1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
/*
* Copyright (c) 2021 - 2024 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgMath.h"
bool mathInverse(const Matrix* m, Matrix* out)
{
auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) -
m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) +
m->e13 * (m->e21 * m->e32 - m->e22 * m->e31);
if (mathZero(det)) return false;
auto invDet = 1 / det;
out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet;
out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet;
out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet;
out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet;
out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet;
out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet;
out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet;
out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet;
out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet;
return true;
}
Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs)
{
Matrix m;
m.e11 = lhs->e11 * rhs->e11 + lhs->e12 * rhs->e21 + lhs->e13 * rhs->e31;
m.e12 = lhs->e11 * rhs->e12 + lhs->e12 * rhs->e22 + lhs->e13 * rhs->e32;
m.e13 = lhs->e11 * rhs->e13 + lhs->e12 * rhs->e23 + lhs->e13 * rhs->e33;
m.e21 = lhs->e21 * rhs->e11 + lhs->e22 * rhs->e21 + lhs->e23 * rhs->e31;
m.e22 = lhs->e21 * rhs->e12 + lhs->e22 * rhs->e22 + lhs->e23 * rhs->e32;
m.e23 = lhs->e21 * rhs->e13 + lhs->e22 * rhs->e23 + lhs->e23 * rhs->e33;
m.e31 = lhs->e31 * rhs->e11 + lhs->e32 * rhs->e21 + lhs->e33 * rhs->e31;
m.e32 = lhs->e31 * rhs->e12 + lhs->e32 * rhs->e22 + lhs->e33 * rhs->e32;
m.e33 = lhs->e31 * rhs->e13 + lhs->e32 * rhs->e23 + lhs->e33 * rhs->e33;
return m;
}
void mathRotate(Matrix* m, float degree)
{
if (degree == 0.0f) return;
auto radian = degree / 180.0f * MATH_PI;
auto cosVal = cosf(radian);
auto sinVal = sinf(radian);
m->e12 = m->e11 * -sinVal;
m->e11 *= cosVal;
m->e21 = m->e22 * sinVal;
m->e22 *= cosVal;
}
bool mathIdentity(const Matrix* m)
{
if (m->e11 != 1.0f || m->e12 != 0.0f || m->e13 != 0.0f ||
m->e21 != 0.0f || m->e22 != 1.0f || m->e23 != 0.0f ||
m->e31 != 0.0f || m->e32 != 0.0f || m->e33 != 1.0f) {
return false;
}
return true;
}
void mathMultiply(Point* pt, const Matrix* transform)
{
auto tx = pt->x * transform->e11 + pt->y * transform->e12 + transform->e13;
auto ty = pt->x * transform->e21 + pt->y * transform->e22 + transform->e23;
pt->x = tx;
pt->y = ty;
}
|