1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "parallel_for_for.h"
#include "parallel_prefix_sum.h"
namespace embree
{
template<typename Value>
struct ParallelForForPrefixSumState : public ParallelForForState
{
__forceinline ParallelForForPrefixSumState () {}
template<typename ArrayArray>
__forceinline ParallelForForPrefixSumState (ArrayArray& array2, const size_t minStepSize)
: ParallelForForState(array2,minStepSize) {}
template<typename SizeFunc>
__forceinline ParallelForForPrefixSumState (size_t numArrays, const SizeFunc& getSize, const size_t minStepSize)
: ParallelForForState(numArrays,getSize,minStepSize) {}
ParallelPrefixSumState<Value> prefix_state;
};
template<typename SizeFunc, typename Index, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_prefix_sum0_( ParallelForForPrefixSumState<Value>& state, Index minStepSize,
const SizeFunc& getSize, const Value& identity, const Func& func, const Reduction& reduction)
{
/* calculate number of tasks to use */
const size_t taskCount = state.taskCount;
/* perform parallel prefix sum */
parallel_for(taskCount, [&](const size_t taskIndex)
{
const size_t k0 = (taskIndex+0)*state.size()/taskCount;
const size_t k1 = (taskIndex+1)*state.size()/taskCount;
size_t i0 = state.i0[taskIndex];
size_t j0 = state.j0[taskIndex];
/* iterate over arrays */
size_t k=k0;
Value N=identity;
for (size_t i=i0; k<k1; i++) {
const size_t size = getSize(i);
const size_t r0 = j0, r1 = min(size,r0+k1-k);
if (r1 > r0) N = reduction(N, func((Index)i,range<Index>((Index)r0,(Index)r1),(Index)k));
k+=r1-r0; j0 = 0;
}
state.prefix_state.counts[taskIndex] = N;
});
/* calculate prefix sum */
Value sum=identity;
for (size_t i=0; i<taskCount; i++)
{
const Value c = state.prefix_state.counts[i];
state.prefix_state.sums[i] = sum;
sum=reduction(sum,c);
}
return sum;
}
template<typename SizeFunc, typename Index, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_prefix_sum1_( ParallelForForPrefixSumState<Value>& state, Index minStepSize,
const SizeFunc& getSize,
const Value& identity, const Func& func, const Reduction& reduction)
{
/* calculate number of tasks to use */
const size_t taskCount = state.taskCount;
/* perform parallel prefix sum */
parallel_for(taskCount, [&](const size_t taskIndex)
{
const size_t k0 = (taskIndex+0)*state.size()/taskCount;
const size_t k1 = (taskIndex+1)*state.size()/taskCount;
size_t i0 = state.i0[taskIndex];
size_t j0 = state.j0[taskIndex];
/* iterate over arrays */
size_t k=k0;
Value N=identity;
for (size_t i=i0; k<k1; i++) {
const size_t size = getSize(i);
const size_t r0 = j0, r1 = min(size,r0+k1-k);
if (r1 > r0) N = reduction(N, func((Index)i,range<Index>((Index)r0,(Index)r1),(Index)k,reduction(state.prefix_state.sums[taskIndex],N)));
k+=r1-r0; j0 = 0;
}
state.prefix_state.counts[taskIndex] = N;
});
/* calculate prefix sum */
Value sum=identity;
for (size_t i=0; i<taskCount; i++)
{
const Value c = state.prefix_state.counts[i];
state.prefix_state.sums[i] = sum;
sum=reduction(sum,c);
}
return sum;
}
template<typename ArrayArray, typename Index, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_prefix_sum0( ParallelForForPrefixSumState<Value>& state,
ArrayArray& array2, Index minStepSize,
const Value& identity, const Func& func, const Reduction& reduction)
{
return parallel_for_for_prefix_sum0_(state,minStepSize,
[&](Index i) { return array2[i] ? array2[i]->size() : 0; },
identity,
[&](Index i, const range<Index>& r, Index k) { return func(array2[i], r, k, i); },
reduction);
}
template<typename ArrayArray, typename Index, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_prefix_sum1( ParallelForForPrefixSumState<Value>& state,
ArrayArray& array2, Index minStepSize,
const Value& identity, const Func& func, const Reduction& reduction)
{
return parallel_for_for_prefix_sum1_(state,minStepSize,
[&](Index i) { return array2[i] ? array2[i]->size() : 0; },
identity,
[&](Index i, const range<Index>& r, Index k, const Value& base) { return func(array2[i], r, k, i, base); },
reduction);
}
template<typename ArrayArray, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_prefix_sum0( ParallelForForPrefixSumState<Value>& state, ArrayArray& array2,
const Value& identity, const Func& func, const Reduction& reduction)
{
return parallel_for_for_prefix_sum0(state,array2,size_t(1),identity,func,reduction);
}
template<typename ArrayArray, typename Value, typename Func, typename Reduction>
__forceinline Value parallel_for_for_prefix_sum1( ParallelForForPrefixSumState<Value>& state, ArrayArray& array2,
const Value& identity, const Func& func, const Reduction& reduction)
{
return parallel_for_for_prefix_sum1(state,array2,size_t(1),identity,func,reduction);
}
}
|