // Amount of grain (0 to 1} ranged.
//------------------------------------------------------------------------------------------------------------------------------
// Example if grain texture is monochrome: 'FsrLfgaF(color,ffxBroadcast3(grain),amount)'
//==============================================================================================================================
#if defined(FFX_GPU)
 // Maximum grain is the minimum distance to the signal limit.
 void FsrLfgaF(inout FfxFloat32x3 c, FfxFloat32x3 t, FfxFloat32 a)
 {
     c += (t * ffxBroadcast3(a)) * ffxMin(ffxBroadcast3(1.0) - c, c);
 }
#endif
//==============================================================================================================================
#if defined(FFX_GPU)&& FFX_HALF == 1
 // Half precision version (slower).
 void FsrLfgaH(inout FfxFloat16x3 c, FfxFloat16x3 t, FfxFloat16 a)
 {
     c += (t * FFX_BROADCAST_FLOAT16X3(a)) * min(FFX_BROADCAST_FLOAT16X3(1.0) - c, c);
 }
 //------------------------------------------------------------------------------------------------------------------------------
 // Packed half precision version (faster).
 void FsrLfgaHx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 tR,FfxFloat16x2 tG,FfxFloat16x2 tB,FfxFloat16 a){
  cR+=(tR*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cR,cR);cG+=(tG*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cG,cG);cB+=(tB*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cB,cB);}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                          FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER
//
//------------------------------------------------------------------------------------------------------------------------------
// This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear.
// The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering.
//------------------------------------------------------------------------------------------------------------------------------
// Reversible tonemapper usage,
//  FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}.
//  FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}.
//==============================================================================================================================
#if defined(FFX_GPU)
 void FsrSrtmF(inout FfxFloat32x3 c)
 {
     c *= ffxBroadcast3(rcp(ffxMax3(c.r, c.g, c.b) + FfxFloat32(1.0)));
 }
 // The extra max solves the c=1.0 case (which is a /0).
 void FsrSrtmInvF(inout FfxFloat32x3 c){c*=ffxBroadcast3(rcp(max(FfxFloat32(1.0/32768.0),FfxFloat32(1.0)-ffxMax3(c.r,c.g,c.b))));}
#endif
//==============================================================================================================================
#if defined(FFX_GPU )&& FFX_HALF == 1
 void FsrSrtmH(inout FfxFloat16x3 c)
 {
     c *= FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(ffxMax3Half(c.r, c.g, c.b) + FFX_BROADCAST_FLOAT16(1.0)));
 }
 void FsrSrtmInvH(inout FfxFloat16x3 c)
 {
     c *= FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(max(FFX_BROADCAST_FLOAT16(1.0 / 32768.0), FFX_BROADCAST_FLOAT16(1.0) - ffxMax3Half(c.r, c.g, c.b))));
 }
 //------------------------------------------------------------------------------------------------------------------------------
 void FsrSrtmHx2(inout FfxFloat16x2 cR, inout FfxFloat16x2 cG, inout FfxFloat16x2 cB)
 {
     FfxFloat16x2 rcp = ffxReciprocalHalf(ffxMax3Half(cR, cG, cB) + FFX_BROADCAST_FLOAT16X2(1.0));
     cR *= rcp;
     cG *= rcp;
     cB *= rcp;
 }
 void FsrSrtmInvHx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB)
 {
     FfxFloat16x2 rcp=ffxReciprocalHalf(max(FFX_BROADCAST_FLOAT16X2(1.0/32768.0),FFX_BROADCAST_FLOAT16X2(1.0)-ffxMax3Half(cR,cG,cB)));
     cR*=rcp;
     cG*=rcp;
     cB*=rcp;
 }
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//                                       FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER
//
//------------------------------------------------------------------------------------------------------------------------------
// Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
// Gamma 2.0 is used so that the conversion back to linear is just to square the color.
// The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively.
// Given good non-biased temporal blue noise as dither input,
// the output dither will temporally conserve energy.
// This is done by choosing the linear nearest step point instead of perceptual nearest.
// See code below for details.
//------------------------------------------------------------------------------------------------------------------------------
// DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION
// ===============================================
// - Output is 'FfxUInt32(floor(saturate(n)*255.0+0.5))'.
// - Thus rounding is to nearest.
// - NaN gets converted to zero.
// - INF is clamped to {0.0 to 1.0}.
//==============================================================================================================================
#if defined(FFX_GPU)
 // Hand tuned integer position to dither value, with more values than simple checkerboard.
 // Only 32-bit has enough precision for this compddation.
 // Output is {0 to <1}.
 FfxFloat32 FsrTepdDitF(FfxUInt32x2 p, FfxUInt32 f)
 {
     FfxFloat32 x = FfxFloat32(p.x + f);
     FfxFloat32 y = FfxFloat32(p.y);
     // The 1.61803 golden ratio.
     FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0);
     // Number designed to provide a good visual pattern.
     FfxFloat32 b = FfxFloat32(1.0 / 3.69);
     x            = x * a + (y * b);
     return ffxFract(x);
 }
  //------------------------------------------------------------------------------------------------------------------------------
 // This version is 8-bit gamma 2.0.
 // The 'c' input is {0 to 1}.
 // Output is {0 to 1} ready for image store.
 void FsrTepdC8F(inout FfxFloat32x3 c, FfxFloat32 dit)
 {
     FfxFloat32x3 n = ffxSqrt(c);
     n              = floor(n * ffxBroadcast3(255.0)) * ffxBroadcast3(1.0 / 255.0);
     FfxFloat32x3 a = n * n;
     FfxFloat32x3 b = n + ffxBroadcast3(1.0 / 255.0);
     b              = b * b;
     // Ratio of 'a' to 'b' required to produce 'c'.
     // ffxApproximateReciprocal() won't work here (at least for very high dynamic ranges).
     // ffxApproximateReciprocalMedium() is an IADD,FMA,MUL.
     FfxFloat32x3 r = (c - b) * ffxApproximateReciprocalMedium(a - b);
     // Use the ratio as a cutoff to choose 'a' or 'b'.
     // ffxIsGreaterThanZero() is a MUL.
     c = ffxSaturate(n + ffxIsGreaterThanZero(ffxBroadcast3(dit) - r) * ffxBroadcast3(1.0 / 255.0));
 }
 //------------------------------------------------------------------------------------------------------------------------------
 // This version is 10-bit gamma 2.0.
 // The 'c' input is {0 to 1}.
 // Output is {0 to 1} ready for image store.
 void FsrTepdC10F(inout FfxFloat32x3 c, FfxFloat32 dit)
 {
     FfxFloat32x3 n = ffxSqrt(c);
     n              = floor(n * ffxBroadcast3(1023.0)) * ffxBroadcast3(1.0 / 1023.0);
     FfxFloat32x3 a = n * n;
     FfxFloat32x3 b = n + ffxBroadcast3(1.0 / 1023.0);
     b              = b * b;
     FfxFloat32x3 r = (c - b) * ffxApproximateReciprocalMedium(a - b);
     c              = ffxSaturate(n + ffxIsGreaterThanZero(ffxBroadcast3(dit) - r) * ffxBroadcast3(1.0 / 1023.0));
 }
#endif
//==============================================================================================================================
#if defined(FFX_GPU)&& FFX_HALF == 1
 FfxFloat16 FsrTepdDitH(FfxUInt32x2 p, FfxUInt32 f)
 {
     FfxFloat32 x = FfxFloat32(p.x + f);
     FfxFloat32 y = FfxFloat32(p.y);
     FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0);
     FfxFloat32 b = FfxFloat32(1.0 / 3.69);
     x       = x * a + (y * b);
     return FfxFloat16(ffxFract(x));
 }
 //------------------------------------------------------------------------------------------------------------------------------
 void FsrTepdC8H(inout FfxFloat16x3 c, FfxFloat16 dit)
 {
     FfxFloat16x3 n = sqrt(c);
     n     = floor(n * FFX_BROADCAST_FLOAT16X3(255.0)) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0);
     FfxFloat16x3 a = n * n;
     FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 255.0);
     b     = b * b;
     FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b);
     c     = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0));
 }
 //------------------------------------------------------------------------------------------------------------------------------
 void FsrTepdC10H(inout FfxFloat16x3 c, FfxFloat16 dit)
 {
     FfxFloat16x3 n = sqrt(c);
     n     = floor(n * FFX_BROADCAST_FLOAT16X3(1023.0)) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0);
     FfxFloat16x3 a = n * n;
     FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0);
     b     = b * b;
     FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b);
     c     = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0));
 }
 //==============================================================================================================================
 // This computes dither for positions 'p' and 'p+{8,0}'.
 FfxFloat16x2 FsrTepdDitHx2(FfxUInt32x2 p, FfxUInt32 f)
 {
     FfxFloat32x2 x;
     x.x     = FfxFloat32(p.x + f);
     x.y     = x.x + FfxFloat32(8.0);
     FfxFloat32 y = FfxFloat32(p.y);
     FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0);
     FfxFloat32 b = FfxFloat32(1.0 / 3.69);
     x       = x * ffxBroadcast2(a) + ffxBroadcast2(y * b);
     return FfxFloat16x2(ffxFract(x));
 }
 //------------------------------------------------------------------------------------------------------------------------------
 void FsrTepdC8Hx2(inout FfxFloat16x2 cR, inout FfxFloat16x2 cG, inout FfxFloat16x2 cB, FfxFloat16x2 dit)
 {
     FfxFloat16x2 nR = sqrt(cR);
     FfxFloat16x2 nG = sqrt(cG);
     FfxFloat16x2 nB = sqrt(cB);
     nR     = floor(nR * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
     nG     = floor(nG * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
     nB     = floor(nB * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
     FfxFloat16x2 aR = nR * nR;
     FfxFloat16x2 aG = nG * nG;
     FfxFloat16x2 aB = nB * nB;
     FfxFloat16x2 bR = nR + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
     bR     = bR * bR;
     FfxFloat16x2 bG = nG + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
     bG     = bG * bG;
     FfxFloat16x2 bB = nB + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
     bB     = bB * bB;
     FfxFloat16x2 rR = (cR - bR) * ffxApproximateReciprocalMediumHalf(aR - bR);
     FfxFloat16x2 rG = (cG - bG) * ffxApproximateReciprocalMediumHalf(aG - bG);
     FfxFloat16x2 rB = (cB - bB) * ffxApproximateReciprocalMediumHalf(aB - bB);
     cR     = ffxSaturate(nR + ffxIsGreaterThanZeroHalf(dit - rR) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
     cG     = ffxSaturate(nG + ffxIsGreaterThanZeroHalf(dit - rG) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
     cB     = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
 }
 //------------------------------------------------------------------------------------------------------------------------------
 void FsrTepdC10Hx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 dit){
  FfxFloat16x2 nR=sqrt(cR);
  FfxFloat16x2 nG=sqrt(cG);
  FfxFloat16x2 nB=sqrt(cB);
  nR=floor(nR*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0);
  nG=floor(nG*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0);
  nB=floor(nB*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0);
  FfxFloat16x2 aR=nR*nR;
  FfxFloat16x2 aG=nG*nG;
  FfxFloat16x2 aB=nB*nB;
  FfxFloat16x2 bR=nR+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bR=bR*bR;
  FfxFloat16x2 bG=nG+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bG=bG*bG;
  FfxFloat16x2 bB=nB+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bB=bB*bB;
  FfxFloat16x2 rR=(cR-bR)*ffxApproximateReciprocalMediumHalf(aR-bR);
  FfxFloat16x2 rG=(cG-bG)*ffxApproximateReciprocalMediumHalf(aG-bG);
  FfxFloat16x2 rB=(cB-bB)*ffxApproximateReciprocalMediumHalf(aB-bB);
  cR=ffxSaturate(nR+ffxIsGreaterThanZeroHalf(dit-rR)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0));
  cG=ffxSaturate(nG+ffxIsGreaterThanZeroHalf(dit-rG)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0));
  cB                                                       = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 1023.0));
}
#endif