diff options
author | Bastiaan Olij <mux213@gmail.com> | 2021-09-01 13:11:10 +1000 |
---|---|---|
committer | Bastiaan Olij <mux213@gmail.com> | 2021-09-27 23:08:10 +1000 |
commit | 46c63af715cf42a6e27feb48a3e7ed6d6dd9458c (patch) | |
tree | 14b3049fc155209d617b89fb3e45b95269519f9f /include | |
parent | 3a5bd210921ac668949e20c494976660a986ea4a (diff) | |
download | redot-cpp-46c63af715cf42a6e27feb48a3e7ed6d6dd9458c.tar.gz |
Re-introduce build-in type code for core types
Diffstat (limited to 'include')
-rw-r--r-- | include/godot_cpp/core/defs.hpp | 17 | ||||
-rw-r--r-- | include/godot_cpp/core/math.hpp | 424 | ||||
-rw-r--r-- | include/godot_cpp/variant/aabb.hpp | 430 | ||||
-rw-r--r-- | include/godot_cpp/variant/basis.hpp | 310 | ||||
-rw-r--r-- | include/godot_cpp/variant/color.hpp | 257 | ||||
-rw-r--r-- | include/godot_cpp/variant/color_names.inc.hpp | 158 | ||||
-rw-r--r-- | include/godot_cpp/variant/plane.hpp | 106 | ||||
-rw-r--r-- | include/godot_cpp/variant/quaternion.hpp | 212 | ||||
-rw-r--r-- | include/godot_cpp/variant/rect2.hpp | 312 | ||||
-rw-r--r-- | include/godot_cpp/variant/rect2i.hpp | 198 | ||||
-rw-r--r-- | include/godot_cpp/variant/transform2d.hpp | 216 | ||||
-rw-r--r-- | include/godot_cpp/variant/transform3d.hpp | 204 | ||||
-rw-r--r-- | include/godot_cpp/variant/vector2.hpp | 236 | ||||
-rw-r--r-- | include/godot_cpp/variant/vector2i.hpp | 102 | ||||
-rw-r--r-- | include/godot_cpp/variant/vector3.hpp | 408 | ||||
-rw-r--r-- | include/godot_cpp/variant/vector3i.hpp | 255 |
16 files changed, 3845 insertions, 0 deletions
diff --git a/include/godot_cpp/core/defs.hpp b/include/godot_cpp/core/defs.hpp index a103985..21edc9f 100644 --- a/include/godot_cpp/core/defs.hpp +++ b/include/godot_cpp/core/defs.hpp @@ -92,6 +92,23 @@ #define unlikely(x) x #endif +#ifdef REAL_T_IS_DOUBLE +typedef double real_t; +#else +typedef float real_t; +#endif + +// Generic swap template. +#ifndef SWAP +#define SWAP(m_x, m_y) __swap_tmpl((m_x), (m_y)) +template <class T> +inline void __swap_tmpl(T &x, T &y) { + T aux = x; + x = y; + y = aux; +} +#endif // SWAP + // Home-made index sequence trick, so it can be used everywhere without the costly include of std::tuple. // https://stackoverflow.com/questions/15014096/c-index-of-type-during-variadic-template-expansion template <size_t... Is> diff --git a/include/godot_cpp/core/math.hpp b/include/godot_cpp/core/math.hpp new file mode 100644 index 0000000..1394901 --- /dev/null +++ b/include/godot_cpp/core/math.hpp @@ -0,0 +1,424 @@ +#ifndef GODOT_MATH_H +#define GODOT_MATH_H + +#include <godot_cpp/core/defs.hpp> + +#include <godot/gdnative_interface.h> + +#include <cmath> + +namespace godot { +namespace Math { + +// This epsilon should match the one used by Godot for consistency. +// Using `f` when `real_t` is float. +#define CMP_EPSILON 0.00001f +#define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON) + +// This epsilon is for values related to a unit size (scalar or vector len). +#ifdef PRECISE_MATH_CHECKS +#define UNIT_EPSILON 0.00001 +#else +// Tolerate some more floating point error normally. +#define UNIT_EPSILON 0.001 +#endif + +#define Math_SQRT12 0.7071067811865475244008443621048490 +#define Math_SQRT2 1.4142135623730950488016887242 +#define Math_LN2 0.6931471805599453094172321215 +#define Math_PI 3.1415926535897932384626433833 +#define Math_TAU 6.2831853071795864769252867666 +#define Math_E 2.7182818284590452353602874714 +#define Math_INF INFINITY +#define Math_NAN NAN + +// Functions reproduced as in Godot's source code `math_funcs.h`. +// Some are overloads to automatically support changing real_t into either double or float in the way Godot does. + +inline double fmod(double p_x, double p_y) { + return ::fmod(p_x, p_y); +} +inline float fmod(float p_x, float p_y) { + return ::fmodf(p_x, p_y); +} + +inline double fposmod(double p_x, double p_y) { + double value = Math::fmod(p_x, p_y); + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + value += 0.0; + return value; +} +inline float fposmod(float p_x, float p_y) { + float value = Math::fmod(p_x, p_y); + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + value += 0.0; + return value; +} + +inline float fposmodp(float p_x, float p_y) { + float value = Math::fmod(p_x, p_y); + if (value < 0) { + value += p_y; + } + value += 0.0; + return value; +} +inline double fposmodp(double p_x, double p_y) { + double value = Math::fmod(p_x, p_y); + if (value < 0) { + value += p_y; + } + value += 0.0; + return value; +} + +inline double floor(double p_x) { + return ::floor(p_x); +} +inline float floor(float p_x) { + return ::floorf(p_x); +} + +inline double ceil(double p_x) { + return ::ceil(p_x); +} +inline float ceil(float p_x) { + return ::ceilf(p_x); +} + +inline double exp(double p_x) { + return ::exp(p_x); +} +inline float exp(float p_x) { + return ::expf(p_x); +} + +inline double sin(double p_x) { + return ::sin(p_x); +} +inline float sin(float p_x) { + return ::sinf(p_x); +} + +inline double cos(double p_x) { + return ::cos(p_x); +} +inline float cos(float p_x) { + return ::cosf(p_x); +} + +inline double tan(double p_x) { + return ::tan(p_x); +} +inline float tan(float p_x) { + return ::tanf(p_x); +} + +inline double sinh(double p_x) { + return ::sinh(p_x); +} +inline float sinh(float p_x) { + return ::sinhf(p_x); +} + +inline float sinc(float p_x) { + return p_x == 0 ? 1 : ::sin(p_x) / p_x; +} +inline double sinc(double p_x) { + return p_x == 0 ? 1 : ::sin(p_x) / p_x; +} + +inline float sincn(float p_x) { + return sinc(Math_PI * p_x); +} +inline double sincn(double p_x) { + return sinc(Math_PI * p_x); +} + +inline double cosh(double p_x) { + return ::cosh(p_x); +} +inline float cosh(float p_x) { + return ::coshf(p_x); +} + +inline double tanh(double p_x) { + return ::tanh(p_x); +} +inline float tanh(float p_x) { + return ::tanhf(p_x); +} + +inline double asin(double p_x) { + return ::asin(p_x); +} +inline float asin(float p_x) { + return ::asinf(p_x); +} + +inline double acos(double p_x) { + return ::acos(p_x); +} +inline float acos(float p_x) { + return ::acosf(p_x); +} + +inline double atan(double p_x) { + return ::atan(p_x); +} +inline float atan(float p_x) { + return ::atanf(p_x); +} + +inline double atan2(double p_y, double p_x) { + return ::atan2(p_y, p_x); +} +inline float atan2(float p_y, float p_x) { + return ::atan2f(p_y, p_x); +} + +inline double sqrt(double p_x) { + return ::sqrt(p_x); +} +inline float sqrt(float p_x) { + return ::sqrtf(p_x); +} + +inline double pow(double p_x, double p_y) { + return ::pow(p_x, p_y); +} +inline float pow(float p_x, float p_y) { + return ::powf(p_x, p_y); +} + +inline double log(double p_x) { + return ::log(p_x); +} +inline float log(float p_x) { + return ::logf(p_x); +} + +inline float lerp(float minv, float maxv, float t) { + return minv + t * (maxv - minv); +} +inline double lerp(double minv, double maxv, double t) { + return minv + t * (maxv - minv); +} + +inline double lerp_angle(double p_from, double p_to, double p_weight) { + double difference = fmod(p_to - p_from, Math_TAU); + double distance = fmod(2.0 * difference, Math_TAU) - difference; + return p_from + distance * p_weight; +} +inline float lerp_angle(float p_from, float p_to, float p_weight) { + float difference = fmod(p_to - p_from, (float)Math_TAU); + float distance = fmod(2.0f * difference, (float)Math_TAU) - difference; + return p_from + distance * p_weight; +} + +template <typename T> +inline T clamp(T x, T minv, T maxv) { + if (x < minv) { + return minv; + } + if (x > maxv) { + return maxv; + } + return x; +} + +template <typename T> +inline T min(T a, T b) { + return a < b ? a : b; +} + +template <typename T> +inline T max(T a, T b) { + return a > b ? a : b; +} + +template <typename T> +inline T sign(T x) { + return static_cast<T>(x < 0 ? -1 : 1); +} + +template <typename T> +inline T abs(T x) { + return std::abs(x); +} + +inline double deg2rad(double p_y) { + return p_y * Math_PI / 180.0; +} +inline float deg2rad(float p_y) { + return p_y * static_cast<float>(Math_PI) / 180.f; +} + +inline double rad2deg(double p_y) { + return p_y * 180.0 / Math_PI; +} +inline float rad2deg(float p_y) { + return p_y * 180.f / static_cast<float>(Math_PI); +} + +inline double inverse_lerp(double p_from, double p_to, double p_value) { + return (p_value - p_from) / (p_to - p_from); +} +inline float inverse_lerp(float p_from, float p_to, float p_value) { + return (p_value - p_from) / (p_to - p_from); +} + +inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { + return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); +} +inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { + return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); +} + +inline bool is_equal_approx(real_t a, real_t b) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + real_t tolerance = CMP_EPSILON * std::abs(a); + if (tolerance < CMP_EPSILON) { + tolerance = CMP_EPSILON; + } + return std::abs(a - b) < tolerance; +} + +inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + return std::abs(a - b) < tolerance; +} + +inline bool is_zero_approx(real_t s) { + return std::abs(s) < CMP_EPSILON; +} + +inline double smoothstep(double p_from, double p_to, double p_weight) { + if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) { + return p_from; + } + double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0); + return x * x * (3.0 - 2.0 * x); +} +inline float smoothstep(float p_from, float p_to, float p_weight) { + if (is_equal_approx(p_from, p_to)) { + return p_from; + } + float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f); + return x * x * (3.0f - 2.0f * x); +} + +inline double move_toward(double p_from, double p_to, double p_delta) { + return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta; +} + +inline float move_toward(float p_from, float p_to, float p_delta) { + return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta; +} + +inline double linear2db(double p_linear) { + return log(p_linear) * 8.6858896380650365530225783783321; +} +inline float linear2db(float p_linear) { + return log(p_linear) * 8.6858896380650365530225783783321f; +} + +inline double db2linear(double p_db) { + return exp(p_db * 0.11512925464970228420089957273422); +} +inline float db2linear(float p_db) { + return exp(p_db * 0.11512925464970228420089957273422f); +} + +inline double round(double p_val) { + return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5); +} +inline float round(float p_val) { + return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f); +} + +inline int64_t wrapi(int64_t value, int64_t min, int64_t max) { + int64_t range = max - min; + return range == 0 ? min : min + ((((value - min) % range) + range) % range); +} + +inline float wrapf(real_t value, real_t min, real_t max) { + const real_t range = max - min; + return is_zero_approx(range) ? min : value - (range * floor((value - min) / range)); +} + +inline float stepify(float p_value, float p_step) { + if (p_step != 0) { + p_value = floor(p_value / p_step + 0.5f) * p_step; + } + return p_value; +} +inline double stepify(double p_value, double p_step) { + if (p_step != 0) { + p_value = floor(p_value / p_step + 0.5) * p_step; + } + return p_value; +} + +inline unsigned int next_power_of_2(unsigned int x) { + + if (x == 0) + return 0; + + --x; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; + + return ++x; +} + +// This function should be as fast as possible and rounding mode should not matter. +inline int fast_ftoi(float a) { + static int b; + +#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone? + b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5)); + +#elif defined(_MSC_VER) && _MSC_VER < 1800 + __asm fld a __asm fistp b + /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) ) + // use AT&T inline assembly style, document that + // we use memory as output (=m) and input (m) + __asm__ __volatile__ ( + "flds %1 \n\t" + "fistpl %0 \n\t" + : "=m" (b) + : "m" (a));*/ + +#else + b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint +#endif + return b; +} + +inline double snapped(double p_value, double p_step) { + if (p_step != 0) { + p_value = Math::floor(p_value / p_step + 0.5) * p_step; + } + return p_value; +} + +} // namespace Math +} // namespace godot + +#endif // GODOT_MATH_H diff --git a/include/godot_cpp/variant/aabb.hpp b/include/godot_cpp/variant/aabb.hpp new file mode 100644 index 0000000..446821b --- /dev/null +++ b/include/godot_cpp/variant/aabb.hpp @@ -0,0 +1,430 @@ +#ifndef GODOT_AABB_HPP +#define GODOT_AABB_HPP + +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/plane.hpp> +#include <godot_cpp/variant/vector3.hpp> + +/** + * AABB / AABB (Axis Aligned Bounding Box) + * This is implemented by a point (position) and the box size + */ + +namespace godot { + +class AABB { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + Vector3 position; + Vector3 size; + + real_t get_area() const; /// get area + inline bool has_no_area() const { + return (size.x <= 0 || size.y <= 0 || size.z <= 0); + } + + inline bool has_no_surface() const { + return (size.x <= 0 && size.y <= 0 && size.z <= 0); + } + + const Vector3 &get_position() const { return position; } + void set_position(const Vector3 &p_pos) { position = p_pos; } + const Vector3 &get_size() const { return size; } + void set_size(const Vector3 &p_size) { size = p_size; } + + bool operator==(const AABB &p_rval) const; + bool operator!=(const AABB &p_rval) const; + + bool is_equal_approx(const AABB &p_aabb) const; + inline bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap + inline bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap + inline bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this + + AABB merge(const AABB &p_with) const; + void merge_with(const AABB &p_aabb); ///merge with another AABB + AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs + bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; + bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; + inline bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const; + + inline bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const; + inline bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const; + bool intersects_plane(const Plane &p_plane) const; + + inline bool has_point(const Vector3 &p_point) const; + inline Vector3 get_support(const Vector3 &p_normal) const; + + Vector3 get_longest_axis() const; + int get_longest_axis_index() const; + inline real_t get_longest_axis_size() const; + + Vector3 get_shortest_axis() const; + int get_shortest_axis_index() const; + inline real_t get_shortest_axis_size() const; + + AABB grow(real_t p_by) const; + inline void grow_by(real_t p_amount); + + void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const; + inline Vector3 get_endpoint(int p_point) const; + + AABB expand(const Vector3 &p_vector) const; + inline void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const; + inline void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */ + + inline AABB abs() const { + return AABB(Vector3(position.x + Math::min(size.x, (real_t)0), position.y + Math::min(size.y, (real_t)0), position.z + Math::min(size.z, (real_t)0)), size.abs()); + } + + inline void quantize(real_t p_unit); + inline AABB quantized(real_t p_unit) const; + + inline void set_end(const Vector3 &p_end) { + size = p_end - position; + } + + inline Vector3 get_end() const { + return position + size; + } + + operator String() const; + + inline AABB() {} + inline AABB(const Vector3 &p_pos, const Vector3 &p_size) : + position(p_pos), + size(p_size) { + } +}; + +inline bool AABB::intersects(const AABB &p_aabb) const { + if (position.x >= (p_aabb.position.x + p_aabb.size.x)) { + return false; + } + if ((position.x + size.x) <= p_aabb.position.x) { + return false; + } + if (position.y >= (p_aabb.position.y + p_aabb.size.y)) { + return false; + } + if ((position.y + size.y) <= p_aabb.position.y) { + return false; + } + if (position.z >= (p_aabb.position.z + p_aabb.size.z)) { + return false; + } + if ((position.z + size.z) <= p_aabb.position.z) { + return false; + } + + return true; +} + +inline bool AABB::intersects_inclusive(const AABB &p_aabb) const { + if (position.x > (p_aabb.position.x + p_aabb.size.x)) { + return false; + } + if ((position.x + size.x) < p_aabb.position.x) { + return false; + } + if (position.y > (p_aabb.position.y + p_aabb.size.y)) { + return false; + } + if ((position.y + size.y) < p_aabb.position.y) { + return false; + } + if (position.z > (p_aabb.position.z + p_aabb.size.z)) { + return false; + } + if ((position.z + size.z) < p_aabb.position.z) { + return false; + } + + return true; +} + +inline bool AABB::encloses(const AABB &p_aabb) const { + Vector3 src_min = position; + Vector3 src_max = position + size; + Vector3 dst_min = p_aabb.position; + Vector3 dst_max = p_aabb.position + p_aabb.size; + + return ( + (src_min.x <= dst_min.x) && + (src_max.x > dst_max.x) && + (src_min.y <= dst_min.y) && + (src_max.y > dst_max.y) && + (src_min.z <= dst_min.z) && + (src_max.z > dst_max.z)); +} + +Vector3 AABB::get_support(const Vector3 &p_normal) const { + Vector3 half_extents = size * 0.5; + Vector3 ofs = position + half_extents; + + return Vector3( + (p_normal.x > 0) ? half_extents.x : -half_extents.x, + (p_normal.y > 0) ? half_extents.y : -half_extents.y, + (p_normal.z > 0) ? half_extents.z : -half_extents.z) + + ofs; +} + +Vector3 AABB::get_endpoint(int p_point) const { + switch (p_point) { + case 0: + return Vector3(position.x, position.y, position.z); + case 1: + return Vector3(position.x, position.y, position.z + size.z); + case 2: + return Vector3(position.x, position.y + size.y, position.z); + case 3: + return Vector3(position.x, position.y + size.y, position.z + size.z); + case 4: + return Vector3(position.x + size.x, position.y, position.z); + case 5: + return Vector3(position.x + size.x, position.y, position.z + size.z); + case 6: + return Vector3(position.x + size.x, position.y + size.y, position.z); + case 7: + return Vector3(position.x + size.x, position.y + size.y, position.z + size.z); + } + + ERR_FAIL_V(Vector3()); +} + +bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const { + Vector3 half_extents = size * 0.5; + Vector3 ofs = position + half_extents; + + for (int i = 0; i < p_plane_count; i++) { + const Plane &p = p_planes[i]; + Vector3 point( + (p.normal.x > 0) ? -half_extents.x : half_extents.x, + (p.normal.y > 0) ? -half_extents.y : half_extents.y, + (p.normal.z > 0) ? -half_extents.z : half_extents.z); + point += ofs; + if (p.is_point_over(point)) { + return false; + } + } + + // Make sure all points in the shape aren't fully separated from the AABB on + // each axis. + int bad_point_counts_positive[3] = { 0 }; + int bad_point_counts_negative[3] = { 0 }; + + for (int k = 0; k < 3; k++) { + for (int i = 0; i < p_point_count; i++) { + if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) { + bad_point_counts_positive[k]++; + } + if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) { + bad_point_counts_negative[k]++; + } + } + + if (bad_point_counts_negative[k] == p_point_count) { + return false; + } + if (bad_point_counts_positive[k] == p_point_count) { + return false; + } + } + + return true; +} + +bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const { + Vector3 half_extents = size * 0.5; + Vector3 ofs = position + half_extents; + + for (int i = 0; i < p_plane_count; i++) { + const Plane &p = p_planes[i]; + Vector3 point( + (p.normal.x < 0) ? -half_extents.x : half_extents.x, + (p.normal.y < 0) ? -half_extents.y : half_extents.y, + (p.normal.z < 0) ? -half_extents.z : half_extents.z); + point += ofs; + if (p.is_point_over(point)) { + return false; + } + } + + return true; +} + +bool AABB::has_point(const Vector3 &p_point) const { + if (p_point.x < position.x) { + return false; + } + if (p_point.y < position.y) { + return false; + } + if (p_point.z < position.z) { + return false; + } + if (p_point.x > position.x + size.x) { + return false; + } + if (p_point.y > position.y + size.y) { + return false; + } + if (p_point.z > position.z + size.z) { + return false; + } + + return true; +} + +inline void AABB::expand_to(const Vector3 &p_vector) { + Vector3 begin = position; + Vector3 end = position + size; + + if (p_vector.x < begin.x) { + begin.x = p_vector.x; + } + if (p_vector.y < begin.y) { + begin.y = p_vector.y; + } + if (p_vector.z < begin.z) { + begin.z = p_vector.z; + } + + if (p_vector.x > end.x) { + end.x = p_vector.x; + } + if (p_vector.y > end.y) { + end.y = p_vector.y; + } + if (p_vector.z > end.z) { + end.z = p_vector.z; + } + + position = begin; + size = end - begin; +} + +void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const { + Vector3 half_extents(size.x * 0.5, size.y * 0.5, size.z * 0.5); + Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z); + + real_t length = p_plane.normal.abs().dot(half_extents); + real_t distance = p_plane.distance_to(center); + r_min = distance - length; + r_max = distance + length; +} + +inline real_t AABB::get_longest_axis_size() const { + real_t max_size = size.x; + + if (size.y > max_size) { + max_size = size.y; + } + + if (size.z > max_size) { + max_size = size.z; + } + + return max_size; +} + +inline real_t AABB::get_shortest_axis_size() const { + real_t max_size = size.x; + + if (size.y < max_size) { + max_size = size.y; + } + + if (size.z < max_size) { + max_size = size.z; + } + + return max_size; +} + +bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const { + real_t divx = 1.0 / p_dir.x; + real_t divy = 1.0 / p_dir.y; + real_t divz = 1.0 / p_dir.z; + + Vector3 upbound = position + size; + real_t tmin, tmax, tymin, tymax, tzmin, tzmax; + if (p_dir.x >= 0) { + tmin = (position.x - p_from.x) * divx; + tmax = (upbound.x - p_from.x) * divx; + } else { + tmin = (upbound.x - p_from.x) * divx; + tmax = (position.x - p_from.x) * divx; + } + if (p_dir.y >= 0) { + tymin = (position.y - p_from.y) * divy; + tymax = (upbound.y - p_from.y) * divy; + } else { + tymin = (upbound.y - p_from.y) * divy; + tymax = (position.y - p_from.y) * divy; + } + if ((tmin > tymax) || (tymin > tmax)) { + return false; + } + if (tymin > tmin) { + tmin = tymin; + } + if (tymax < tmax) { + tmax = tymax; + } + if (p_dir.z >= 0) { + tzmin = (position.z - p_from.z) * divz; + tzmax = (upbound.z - p_from.z) * divz; + } else { + tzmin = (upbound.z - p_from.z) * divz; + tzmax = (position.z - p_from.z) * divz; + } + if ((tmin > tzmax) || (tzmin > tmax)) { + return false; + } + if (tzmin > tmin) { + tmin = tzmin; + } + if (tzmax < tmax) { + tmax = tzmax; + } + return ((tmin < t1) && (tmax > t0)); +} + +void AABB::grow_by(real_t p_amount) { + position.x -= p_amount; + position.y -= p_amount; + position.z -= p_amount; + size.x += 2.0 * p_amount; + size.y += 2.0 * p_amount; + size.z += 2.0 * p_amount; +} + +void AABB::quantize(real_t p_unit) { + size += position; + + position.x -= Math::fposmodp(position.x, p_unit); + position.y -= Math::fposmodp(position.y, p_unit); + position.z -= Math::fposmodp(position.z, p_unit); + + size.x -= Math::fposmodp(size.x, p_unit); + size.y -= Math::fposmodp(size.y, p_unit); + size.z -= Math::fposmodp(size.z, p_unit); + + size.x += p_unit; + size.y += p_unit; + size.z += p_unit; + + size -= position; +} + +AABB AABB::quantized(real_t p_unit) const { + AABB ret = *this; + ret.quantize(p_unit); + return ret; +} + +} // namespace godot + +#endif // GODOT_AABB_HPP diff --git a/include/godot_cpp/variant/basis.hpp b/include/godot_cpp/variant/basis.hpp new file mode 100644 index 0000000..b14bba0 --- /dev/null +++ b/include/godot_cpp/variant/basis.hpp @@ -0,0 +1,310 @@ +#ifndef GODOT_BASIS_HPP +#define GODOT_BASIS_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/quaternion.hpp> +#include <godot_cpp/variant/vector3.hpp> + +namespace godot { + +class Basis { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + Vector3 elements[3] = { + Vector3(1, 0, 0), + Vector3(0, 1, 0), + Vector3(0, 0, 1) + }; + + inline const Vector3 &operator[](int axis) const { + return elements[axis]; + } + inline Vector3 &operator[](int axis) { + return elements[axis]; + } + + void invert(); + void transpose(); + + Basis inverse() const; + Basis transposed() const; + + inline real_t determinant() const; + + void from_z(const Vector3 &p_z); + + inline Vector3 get_axis(int p_axis) const { + // get actual basis axis (elements is transposed for performance) + return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]); + } + inline void set_axis(int p_axis, const Vector3 &p_value) { + // get actual basis axis (elements is transposed for performance) + elements[0][p_axis] = p_value.x; + elements[1][p_axis] = p_value.y; + elements[2][p_axis] = p_value.z; + } + + void rotate(const Vector3 &p_axis, real_t p_phi); + Basis rotated(const Vector3 &p_axis, real_t p_phi) const; + + void rotate_local(const Vector3 &p_axis, real_t p_phi); + Basis rotated_local(const Vector3 &p_axis, real_t p_phi) const; + + void rotate(const Vector3 &p_euler); + Basis rotated(const Vector3 &p_euler) const; + + void rotate(const Quaternion &p_quat); + Basis rotated(const Quaternion &p_quat) const; + + Vector3 get_rotation_euler() const; + void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; + void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; + Quaternion get_rotation_quat() const; + Vector3 get_rotation() const { return get_rotation_euler(); }; + + Vector3 rotref_posscale_decomposition(Basis &rotref) const; + + Vector3 get_euler_xyz() const; + void set_euler_xyz(const Vector3 &p_euler); + + Vector3 get_euler_xzy() const; + void set_euler_xzy(const Vector3 &p_euler); + + Vector3 get_euler_yzx() const; + void set_euler_yzx(const Vector3 &p_euler); + + Vector3 get_euler_yxz() const; + void set_euler_yxz(const Vector3 &p_euler); + + Vector3 get_euler_zxy() const; + void set_euler_zxy(const Vector3 &p_euler); + + Vector3 get_euler_zyx() const; + void set_euler_zyx(const Vector3 &p_euler); + + Quaternion get_quat() const; + void set_quat(const Quaternion &p_quat); + + Vector3 get_euler() const { return get_euler_yxz(); } + void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); } + + void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; + void set_axis_angle(const Vector3 &p_axis, real_t p_phi); + + void scale(const Vector3 &p_scale); + Basis scaled(const Vector3 &p_scale) const; + + void scale_local(const Vector3 &p_scale); + Basis scaled_local(const Vector3 &p_scale) const; + + void make_scale_uniform(); + float get_uniform_scale() const; + + Vector3 get_scale() const; + Vector3 get_scale_abs() const; + Vector3 get_scale_local() const; + + void set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale); + void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale); + void set_quat_scale(const Quaternion &p_quat, const Vector3 &p_scale); + + // transposed dot products + inline real_t tdotx(const Vector3 &v) const { + return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2]; + } + inline real_t tdoty(const Vector3 &v) const { + return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2]; + } + inline real_t tdotz(const Vector3 &v) const { + return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2]; + } + + bool is_equal_approx(const Basis &p_basis) const; + + bool operator==(const Basis &p_matrix) const; + bool operator!=(const Basis &p_matrix) const; + + inline Vector3 xform(const Vector3 &p_vector) const; + inline Vector3 xform_inv(const Vector3 &p_vector) const; + inline void operator*=(const Basis &p_matrix); + inline Basis operator*(const Basis &p_matrix) const; + inline void operator+=(const Basis &p_matrix); + inline Basis operator+(const Basis &p_matrix) const; + inline void operator-=(const Basis &p_matrix); + inline Basis operator-(const Basis &p_matrix) const; + inline void operator*=(real_t p_val); + inline Basis operator*(real_t p_val) const; + + int get_orthogonal_index() const; + void set_orthogonal_index(int p_index); + + void set_diagonal(const Vector3 &p_diag); + + bool is_orthogonal() const; + bool is_diagonal() const; + bool is_rotation() const; + + Basis slerp(const Basis &p_to, const real_t &p_weight) const; + void rotate_sh(real_t *p_values); + + operator String() const; + + /* create / set */ + + inline void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { + elements[0][0] = xx; + elements[0][1] = xy; + elements[0][2] = xz; + elements[1][0] = yx; + elements[1][1] = yy; + elements[1][2] = yz; + elements[2][0] = zx; + elements[2][1] = zy; + elements[2][2] = zz; + } + inline void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { + set_axis(0, p_x); + set_axis(1, p_y); + set_axis(2, p_z); + } + inline Vector3 get_column(int i) const { + return Vector3(elements[0][i], elements[1][i], elements[2][i]); + } + + inline Vector3 get_row(int i) const { + return Vector3(elements[i][0], elements[i][1], elements[i][2]); + } + inline Vector3 get_main_diagonal() const { + return Vector3(elements[0][0], elements[1][1], elements[2][2]); + } + + inline void set_row(int i, const Vector3 &p_row) { + elements[i][0] = p_row.x; + elements[i][1] = p_row.y; + elements[i][2] = p_row.z; + } + + inline void set_zero() { + elements[0].zero(); + elements[1].zero(); + elements[2].zero(); + } + + inline Basis transpose_xform(const Basis &m) const { + return Basis( + elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x, + elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y, + elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z, + elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x, + elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y, + elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z, + elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x, + elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y, + elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z); + } + Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { + set(xx, xy, xz, yx, yy, yz, zx, zy, zz); + } + + void orthonormalize(); + Basis orthonormalized() const; + +#ifdef MATH_CHECKS + bool is_symmetric() const; +#endif + Basis diagonalize(); + + operator Quaternion() const { return get_quat(); } + + Basis(const Quaternion &p_quat) { set_quat(p_quat); }; + Basis(const Quaternion &p_quat, const Vector3 &p_scale) { set_quat_scale(p_quat, p_scale); } + + Basis(const Vector3 &p_euler) { set_euler(p_euler); } + Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); } + + Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); } + Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); } + + inline Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) { + elements[0] = row0; + elements[1] = row1; + elements[2] = row2; + } + + inline Basis() {} +}; + +inline void Basis::operator*=(const Basis &p_matrix) { + set( + p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), + p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), + p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2])); +} + +inline Basis Basis::operator*(const Basis &p_matrix) const { + return Basis( + p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), + p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), + p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2])); +} + +inline void Basis::operator+=(const Basis &p_matrix) { + elements[0] += p_matrix.elements[0]; + elements[1] += p_matrix.elements[1]; + elements[2] += p_matrix.elements[2]; +} + +inline Basis Basis::operator+(const Basis &p_matrix) const { + Basis ret(*this); + ret += p_matrix; + return ret; +} + +inline void Basis::operator-=(const Basis &p_matrix) { + elements[0] -= p_matrix.elements[0]; + elements[1] -= p_matrix.elements[1]; + elements[2] -= p_matrix.elements[2]; +} + +inline Basis Basis::operator-(const Basis &p_matrix) const { + Basis ret(*this); + ret -= p_matrix; + return ret; +} + +inline void Basis::operator*=(real_t p_val) { + elements[0] *= p_val; + elements[1] *= p_val; + elements[2] *= p_val; +} + +inline Basis Basis::operator*(real_t p_val) const { + Basis ret(*this); + ret *= p_val; + return ret; +} + +Vector3 Basis::xform(const Vector3 &p_vector) const { + return Vector3( + elements[0].dot(p_vector), + elements[1].dot(p_vector), + elements[2].dot(p_vector)); +} + +Vector3 Basis::xform_inv(const Vector3 &p_vector) const { + return Vector3( + (elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z), + (elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z), + (elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z)); +} + +real_t Basis::determinant() const { + return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) - + elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) + + elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]); +} + +} // namespace godot + +#endif // GODOT_BASIS_HPP diff --git a/include/godot_cpp/variant/color.hpp b/include/godot_cpp/variant/color.hpp new file mode 100644 index 0000000..07dc054 --- /dev/null +++ b/include/godot_cpp/variant/color.hpp @@ -0,0 +1,257 @@ +#ifndef GODOT_COLOR_HPP +#define GODOT_COLOR_HPP + +#include <godot_cpp/core/math.hpp> + +namespace godot { + +class String; + +class Color { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + union { + struct { + float r; + float g; + float b; + float a; + }; + float components[4] = { 0, 0, 0, 1.0 }; + }; + + uint32_t to_rgba32() const; + uint32_t to_argb32() const; + uint32_t to_abgr32() const; + uint64_t to_rgba64() const; + uint64_t to_argb64() const; + uint64_t to_abgr64() const; + float get_h() const; + float get_s() const; + float get_v() const; + void set_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0); + + inline float &operator[](int p_idx) { + return components[p_idx]; + } + inline const float &operator[](int p_idx) const { + return components[p_idx]; + } + + bool operator==(const Color &p_color) const { + return (r == p_color.r && g == p_color.g && b == p_color.b && a == p_color.a); + } + bool operator!=(const Color &p_color) const { + return (r != p_color.r || g != p_color.g || b != p_color.b || a != p_color.a); + } + + Color operator+(const Color &p_color) const; + void operator+=(const Color &p_color); + + Color operator-() const; + Color operator-(const Color &p_color) const; + void operator-=(const Color &p_color); + + Color operator*(const Color &p_color) const; + Color operator*(float p_scalar) const; + void operator*=(const Color &p_color); + void operator*=(float p_scalar); + + Color operator/(const Color &p_color) const; + Color operator/(float p_scalar) const; + void operator/=(const Color &p_color); + void operator/=(float p_scalar); + + bool is_equal_approx(const Color &p_color) const; + + void invert(); + Color inverted() const; + + inline Color lerp(const Color &p_to, float p_weight) const { + Color res = *this; + + res.r += (p_weight * (p_to.r - r)); + res.g += (p_weight * (p_to.g - g)); + res.b += (p_weight * (p_to.b - b)); + res.a += (p_weight * (p_to.a - a)); + + return res; + } + + inline Color darkened(float p_amount) const { + Color res = *this; + res.r = res.r * (1.0f - p_amount); + res.g = res.g * (1.0f - p_amount); + res.b = res.b * (1.0f - p_amount); + return res; + } + + inline Color lightened(float p_amount) const { + Color res = *this; + res.r = res.r + (1.0f - res.r) * p_amount; + res.g = res.g + (1.0f - res.g) * p_amount; + res.b = res.b + (1.0f - res.b) * p_amount; + return res; + } + + inline uint32_t to_rgbe9995() const { + const float pow2to9 = 512.0f; + const float B = 15.0f; + const float N = 9.0f; + + float sharedexp = 65408.000f; // Result of: ((pow2to9 - 1.0f) / pow2to9) * powf(2.0f, 31.0f - 15.0f) + + float cRed = Math::max(0.0f, Math::min(sharedexp, r)); + float cGreen = Math::max(0.0f, Math::min(sharedexp, g)); + float cBlue = Math::max(0.0f, Math::min(sharedexp, b)); + + float cMax = Math::max(cRed, Math::max(cGreen, cBlue)); + + float expp = Math::max(-B - 1.0f, Math::floor(Math::log(cMax) / (float)Math_LN2)) + 1.0f + B; + + float sMax = (float)floor((cMax / Math::pow(2.0f, expp - B - N)) + 0.5f); + + float exps = expp + 1.0f; + + if (0.0 <= sMax && sMax < pow2to9) { + exps = expp; + } + + float sRed = Math::floor((cRed / pow(2.0f, exps - B - N)) + 0.5f); + float sGreen = Math::floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f); + float sBlue = Math::floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f); + + return (uint32_t(Math::fast_ftoi(sRed)) & 0x1FF) | ((uint32_t(Math::fast_ftoi(sGreen)) & 0x1FF) << 9) | ((uint32_t(Math::fast_ftoi(sBlue)) & 0x1FF) << 18) | ((uint32_t(Math::fast_ftoi(exps)) & 0x1F) << 27); + } + + inline Color blend(const Color &p_over) const { + Color res; + float sa = 1.0 - p_over.a; + res.a = a * sa + p_over.a; + if (res.a == 0) { + return Color(0, 0, 0, 0); + } else { + res.r = (r * a * sa + p_over.r * p_over.a) / res.a; + res.g = (g * a * sa + p_over.g * p_over.a) / res.a; + res.b = (b * a * sa + p_over.b * p_over.a) / res.a; + } + return res; + } + + inline Color to_linear() const { + return Color( + r < 0.04045 ? r * (1.0 / 12.92) : Math::pow((r + 0.055) * (1.0 / (1 + 0.055)), 2.4), + g < 0.04045 ? g * (1.0 / 12.92) : Math::pow((g + 0.055) * (1.0 / (1 + 0.055)), 2.4), + b < 0.04045 ? b * (1.0 / 12.92) : Math::pow((b + 0.055) * (1.0 / (1 + 0.055)), 2.4), + a); + } + inline Color to_srgb() const { + return Color( + r < 0.0031308 ? 12.92 * r : (1.0 + 0.055) * Math::pow(r, 1.0f / 2.4f) - 0.055, + g < 0.0031308 ? 12.92 * g : (1.0 + 0.055) * Math::pow(g, 1.0f / 2.4f) - 0.055, + b < 0.0031308 ? 12.92 * b : (1.0 + 0.055) * Math::pow(b, 1.0f / 2.4f) - 0.055, a); + } + + static Color hex(uint32_t p_hex); + static Color hex64(uint64_t p_hex); + static Color html(const String &p_rgba); + static bool html_is_valid(const String &p_color); + static Color named(const String &p_name); + static Color named(const String &p_name, const Color &p_default); + static int find_named_color(const String &p_name); + static int get_named_color_count(); + static String get_named_color_name(int p_idx); + static Color get_named_color(int p_idx); + static Color from_string(const String &p_string, const Color &p_default); + String to_html(bool p_alpha = true) const; + static Color from_hsv(float p_h, float p_s, float p_v, float p_a); + static Color from_rgbe9995(uint32_t p_rgbe); + + inline bool operator<(const Color &p_color) const; //used in set keys + operator String() const; + + // For the binder. + inline void set_r8(int32_t r8) { r = (Math::clamp(r8, 0, 255) / 255.0); } + inline int32_t get_r8() const { return int32_t(Math::clamp(r * 255.0, 0.0, 255.0)); } + inline void set_g8(int32_t g8) { g = (Math::clamp(g8, 0, 255) / 255.0); } + inline int32_t get_g8() const { return int32_t(Math::clamp(g * 255.0, 0.0, 255.0)); } + inline void set_b8(int32_t b8) { b = (Math::clamp(b8, 0, 255) / 255.0); } + inline int32_t get_b8() const { return int32_t(Math::clamp(b * 255.0, 0.0, 255.0)); } + inline void set_a8(int32_t a8) { a = (Math::clamp(a8, 0, 255) / 255.0); } + inline int32_t get_a8() const { return int32_t(Math::clamp(a * 255.0, 0.0, 255.0)); } + + inline void set_h(float p_h) { set_hsv(p_h, get_s(), get_v()); } + inline void set_s(float p_s) { set_hsv(get_h(), p_s, get_v()); } + inline void set_v(float p_v) { set_hsv(get_h(), get_s(), p_v); } + + inline Color() {} + + /** + * RGBA construct parameters. + * Alpha is not optional as otherwise we can't bind the RGB version for scripting. + */ + inline Color(float p_r, float p_g, float p_b, float p_a) { + r = p_r; + g = p_g; + b = p_b; + a = p_a; + } + + /** + * RGB construct parameters. + */ + inline Color(float p_r, float p_g, float p_b) { + r = p_r; + g = p_g; + b = p_b; + a = 1.0; + } + + /** + * Construct a Color from another Color, but with the specified alpha value. + */ + inline Color(const Color &p_c, float p_a) { + r = p_c.r; + g = p_c.g; + b = p_c.b; + a = p_a; + } + + Color(const String &p_code) { + if (html_is_valid(p_code)) { + *this = html(p_code); + } else { + *this = named(p_code); + } + } + + Color(const String &p_code, float p_a) { + *this = Color(p_code); + a = p_a; + } +}; + +bool Color::operator<(const Color &p_color) const { + if (r == p_color.r) { + if (g == p_color.g) { + if (b == p_color.b) { + return (a < p_color.a); + } else { + return (b < p_color.b); + } + } else { + return g < p_color.g; + } + } else { + return r < p_color.r; + } +} + +inline Color operator*(float p_scalar, const Color &p_color) { + return p_color * p_scalar; +} + +} // namespace godot + +#endif // GODOT_COLOR_HPP diff --git a/include/godot_cpp/variant/color_names.inc.hpp b/include/godot_cpp/variant/color_names.inc.hpp new file mode 100644 index 0000000..1366457 --- /dev/null +++ b/include/godot_cpp/variant/color_names.inc.hpp @@ -0,0 +1,158 @@ +namespace godot { + +struct NamedColor { + const char *name; + Color color; +}; + +static NamedColor named_colors[] = { + { "aliceblue", Color(0.94, 0.97, 1.00) }, + { "antiquewhite", Color(0.98, 0.92, 0.84) }, + { "aqua", Color(0.00, 1.00, 1.00) }, + { "aquamarine", Color(0.50, 1.00, 0.83) }, + { "azure", Color(0.94, 1.00, 1.00) }, + { "beige", Color(0.96, 0.96, 0.86) }, + { "bisque", Color(1.00, 0.89, 0.77) }, + { "black", Color(0.00, 0.00, 0.00) }, + { "blanchedalmond", Color(1.00, 0.92, 0.80) }, + { "blue", Color(0.00, 0.00, 1.00) }, + { "blueviolet", Color(0.54, 0.17, 0.89) }, + { "brown", Color(0.65, 0.16, 0.16) }, + { "burlywood", Color(0.87, 0.72, 0.53) }, + { "cadetblue", Color(0.37, 0.62, 0.63) }, + { "chartreuse", Color(0.50, 1.00, 0.00) }, + { "chocolate", Color(0.82, 0.41, 0.12) }, + { "coral", Color(1.00, 0.50, 0.31) }, + { "cornflower", Color(0.39, 0.58, 0.93) }, + { "cornsilk", Color(1.00, 0.97, 0.86) }, + { "crimson", Color(0.86, 0.08, 0.24) }, + { "cyan", Color(0.00, 1.00, 1.00) }, + { "darkblue", Color(0.00, 0.00, 0.55) }, + { "darkcyan", Color(0.00, 0.55, 0.55) }, + { "darkgoldenrod", Color(0.72, 0.53, 0.04) }, + { "darkgray", Color(0.66, 0.66, 0.66) }, + { "darkgreen", Color(0.00, 0.39, 0.00) }, + { "darkkhaki", Color(0.74, 0.72, 0.42) }, + { "darkmagenta", Color(0.55, 0.00, 0.55) }, + { "darkolivegreen", Color(0.33, 0.42, 0.18) }, + { "darkorange", Color(1.00, 0.55, 0.00) }, + { "darkorchid", Color(0.60, 0.20, 0.80) }, + { "darkred", Color(0.55, 0.00, 0.00) }, + { "darksalmon", Color(0.91, 0.59, 0.48) }, + { "darkseagreen", Color(0.56, 0.74, 0.56) }, + { "darkslateblue", Color(0.28, 0.24, 0.55) }, + { "darkslategray", Color(0.18, 0.31, 0.31) }, + { "darkturquoise", Color(0.00, 0.81, 0.82) }, + { "darkviolet", Color(0.58, 0.00, 0.83) }, + { "deeppink", Color(1.00, 0.08, 0.58) }, + { "deepskyblue", Color(0.00, 0.75, 1.00) }, + { "dimgray", Color(0.41, 0.41, 0.41) }, + { "dodgerblue", Color(0.12, 0.56, 1.00) }, + { "firebrick", Color(0.70, 0.13, 0.13) }, + { "floralwhite", Color(1.00, 0.98, 0.94) }, + { "forestgreen", Color(0.13, 0.55, 0.13) }, + { "fuchsia", Color(1.00, 0.00, 1.00) }, + { "gainsboro", Color(0.86, 0.86, 0.86) }, + { "ghostwhite", Color(0.97, 0.97, 1.00) }, + { "gold", Color(1.00, 0.84, 0.00) }, + { "goldenrod", Color(0.85, 0.65, 0.13) }, + { "gray", Color(0.75, 0.75, 0.75) }, + { "green", Color(0.00, 1.00, 0.00) }, + { "greenyellow", Color(0.68, 1.00, 0.18) }, + { "honeydew", Color(0.94, 1.00, 0.94) }, + { "hotpink", Color(1.00, 0.41, 0.71) }, + { "indianred", Color(0.80, 0.36, 0.36) }, + { "indigo", Color(0.29, 0.00, 0.51) }, + { "ivory", Color(1.00, 1.00, 0.94) }, + { "khaki", Color(0.94, 0.90, 0.55) }, + { "lavender", Color(0.90, 0.90, 0.98) }, + { "lavenderblush", Color(1.00, 0.94, 0.96) }, + { "lawngreen", Color(0.49, 0.99, 0.00) }, + { "lemonchiffon", Color(1.00, 0.98, 0.80) }, + { "lightblue", Color(0.68, 0.85, 0.90) }, + { "lightcoral", Color(0.94, 0.50, 0.50) }, + { "lightcyan", Color(0.88, 1.00, 1.00) }, + { "lightgoldenrod", Color(0.98, 0.98, 0.82) }, + { "lightgray", Color(0.83, 0.83, 0.83) }, + { "lightgreen", Color(0.56, 0.93, 0.56) }, + { "lightpink", Color(1.00, 0.71, 0.76) }, + { "lightsalmon", Color(1.00, 0.63, 0.48) }, + { "lightseagreen", Color(0.13, 0.70, 0.67) }, + { "lightskyblue", Color(0.53, 0.81, 0.98) }, + { "lightslategray", Color(0.47, 0.53, 0.60) }, + { "lightsteelblue", Color(0.69, 0.77, 0.87) }, + { "lightyellow", Color(1.00, 1.00, 0.88) }, + { "lime", Color(0.00, 1.00, 0.00) }, + { "limegreen", Color(0.20, 0.80, 0.20) }, + { "linen", Color(0.98, 0.94, 0.90) }, + { "magenta", Color(1.00, 0.00, 1.00) }, + { "maroon", Color(0.69, 0.19, 0.38) }, + { "mediumaquamarine", Color(0.40, 0.80, 0.67) }, + { "mediumblue", Color(0.00, 0.00, 0.80) }, + { "mediumorchid", Color(0.73, 0.33, 0.83) }, + { "mediumpurple", Color(0.58, 0.44, 0.86) }, + { "mediumseagreen", Color(0.24, 0.70, 0.44) }, + { "mediumslateblue", Color(0.48, 0.41, 0.93) }, + { "mediumspringgreen", Color(0.00, 0.98, 0.60) }, + { "mediumturquoise", Color(0.28, 0.82, 0.80) }, + { "mediumvioletred", Color(0.78, 0.08, 0.52) }, + { "midnightblue", Color(0.10, 0.10, 0.44) }, + { "mintcream", Color(0.96, 1.00, 0.98) }, + { "mistyrose", Color(1.00, 0.89, 0.88) }, + { "moccasin", Color(1.00, 0.89, 0.71) }, + { "navajowhite", Color(1.00, 0.87, 0.68) }, + { "navyblue", Color(0.00, 0.00, 0.50) }, + { "oldlace", Color(0.99, 0.96, 0.90) }, + { "olive", Color(0.50, 0.50, 0.00) }, + { "olivedrab", Color(0.42, 0.56, 0.14) }, + { "orange", Color(1.00, 0.65, 0.00) }, + { "orangered", Color(1.00, 0.27, 0.00) }, + { "orchid", Color(0.85, 0.44, 0.84) }, + { "palegoldenrod", Color(0.93, 0.91, 0.67) }, + { "palegreen", Color(0.60, 0.98, 0.60) }, + { "paleturquoise", Color(0.69, 0.93, 0.93) }, + { "palevioletred", Color(0.86, 0.44, 0.58) }, + { "papayawhip", Color(1.00, 0.94, 0.84) }, + { "peachpuff", Color(1.00, 0.85, 0.73) }, + { "peru", Color(0.80, 0.52, 0.25) }, + { "pink", Color(1.00, 0.75, 0.80) }, + { "plum", Color(0.87, 0.63, 0.87) }, + { "powderblue", Color(0.69, 0.88, 0.90) }, + { "purple", Color(0.63, 0.13, 0.94) }, + { "rebeccapurple", Color(0.40, 0.20, 0.60) }, + { "red", Color(1.00, 0.00, 0.00) }, + { "rosybrown", Color(0.74, 0.56, 0.56) }, + { "royalblue", Color(0.25, 0.41, 0.88) }, + { "saddlebrown", Color(0.55, 0.27, 0.07) }, + { "salmon", Color(0.98, 0.50, 0.45) }, + { "sandybrown", Color(0.96, 0.64, 0.38) }, + { "seagreen", Color(0.18, 0.55, 0.34) }, + { "seashell", Color(1.00, 0.96, 0.93) }, + { "sienna", Color(0.63, 0.32, 0.18) }, + { "silver", Color(0.75, 0.75, 0.75) }, + { "skyblue", Color(0.53, 0.81, 0.92) }, + { "slateblue", Color(0.42, 0.35, 0.80) }, + { "slategray", Color(0.44, 0.50, 0.56) }, + { "snow", Color(1.00, 0.98, 0.98) }, + { "springgreen", Color(0.00, 1.00, 0.50) }, + { "steelblue", Color(0.27, 0.51, 0.71) }, + { "tan", Color(0.82, 0.71, 0.55) }, + { "teal", Color(0.00, 0.50, 0.50) }, + { "thistle", Color(0.85, 0.75, 0.85) }, + { "tomato", Color(1.00, 0.39, 0.28) }, + { "transparent", Color(1.00, 1.00, 1.00, 0.00) }, + { "turquoise", Color(0.25, 0.88, 0.82) }, + { "violet", Color(0.93, 0.51, 0.93) }, + { "webgray", Color(0.50, 0.50, 0.50) }, + { "webgreen", Color(0.00, 0.50, 0.00) }, + { "webmaroon", Color(0.50, 0.00, 0.00) }, + { "webpurple", Color(0.50, 0.00, 0.50) }, + { "wheat", Color(0.96, 0.87, 0.70) }, + { "white", Color(1.00, 1.00, 1.00) }, + { "whitesmoke", Color(0.96, 0.96, 0.96) }, + { "yellow", Color(1.00, 1.00, 0.00) }, + { "yellowgreen", Color(0.60, 0.80, 0.20) }, + { nullptr, Color() }, +}; + +} // namespace godot diff --git a/include/godot_cpp/variant/plane.hpp b/include/godot_cpp/variant/plane.hpp new file mode 100644 index 0000000..6bf7f99 --- /dev/null +++ b/include/godot_cpp/variant/plane.hpp @@ -0,0 +1,106 @@ +#ifndef GODOT_PLANE_HPP +#define GODOT_PLANE_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/vector3.hpp> +#include <godot_cpp/classes/global_constants.hpp> + +namespace godot { + +class Plane { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + Vector3 normal; + real_t d = 0; + + void set_normal(const Vector3 &p_normal); + inline Vector3 get_normal() const { return normal; }; ///Point is coplanar, CMP_EPSILON for precision + + void normalize(); + Plane normalized() const; + + /* Plane-Point operations */ + + inline Vector3 center() const { return normal * d; } + Vector3 get_any_perpendicular_normal() const; + + inline bool is_point_over(const Vector3 &p_point) const; ///< Point is over plane + inline real_t distance_to(const Vector3 &p_point) const; + inline bool has_point(const Vector3 &p_point, real_t _epsilon = CMP_EPSILON) const; + + /* intersections */ + + bool intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result = nullptr) const; + bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const; + bool intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 *p_intersection) const; + + inline Vector3 project(const Vector3 &p_point) const { + return p_point - normal * distance_to(p_point); + } + + /* misc */ + + Plane operator-() const { return Plane(-normal, -d); } + bool is_equal_approx(const Plane &p_plane) const; + bool is_equal_approx_any_side(const Plane &p_plane) const; + + inline bool operator==(const Plane &p_plane) const; + inline bool operator!=(const Plane &p_plane) const; + operator String() const; + + inline Plane() {} + inline Plane(real_t p_a, real_t p_b, real_t p_c, real_t p_d) : + normal(p_a, p_b, p_c), + d(p_d) {} + + inline Plane(const Vector3 &p_normal, real_t p_d); + inline Plane(const Vector3 &p_point, const Vector3 &p_normal); + inline Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3, ClockDirection p_dir = CLOCKWISE); +}; + +bool Plane::is_point_over(const Vector3 &p_point) const { + return (normal.dot(p_point) > d); +} + +real_t Plane::distance_to(const Vector3 &p_point) const { + return (normal.dot(p_point) - d); +} + +bool Plane::has_point(const Vector3 &p_point, real_t _epsilon) const { + real_t dist = normal.dot(p_point) - d; + dist = Math::abs(dist); + return (dist <= _epsilon); +} + +Plane::Plane(const Vector3 &p_normal, real_t p_d) : + normal(p_normal), + d(p_d) { +} + +Plane::Plane(const Vector3 &p_point, const Vector3 &p_normal) : + normal(p_normal), + d(p_normal.dot(p_point)) { +} + +Plane::Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3, ClockDirection p_dir) { + if (p_dir == CLOCKWISE) { + normal = (p_point1 - p_point3).cross(p_point1 - p_point2); + } else { + normal = (p_point1 - p_point2).cross(p_point1 - p_point3); + } + + normal.normalize(); + d = normal.dot(p_point1); +} + +bool Plane::operator==(const Plane &p_plane) const { + return normal == p_plane.normal && d == p_plane.d; +} + +bool Plane::operator!=(const Plane &p_plane) const { + return normal != p_plane.normal || d != p_plane.d; +} +} // namespace godot + +#endif // GODOT_PLANE_HPP diff --git a/include/godot_cpp/variant/quaternion.hpp b/include/godot_cpp/variant/quaternion.hpp new file mode 100644 index 0000000..a113ee0 --- /dev/null +++ b/include/godot_cpp/variant/quaternion.hpp @@ -0,0 +1,212 @@ +#ifndef GODOT_QUAT_HPP +#define GODOT_QUAT_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/vector3.hpp> + +namespace godot { + +class Quaternion { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + union { + struct { + real_t x; + real_t y; + real_t z; + real_t w; + }; + real_t components[4] = { 0, 0, 0, 1.0 }; + }; + + inline real_t &operator[](int idx) { + return components[idx]; + } + inline const real_t &operator[](int idx) const { + return components[idx]; + } + inline real_t length_squared() const; + bool is_equal_approx(const Quaternion &p_quat) const; + real_t length() const; + void normalize(); + Quaternion normalized() const; + bool is_normalized() const; + Quaternion inverse() const; + inline real_t dot(const Quaternion &p_q) const; + + Vector3 get_euler_xyz() const; + Vector3 get_euler_yxz() const; + Vector3 get_euler() const { return get_euler_yxz(); }; + + Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; + Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; + Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + + inline void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { + r_angle = 2 * Math::acos(w); + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + r_axis.x = x * r; + r_axis.y = y * r; + r_axis.z = z * r; + } + + void operator*=(const Quaternion &p_q); + Quaternion operator*(const Quaternion &p_q) const; + + Quaternion operator*(const Vector3 &v) const { + return Quaternion(w * v.x + y * v.z - z * v.y, + w * v.y + z * v.x - x * v.z, + w * v.z + x * v.y - y * v.x, + -x * v.x - y * v.y - z * v.z); + } + + inline Vector3 xform(const Vector3 &v) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), v); +#endif + Vector3 u(x, y, z); + Vector3 uv = u.cross(v); + return v + ((uv * w) + u.cross(uv)) * ((real_t)2); + } + + inline Vector3 xform_inv(const Vector3 &v) const { + return inverse().xform(v); + } + + inline void operator+=(const Quaternion &p_q); + inline void operator-=(const Quaternion &p_q); + inline void operator*=(const real_t &s); + inline void operator/=(const real_t &s); + inline Quaternion operator+(const Quaternion &q2) const; + inline Quaternion operator-(const Quaternion &q2) const; + inline Quaternion operator-() const; + inline Quaternion operator*(const real_t &s) const; + inline Quaternion operator/(const real_t &s) const; + + inline bool operator==(const Quaternion &p_quat) const; + inline bool operator!=(const Quaternion &p_quat) const; + + operator String() const; + + inline Quaternion() {} + + inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : + x(p_x), + y(p_y), + z(p_z), + w(p_w) { + } + + Quaternion(const Vector3 &p_axis, real_t p_angle); + + Quaternion(const Vector3 &p_euler); + + Quaternion(const Quaternion &p_q) : + x(p_q.x), + y(p_q.y), + z(p_q.z), + w(p_q.w) { + } + + Quaternion &operator=(const Quaternion &p_q) { + x = p_q.x; + y = p_q.y; + z = p_q.z; + w = p_q.w; + return *this; + } + + Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc + { + Vector3 c = v0.cross(v1); + real_t d = v0.dot(v1); + + if (d < -1.0 + CMP_EPSILON) { + x = 0; + y = 1; + z = 0; + w = 0; + } else { + real_t s = Math::sqrt((1.0 + d) * 2.0); + real_t rs = 1.0 / s; + + x = c.x * rs; + y = c.y * rs; + z = c.z * rs; + w = s * 0.5; + } + } +}; + +real_t Quaternion::dot(const Quaternion &p_q) const { + return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w; +} + +real_t Quaternion::length_squared() const { + return dot(*this); +} + +void Quaternion::operator+=(const Quaternion &p_q) { + x += p_q.x; + y += p_q.y; + z += p_q.z; + w += p_q.w; +} + +void Quaternion::operator-=(const Quaternion &p_q) { + x -= p_q.x; + y -= p_q.y; + z -= p_q.z; + w -= p_q.w; +} + +void Quaternion::operator*=(const real_t &s) { + x *= s; + y *= s; + z *= s; + w *= s; +} + +void Quaternion::operator/=(const real_t &s) { + *this *= 1.0 / s; +} + +Quaternion Quaternion::operator+(const Quaternion &q2) const { + const Quaternion &q1 = *this; + return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); +} + +Quaternion Quaternion::operator-(const Quaternion &q2) const { + const Quaternion &q1 = *this; + return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); +} + +Quaternion Quaternion::operator-() const { + const Quaternion &q2 = *this; + return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); +} + +Quaternion Quaternion::operator*(const real_t &s) const { + return Quaternion(x * s, y * s, z * s, w * s); +} + +Quaternion Quaternion::operator/(const real_t &s) const { + return *this * (1.0 / s); +} + +bool Quaternion::operator==(const Quaternion &p_quat) const { + return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w; +} + +bool Quaternion::operator!=(const Quaternion &p_quat) const { + return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w; +} + +inline Quaternion operator*(const real_t &p_real, const Quaternion &p_quat) { + return p_quat * p_real; +} + +} // namespace godot + +#endif // GODOT_QUAT_HPP diff --git a/include/godot_cpp/variant/rect2.hpp b/include/godot_cpp/variant/rect2.hpp new file mode 100644 index 0000000..8ace5f3 --- /dev/null +++ b/include/godot_cpp/variant/rect2.hpp @@ -0,0 +1,312 @@ + +#ifndef GODOT_RECT2_HPP +#define GODOT_RECT2_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/vector2.hpp> +#include <godot_cpp/classes/global_constants.hpp> + +namespace godot { + +struct Transform2D; + +class Rect2 { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + Point2 position; + Size2 size; + + const Vector2 &get_position() const { return position; } + void set_position(const Vector2 &p_pos) { position = p_pos; } + const Vector2 &get_size() const { return size; } + void set_size(const Vector2 &p_size) { size = p_size; } + + real_t get_area() const { return size.width * size.height; } + + inline bool intersects(const Rect2 &p_rect, const bool p_include_borders = false) const { + if (p_include_borders) { + if (position.x > (p_rect.position.x + p_rect.size.width)) { + return false; + } + if ((position.x + size.width) < p_rect.position.x) { + return false; + } + if (position.y > (p_rect.position.y + p_rect.size.height)) { + return false; + } + if ((position.y + size.height) < p_rect.position.y) { + return false; + } + } else { + if (position.x >= (p_rect.position.x + p_rect.size.width)) { + return false; + } + if ((position.x + size.width) <= p_rect.position.x) { + return false; + } + if (position.y >= (p_rect.position.y + p_rect.size.height)) { + return false; + } + if ((position.y + size.height) <= p_rect.position.y) { + return false; + } + } + + return true; + } + + inline real_t distance_to(const Vector2 &p_point) const { + real_t dist = 0.0; + bool inside = true; + + if (p_point.x < position.x) { + real_t d = position.x - p_point.x; + dist = d; + inside = false; + } + if (p_point.y < position.y) { + real_t d = position.y - p_point.y; + dist = inside ? d : Math::min(dist, d); + inside = false; + } + if (p_point.x >= (position.x + size.x)) { + real_t d = p_point.x - (position.x + size.x); + dist = inside ? d : Math::min(dist, d); + inside = false; + } + if (p_point.y >= (position.y + size.y)) { + real_t d = p_point.y - (position.y + size.y); + dist = inside ? d : Math::min(dist, d); + inside = false; + } + + if (inside) { + return 0; + } else { + return dist; + } + } + + bool intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const; + + bool intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos = nullptr, Point2 *r_normal = nullptr) const; + + inline bool encloses(const Rect2 &p_rect) const { + return (p_rect.position.x >= position.x) && (p_rect.position.y >= position.y) && + ((p_rect.position.x + p_rect.size.x) <= (position.x + size.x)) && + ((p_rect.position.y + p_rect.size.y) <= (position.y + size.y)); + } + + inline bool has_no_area() const { + return (size.x <= 0 || size.y <= 0); + } + + // Returns the instersection between two Rect2s or an empty Rect2 if there is no intersection + inline Rect2 intersection(const Rect2 &p_rect) const { + Rect2 new_rect = p_rect; + + if (!intersects(new_rect)) { + return Rect2(); + } + + new_rect.position.x = Math::max(p_rect.position.x, position.x); + new_rect.position.y = Math::max(p_rect.position.y, position.y); + + Point2 p_rect_end = p_rect.position + p_rect.size; + Point2 end = position + size; + + new_rect.size.x = Math::min(p_rect_end.x, end.x) - new_rect.position.x; + new_rect.size.y = Math::min(p_rect_end.y, end.y) - new_rect.position.y; + + return new_rect; + } + + inline Rect2 merge(const Rect2 &p_rect) const { ///< return a merged rect + + Rect2 new_rect; + + new_rect.position.x = Math::min(p_rect.position.x, position.x); + new_rect.position.y = Math::min(p_rect.position.y, position.y); + + new_rect.size.x = Math::max(p_rect.position.x + p_rect.size.x, position.x + size.x); + new_rect.size.y = Math::max(p_rect.position.y + p_rect.size.y, position.y + size.y); + + new_rect.size = new_rect.size - new_rect.position; //make relative again + + return new_rect; + } + inline bool has_point(const Point2 &p_point) const { + if (p_point.x < position.x) { + return false; + } + if (p_point.y < position.y) { + return false; + } + + if (p_point.x >= (position.x + size.x)) { + return false; + } + if (p_point.y >= (position.y + size.y)) { + return false; + } + + return true; + } + bool is_equal_approx(const Rect2 &p_rect) const; + + bool operator==(const Rect2 &p_rect) const { return position == p_rect.position && size == p_rect.size; } + bool operator!=(const Rect2 &p_rect) const { return position != p_rect.position || size != p_rect.size; } + + inline Rect2 grow(real_t p_amount) const { + Rect2 g = *this; + g.position.x -= p_amount; + g.position.y -= p_amount; + g.size.width += p_amount * 2; + g.size.height += p_amount * 2; + return g; + } + + inline Rect2 grow_side(Side p_side, real_t p_amount) const { + Rect2 g = *this; + g = g.grow_individual((SIDE_LEFT == p_side) ? p_amount : 0, + (SIDE_TOP == p_side) ? p_amount : 0, + (SIDE_RIGHT == p_side) ? p_amount : 0, + (SIDE_BOTTOM == p_side) ? p_amount : 0); + return g; + } + + inline Rect2 grow_side_bind(uint32_t p_side, real_t p_amount) const { + return grow_side(Side(p_side), p_amount); + } + + inline Rect2 grow_individual(real_t p_left, real_t p_top, real_t p_right, real_t p_bottom) const { + Rect2 g = *this; + g.position.x -= p_left; + g.position.y -= p_top; + g.size.width += p_left + p_right; + g.size.height += p_top + p_bottom; + + return g; + } + + inline Rect2 expand(const Vector2 &p_vector) const { + Rect2 r = *this; + r.expand_to(p_vector); + return r; + } + + inline void expand_to(const Vector2 &p_vector) { //in place function for speed + + Vector2 begin = position; + Vector2 end = position + size; + + if (p_vector.x < begin.x) { + begin.x = p_vector.x; + } + if (p_vector.y < begin.y) { + begin.y = p_vector.y; + } + + if (p_vector.x > end.x) { + end.x = p_vector.x; + } + if (p_vector.y > end.y) { + end.y = p_vector.y; + } + + position = begin; + size = end - begin; + } + + inline Rect2 abs() const { + return Rect2(Point2(position.x + Math::min(size.x, (real_t)0), position.y + Math::min(size.y, (real_t)0)), size.abs()); + } + + Vector2 get_support(const Vector2 &p_normal) const { + Vector2 half_extents = size * 0.5; + Vector2 ofs = position + half_extents; + return Vector2( + (p_normal.x > 0) ? -half_extents.x : half_extents.x, + (p_normal.y > 0) ? -half_extents.y : half_extents.y) + + ofs; + } + + inline bool intersects_filled_polygon(const Vector2 *p_points, int p_point_count) const { + Vector2 center = position + size * 0.5; + int side_plus = 0; + int side_minus = 0; + Vector2 end = position + size; + + int i_f = p_point_count - 1; + for (int i = 0; i < p_point_count; i++) { + const Vector2 &a = p_points[i_f]; + const Vector2 &b = p_points[i]; + i_f = i; + + Vector2 r = (b - a); + float l = r.length(); + if (l == 0.0) { + continue; + } + + //check inside + Vector2 tg = r.orthogonal(); + float s = tg.dot(center) - tg.dot(a); + if (s < 0.0) { + side_plus++; + } else { + side_minus++; + } + + //check ray box + r /= l; + Vector2 ir(1.0 / r.x, 1.0 / r.y); + + // lb is the corner of AABB with minimal coordinates - left bottom, rt is maximal corner + // r.org is origin of ray + Vector2 t13 = (position - a) * ir; + Vector2 t24 = (end - a) * ir; + + float tmin = Math::max(Math::min(t13.x, t24.x), Math::min(t13.y, t24.y)); + float tmax = Math::min(Math::max(t13.x, t24.x), Math::max(t13.y, t24.y)); + + // if tmax < 0, ray (line) is intersecting AABB, but the whole AABB is behind us + if (tmax < 0 || tmin > tmax || tmin >= l) { + continue; + } + + return true; + } + + if (side_plus * side_minus == 0) { + return true; //all inside + } else { + return false; + } + } + + inline void set_end(const Vector2 &p_end) { + size = p_end - position; + } + + inline Vector2 get_end() const { + return position + size; + } + + operator String() const; + + Rect2() {} + Rect2(real_t p_x, real_t p_y, real_t p_width, real_t p_height) : + position(Point2(p_x, p_y)), + size(Size2(p_width, p_height)) { + } + Rect2(const Point2 &p_pos, const Size2 &p_size) : + position(p_pos), + size(p_size) { + } +}; + +} // namespace godot + +#endif // GODOT_RECT2_HPP diff --git a/include/godot_cpp/variant/rect2i.hpp b/include/godot_cpp/variant/rect2i.hpp new file mode 100644 index 0000000..54601ab --- /dev/null +++ b/include/godot_cpp/variant/rect2i.hpp @@ -0,0 +1,198 @@ +#ifndef GODOT_RECT2I_HPP +#define GODOT_RECT2I_HPP + +#include <godot_cpp/variant/rect2.hpp> +#include <godot_cpp/variant/vector2i.hpp> + +namespace godot { + +class Rect2i { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + Point2i position; + Size2i size; + + const Point2i &get_position() const { return position; } + void set_position(const Point2i &p_position) { position = p_position; } + const Size2i &get_size() const { return size; } + void set_size(const Size2i &p_size) { size = p_size; } + + int get_area() const { return size.width * size.height; } + + inline bool intersects(const Rect2i &p_rect) const { + if (position.x > (p_rect.position.x + p_rect.size.width)) { + return false; + } + if ((position.x + size.width) < p_rect.position.x) { + return false; + } + if (position.y > (p_rect.position.y + p_rect.size.height)) { + return false; + } + if ((position.y + size.height) < p_rect.position.y) { + return false; + } + + return true; + } + + inline bool encloses(const Rect2i &p_rect) const { + return (p_rect.position.x >= position.x) && (p_rect.position.y >= position.y) && + ((p_rect.position.x + p_rect.size.x) < (position.x + size.x)) && + ((p_rect.position.y + p_rect.size.y) < (position.y + size.y)); + } + + inline bool has_no_area() const { + return (size.x <= 0 || size.y <= 0); + } + + // Returns the instersection between two Rect2is or an empty Rect2i if there is no intersection + inline Rect2i intersection(const Rect2i &p_rect) const { + Rect2i new_rect = p_rect; + + if (!intersects(new_rect)) { + return Rect2i(); + } + + new_rect.position.x = Math::max(p_rect.position.x, position.x); + new_rect.position.y = Math::max(p_rect.position.y, position.y); + + Point2i p_rect_end = p_rect.position + p_rect.size; + Point2i end = position + size; + + new_rect.size.x = (int)(Math::min(p_rect_end.x, end.x) - new_rect.position.x); + new_rect.size.y = (int)(Math::min(p_rect_end.y, end.y) - new_rect.position.y); + + return new_rect; + } + + inline Rect2i merge(const Rect2i &p_rect) const { ///< return a merged rect + + Rect2i new_rect; + + new_rect.position.x = Math::min(p_rect.position.x, position.x); + new_rect.position.y = Math::min(p_rect.position.y, position.y); + + new_rect.size.x = Math::max(p_rect.position.x + p_rect.size.x, position.x + size.x); + new_rect.size.y = Math::max(p_rect.position.y + p_rect.size.y, position.y + size.y); + + new_rect.size = new_rect.size - new_rect.position; //make relative again + + return new_rect; + } + bool has_point(const Point2i &p_point) const { + if (p_point.x < position.x) { + return false; + } + if (p_point.y < position.y) { + return false; + } + + if (p_point.x >= (position.x + size.x)) { + return false; + } + if (p_point.y >= (position.y + size.y)) { + return false; + } + + return true; + } + + bool operator==(const Rect2i &p_rect) const { return position == p_rect.position && size == p_rect.size; } + bool operator!=(const Rect2i &p_rect) const { return position != p_rect.position || size != p_rect.size; } + + Rect2i grow(int p_amount) const { + Rect2i g = *this; + g.position.x -= p_amount; + g.position.y -= p_amount; + g.size.width += p_amount * 2; + g.size.height += p_amount * 2; + return g; + } + + inline Rect2i grow_side(Side p_side, int p_amount) const { + Rect2i g = *this; + g = g.grow_individual((SIDE_LEFT == p_side) ? p_amount : 0, + (SIDE_TOP == p_side) ? p_amount : 0, + (SIDE_RIGHT == p_side) ? p_amount : 0, + (SIDE_BOTTOM == p_side) ? p_amount : 0); + return g; + } + + inline Rect2i grow_side_bind(uint32_t p_side, int p_amount) const { + return grow_side(Side(p_side), p_amount); + } + + inline Rect2i grow_individual(int p_left, int p_top, int p_right, int p_bottom) const { + Rect2i g = *this; + g.position.x -= p_left; + g.position.y -= p_top; + g.size.width += p_left + p_right; + g.size.height += p_top + p_bottom; + + return g; + } + + inline Rect2i expand(const Vector2i &p_vector) const { + Rect2i r = *this; + r.expand_to(p_vector); + return r; + } + + inline void expand_to(const Point2i &p_vector) { + Point2i begin = position; + Point2i end = position + size; + + if (p_vector.x < begin.x) { + begin.x = p_vector.x; + } + if (p_vector.y < begin.y) { + begin.y = p_vector.y; + } + + if (p_vector.x > end.x) { + end.x = p_vector.x; + } + if (p_vector.y > end.y) { + end.y = p_vector.y; + } + + position = begin; + size = end - begin; + } + + inline Rect2i abs() const { + return Rect2i(Point2i(position.x + Math::min(size.x, 0), position.y + Math::min(size.y, 0)), size.abs()); + } + + inline void set_end(const Vector2i &p_end) { + size = p_end - position; + } + + inline Vector2i get_end() const { + return position + size; + } + + operator String() const { return String(position) + ", " + String(size); } + + operator Rect2() const { return Rect2(position, size); } + + Rect2i() {} + Rect2i(const Rect2 &p_r2) : + position(p_r2.position), + size(p_r2.size) { + } + Rect2i(int p_x, int p_y, int p_width, int p_height) : + position(Point2i(p_x, p_y)), + size(Size2i(p_width, p_height)) { + } + Rect2i(const Point2i &p_pos, const Size2i &p_size) : + position(p_pos), + size(p_size) { + } +}; + +} // namespace godot + +#endif // GODOT_RECT2I_HPP diff --git a/include/godot_cpp/variant/transform2d.hpp b/include/godot_cpp/variant/transform2d.hpp new file mode 100644 index 0000000..e41857b --- /dev/null +++ b/include/godot_cpp/variant/transform2d.hpp @@ -0,0 +1,216 @@ +#ifndef GODOT_TRANSFORM2D_HPP +#define GODOT_TRANSFORM2D_HPP + +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/packed_vector2_array.hpp> +#include <godot_cpp/variant/rect2.hpp> +#include <godot_cpp/variant/vector2.hpp> + +namespace godot { + +class Transform2D { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper": + // M = (elements[0][0] elements[1][0]) + // (elements[0][1] elements[1][1]) + // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i]. + // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here. + // This requires additional care when working with explicit indices. + // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. + + // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, + // and angle is measure from +X to +Y in a clockwise-fashion. + + Vector2 elements[3]; + + inline real_t tdotx(const Vector2 &v) const { return elements[0][0] * v.x + elements[1][0] * v.y; } + inline real_t tdoty(const Vector2 &v) const { return elements[0][1] * v.x + elements[1][1] * v.y; } + + const Vector2 &operator[](int p_idx) const { return elements[p_idx]; } + Vector2 &operator[](int p_idx) { return elements[p_idx]; } + + inline Vector2 get_axis(int p_axis) const { + ERR_FAIL_INDEX_V(p_axis, 3, Vector2()); + return elements[p_axis]; + } + inline void set_axis(int p_axis, const Vector2 &p_vec) { + ERR_FAIL_INDEX(p_axis, 3); + elements[p_axis] = p_vec; + } + + void invert(); + Transform2D inverse() const; + + void affine_invert(); + Transform2D affine_inverse() const; + + void set_rotation(real_t p_rot); + real_t get_rotation() const; + real_t get_skew() const; + void set_skew(float p_angle); + inline void set_rotation_and_scale(real_t p_rot, const Size2 &p_scale); + inline void set_rotation_scale_and_skew(real_t p_rot, const Size2 &p_scale, float p_skew); + void rotate(real_t p_phi); + + void scale(const Size2 &p_scale); + void scale_basis(const Size2 &p_scale); + void translate(real_t p_tx, real_t p_ty); + void translate(const Vector2 &p_translation); + + real_t basis_determinant() const; + + Size2 get_scale() const; + void set_scale(const Size2 &p_scale); + + inline const Vector2 &get_origin() const { return elements[2]; } + inline void set_origin(const Vector2 &p_origin) { elements[2] = p_origin; } + + Transform2D scaled(const Size2 &p_scale) const; + Transform2D basis_scaled(const Size2 &p_scale) const; + Transform2D translated(const Vector2 &p_offset) const; + Transform2D rotated(real_t p_phi) const; + + Transform2D untranslated() const; + + void orthonormalize(); + Transform2D orthonormalized() const; + bool is_equal_approx(const Transform2D &p_transform) const; + + bool operator==(const Transform2D &p_transform) const; + bool operator!=(const Transform2D &p_transform) const; + + void operator*=(const Transform2D &p_transform); + Transform2D operator*(const Transform2D &p_transform) const; + + Transform2D interpolate_with(const Transform2D &p_transform, real_t p_c) const; + + inline Vector2 basis_xform(const Vector2 &p_vec) const; + inline Vector2 basis_xform_inv(const Vector2 &p_vec) const; + inline Vector2 xform(const Vector2 &p_vec) const; + inline Vector2 xform_inv(const Vector2 &p_vec) const; + inline Rect2 xform(const Rect2 &p_rect) const; + inline Rect2 xform_inv(const Rect2 &p_rect) const; + inline PackedVector2Array xform(const PackedVector2Array &p_array) const; + inline PackedVector2Array xform_inv(const PackedVector2Array &p_array) const; + + operator String() const; + + Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) { + elements[0][0] = xx; + elements[0][1] = xy; + elements[1][0] = yx; + elements[1][1] = yy; + elements[2][0] = ox; + elements[2][1] = oy; + } + + Transform2D(const Vector2 &p_x, const Vector2 &p_y, const Vector2 &p_origin) { + elements[0] = p_x; + elements[1] = p_y; + elements[2] = p_origin; + } + + Transform2D(real_t p_rot, const Vector2 &p_pos); + Transform2D() { + elements[0][0] = 1.0; + elements[1][1] = 1.0; + } +}; + +Vector2 Transform2D::basis_xform(const Vector2 &p_vec) const { + return Vector2( + tdotx(p_vec), + tdoty(p_vec)); +} + +Vector2 Transform2D::basis_xform_inv(const Vector2 &p_vec) const { + return Vector2( + elements[0].dot(p_vec), + elements[1].dot(p_vec)); +} + +Vector2 Transform2D::xform(const Vector2 &p_vec) const { + return Vector2( + tdotx(p_vec), + tdoty(p_vec)) + + elements[2]; +} + +Vector2 Transform2D::xform_inv(const Vector2 &p_vec) const { + Vector2 v = p_vec - elements[2]; + + return Vector2( + elements[0].dot(v), + elements[1].dot(v)); +} + +Rect2 Transform2D::xform(const Rect2 &p_rect) const { + Vector2 x = elements[0] * p_rect.size.x; + Vector2 y = elements[1] * p_rect.size.y; + Vector2 pos = xform(p_rect.position); + + Rect2 new_rect; + new_rect.position = pos; + new_rect.expand_to(pos + x); + new_rect.expand_to(pos + y); + new_rect.expand_to(pos + x + y); + return new_rect; +} + +void Transform2D::set_rotation_and_scale(real_t p_rot, const Size2 &p_scale) { + elements[0][0] = Math::cos(p_rot) * p_scale.x; + elements[1][1] = Math::cos(p_rot) * p_scale.y; + elements[1][0] = -Math::sin(p_rot) * p_scale.y; + elements[0][1] = Math::sin(p_rot) * p_scale.x; +} + +void Transform2D::set_rotation_scale_and_skew(real_t p_rot, const Size2 &p_scale, float p_skew) { + elements[0][0] = Math::cos(p_rot) * p_scale.x; + elements[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; + elements[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; + elements[0][1] = Math::sin(p_rot) * p_scale.x; +} + +Rect2 Transform2D::xform_inv(const Rect2 &p_rect) const { + Vector2 ends[4] = { + xform_inv(p_rect.position), + xform_inv(Vector2(p_rect.position.x, p_rect.position.y + p_rect.size.y)), + xform_inv(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y + p_rect.size.y)), + xform_inv(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y)) + }; + + Rect2 new_rect; + new_rect.position = ends[0]; + new_rect.expand_to(ends[1]); + new_rect.expand_to(ends[2]); + new_rect.expand_to(ends[3]); + + return new_rect; +} + +PackedVector2Array Transform2D::xform(const PackedVector2Array &p_array) const { + PackedVector2Array array; + array.resize(p_array.size()); + + for (int i = 0; i < p_array.size(); ++i) { + array[i] = xform(p_array[i]); + } + return array; +} + +PackedVector2Array Transform2D::xform_inv(const PackedVector2Array &p_array) const { + PackedVector2Array array; + array.resize(p_array.size()); + + for (int i = 0; i < p_array.size(); ++i) { + array[i] = xform_inv(p_array[i]); + } + return array; +} + +} // namespace godot + +#endif // GODOT_TRANSFORM2D_HPP diff --git a/include/godot_cpp/variant/transform3d.hpp b/include/godot_cpp/variant/transform3d.hpp new file mode 100644 index 0000000..7a7f625 --- /dev/null +++ b/include/godot_cpp/variant/transform3d.hpp @@ -0,0 +1,204 @@ +#ifndef GODOT_TRANSFORM3D_HPP +#define GODOT_TRANSFORM3D_HPP + +#include <godot_cpp/variant/aabb.hpp> +#include <godot_cpp/variant/basis.hpp> +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/packed_vector3_array.hpp> +#include <godot_cpp/variant/plane.hpp> + +namespace godot { + +class Transform3D { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + Basis basis; + Vector3 origin; + + void invert(); + Transform3D inverse() const; + + void affine_invert(); + Transform3D affine_inverse() const; + + Transform3D rotated(const Vector3 &p_axis, real_t p_phi) const; + + void rotate(const Vector3 &p_axis, real_t p_phi); + void rotate_basis(const Vector3 &p_axis, real_t p_phi); + + void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)); + Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)) const; + + void scale(const Vector3 &p_scale); + Transform3D scaled(const Vector3 &p_scale) const; + void scale_basis(const Vector3 &p_scale); + void translate(real_t p_tx, real_t p_ty, real_t p_tz); + void translate(const Vector3 &p_translation); + Transform3D translated(const Vector3 &p_translation) const; + + const Basis &get_basis() const { return basis; } + void set_basis(const Basis &p_basis) { basis = p_basis; } + + const Vector3 &get_origin() const { return origin; } + void set_origin(const Vector3 &p_origin) { origin = p_origin; } + + void orthonormalize(); + Transform3D orthonormalized() const; + bool is_equal_approx(const Transform3D &p_transform) const; + + bool operator==(const Transform3D &p_transform) const; + bool operator!=(const Transform3D &p_transform) const; + + inline Vector3 xform(const Vector3 &p_vector) const; + inline Vector3 xform_inv(const Vector3 &p_vector) const; + + inline Plane xform(const Plane &p_plane) const; + inline Plane xform_inv(const Plane &p_plane) const; + + inline AABB xform(const AABB &p_aabb) const; + inline AABB xform_inv(const AABB &p_aabb) const; + + inline PackedVector3Array xform(const PackedVector3Array &p_array) const; + inline PackedVector3Array xform_inv(const PackedVector3Array &p_array) const; + + void operator*=(const Transform3D &p_transform); + Transform3D operator*(const Transform3D &p_transform) const; + + Transform3D interpolate_with(const Transform3D &p_transform, real_t p_c) const; + + inline Transform3D inverse_xform(const Transform3D &t) const { + Vector3 v = t.origin - origin; + return Transform3D(basis.transpose_xform(t.basis), + basis.xform(v)); + } + + void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) { + basis.set(xx, xy, xz, yx, yy, yz, zx, zy, zz); + origin.x = tx; + origin.y = ty; + origin.z = tz; + } + + operator String() const; + + Transform3D() {} + Transform3D(const Basis &p_basis, const Vector3 &p_origin = Vector3()); + Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin); + Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz); +}; + +inline Vector3 Transform3D::xform(const Vector3 &p_vector) const { + return Vector3( + basis[0].dot(p_vector) + origin.x, + basis[1].dot(p_vector) + origin.y, + basis[2].dot(p_vector) + origin.z); +} + +inline Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { + Vector3 v = p_vector - origin; + + return Vector3( + (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z), + (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z), + (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z)); +} + +inline Plane Transform3D::xform(const Plane &p_plane) const { + Vector3 point = p_plane.normal * p_plane.d; + Vector3 point_dir = point + p_plane.normal; + point = xform(point); + point_dir = xform(point_dir); + + Vector3 normal = point_dir - point; + normal.normalize(); + real_t d = normal.dot(point); + + return Plane(normal, d); +} + +inline Plane Transform3D::xform_inv(const Plane &p_plane) const { + Vector3 point = p_plane.normal * p_plane.d; + Vector3 point_dir = point + p_plane.normal; + point = xform_inv(point); + point_dir = xform_inv(point_dir); + + Vector3 normal = point_dir - point; + normal.normalize(); + real_t d = normal.dot(point); + + return Plane(normal, d); +} + +inline AABB Transform3D::xform(const AABB &p_aabb) const { + /* http://dev.theomader.com/transform-bounding-boxes/ */ + Vector3 min = p_aabb.position; + Vector3 max = p_aabb.position + p_aabb.size; + Vector3 tmin, tmax; + for (int i = 0; i < 3; i++) { + tmin[i] = tmax[i] = origin[i]; + for (int j = 0; j < 3; j++) { + real_t e = basis[i][j] * min[j]; + real_t f = basis[i][j] * max[j]; + if (e < f) { + tmin[i] += e; + tmax[i] += f; + } else { + tmin[i] += f; + tmax[i] += e; + } + } + } + AABB r_aabb; + r_aabb.position = tmin; + r_aabb.size = tmax - tmin; + return r_aabb; +} + +inline AABB Transform3D::xform_inv(const AABB &p_aabb) const { + /* define vertices */ + Vector3 vertices[8] = { + Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), + Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), + Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), + Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z), + Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), + Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), + Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), + Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z) + }; + + AABB ret; + + ret.position = xform_inv(vertices[0]); + + for (int i = 1; i < 8; i++) { + ret.expand_to(xform_inv(vertices[i])); + } + + return ret; +} + +PackedVector3Array Transform3D::xform(const PackedVector3Array &p_array) const { + PackedVector3Array array; + array.resize(p_array.size()); + + for (int i = 0; i < p_array.size(); ++i) { + array[i] = xform(p_array[i]); + } + return array; +} + +PackedVector3Array Transform3D::xform_inv(const PackedVector3Array &p_array) const { + PackedVector3Array array; + array.resize(p_array.size()); + + for (int i = 0; i < p_array.size(); ++i) { + array[i] = xform_inv(p_array[i]); + } + return array; +} + +} // namespace godot + +#endif // GODOT_TRANSFORM_HPP diff --git a/include/godot_cpp/variant/vector2.hpp b/include/godot_cpp/variant/vector2.hpp new file mode 100644 index 0000000..51ece07 --- /dev/null +++ b/include/godot_cpp/variant/vector2.hpp @@ -0,0 +1,236 @@ +#ifndef GODOT_VECTOR2_HPP +#define GODOT_VECTOR2_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +class Vector2i; + +class Vector2 { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + enum Axis { + AXIS_X, + AXIS_Y, + }; + + union { + real_t x = 0; + real_t width; + }; + union { + real_t y = 0; + real_t height; + }; + + inline real_t &operator[](int p_idx) { + return p_idx ? y : x; + } + inline const real_t &operator[](int p_idx) const { + return p_idx ? y : x; + } + + void normalize(); + Vector2 normalized() const; + bool is_normalized() const; + + real_t length() const; + real_t length_squared() const; + + Vector2 min(const Vector2 &p_vector2) const { + return Vector2(Math::min(x, p_vector2.x), Math::min(y, p_vector2.y)); + } + + Vector2 max(const Vector2 &p_vector2) const { + return Vector2(Math::max(x, p_vector2.x), Math::max(y, p_vector2.y)); + } + + real_t distance_to(const Vector2 &p_vector2) const; + real_t distance_squared_to(const Vector2 &p_vector2) const; + real_t angle_to(const Vector2 &p_vector2) const; + real_t angle_to_point(const Vector2 &p_vector2) const; + inline Vector2 direction_to(const Vector2 &p_to) const; + + real_t dot(const Vector2 &p_other) const; + real_t cross(const Vector2 &p_other) const; + Vector2 posmod(const real_t p_mod) const; + Vector2 posmodv(const Vector2 &p_modv) const; + Vector2 project(const Vector2 &p_to) const; + + Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const; + + Vector2 clamped(real_t p_len) const; + + inline Vector2 lerp(const Vector2 &p_to, real_t p_weight) const; + inline Vector2 slerp(const Vector2 &p_to, real_t p_weight) const; + Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const; + Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const; + + Vector2 slide(const Vector2 &p_normal) const; + Vector2 bounce(const Vector2 &p_normal) const; + Vector2 reflect(const Vector2 &p_normal) const; + + bool is_equal_approx(const Vector2 &p_v) const; + + Vector2 operator+(const Vector2 &p_v) const; + void operator+=(const Vector2 &p_v); + Vector2 operator-(const Vector2 &p_v) const; + void operator-=(const Vector2 &p_v); + Vector2 operator*(const Vector2 &p_v1) const; + + Vector2 operator*(const real_t &rvalue) const; + void operator*=(const real_t &rvalue); + void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; } + + Vector2 operator/(const Vector2 &p_v1) const; + + Vector2 operator/(const real_t &rvalue) const; + + void operator/=(const real_t &rvalue); + void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; } + + Vector2 operator-() const; + + bool operator==(const Vector2 &p_vec2) const; + bool operator!=(const Vector2 &p_vec2) const; + + bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); } + bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); } + bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); } + bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); } + + real_t angle() const; + + inline Vector2 abs() const { + return Vector2(Math::abs(x), Math::abs(y)); + } + + Vector2 rotated(real_t p_by) const; + Vector2 orthogonal() const { + return Vector2(y, -x); + } + + Vector2 sign() const; + Vector2 floor() const; + Vector2 ceil() const; + Vector2 round() const; + Vector2 snapped(const Vector2 &p_by) const; + real_t aspect() const { return width / height; } + + operator String() const; + + inline Vector2() {} + inline Vector2(real_t p_x, real_t p_y) { + x = p_x; + y = p_y; + } +}; + +inline Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const { + return p_vec - *this * (dot(p_vec) - p_d); +} + +inline Vector2 operator*(float p_scalar, const Vector2 &p_vec) { + return p_vec * p_scalar; +} + +inline Vector2 operator*(double p_scalar, const Vector2 &p_vec) { + return p_vec * p_scalar; +} + +inline Vector2 operator*(int32_t p_scalar, const Vector2 &p_vec) { + return p_vec * p_scalar; +} + +inline Vector2 operator*(int64_t p_scalar, const Vector2 &p_vec) { + return p_vec * p_scalar; +} + +inline Vector2 Vector2::operator+(const Vector2 &p_v) const { + return Vector2(x + p_v.x, y + p_v.y); +} + +inline void Vector2::operator+=(const Vector2 &p_v) { + x += p_v.x; + y += p_v.y; +} + +inline Vector2 Vector2::operator-(const Vector2 &p_v) const { + return Vector2(x - p_v.x, y - p_v.y); +} + +inline void Vector2::operator-=(const Vector2 &p_v) { + x -= p_v.x; + y -= p_v.y; +} + +inline Vector2 Vector2::operator*(const Vector2 &p_v1) const { + return Vector2(x * p_v1.x, y * p_v1.y); +} + +inline Vector2 Vector2::operator*(const real_t &rvalue) const { + return Vector2(x * rvalue, y * rvalue); +} + +inline void Vector2::operator*=(const real_t &rvalue) { + x *= rvalue; + y *= rvalue; +} + +inline Vector2 Vector2::operator/(const Vector2 &p_v1) const { + return Vector2(x / p_v1.x, y / p_v1.y); +} + +inline Vector2 Vector2::operator/(const real_t &rvalue) const { + return Vector2(x / rvalue, y / rvalue); +} + +inline void Vector2::operator/=(const real_t &rvalue) { + x /= rvalue; + y /= rvalue; +} + +inline Vector2 Vector2::operator-() const { + return Vector2(-x, -y); +} + +inline bool Vector2::operator==(const Vector2 &p_vec2) const { + return x == p_vec2.x && y == p_vec2.y; +} + +inline bool Vector2::operator!=(const Vector2 &p_vec2) const { + return x != p_vec2.x || y != p_vec2.y; +} + +Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const { + Vector2 res = *this; + + res.x += (p_weight * (p_to.x - x)); + res.y += (p_weight * (p_to.y - y)); + + return res; +} + +Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), Vector2()); +#endif + real_t theta = angle_to(p_to); + return rotated(theta * p_weight); +} + +Vector2 Vector2::direction_to(const Vector2 &p_to) const { + Vector2 ret(p_to.x - x, p_to.y - y); + ret.normalize(); + return ret; +} + +typedef Vector2 Size2; +typedef Vector2 Point2; + +} // namespace godot + +#endif // GODOT_VECTOR2_HPP diff --git a/include/godot_cpp/variant/vector2i.hpp b/include/godot_cpp/variant/vector2i.hpp new file mode 100644 index 0000000..e9493ad --- /dev/null +++ b/include/godot_cpp/variant/vector2i.hpp @@ -0,0 +1,102 @@ +#ifndef GODOT_VECTOR2I_HPP +#define GODOT_VECTOR2I_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/string.hpp> +#include <godot_cpp/variant/vector2.hpp> + +namespace godot { + +class Vector2i { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + enum Axis { + AXIS_X, + AXIS_Y, + }; + + union { + int32_t x = 0; + int32_t width; + }; + union { + int32_t y = 0; + int32_t height; + }; + + inline int32_t &operator[](int p_idx) { + return p_idx ? y : x; + } + inline const int32_t &operator[](int p_idx) const { + return p_idx ? y : x; + } + + Vector2i operator+(const Vector2i &p_v) const; + void operator+=(const Vector2i &p_v); + Vector2i operator-(const Vector2i &p_v) const; + void operator-=(const Vector2i &p_v); + Vector2i operator*(const Vector2i &p_v1) const; + + Vector2i operator*(const int32_t &rvalue) const; + void operator*=(const int32_t &rvalue); + + Vector2i operator/(const Vector2i &p_v1) const; + Vector2i operator/(const int32_t &rvalue) const; + void operator/=(const int32_t &rvalue); + + Vector2i operator%(const Vector2i &p_v1) const; + Vector2i operator%(const int32_t &rvalue) const; + void operator%=(const int32_t &rvalue); + + Vector2i operator-() const; + bool operator<(const Vector2i &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); } + bool operator>(const Vector2i &p_vec2) const { return (x == p_vec2.x) ? (y > p_vec2.y) : (x > p_vec2.x); } + + bool operator<=(const Vector2i &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); } + bool operator>=(const Vector2i &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); } + + bool operator==(const Vector2i &p_vec2) const; + bool operator!=(const Vector2i &p_vec2) const; + + real_t aspect() const { return width / (real_t)height; } + Vector2i sign() const { return Vector2i(Math::sign(x), Math::sign(y)); } + Vector2i abs() const { return Vector2i(Math::abs(x), Math::abs(y)); } + + operator String() const; + + operator Vector2() const { return Vector2(x, y); } + + inline Vector2i() {} + inline Vector2i(const Vector2 &p_vec2) { + x = (int32_t)p_vec2.x; + y = (int32_t)p_vec2.y; + } + inline Vector2i(int32_t p_x, int32_t p_y) { + x = p_x; + y = p_y; + } +}; + +inline Vector2i operator*(const int32_t &p_scalar, const Vector2i &p_vector) { + return p_vector * p_scalar; +} + +inline Vector2i operator*(const int64_t &p_scalar, const Vector2i &p_vector) { + return p_vector * p_scalar; +} + +inline Vector2i operator*(const float &p_scalar, const Vector2i &p_vector) { + return p_vector * p_scalar; +} + +inline Vector2i operator*(const double &p_scalar, const Vector2i &p_vector) { + return p_vector * p_scalar; +} + +typedef Vector2i Size2i; +typedef Vector2i Point2i; + +} // namespace godot + +#endif // GODOT_VECTOR2I_HPP diff --git a/include/godot_cpp/variant/vector3.hpp b/include/godot_cpp/variant/vector3.hpp new file mode 100644 index 0000000..fb08174 --- /dev/null +++ b/include/godot_cpp/variant/vector3.hpp @@ -0,0 +1,408 @@ +#ifndef GODOT_VECTOR3_HPP +#define GODOT_VECTOR3_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +class Basis; +class Vector3i; + +class Vector3 { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + enum Axis { + AXIS_X, + AXIS_Y, + AXIS_Z, + }; + + union { + struct { + real_t x; + real_t y; + real_t z; + }; + + real_t coord[3] = { 0 }; + }; + + inline const real_t &operator[](int p_axis) const { + return coord[p_axis]; + } + + inline real_t &operator[](int p_axis) { + return coord[p_axis]; + } + + void set_axis(int p_axis, real_t p_value); + real_t get_axis(int p_axis) const; + + int min_axis() const; + int max_axis() const; + + inline real_t length() const; + inline real_t length_squared() const; + + inline void normalize(); + inline Vector3 normalized() const; + inline bool is_normalized() const; + inline Vector3 inverse() const; + + inline void zero(); + + void snap(Vector3 p_val); + Vector3 snapped(Vector3 p_val) const; + + void rotate(const Vector3 &p_axis, real_t p_phi); + Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const; + + /* Static Methods between 2 vector3s */ + + inline Vector3 lerp(const Vector3 &p_to, real_t p_weight) const; + inline Vector3 slerp(const Vector3 &p_to, real_t p_weight) const; + Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const; + Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; + + inline Vector3 cross(const Vector3 &p_b) const; + inline real_t dot(const Vector3 &p_b) const; + Basis outer(const Vector3 &p_b) const; + Basis to_diagonal_matrix() const; + + inline Vector3 abs() const; + inline Vector3 floor() const; + inline Vector3 sign() const; + inline Vector3 ceil() const; + inline Vector3 round() const; + + inline real_t distance_to(const Vector3 &p_to) const; + inline real_t distance_squared_to(const Vector3 &p_to) const; + + inline Vector3 posmod(const real_t p_mod) const; + inline Vector3 posmodv(const Vector3 &p_modv) const; + inline Vector3 project(const Vector3 &p_to) const; + + inline real_t angle_to(const Vector3 &p_to) const; + inline Vector3 direction_to(const Vector3 &p_to) const; + + inline Vector3 slide(const Vector3 &p_normal) const; + inline Vector3 bounce(const Vector3 &p_normal) const; + inline Vector3 reflect(const Vector3 &p_normal) const; + + bool is_equal_approx(const Vector3 &p_v) const; + + /* Operators */ + + inline Vector3 &operator+=(const Vector3 &p_v); + inline Vector3 operator+(const Vector3 &p_v) const; + inline Vector3 &operator-=(const Vector3 &p_v); + inline Vector3 operator-(const Vector3 &p_v) const; + inline Vector3 &operator*=(const Vector3 &p_v); + inline Vector3 operator*(const Vector3 &p_v) const; + inline Vector3 &operator/=(const Vector3 &p_v); + inline Vector3 operator/(const Vector3 &p_v) const; + + inline Vector3 &operator*=(real_t p_scalar); + inline Vector3 operator*(real_t p_scalar) const; + inline Vector3 &operator/=(real_t p_scalar); + inline Vector3 operator/(real_t p_scalar) const; + + inline Vector3 operator-() const; + + inline bool operator==(const Vector3 &p_v) const; + inline bool operator!=(const Vector3 &p_v) const; + inline bool operator<(const Vector3 &p_v) const; + inline bool operator<=(const Vector3 &p_v) const; + inline bool operator>(const Vector3 &p_v) const; + inline bool operator>=(const Vector3 &p_v) const; + + operator String() const; + operator Vector3i() const; + + inline Vector3() {} + inline Vector3(real_t p_x, real_t p_y, real_t p_z) { + x = p_x; + y = p_y; + z = p_z; + } + Vector3(const Vector3i &p_ivec); +}; + +Vector3 Vector3::cross(const Vector3 &p_b) const { + Vector3 ret( + (y * p_b.z) - (z * p_b.y), + (z * p_b.x) - (x * p_b.z), + (x * p_b.y) - (y * p_b.x)); + + return ret; +} + +real_t Vector3::dot(const Vector3 &p_b) const { + return x * p_b.x + y * p_b.y + z * p_b.z; +} + +Vector3 Vector3::abs() const { + return Vector3(Math::abs(x), Math::abs(y), Math::abs(z)); +} + +Vector3 Vector3::sign() const { + return Vector3(Math::sign(x), Math::sign(y), Math::sign(z)); +} + +Vector3 Vector3::floor() const { + return Vector3(Math::floor(x), Math::floor(y), Math::floor(z)); +} + +Vector3 Vector3::ceil() const { + return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z)); +} + +Vector3 Vector3::round() const { + return Vector3(Math::round(x), Math::round(y), Math::round(z)); +} + +Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const { + return Vector3( + x + (p_weight * (p_to.x - x)), + y + (p_weight * (p_to.y - y)), + z + (p_weight * (p_to.z - z))); +} + +Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const { + real_t theta = angle_to(p_to); + return rotated(cross(p_to).normalized(), theta * p_weight); +} + +real_t Vector3::distance_to(const Vector3 &p_to) const { + return (p_to - *this).length(); +} + +real_t Vector3::distance_squared_to(const Vector3 &p_to) const { + return (p_to - *this).length_squared(); +} + +Vector3 Vector3::posmod(const real_t p_mod) const { + return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod)); +} + +Vector3 Vector3::posmodv(const Vector3 &p_modv) const { + return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z)); +} + +Vector3 Vector3::project(const Vector3 &p_to) const { + return p_to * (dot(p_to) / p_to.length_squared()); +} + +real_t Vector3::angle_to(const Vector3 &p_to) const { + return Math::atan2(cross(p_to).length(), dot(p_to)); +} + +Vector3 Vector3::direction_to(const Vector3 &p_to) const { + Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z); + ret.normalize(); + return ret; +} + +/* Operators */ + +Vector3 &Vector3::operator+=(const Vector3 &p_v) { + x += p_v.x; + y += p_v.y; + z += p_v.z; + return *this; +} + +Vector3 Vector3::operator+(const Vector3 &p_v) const { + return Vector3(x + p_v.x, y + p_v.y, z + p_v.z); +} + +Vector3 &Vector3::operator-=(const Vector3 &p_v) { + x -= p_v.x; + y -= p_v.y; + z -= p_v.z; + return *this; +} + +Vector3 Vector3::operator-(const Vector3 &p_v) const { + return Vector3(x - p_v.x, y - p_v.y, z - p_v.z); +} + +Vector3 &Vector3::operator*=(const Vector3 &p_v) { + x *= p_v.x; + y *= p_v.y; + z *= p_v.z; + return *this; +} + +Vector3 Vector3::operator*(const Vector3 &p_v) const { + return Vector3(x * p_v.x, y * p_v.y, z * p_v.z); +} + +Vector3 &Vector3::operator/=(const Vector3 &p_v) { + x /= p_v.x; + y /= p_v.y; + z /= p_v.z; + return *this; +} + +Vector3 Vector3::operator/(const Vector3 &p_v) const { + return Vector3(x / p_v.x, y / p_v.y, z / p_v.z); +} + +Vector3 &Vector3::operator*=(real_t p_scalar) { + x *= p_scalar; + y *= p_scalar; + z *= p_scalar; + return *this; +} + +inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) { + return p_vec * p_scalar; +} + +Vector3 Vector3::operator*(real_t p_scalar) const { + return Vector3(x * p_scalar, y * p_scalar, z * p_scalar); +} + +Vector3 &Vector3::operator/=(real_t p_scalar) { + x /= p_scalar; + y /= p_scalar; + z /= p_scalar; + return *this; +} + +Vector3 Vector3::operator/(real_t p_scalar) const { + return Vector3(x / p_scalar, y / p_scalar, z / p_scalar); +} + +Vector3 Vector3::operator-() const { + return Vector3(-x, -y, -z); +} + +bool Vector3::operator==(const Vector3 &p_v) const { + return x == p_v.x && y == p_v.y && z == p_v.z; +} + +bool Vector3::operator!=(const Vector3 &p_v) const { + return x != p_v.x || y != p_v.y || z != p_v.z; +} + +bool Vector3::operator<(const Vector3 &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z < p_v.z; + } + return y < p_v.y; + } + return x < p_v.x; +} + +bool Vector3::operator>(const Vector3 &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z > p_v.z; + } + return y > p_v.y; + } + return x > p_v.x; +} + +bool Vector3::operator<=(const Vector3 &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z <= p_v.z; + } + return y < p_v.y; + } + return x < p_v.x; +} + +bool Vector3::operator>=(const Vector3 &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z >= p_v.z; + } + return y > p_v.y; + } + return x > p_v.x; +} + +inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) { + return p_a.cross(p_b); +} + +inline real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) { + return p_a.dot(p_b); +} + +real_t Vector3::length() const { + real_t x2 = x * x; + real_t y2 = y * y; + real_t z2 = z * z; + + return Math::sqrt(x2 + y2 + z2); +} + +real_t Vector3::length_squared() const { + real_t x2 = x * x; + real_t y2 = y * y; + real_t z2 = z * z; + + return x2 + y2 + z2; +} + +void Vector3::normalize() { + real_t lengthsq = length_squared(); + if (lengthsq == 0) { + x = y = z = 0; + } else { + real_t length = Math::sqrt(lengthsq); + x /= length; + y /= length; + z /= length; + } +} + +Vector3 Vector3::normalized() const { + Vector3 v = *this; + v.normalize(); + return v; +} + +bool Vector3::is_normalized() const { + // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. + return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); +} + +Vector3 Vector3::inverse() const { + return Vector3(1.0 / x, 1.0 / y, 1.0 / z); +} + +void Vector3::zero() { + x = y = z = 0; +} + +// slide returns the component of the vector along the given plane, specified by its normal vector. +Vector3 Vector3::slide(const Vector3 &p_normal) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3()); +#endif + return *this - p_normal * this->dot(p_normal); +} + +Vector3 Vector3::bounce(const Vector3 &p_normal) const { + return -reflect(p_normal); +} + +Vector3 Vector3::reflect(const Vector3 &p_normal) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3()); +#endif + return 2.0 * p_normal * this->dot(p_normal) - *this; +} + +} // namespace godot + +#endif // GODOT_VECTOR3_HPP diff --git a/include/godot_cpp/variant/vector3i.hpp b/include/godot_cpp/variant/vector3i.hpp new file mode 100644 index 0000000..09a8b69 --- /dev/null +++ b/include/godot_cpp/variant/vector3i.hpp @@ -0,0 +1,255 @@ +#ifndef GODOT_VECTOR3I_HPP +#define GODOT_VECTOR3I_HPP + +#include <godot_cpp/core/math.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +class Vector3i { +public: + _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } + + enum Axis { + AXIS_X, + AXIS_Y, + AXIS_Z, + }; + + union { + struct { + int32_t x; + int32_t y; + int32_t z; + }; + + int32_t coord[3] = { 0 }; + }; + + inline const int32_t &operator[](int p_axis) const { + return coord[p_axis]; + } + + inline int32_t &operator[](int p_axis) { + return coord[p_axis]; + } + + void set_axis(int p_axis, int32_t p_value); + int32_t get_axis(int p_axis) const; + + int min_axis() const; + int max_axis() const; + + inline void zero(); + + inline Vector3i abs() const; + inline Vector3i sign() const; + + /* Operators */ + + inline Vector3i &operator+=(const Vector3i &p_v); + inline Vector3i operator+(const Vector3i &p_v) const; + inline Vector3i &operator-=(const Vector3i &p_v); + inline Vector3i operator-(const Vector3i &p_v) const; + inline Vector3i &operator*=(const Vector3i &p_v); + inline Vector3i operator*(const Vector3i &p_v) const; + inline Vector3i &operator/=(const Vector3i &p_v); + inline Vector3i operator/(const Vector3i &p_v) const; + inline Vector3i &operator%=(const Vector3i &p_v); + inline Vector3i operator%(const Vector3i &p_v) const; + + inline Vector3i &operator*=(int32_t p_scalar); + inline Vector3i operator*(int32_t p_scalar) const; + inline Vector3i &operator/=(int32_t p_scalar); + inline Vector3i operator/(int32_t p_scalar) const; + inline Vector3i &operator%=(int32_t p_scalar); + inline Vector3i operator%(int32_t p_scalar) const; + + inline Vector3i operator-() const; + + inline bool operator==(const Vector3i &p_v) const; + inline bool operator!=(const Vector3i &p_v) const; + inline bool operator<(const Vector3i &p_v) const; + inline bool operator<=(const Vector3i &p_v) const; + inline bool operator>(const Vector3i &p_v) const; + inline bool operator>=(const Vector3i &p_v) const; + + operator String() const; + + inline Vector3i() {} + inline Vector3i(int32_t p_x, int32_t p_y, int32_t p_z) { + x = p_x; + y = p_y; + z = p_z; + } +}; + +Vector3i Vector3i::abs() const { + return Vector3i(Math::abs(x), Math::abs(y), Math::abs(z)); +} + +Vector3i Vector3i::sign() const { + return Vector3i(Math::sign(x), Math::sign(y), Math::sign(z)); +} + +/* Operators */ + +Vector3i &Vector3i::operator+=(const Vector3i &p_v) { + x += p_v.x; + y += p_v.y; + z += p_v.z; + return *this; +} + +Vector3i Vector3i::operator+(const Vector3i &p_v) const { + return Vector3i(x + p_v.x, y + p_v.y, z + p_v.z); +} + +Vector3i &Vector3i::operator-=(const Vector3i &p_v) { + x -= p_v.x; + y -= p_v.y; + z -= p_v.z; + return *this; +} + +Vector3i Vector3i::operator-(const Vector3i &p_v) const { + return Vector3i(x - p_v.x, y - p_v.y, z - p_v.z); +} + +Vector3i &Vector3i::operator*=(const Vector3i &p_v) { + x *= p_v.x; + y *= p_v.y; + z *= p_v.z; + return *this; +} + +Vector3i Vector3i::operator*(const Vector3i &p_v) const { + return Vector3i(x * p_v.x, y * p_v.y, z * p_v.z); +} + +Vector3i &Vector3i::operator/=(const Vector3i &p_v) { + x /= p_v.x; + y /= p_v.y; + z /= p_v.z; + return *this; +} + +Vector3i Vector3i::operator/(const Vector3i &p_v) const { + return Vector3i(x / p_v.x, y / p_v.y, z / p_v.z); +} + +Vector3i &Vector3i::operator%=(const Vector3i &p_v) { + x %= p_v.x; + y %= p_v.y; + z %= p_v.z; + return *this; +} + +Vector3i Vector3i::operator%(const Vector3i &p_v) const { + return Vector3i(x % p_v.x, y % p_v.y, z % p_v.z); +} + +Vector3i &Vector3i::operator*=(int32_t p_scalar) { + x *= p_scalar; + y *= p_scalar; + z *= p_scalar; + return *this; +} + +inline Vector3i operator*(int32_t p_scalar, const Vector3i &p_vec) { + return p_vec * p_scalar; +} + +Vector3i Vector3i::operator*(int32_t p_scalar) const { + return Vector3i(x * p_scalar, y * p_scalar, z * p_scalar); +} + +Vector3i &Vector3i::operator/=(int32_t p_scalar) { + x /= p_scalar; + y /= p_scalar; + z /= p_scalar; + return *this; +} + +Vector3i Vector3i::operator/(int32_t p_scalar) const { + return Vector3i(x / p_scalar, y / p_scalar, z / p_scalar); +} + +Vector3i &Vector3i::operator%=(int32_t p_scalar) { + x %= p_scalar; + y %= p_scalar; + z %= p_scalar; + return *this; +} + +Vector3i Vector3i::operator%(int32_t p_scalar) const { + return Vector3i(x % p_scalar, y % p_scalar, z % p_scalar); +} + +Vector3i Vector3i::operator-() const { + return Vector3i(-x, -y, -z); +} + +bool Vector3i::operator==(const Vector3i &p_v) const { + return (x == p_v.x && y == p_v.y && z == p_v.z); +} + +bool Vector3i::operator!=(const Vector3i &p_v) const { + return (x != p_v.x || y != p_v.y || z != p_v.z); +} + +bool Vector3i::operator<(const Vector3i &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z < p_v.z; + } else { + return y < p_v.y; + } + } else { + return x < p_v.x; + } +} + +bool Vector3i::operator>(const Vector3i &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z > p_v.z; + } else { + return y > p_v.y; + } + } else { + return x > p_v.x; + } +} + +bool Vector3i::operator<=(const Vector3i &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z <= p_v.z; + } else { + return y < p_v.y; + } + } else { + return x < p_v.x; + } +} + +bool Vector3i::operator>=(const Vector3i &p_v) const { + if (x == p_v.x) { + if (y == p_v.y) { + return z >= p_v.z; + } else { + return y > p_v.y; + } + } else { + return x > p_v.x; + } +} + +void Vector3i::zero() { + x = y = z = 0; +} + +} // namespace godot + +#endif // GODOT_VECTOR3I_HPP |