summaryrefslogtreecommitdiffstats
path: root/thirdparty/clipper2/include/clipper2/clipper.h
blob: a2fe5c3cc28f10e3cc20398ab58ed8a4396251f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*******************************************************************************
* Author    :  Angus Johnson                                                   *
* Date      :  27 April 2024                                                   *
* Website   :  http://www.angusj.com                                           *
* Copyright :  Angus Johnson 2010-2024                                         *
* Purpose   :  This module provides a simple interface to the Clipper Library  *
* License   :  http://www.boost.org/LICENSE_1_0.txt                            *
*******************************************************************************/

#ifndef CLIPPER_H
#define CLIPPER_H

#include <cstdlib>
#include <type_traits>
#include <vector>

#include "clipper2/clipper.core.h"
#include "clipper2/clipper.engine.h"
#include "clipper2/clipper.offset.h"
#include "clipper2/clipper.minkowski.h"
#include "clipper2/clipper.rectclip.h"

namespace Clipper2Lib {

  inline Paths64 BooleanOp(ClipType cliptype, FillRule fillrule,
    const Paths64& subjects, const Paths64& clips)
  {
    Paths64 result;
    Clipper64 clipper;
    clipper.AddSubject(subjects);
    clipper.AddClip(clips);
    clipper.Execute(cliptype, fillrule, result);
    return result;
  }

  inline void BooleanOp(ClipType cliptype, FillRule fillrule,
    const Paths64& subjects, const Paths64& clips, PolyTree64& solution)
  {
    Paths64 sol_open;
    Clipper64 clipper;
    clipper.AddSubject(subjects);
    clipper.AddClip(clips);
    clipper.Execute(cliptype, fillrule, solution, sol_open);
  }

  inline PathsD BooleanOp(ClipType cliptype, FillRule fillrule,
    const PathsD& subjects, const PathsD& clips, int precision = 2)
  {
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    PathsD result;
    if (error_code) return result;
    ClipperD clipper(precision);
    clipper.AddSubject(subjects);
    clipper.AddClip(clips);
    clipper.Execute(cliptype, fillrule, result);
    return result;
  }

  inline void BooleanOp(ClipType cliptype, FillRule fillrule,
    const PathsD& subjects, const PathsD& clips,
    PolyTreeD& polytree, int precision = 2)
  {
    polytree.Clear();
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    if (error_code) return;
    ClipperD clipper(precision);
    clipper.AddSubject(subjects);
    clipper.AddClip(clips);
    clipper.Execute(cliptype, fillrule, polytree);
  }

  inline Paths64 Intersect(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
  {
    return BooleanOp(ClipType::Intersection, fillrule, subjects, clips);
  }

  inline PathsD Intersect(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
  {
    return BooleanOp(ClipType::Intersection, fillrule, subjects, clips, decimal_prec);
  }

  inline Paths64 Union(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
  {
    return BooleanOp(ClipType::Union, fillrule, subjects, clips);
  }

  inline PathsD Union(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
  {
    return BooleanOp(ClipType::Union, fillrule, subjects, clips, decimal_prec);
  }

  inline Paths64 Union(const Paths64& subjects, FillRule fillrule)
  {
    Paths64 result;
    Clipper64 clipper;
    clipper.AddSubject(subjects);
    clipper.Execute(ClipType::Union, fillrule, result);
    return result;
  }

  inline PathsD Union(const PathsD& subjects, FillRule fillrule, int precision = 2)
  {
    PathsD result;
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    if (error_code) return result;
    ClipperD clipper(precision);
    clipper.AddSubject(subjects);
    clipper.Execute(ClipType::Union, fillrule, result);
    return result;
  }

  inline Paths64 Difference(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
  {
    return BooleanOp(ClipType::Difference, fillrule, subjects, clips);
  }

  inline PathsD Difference(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
  {
    return BooleanOp(ClipType::Difference, fillrule, subjects, clips, decimal_prec);
  }

  inline Paths64 Xor(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
  {
    return BooleanOp(ClipType::Xor, fillrule, subjects, clips);
  }

  inline PathsD Xor(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
  {
    return BooleanOp(ClipType::Xor, fillrule, subjects, clips, decimal_prec);
  }

  inline Paths64 InflatePaths(const Paths64& paths, double delta,
    JoinType jt, EndType et, double miter_limit = 2.0,
    double arc_tolerance = 0.0)
  {
    if (!delta) return paths;
    ClipperOffset clip_offset(miter_limit, arc_tolerance);
    clip_offset.AddPaths(paths, jt, et);
    Paths64 solution;
    clip_offset.Execute(delta, solution);
    return solution;
  }

  inline PathsD InflatePaths(const PathsD& paths, double delta,
    JoinType jt, EndType et, double miter_limit = 2.0,
    int precision = 2, double arc_tolerance = 0.0)
  {
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    if (!delta) return paths;
    if (error_code) return PathsD();
    const double scale = std::pow(10, precision);
    ClipperOffset clip_offset(miter_limit, arc_tolerance);
    clip_offset.AddPaths(ScalePaths<int64_t,double>(paths, scale, error_code), jt, et);
    if (error_code) return PathsD();
    Paths64 solution;
    clip_offset.Execute(delta * scale, solution);
    return ScalePaths<double, int64_t>(solution, 1 / scale, error_code);
  }

  template <typename T>
  inline Path<T> TranslatePath(const Path<T>& path, T dx, T dy)
  {
    Path<T> result;
    result.reserve(path.size());
    std::transform(path.begin(), path.end(), back_inserter(result),
      [dx, dy](const auto& pt) { return Point<T>(pt.x + dx, pt.y +dy); });
    return result;
  }

  inline Path64 TranslatePath(const Path64& path, int64_t dx, int64_t dy)
  {
    return TranslatePath<int64_t>(path, dx, dy);
  }

  inline PathD TranslatePath(const PathD& path, double dx, double dy)
  {
    return TranslatePath<double>(path, dx, dy);
  }

  template <typename T>
  inline Paths<T> TranslatePaths(const Paths<T>& paths, T dx, T dy)
  {
    Paths<T> result;
    result.reserve(paths.size());
    std::transform(paths.begin(), paths.end(), back_inserter(result),
      [dx, dy](const auto& path) { return TranslatePath(path, dx, dy); });
    return result;
  }

  inline Paths64 TranslatePaths(const Paths64& paths, int64_t dx, int64_t dy)
  {
    return TranslatePaths<int64_t>(paths, dx, dy);
  }

  inline PathsD TranslatePaths(const PathsD& paths, double dx, double dy)
  {
    return TranslatePaths<double>(paths, dx, dy);
  }

  inline Paths64 RectClip(const Rect64& rect, const Paths64& paths)
  {
    if (rect.IsEmpty() || paths.empty()) return Paths64();
    RectClip64 rc(rect);
    return rc.Execute(paths);
  }

  inline Paths64 RectClip(const Rect64& rect, const Path64& path)
  {
    if (rect.IsEmpty() || path.empty()) return Paths64();
    RectClip64 rc(rect);
    return rc.Execute(Paths64{ path });
  }

  inline PathsD RectClip(const RectD& rect, const PathsD& paths, int precision = 2)
  {
    if (rect.IsEmpty() || paths.empty()) return PathsD();
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    if (error_code) return PathsD();
    const double scale = std::pow(10, precision);
    Rect64 r = ScaleRect<int64_t, double>(rect, scale);
    RectClip64 rc(r);
    Paths64 pp = ScalePaths<int64_t, double>(paths, scale, error_code);
    if (error_code) return PathsD(); // ie: error_code result is lost
    return ScalePaths<double, int64_t>(
      rc.Execute(pp), 1 / scale, error_code);
  }

  inline PathsD RectClip(const RectD& rect, const PathD& path, int precision = 2)
  {
    return RectClip(rect, PathsD{ path }, precision);
  }

  inline Paths64 RectClipLines(const Rect64& rect, const Paths64& lines)
  {
    if (rect.IsEmpty() || lines.empty()) return Paths64();
    RectClipLines64 rcl(rect);
    return rcl.Execute(lines);
  }

  inline Paths64 RectClipLines(const Rect64& rect, const Path64& line)
  {
    return RectClipLines(rect, Paths64{ line });
  }

  inline PathsD RectClipLines(const RectD& rect, const PathsD& lines, int precision = 2)
  {
    if (rect.IsEmpty() || lines.empty()) return PathsD();
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    if (error_code) return PathsD();
    const double scale = std::pow(10, precision);
    Rect64 r = ScaleRect<int64_t, double>(rect, scale);
    RectClipLines64 rcl(r);
    Paths64 p = ScalePaths<int64_t, double>(lines, scale, error_code);
    if (error_code) return PathsD();
    p = rcl.Execute(p);
    return ScalePaths<double, int64_t>(p, 1 / scale, error_code);
  }

  inline PathsD RectClipLines(const RectD& rect, const PathD& line, int precision = 2)
  {
    return RectClipLines(rect, PathsD{ line }, precision);
  }

  namespace details
  {

    inline void PolyPathToPaths64(const PolyPath64& polypath, Paths64& paths)
    {
      paths.push_back(polypath.Polygon());
      for (const auto& child : polypath)
        PolyPathToPaths64(*child, paths);
    }

    inline void PolyPathToPathsD(const PolyPathD& polypath, PathsD& paths)
    {
      paths.push_back(polypath.Polygon());
      for (const auto& child : polypath)
        PolyPathToPathsD(*child, paths);
    }

    inline bool PolyPath64ContainsChildren(const PolyPath64& pp)
    {
      for (const auto& child : pp)
      {
        // return false if this child isn't fully contained by its parent

        // checking for a single vertex outside is a bit too crude since
        // it doesn't account for rounding errors. It's better to check
        // for consecutive vertices found outside the parent's polygon.

        int outsideCnt = 0;
        for (const Point64& pt : child->Polygon())
        {
          PointInPolygonResult result = PointInPolygon(pt, pp.Polygon());
          if (result == PointInPolygonResult::IsInside) --outsideCnt;
          else if (result == PointInPolygonResult::IsOutside) ++outsideCnt;
          if (outsideCnt > 1) return false;
          else if (outsideCnt < -1) break;
        }

        // now check any nested children too
        if (child->Count() > 0 && !PolyPath64ContainsChildren(*child))
          return false;
      }
      return true;
    }

    static void OutlinePolyPath(std::ostream& os,
      size_t idx, bool isHole, size_t count, const std::string& preamble)
    {
      std::string plural = (count == 1) ? "." : "s.";
      if (isHole)
        os << preamble << "+- Hole (" << idx << ") contains " << count <<
        " nested polygon" << plural << std::endl;
      else
        os << preamble << "+- Polygon (" << idx << ") contains " << count <<
          " hole" << plural << std::endl;
    }

    static void OutlinePolyPath64(std::ostream& os, const PolyPath64& pp,
      size_t idx, std::string preamble)
    {
      OutlinePolyPath(os, idx, pp.IsHole(), pp.Count(), preamble);
      for (size_t i = 0; i < pp.Count(); ++i)
        if (pp.Child(i)->Count())
          details::OutlinePolyPath64(os, *pp.Child(i), i, preamble + "  ");
    }

    static void OutlinePolyPathD(std::ostream& os, const PolyPathD& pp,
      size_t idx, std::string preamble)
    {
      OutlinePolyPath(os, idx, pp.IsHole(), pp.Count(), preamble);
      for (size_t i = 0; i < pp.Count(); ++i)
        if (pp.Child(i)->Count())
          details::OutlinePolyPathD(os, *pp.Child(i), i, preamble + "  ");
    }

    template<typename T, typename U>
    inline constexpr void MakePathGeneric(const T an_array,
      size_t array_size, std::vector<U>& result)
    {
      result.reserve(array_size / 2);
      for (size_t i = 0; i < array_size; i +=2)
#ifdef USINGZ
        result.push_back( U{ an_array[i], an_array[i + 1], 0} );
#else
        result.push_back( U{ an_array[i], an_array[i + 1]} );
#endif
    }

  } // end details namespace

  inline std::ostream& operator<< (std::ostream& os, const PolyTree64& pp)
  {
    std::string plural = (pp.Count() == 1) ? " polygon." : " polygons.";
    os << std::endl << "Polytree with " << pp.Count() << plural << std::endl;
      for (size_t i = 0; i < pp.Count(); ++i)
        if (pp.Child(i)->Count())
          details::OutlinePolyPath64(os, *pp.Child(i), i, "  ");
    os << std::endl << std::endl;
    return os;
  }

  inline std::ostream& operator<< (std::ostream& os, const PolyTreeD& pp)
  {
    std::string plural = (pp.Count() == 1) ? " polygon." : " polygons.";
    os << std::endl << "Polytree with " << pp.Count() << plural << std::endl;
    for (size_t i = 0; i < pp.Count(); ++i)
      if (pp.Child(i)->Count())
        details::OutlinePolyPathD(os, *pp.Child(i), i, "  ");
    os << std::endl << std::endl;
    if (!pp.Level()) os << std::endl;
    return os;
  }

  inline Paths64 PolyTreeToPaths64(const PolyTree64& polytree)
  {
    Paths64 result;
    for (const auto& child : polytree)
      details::PolyPathToPaths64(*child, result);
    return result;
  }

  inline PathsD PolyTreeToPathsD(const PolyTreeD& polytree)
  {
    PathsD result;
    for (const auto& child : polytree)
      details::PolyPathToPathsD(*child, result);
    return result;
  }

  inline bool CheckPolytreeFullyContainsChildren(const PolyTree64& polytree)
  {
    for (const auto& child : polytree)
      if (child->Count() > 0 &&
        !details::PolyPath64ContainsChildren(*child))
          return false;
    return true;
  }

  template<typename T,
    typename std::enable_if<
      std::is_integral<T>::value &&
      !std::is_same<char, T>::value, bool
    >::type = true>
  inline Path64 MakePath(const std::vector<T>& list)
  {
    const auto size = list.size() - list.size() % 2;
    if (list.size() != size)
      DoError(non_pair_error_i);  // non-fatal without exception handling
    Path64 result;
    details::MakePathGeneric(list, size, result);
    return result;
  }

  template<typename T, std::size_t N,
    typename std::enable_if<
      std::is_integral<T>::value &&
      !std::is_same<char, T>::value, bool
    >::type = true>
  inline Path64 MakePath(const T(&list)[N])
  {
    // Make the compiler error on unpaired value (i.e. no runtime effects).
    static_assert(N % 2 == 0, "MakePath requires an even number of arguments");
    Path64 result;
    details::MakePathGeneric(list, N, result);
    return result;
  }

  template<typename T,
    typename std::enable_if<
      std::is_arithmetic<T>::value &&
      !std::is_same<char, T>::value, bool
    >::type = true>
  inline PathD MakePathD(const std::vector<T>& list)
  {
    const auto size = list.size() - list.size() % 2;
    if (list.size() != size)
      DoError(non_pair_error_i);  // non-fatal without exception handling
    PathD result;
    details::MakePathGeneric(list, size, result);
    return result;
  }

  template<typename T, std::size_t N,
    typename std::enable_if<
      std::is_arithmetic<T>::value &&
      !std::is_same<char, T>::value, bool
    >::type = true>
  inline PathD MakePathD(const T(&list)[N])
  {
    // Make the compiler error on unpaired value (i.e. no runtime effects).
    static_assert(N % 2 == 0, "MakePath requires an even number of arguments");
    PathD result;
    details::MakePathGeneric(list, N, result);
    return result;
  }

#ifdef USINGZ
  template<typename T2, std::size_t N>
  inline Path64 MakePathZ(const T2(&list)[N])
  {
    static_assert(N % 3 == 0 && std::numeric_limits<T2>::is_integer,
      "MakePathZ requires integer values in multiples of 3");
    std::size_t size = N / 3;
    Path64 result(size);
    for (size_t i = 0; i < size; ++i)
      result[i] = Point64(list[i * 3],
        list[i * 3 + 1], list[i * 3 + 2]);
    return result;
  }

  template<typename T2, std::size_t N>
  inline PathD MakePathZD(const T2(&list)[N])
  {
    static_assert(N % 3 == 0,
      "MakePathZD requires values in multiples of 3");
    std::size_t size = N / 3;
    PathD result(size);
    if constexpr (std::numeric_limits<T2>::is_integer)
      for (size_t i = 0; i < size; ++i)
        result[i] = PointD(list[i * 3],
          list[i * 3 + 1], list[i * 3 + 2]);
    else
      for (size_t i = 0; i < size; ++i)
        result[i] = PointD(list[i * 3], list[i * 3 + 1],
          static_cast<int64_t>(list[i * 3 + 2]));
    return result;
  }
#endif

  inline Path64 TrimCollinear(const Path64& p, bool is_open_path = false)
  {
    size_t len = p.size();
    if (len < 3)
    {
      if (!is_open_path || len < 2 || p[0] == p[1]) return Path64();
      else return p;
    }

    Path64 dst;
    dst.reserve(len);
    Path64::const_iterator srcIt = p.cbegin(), prevIt, stop = p.cend() - 1;

    if (!is_open_path)
    {
      while (srcIt != stop && IsCollinear(*stop, *srcIt, *(srcIt + 1)))
        ++srcIt;
      while (srcIt != stop && IsCollinear(*(stop - 1), *stop, *srcIt))
        --stop;
      if (srcIt == stop) return Path64();
    }

    prevIt = srcIt++;
    dst.push_back(*prevIt);
    for (; srcIt != stop; ++srcIt)
    {
      if (!IsCollinear(*prevIt, *srcIt, *(srcIt + 1)))
      {
        prevIt = srcIt;
        dst.push_back(*prevIt);
      }
    }

    if (is_open_path)
      dst.push_back(*srcIt);
    else if (!IsCollinear(*prevIt, *stop, dst[0]))
      dst.push_back(*stop);
    else
    {
      while (dst.size() > 2 &&
        IsCollinear(dst[dst.size() - 1], dst[dst.size() - 2], dst[0]))
          dst.pop_back();
      if (dst.size() < 3) return Path64();
    }
    return dst;
  }

  inline PathD TrimCollinear(const PathD& path, int precision, bool is_open_path = false)
  {
    int error_code = 0;
    CheckPrecisionRange(precision, error_code);
    if (error_code) return PathD();
    const double scale = std::pow(10, precision);
    Path64 p = ScalePath<int64_t, double>(path, scale, error_code);
    if (error_code) return PathD();
    p = TrimCollinear(p, is_open_path);
    return ScalePath<double, int64_t>(p, 1/scale, error_code);
  }

  template <typename T>
  inline double Distance(const Point<T> pt1, const Point<T> pt2)
  {
    return std::sqrt(DistanceSqr(pt1, pt2));
  }

  template <typename T>
  inline double Length(const Path<T>& path, bool is_closed_path = false)
  {
    double result = 0.0;
    if (path.size() < 2) return result;
    auto it = path.cbegin(), stop = path.end() - 1;
    for (; it != stop; ++it)
      result += Distance(*it, *(it + 1));
    if (is_closed_path)
      result += Distance(*stop, *path.cbegin());
    return result;
  }


  template <typename T>
  inline bool NearCollinear(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3, double sin_sqrd_min_angle_rads)
  {
    double cp = std::abs(CrossProduct(pt1, pt2, pt3));
    return (cp * cp) / (DistanceSqr(pt1, pt2) * DistanceSqr(pt2, pt3)) < sin_sqrd_min_angle_rads;
  }

  template <typename T>
  inline Path<T> Ellipse(const Rect<T>& rect, size_t steps = 0)
  {
    return Ellipse(rect.MidPoint(),
      static_cast<double>(rect.Width()) *0.5,
      static_cast<double>(rect.Height()) * 0.5, steps);
  }

  template <typename T>
  inline Path<T> Ellipse(const Point<T>& center,
    double radiusX, double radiusY = 0, size_t steps = 0)
  {
    if (radiusX <= 0) return Path<T>();
    if (radiusY <= 0) radiusY = radiusX;
    if (steps <= 2)
      steps = static_cast<size_t>(PI * sqrt((radiusX + radiusY) / 2));

    double si = std::sin(2 * PI / steps);
    double co = std::cos(2 * PI / steps);
    double dx = co, dy = si;
    Path<T> result;
    result.reserve(steps);
    result.push_back(Point<T>(center.x + radiusX, static_cast<double>(center.y)));
    for (size_t i = 1; i < steps; ++i)
    {
      result.push_back(Point<T>(center.x + radiusX * dx, center.y + radiusY * dy));
      double x = dx * co - dy * si;
      dy = dy * co + dx * si;
      dx = x;
    }
    return result;
  }

  inline size_t GetNext(size_t current, size_t high,
    const std::vector<bool>& flags)
  {
    ++current;
    while (current <= high && flags[current]) ++current;
    if (current <= high) return current;
    current = 0;
    while (flags[current]) ++current;
    return current;
  }

  inline size_t GetPrior(size_t current, size_t high,
    const std::vector<bool>& flags)
  {
    if (current == 0) current = high;
    else --current;
    while (current > 0 && flags[current]) --current;
    if (!flags[current]) return current;
    current = high;
    while (flags[current]) --current;
    return current;
  }

  template <typename T>
  inline Path<T> SimplifyPath(const Path<T> &path,
    double epsilon, bool isClosedPath = true)
  {
    const size_t len = path.size(), high = len -1;
    const double epsSqr = Sqr(epsilon);
    if (len < 4) return Path<T>(path);

    std::vector<bool> flags(len);
    std::vector<double> distSqr(len);
    size_t prior = high, curr = 0, start, next, prior2;
    if (isClosedPath)
    {
      distSqr[0] = PerpendicDistFromLineSqrd(path[0], path[high], path[1]);
      distSqr[high] = PerpendicDistFromLineSqrd(path[high], path[0], path[high - 1]);
    }
    else
    {
      distSqr[0] = MAX_DBL;
      distSqr[high] = MAX_DBL;
    }
    for (size_t i = 1; i < high; ++i)
      distSqr[i] = PerpendicDistFromLineSqrd(path[i], path[i - 1], path[i + 1]);

    for (;;)
    {
      if (distSqr[curr] > epsSqr)
      {
        start = curr;
        do
        {
          curr = GetNext(curr, high, flags);
        } while (curr != start && distSqr[curr] > epsSqr);
        if (curr == start) break;
      }

      prior = GetPrior(curr, high, flags);
      next = GetNext(curr, high, flags);
      if (next == prior) break;

      // flag for removal the smaller of adjacent 'distances'
      if (distSqr[next] < distSqr[curr])
      {
        prior2 = prior;
        prior = curr;
        curr = next;
        next = GetNext(next, high, flags);
      }
      else
        prior2 = GetPrior(prior, high, flags);

      flags[curr] = true;
      curr = next;
      next = GetNext(next, high, flags);

      if (isClosedPath || ((curr != high) && (curr != 0)))
        distSqr[curr] = PerpendicDistFromLineSqrd(path[curr], path[prior], path[next]);
      if (isClosedPath || ((prior != 0) && (prior != high)))
        distSqr[prior] = PerpendicDistFromLineSqrd(path[prior], path[prior2], path[curr]);
    }
    Path<T> result;
    result.reserve(len);
    for (typename Path<T>::size_type i = 0; i < len; ++i)
      if (!flags[i]) result.push_back(path[i]);
    return result;
  }

  template <typename T>
  inline Paths<T> SimplifyPaths(const Paths<T> &paths,
    double epsilon, bool isClosedPath = true)
  {
    Paths<T> result;
    result.reserve(paths.size());
    for (const auto& path : paths)
      result.push_back(SimplifyPath(path, epsilon, isClosedPath));
    return result;
  }

  template <typename T>
  inline void RDP(const Path<T> path, std::size_t begin,
    std::size_t end, double epsSqrd, std::vector<bool>& flags)
  {
    typename Path<T>::size_type idx = 0;
    double max_d = 0;
    while (end > begin && path[begin] == path[end]) flags[end--] = false;
    for (typename Path<T>::size_type i = begin + 1; i < end; ++i)
    {
      // PerpendicDistFromLineSqrd - avoids expensive Sqrt()
      double d = PerpendicDistFromLineSqrd(path[i], path[begin], path[end]);
      if (d <= max_d) continue;
      max_d = d;
      idx = i;
    }
    if (max_d <= epsSqrd) return;
    flags[idx] = true;
    if (idx > begin + 1) RDP(path, begin, idx, epsSqrd, flags);
    if (idx < end - 1) RDP(path, idx, end, epsSqrd, flags);
  }

  template <typename T>
  inline Path<T> RamerDouglasPeucker(const Path<T>& path, double epsilon)
  {
    const typename Path<T>::size_type len = path.size();
    if (len < 5) return Path<T>(path);
    std::vector<bool> flags(len);
    flags[0] = true;
    flags[len - 1] = true;
    RDP(path, 0, len - 1, Sqr(epsilon), flags);
    Path<T> result;
    result.reserve(len);
    for (typename Path<T>::size_type i = 0; i < len; ++i)
      if (flags[i])
        result.push_back(path[i]);
    return result;
  }

  template <typename T>
  inline Paths<T> RamerDouglasPeucker(const Paths<T>& paths, double epsilon)
  {
    Paths<T> result;
    result.reserve(paths.size());
    std::transform(paths.begin(), paths.end(), back_inserter(result),
      [epsilon](const auto& path)
      { return RamerDouglasPeucker<T>(path, epsilon); });
    return result;
  }

}  // end Clipper2Lib namespace

#endif  // CLIPPER_H