summaryrefslogtreecommitdiffstats
path: root/thirdparty/clipper2/include/clipper2/clipper.core.h
blob: 0de7c3720e053e88ed7796d5c8a59994d02244ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
/*******************************************************************************
* Author    :  Angus Johnson                                                   *
* Date      :  24 November 2023                                                *
* Website   :  http://www.angusj.com                                           *
* Copyright :  Angus Johnson 2010-2023                                         *
* Purpose   :  Core Clipper Library structures and functions                   *
* License   :  http://www.boost.org/LICENSE_1_0.txt                            *
*******************************************************************************/

#ifndef CLIPPER_CORE_H
#define CLIPPER_CORE_H

#include <cstdint>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <string>
#include <iostream>
#include <algorithm>
#include <climits>
#include <numeric>
#include "clipper2/clipper.version.h"

#define CLIPPER2_THROW(exception) std::abort()

namespace Clipper2Lib
{

#if (defined(__cpp_exceptions) && __cpp_exceptions) || (defined(__EXCEPTIONS) && __EXCEPTIONS)

  class Clipper2Exception : public std::exception {
  public:
    explicit Clipper2Exception(const char* description) :
      m_descr(description) {}
    virtual const char* what() const throw() override { return m_descr.c_str(); }
  private:
    std::string m_descr;
  };

  static const char* precision_error =
    "Precision exceeds the permitted range";
  static const char* range_error =
    "Values exceed permitted range";
  static const char* scale_error =
    "Invalid scale (either 0 or too large)";
  static const char* non_pair_error =
    "There must be 2 values for each coordinate";
  static const char* undefined_error =
    "There is an undefined error in Clipper2";
#endif

  // error codes (2^n)
  const int precision_error_i   = 1;  // non-fatal
  const int scale_error_i       = 2;  // non-fatal 
  const int non_pair_error_i    = 4;  // non-fatal 
  const int undefined_error_i   = 32; // fatal 
  const int range_error_i       = 64;

#ifndef PI
  static const double PI = 3.141592653589793238;
#endif

#ifdef CLIPPER2_MAX_PRECISION
  const int MAX_DECIMAL_PRECISION = CLIPPER2_MAX_PRECISION;
#else
  const int MAX_DECIMAL_PRECISION = 8; // see Discussions #564
#endif

  static const int64_t MAX_COORD = INT64_MAX >> 2;
  static const int64_t MIN_COORD = -MAX_COORD;
  static const int64_t INVALID = INT64_MAX;
  const double max_coord = static_cast<double>(MAX_COORD);
  const double min_coord = static_cast<double>(MIN_COORD);

  static const double MAX_DBL = (std::numeric_limits<double>::max)();

  static void DoError(int error_code)
  {
#if (defined(__cpp_exceptions) && __cpp_exceptions) || (defined(__EXCEPTIONS) && __EXCEPTIONS)
    switch (error_code)
    {
    case precision_error_i:
      CLIPPER2_THROW(Clipper2Exception(precision_error));
    case scale_error_i:
      CLIPPER2_THROW(Clipper2Exception(scale_error));
    case non_pair_error_i:
      CLIPPER2_THROW(Clipper2Exception(non_pair_error));
    case undefined_error_i:
      CLIPPER2_THROW(Clipper2Exception(undefined_error));
    case range_error_i:
      CLIPPER2_THROW(Clipper2Exception(range_error));
    }
#else
    if(error_code) {}; // only to stop compiler 'parameter not used' warning
#endif
  }


  //By far the most widely used filling rules for polygons are EvenOdd
  //and NonZero, sometimes called Alternate and Winding respectively.
  //https://en.wikipedia.org/wiki/Nonzero-rule
  enum class FillRule { EvenOdd, NonZero, Positive, Negative };

  // Point ------------------------------------------------------------------------

  template <typename T>
  struct Point {
    T x;
    T y;
#ifdef USINGZ
    int64_t z;

    template <typename T2>
    inline void Init(const T2 x_ = 0, const T2 y_ = 0, const int64_t z_ = 0)
    {
      if constexpr (std::numeric_limits<T>::is_integer &&
        !std::numeric_limits<T2>::is_integer)
      {
        x = static_cast<T>(std::round(x_));
        y = static_cast<T>(std::round(y_));
        z = z_;
      }
      else
      {
        x = static_cast<T>(x_);
        y = static_cast<T>(y_);
        z = z_;
      }
    }

    explicit Point() : x(0), y(0), z(0) {};

    template <typename T2>
    Point(const T2 x_, const T2 y_, const int64_t z_ = 0)
    {
      Init(x_, y_);
      z = z_;
    }

    template <typename T2>
    explicit Point(const Point<T2>& p)
    {
      Init(p.x, p.y, p.z);
    }

    Point operator * (const double scale) const
    {
      return Point(x * scale, y * scale, z);
    }

    void SetZ(const int64_t z_value) { z = z_value; }

    friend std::ostream& operator<<(std::ostream& os, const Point& point)
    {
      os << point.x << "," << point.y << "," << point.z;
      return os;
    }

#else

    template <typename T2>
    inline void Init(const T2 x_ = 0, const T2 y_ = 0)
    {
      if constexpr (std::numeric_limits<T>::is_integer &&
        !std::numeric_limits<T2>::is_integer)
      {
        x = static_cast<T>(std::round(x_));
        y = static_cast<T>(std::round(y_));
      }
      else
      {
        x = static_cast<T>(x_);
        y = static_cast<T>(y_);
      }
    }

    explicit Point() : x(0), y(0) {};

    template <typename T2>
    Point(const T2 x_, const T2 y_) { Init(x_, y_); }

    template <typename T2>
    explicit Point(const Point<T2>& p) { Init(p.x, p.y); }

    Point operator * (const double scale) const
    {
      return Point(x * scale, y * scale);
    }

    friend std::ostream& operator<<(std::ostream& os, const Point& point)
    {
      os << point.x << "," << point.y;
      return os;
    }
#endif

    friend bool operator==(const Point& a, const Point& b)
    {
      return a.x == b.x && a.y == b.y;
    }

    friend bool operator!=(const Point& a, const Point& b)
    {
      return !(a == b);
    }

    inline Point<T> operator-() const
    {
      return Point<T>(-x, -y);
    }

    inline Point operator+(const Point& b) const
    {
      return Point(x + b.x, y + b.y);
    }

    inline Point operator-(const Point& b) const
    {
      return Point(x - b.x, y - b.y);
    }

    inline void Negate() { x = -x; y = -y; }

  };

  //nb: using 'using' here (instead of typedef) as they can be used in templates
  using Point64 = Point<int64_t>;
  using PointD = Point<double>;

  template <typename T>
  using Path = std::vector<Point<T>>;
  template <typename T>
  using Paths = std::vector<Path<T>>;

  using Path64 = Path<int64_t>;
  using PathD = Path<double>;
  using Paths64 = std::vector< Path64>;
  using PathsD = std::vector< PathD>;

  static const Point64 InvalidPoint64 = Point64(
    (std::numeric_limits<int64_t>::max)(),
    (std::numeric_limits<int64_t>::max)());
  static const PointD InvalidPointD = PointD(
    (std::numeric_limits<double>::max)(),
    (std::numeric_limits<double>::max)());


  // Rect ------------------------------------------------------------------------

  template <typename T>
  struct Rect;

  using Rect64 = Rect<int64_t>;
  using RectD = Rect<double>;

  template <typename T>
  struct Rect {
    T left;
    T top;
    T right;
    T bottom;

    Rect(T l, T t, T r, T b) :
      left(l),
      top(t),
      right(r),
      bottom(b) {}

    Rect(bool is_valid = true)
    {
      if (is_valid)
      {
        left = right = top = bottom = 0;
      }
      else
      {
        left = top = (std::numeric_limits<T>::max)();
        right = bottom = (std::numeric_limits<T>::lowest)();
      }
    }

    bool IsValid() const { return left != (std::numeric_limits<T>::max)(); }

    T Width() const { return right - left; }
    T Height() const { return bottom - top; }
    void Width(T width) { right = left + width; }
    void Height(T height) { bottom = top + height; }

    Point<T> MidPoint() const
    {
      return Point<T>((left + right) / 2, (top + bottom) / 2);
    }

    Path<T> AsPath() const
    {
      Path<T> result;
      result.reserve(4);
      result.push_back(Point<T>(left, top));
      result.push_back(Point<T>(right, top));
      result.push_back(Point<T>(right, bottom));
      result.push_back(Point<T>(left, bottom));
      return result;
    }

    bool Contains(const Point<T>& pt) const
    {
      return pt.x > left && pt.x < right&& pt.y > top && pt.y < bottom;
    }

    bool Contains(const Rect<T>& rec) const
    {
      return rec.left >= left && rec.right <= right &&
        rec.top >= top && rec.bottom <= bottom;
    }

    void Scale(double scale) {
      left *= scale;
      top *= scale;
      right *= scale;
      bottom *= scale;
    }

    bool IsEmpty() const { return bottom <= top || right <= left; };

    bool Intersects(const Rect<T>& rec) const
    {
      return ((std::max)(left, rec.left) <= (std::min)(right, rec.right)) &&
        ((std::max)(top, rec.top) <= (std::min)(bottom, rec.bottom));
    };

    bool operator==(const Rect<T>& other) const {
      return left == other.left && right == other.right && 
        top == other.top && bottom == other.bottom;
    }

    friend std::ostream& operator<<(std::ostream& os, const Rect<T>& rect) {
      os << "(" << rect.left << "," << rect.top << "," << rect.right << "," << rect.bottom << ") ";
      return os;
    }
  };

  template <typename T1, typename T2>
  inline Rect<T1> ScaleRect(const Rect<T2>& rect, double scale)
  {
    Rect<T1> result;

    if constexpr (std::numeric_limits<T1>::is_integer &&
      !std::numeric_limits<T2>::is_integer)
    {
      result.left = static_cast<T1>(std::round(rect.left * scale));
      result.top = static_cast<T1>(std::round(rect.top * scale));
      result.right = static_cast<T1>(std::round(rect.right * scale));
      result.bottom = static_cast<T1>(std::round(rect.bottom * scale));
    }
    else
    {
      result.left = rect.left * scale;
      result.top = rect.top * scale;
      result.right = rect.right * scale;
      result.bottom = rect.bottom * scale;
    }
    return result;
  }

  static const Rect64 InvalidRect64 = Rect64(
    (std::numeric_limits<int64_t>::max)(), 
    (std::numeric_limits<int64_t>::max)(), 
    (std::numeric_limits<int64_t>::lowest)(),
    (std::numeric_limits<int64_t>::lowest)());
  static const RectD InvalidRectD = RectD(
    (std::numeric_limits<double>::max)(),
    (std::numeric_limits<double>::max)(),
    (std::numeric_limits<double>::lowest)(),
    (std::numeric_limits<double>::lowest)());

  template <typename T>
  Rect<T> GetBounds(const Path<T>& path)
  {
    auto xmin = (std::numeric_limits<T>::max)();
    auto ymin = (std::numeric_limits<T>::max)();
    auto xmax = std::numeric_limits<T>::lowest();
    auto ymax = std::numeric_limits<T>::lowest();
    for (const auto& p : path)
    {
      if (p.x < xmin) xmin = p.x;
      if (p.x > xmax) xmax = p.x;
      if (p.y < ymin) ymin = p.y;
      if (p.y > ymax) ymax = p.y;
    }
    return Rect<T>(xmin, ymin, xmax, ymax);
  }

  template <typename T>
  Rect<T> GetBounds(const Paths<T>& paths)
  {
    auto xmin = (std::numeric_limits<T>::max)();
    auto ymin = (std::numeric_limits<T>::max)();
    auto xmax = std::numeric_limits<T>::lowest();
    auto ymax = std::numeric_limits<T>::lowest();
    for (const Path<T>& path : paths)
      for (const Point<T>& p : path)
      {
      if (p.x < xmin) xmin = p.x;
      if (p.x > xmax) xmax = p.x;
      if (p.y < ymin) ymin = p.y;
      if (p.y > ymax) ymax = p.y;
      }
    return Rect<T>(xmin, ymin, xmax, ymax);
  }

  template <typename T>
  std::ostream& operator << (std::ostream& outstream, const Path<T>& path)
  {
    if (!path.empty())
    {
      auto pt = path.cbegin(), last = path.cend() - 1;
      while (pt != last)
        outstream << *pt++ << ", ";
      outstream << *last << std::endl;
    }
    return outstream;
  }

  template <typename T>
  std::ostream& operator << (std::ostream& outstream, const Paths<T>& paths)
  {
    for (auto p : paths)
      outstream << p;
    return outstream;
  }


  template <typename T1, typename T2>
  inline Path<T1> ScalePath(const Path<T2>& path, 
    double scale_x, double scale_y, int& error_code)
  {
    Path<T1> result;
    if (scale_x == 0 || scale_y == 0)
    {
      error_code |= scale_error_i;
      DoError(scale_error_i);
      // if no exception, treat as non-fatal error
      if (scale_x == 0) scale_x = 1.0;
      if (scale_y == 0) scale_y = 1.0;
    }

    result.reserve(path.size());
#ifdef USINGZ
    std::transform(path.begin(), path.end(), back_inserter(result),
      [scale_x, scale_y](const auto& pt) 
      { return Point<T1>(pt.x * scale_x, pt.y * scale_y, pt.z); });
#else
    std::transform(path.begin(), path.end(), back_inserter(result),
      [scale_x, scale_y](const auto& pt) 
      { return Point<T1>(pt.x * scale_x, pt.y * scale_y); });
#endif
    return result;
  }

  template <typename T1, typename T2>
  inline Path<T1> ScalePath(const Path<T2>& path,
    double scale, int& error_code)
  {
    return ScalePath<T1, T2>(path, scale, scale, error_code);
  }

  template <typename T1, typename T2>
  inline Paths<T1> ScalePaths(const Paths<T2>& paths, 
    double scale_x, double scale_y, int& error_code)
  {
    Paths<T1> result;

    if constexpr (std::numeric_limits<T1>::is_integer &&
      !std::numeric_limits<T2>::is_integer)
    {
      RectD r = GetBounds(paths);
      if ((r.left * scale_x) < min_coord ||
        (r.right * scale_x) > max_coord ||
        (r.top * scale_y) < min_coord ||
        (r.bottom * scale_y) > max_coord)
      { 
        error_code |= range_error_i;
        DoError(range_error_i);
        return result; // empty path
      }
    }

    result.reserve(paths.size());
    std::transform(paths.begin(), paths.end(), back_inserter(result),
      [=, &error_code](const auto& path)
      { return ScalePath<T1, T2>(path, scale_x, scale_y, error_code); });
    return result;
  }

  template <typename T1, typename T2>
  inline Paths<T1> ScalePaths(const Paths<T2>& paths, 
    double scale, int& error_code)
  {
    return ScalePaths<T1, T2>(paths, scale, scale, error_code);
  }

  template <typename T1, typename T2>
  inline Path<T1> TransformPath(const Path<T2>& path)
  {
    Path<T1> result;
    result.reserve(path.size());
    std::transform(path.cbegin(), path.cend(), std::back_inserter(result),
      [](const Point<T2>& pt) {return Point<T1>(pt); });
    return result;
  }

  template <typename T1, typename T2>
  inline Paths<T1> TransformPaths(const Paths<T2>& paths)
  {
    Paths<T1> result;
    std::transform(paths.cbegin(), paths.cend(), std::back_inserter(result),
      [](const Path<T2>& path) {return TransformPath<T1, T2>(path); });
    return result;
  }

  template<typename T>
  inline double Sqr(T val)
  {
    return static_cast<double>(val) * static_cast<double>(val);
  }

  template<typename T>
  inline bool NearEqual(const Point<T>& p1,
    const Point<T>& p2, double max_dist_sqrd)
  {
    return Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y) < max_dist_sqrd;
  }

  template<typename T>
  inline Path<T> StripNearEqual(const Path<T>& path,
    double max_dist_sqrd, bool is_closed_path)
  {
    if (path.size() == 0) return Path<T>();
    Path<T> result;
    result.reserve(path.size());
    typename Path<T>::const_iterator path_iter = path.cbegin();
    Point<T> first_pt = *path_iter++, last_pt = first_pt;
    result.push_back(first_pt);
    for (; path_iter != path.cend(); ++path_iter)
    {
      if (!NearEqual(*path_iter, last_pt, max_dist_sqrd))
      {
        last_pt = *path_iter;
        result.push_back(last_pt);
      }
    }
    if (!is_closed_path) return result;
    while (result.size() > 1 &&
      NearEqual(result.back(), first_pt, max_dist_sqrd)) result.pop_back();
    return result;
  }

  template<typename T>
  inline Paths<T> StripNearEqual(const Paths<T>& paths,
    double max_dist_sqrd, bool is_closed_path)
  {
    Paths<T> result;
    result.reserve(paths.size());
    for (typename Paths<T>::const_iterator paths_citer = paths.cbegin();
      paths_citer != paths.cend(); ++paths_citer)
    {
      result.push_back(StripNearEqual(*paths_citer, max_dist_sqrd, is_closed_path));
    }
    return result;
  }

  template<typename T>
  inline void StripDuplicates( Path<T>& path, bool is_closed_path)
  {
    //https://stackoverflow.com/questions/1041620/whats-the-most-efficient-way-to-erase-duplicates-and-sort-a-vector#:~:text=Let%27s%20compare%20three%20approaches%3A
    path.erase(std::unique(path.begin(), path.end()), path.end());
    if (is_closed_path)
      while (path.size() > 1 && path.back() == path.front()) path.pop_back();
  }

  template<typename T>
  inline void StripDuplicates( Paths<T>& paths, bool is_closed_path)
  {
    for (typename Paths<T>::iterator paths_citer = paths.begin();
      paths_citer != paths.end(); ++paths_citer)
    {
      StripDuplicates(*paths_citer, is_closed_path);
    }
  }

  // Miscellaneous ------------------------------------------------------------

  inline void CheckPrecision(int& precision, int& error_code)
  {
    if (precision >= -MAX_DECIMAL_PRECISION && precision <= MAX_DECIMAL_PRECISION) return;
    error_code |= precision_error_i; // non-fatal error
    DoError(precision_error_i);      // does nothing unless exceptions enabled
    precision = precision > 0 ? MAX_DECIMAL_PRECISION : -MAX_DECIMAL_PRECISION;
  }

  inline void CheckPrecision(int& precision)
  {
    int error_code = 0;
    CheckPrecision(precision, error_code);
  }

  template <typename T>
  inline double CrossProduct(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3) {
    return (static_cast<double>(pt2.x - pt1.x) * static_cast<double>(pt3.y -
      pt2.y) - static_cast<double>(pt2.y - pt1.y) * static_cast<double>(pt3.x - pt2.x));
  }

  template <typename T>
  inline double CrossProduct(const Point<T>& vec1, const Point<T>& vec2)
  {
    return static_cast<double>(vec1.y * vec2.x) - static_cast<double>(vec2.y * vec1.x);
  }

  template <typename T>
  inline double DotProduct(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3) {
    return (static_cast<double>(pt2.x - pt1.x) * static_cast<double>(pt3.x - pt2.x) +
      static_cast<double>(pt2.y - pt1.y) * static_cast<double>(pt3.y - pt2.y));
  }

  template <typename T>
  inline double DotProduct(const Point<T>& vec1, const Point<T>& vec2)
  {
    return static_cast<double>(vec1.x * vec2.x) + static_cast<double>(vec1.y * vec2.y);
  }

  template <typename T>
  inline double DistanceSqr(const Point<T> pt1, const Point<T> pt2)
  {
    return Sqr(pt1.x - pt2.x) + Sqr(pt1.y - pt2.y);
  }

  template <typename T>
  inline double DistanceFromLineSqrd(const Point<T>& pt, const Point<T>& ln1, const Point<T>& ln2)
  {
    //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
    //see http://en.wikipedia.org/wiki/Perpendicular_distance
    double A = static_cast<double>(ln1.y - ln2.y);
    double B = static_cast<double>(ln2.x - ln1.x);
    double C = A * ln1.x + B * ln1.y;
    C = A * pt.x + B * pt.y - C;
    return (C * C) / (A * A + B * B);
  }

  template <typename T>
  inline double Area(const Path<T>& path)
  {
    size_t cnt = path.size();
    if (cnt < 3) return 0.0;
    double a = 0.0;
    typename Path<T>::const_iterator it1, it2 = path.cend() - 1, stop = it2;
    if (!(cnt & 1)) ++stop;
    for (it1 = path.cbegin(); it1 != stop;)
    {
      a += static_cast<double>(it2->y + it1->y) * (it2->x - it1->x);
      it2 = it1 + 1;
      a += static_cast<double>(it1->y + it2->y) * (it1->x - it2->x);
      it1 += 2;
    }
    if (cnt & 1)
      a += static_cast<double>(it2->y + it1->y) * (it2->x - it1->x);
    return a * 0.5;
  }

  template <typename T>
  inline double Area(const Paths<T>& paths)
  {
    double a = 0.0;
    for (typename Paths<T>::const_iterator paths_iter = paths.cbegin();
      paths_iter != paths.cend(); ++paths_iter)
    {
      a += Area<T>(*paths_iter);
    }
    return a;
  }

  template <typename T>
  inline bool IsPositive(const Path<T>& poly)
  {
    // A curve has positive orientation [and area] if a region 'R' 
    // is on the left when traveling around the outside of 'R'.
    //https://mathworld.wolfram.com/CurveOrientation.html
    //nb: This statement is premised on using Cartesian coordinates
    return Area<T>(poly) >= 0;
  }
  
  inline bool GetIntersectPoint(const Point64& ln1a, const Point64& ln1b,
    const Point64& ln2a, const Point64& ln2b, Point64& ip)
  {  
    // https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
    double dx1 = static_cast<double>(ln1b.x - ln1a.x);
    double dy1 = static_cast<double>(ln1b.y - ln1a.y);
    double dx2 = static_cast<double>(ln2b.x - ln2a.x);
    double dy2 = static_cast<double>(ln2b.y - ln2a.y);

    double det = dy1 * dx2 - dy2 * dx1;
    if (det == 0.0) return false;
    double t = ((ln1a.x - ln2a.x) * dy2 - (ln1a.y - ln2a.y) * dx2) / det;
    if (t <= 0.0) ip = ln1a;        // ?? check further (see also #568)
    else if (t >= 1.0) ip = ln1b;   // ?? check further
    else
    {
      ip.x = static_cast<int64_t>(ln1a.x + t * dx1);
      ip.y = static_cast<int64_t>(ln1a.y + t * dy1);
    }
    return true;
  }

  inline bool SegmentsIntersect(const Point64& seg1a, const Point64& seg1b,
    const Point64& seg2a, const Point64& seg2b, bool inclusive = false)
  {
    if (inclusive)
    {
      double res1 = CrossProduct(seg1a, seg2a, seg2b);
      double res2 = CrossProduct(seg1b, seg2a, seg2b);
      if (res1 * res2 > 0) return false;
      double res3 = CrossProduct(seg2a, seg1a, seg1b);
      double res4 = CrossProduct(seg2b, seg1a, seg1b);
      if (res3 * res4 > 0) return false;
      return (res1 || res2 || res3 || res4); // ensures not collinear
    }
    else {
      return (CrossProduct(seg1a, seg2a, seg2b) *
        CrossProduct(seg1b, seg2a, seg2b) < 0) &&
        (CrossProduct(seg2a, seg1a, seg1b) *
          CrossProduct(seg2b, seg1a, seg1b) < 0);
    }
  }

  template<typename T>
  inline Point<T> GetClosestPointOnSegment(const Point<T>& offPt,
    const Point<T>& seg1, const Point<T>& seg2)
  {
    if (seg1.x == seg2.x && seg1.y == seg2.y) return seg1;
    double dx = static_cast<double>(seg2.x - seg1.x);
    double dy = static_cast<double>(seg2.y - seg1.y);
    double q =
      (static_cast<double>(offPt.x - seg1.x) * dx +
        static_cast<double>(offPt.y - seg1.y) * dy) /
      (Sqr(dx) + Sqr(dy));
    if (q < 0) q = 0; else if (q > 1) q = 1;
    if constexpr (std::numeric_limits<T>::is_integer)
      return Point<T>(
        seg1.x + static_cast<T>(nearbyint(q * dx)),
        seg1.y + static_cast<T>(nearbyint(q * dy)));
    else
      return Point<T>(
        seg1.x + static_cast<T>(q * dx),
        seg1.y + static_cast<T>(q * dy));
  }

  enum class PointInPolygonResult { IsOn, IsInside, IsOutside };

  template <typename T>
  inline PointInPolygonResult PointInPolygon(const Point<T>& pt, const Path<T>& polygon)
  {
    if (polygon.size() < 3)
      return PointInPolygonResult::IsOutside;

    int val = 0;
    typename Path<T>::const_iterator cbegin = polygon.cbegin(), first = cbegin, curr, prev;
    typename Path<T>::const_iterator cend = polygon.cend();

    while (first != cend && first->y == pt.y) ++first;
    if (first == cend) // not a proper polygon
      return PointInPolygonResult::IsOutside;

    bool is_above = first->y < pt.y, starting_above = is_above;
    curr = first +1; 
    while (true)
    {
      if (curr == cend)
      {
        if (cend == first || first == cbegin) break;
        cend = first;
        curr = cbegin;
      }
      
      if (is_above)
      {
        while (curr != cend && curr->y < pt.y) ++curr;
        if (curr == cend) continue;
      }
      else
      {
        while (curr != cend && curr->y > pt.y) ++curr;
        if (curr == cend) continue;
      }

      if (curr == cbegin) 
        prev = polygon.cend() - 1; //nb: NOT cend (since might equal first)
      else  
        prev = curr - 1;

      if (curr->y == pt.y)
      {
        if (curr->x == pt.x || 
          (curr->y == prev->y &&
            ((pt.x < prev->x) != (pt.x < curr->x))))
              return PointInPolygonResult::IsOn;
        ++curr;
        if (curr == first) break;
        continue;
      }

      if (pt.x < curr->x && pt.x < prev->x)
      {
        // we're only interested in edges crossing on the left
      }
      else if (pt.x > prev->x && pt.x > curr->x)
        val = 1 - val; // toggle val
      else
      {
        double d = CrossProduct(*prev, *curr, pt);
        if (d == 0) return PointInPolygonResult::IsOn;
        if ((d < 0) == is_above) val = 1 - val;
      }
      is_above = !is_above;
      ++curr;
    }
    
    if (is_above != starting_above)
    {
      cend = polygon.cend();
      if (curr == cend) curr = cbegin;
      if (curr == cbegin) prev = cend - 1;
      else prev = curr - 1;
      double d = CrossProduct(*prev, *curr, pt);
      if (d == 0) return PointInPolygonResult::IsOn;
      if ((d < 0) == is_above) val = 1 - val;
    }

    return (val == 0) ?
      PointInPolygonResult::IsOutside :
      PointInPolygonResult::IsInside;
  }

}  // namespace

#endif  // CLIPPER_CORE_H