summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorBastiaan Olij <mux213@gmail.com>2021-09-01 13:11:10 +1000
committerBastiaan Olij <mux213@gmail.com>2021-09-27 23:08:10 +1000
commit46c63af715cf42a6e27feb48a3e7ed6d6dd9458c (patch)
tree14b3049fc155209d617b89fb3e45b95269519f9f /src
parent3a5bd210921ac668949e20c494976660a986ea4a (diff)
downloadredot-cpp-46c63af715cf42a6e27feb48a3e7ed6d6dd9458c.tar.gz
Re-introduce build-in type code for core types
Diffstat (limited to 'src')
-rw-r--r--src/variant/aabb.cpp355
-rw-r--r--src/variant/basis.cpp1113
-rw-r--r--src/variant/char_string.cpp8
-rw-r--r--src/variant/color.cpp532
-rw-r--r--src/variant/packed_arrays.cpp97
-rw-r--r--src/variant/plane.cpp127
-rw-r--r--src/variant/quaternion.cpp203
-rw-r--r--src/variant/rect2.cpp241
-rw-r--r--src/variant/rect2i.cpp3
-rw-r--r--src/variant/transform2d.cpp248
-rw-r--r--src/variant/transform3d.cpp185
-rw-r--r--src/variant/variant.cpp13
-rw-r--r--src/variant/vector2.cpp168
-rw-r--r--src/variant/vector2i.cpp80
-rw-r--r--src/variant/vector3.cpp94
-rw-r--r--src/variant/vector3i.cpp29
16 files changed, 3483 insertions, 13 deletions
diff --git a/src/variant/aabb.cpp b/src/variant/aabb.cpp
new file mode 100644
index 0000000..586ec5b
--- /dev/null
+++ b/src/variant/aabb.cpp
@@ -0,0 +1,355 @@
+#include <godot_cpp/variant/aabb.hpp>
+
+#include <godot_cpp/core/defs.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+real_t AABB::get_area() const {
+ return size.x * size.y * size.z;
+}
+
+bool AABB::operator==(const AABB &p_rval) const {
+ return ((position == p_rval.position) && (size == p_rval.size));
+}
+
+bool AABB::operator!=(const AABB &p_rval) const {
+ return ((position != p_rval.position) || (size != p_rval.size));
+}
+
+void AABB::merge_with(const AABB &p_aabb) {
+ Vector3 beg_1, beg_2;
+ Vector3 end_1, end_2;
+ Vector3 min, max;
+
+ beg_1 = position;
+ beg_2 = p_aabb.position;
+ end_1 = Vector3(size.x, size.y, size.z) + beg_1;
+ end_2 = Vector3(p_aabb.size.x, p_aabb.size.y, p_aabb.size.z) + beg_2;
+
+ min.x = (beg_1.x < beg_2.x) ? beg_1.x : beg_2.x;
+ min.y = (beg_1.y < beg_2.y) ? beg_1.y : beg_2.y;
+ min.z = (beg_1.z < beg_2.z) ? beg_1.z : beg_2.z;
+
+ max.x = (end_1.x > end_2.x) ? end_1.x : end_2.x;
+ max.y = (end_1.y > end_2.y) ? end_1.y : end_2.y;
+ max.z = (end_1.z > end_2.z) ? end_1.z : end_2.z;
+
+ position = min;
+ size = max - min;
+}
+
+bool AABB::is_equal_approx(const AABB &p_aabb) const {
+ return position.is_equal_approx(p_aabb.position) && size.is_equal_approx(p_aabb.size);
+}
+
+AABB AABB::intersection(const AABB &p_aabb) const {
+ Vector3 src_min = position;
+ Vector3 src_max = position + size;
+ Vector3 dst_min = p_aabb.position;
+ Vector3 dst_max = p_aabb.position + p_aabb.size;
+
+ Vector3 min, max;
+
+ if (src_min.x > dst_max.x || src_max.x < dst_min.x) {
+ return AABB();
+ } else {
+ min.x = (src_min.x > dst_min.x) ? src_min.x : dst_min.x;
+ max.x = (src_max.x < dst_max.x) ? src_max.x : dst_max.x;
+ }
+
+ if (src_min.y > dst_max.y || src_max.y < dst_min.y) {
+ return AABB();
+ } else {
+ min.y = (src_min.y > dst_min.y) ? src_min.y : dst_min.y;
+ max.y = (src_max.y < dst_max.y) ? src_max.y : dst_max.y;
+ }
+
+ if (src_min.z > dst_max.z || src_max.z < dst_min.z) {
+ return AABB();
+ } else {
+ min.z = (src_min.z > dst_min.z) ? src_min.z : dst_min.z;
+ max.z = (src_max.z < dst_max.z) ? src_max.z : dst_max.z;
+ }
+
+ return AABB(min, max - min);
+}
+
+bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const {
+ Vector3 c1, c2;
+ Vector3 end = position + size;
+ real_t near = -1e20;
+ real_t far = 1e20;
+ int axis = 0;
+
+ for (int i = 0; i < 3; i++) {
+ if (p_dir[i] == 0) {
+ if ((p_from[i] < position[i]) || (p_from[i] > end[i])) {
+ return false;
+ }
+ } else { // ray not parallel to planes in this direction
+ c1[i] = (position[i] - p_from[i]) / p_dir[i];
+ c2[i] = (end[i] - p_from[i]) / p_dir[i];
+
+ if (c1[i] > c2[i]) {
+ SWAP(c1, c2);
+ }
+ if (c1[i] > near) {
+ near = c1[i];
+ axis = i;
+ }
+ if (c2[i] < far) {
+ far = c2[i];
+ }
+ if ((near > far) || (far < 0)) {
+ return false;
+ }
+ }
+ }
+
+ if (r_clip) {
+ *r_clip = c1;
+ }
+ if (r_normal) {
+ *r_normal = Vector3();
+ (*r_normal)[axis] = p_dir[axis] ? -1 : 1;
+ }
+
+ return true;
+}
+
+bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip, Vector3 *r_normal) const {
+ real_t min = 0, max = 1;
+ int axis = 0;
+ real_t sign = 0;
+
+ for (int i = 0; i < 3; i++) {
+ real_t seg_from = p_from[i];
+ real_t seg_to = p_to[i];
+ real_t box_begin = position[i];
+ real_t box_end = box_begin + size[i];
+ real_t cmin, cmax;
+ real_t csign;
+
+ if (seg_from < seg_to) {
+ if (seg_from > box_end || seg_to < box_begin) {
+ return false;
+ }
+ real_t length = seg_to - seg_from;
+ cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
+ cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
+ csign = -1.0;
+
+ } else {
+ if (seg_to > box_end || seg_from < box_begin) {
+ return false;
+ }
+ real_t length = seg_to - seg_from;
+ cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
+ cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
+ csign = 1.0;
+ }
+
+ if (cmin > min) {
+ min = cmin;
+ axis = i;
+ sign = csign;
+ }
+ if (cmax < max) {
+ max = cmax;
+ }
+ if (max < min) {
+ return false;
+ }
+ }
+
+ Vector3 rel = p_to - p_from;
+
+ if (r_normal) {
+ Vector3 normal;
+ normal[axis] = sign;
+ *r_normal = normal;
+ }
+
+ if (r_clip) {
+ *r_clip = p_from + rel * min;
+ }
+
+ return true;
+}
+
+bool AABB::intersects_plane(const Plane &p_plane) const {
+ Vector3 points[8] = {
+ Vector3(position.x, position.y, position.z),
+ Vector3(position.x, position.y, position.z + size.z),
+ Vector3(position.x, position.y + size.y, position.z),
+ Vector3(position.x, position.y + size.y, position.z + size.z),
+ Vector3(position.x + size.x, position.y, position.z),
+ Vector3(position.x + size.x, position.y, position.z + size.z),
+ Vector3(position.x + size.x, position.y + size.y, position.z),
+ Vector3(position.x + size.x, position.y + size.y, position.z + size.z),
+ };
+
+ bool over = false;
+ bool under = false;
+
+ for (int i = 0; i < 8; i++) {
+ if (p_plane.distance_to(points[i]) > 0) {
+ over = true;
+ } else {
+ under = true;
+ }
+ }
+
+ return under && over;
+}
+
+Vector3 AABB::get_longest_axis() const {
+ Vector3 axis(1, 0, 0);
+ real_t max_size = size.x;
+
+ if (size.y > max_size) {
+ axis = Vector3(0, 1, 0);
+ max_size = size.y;
+ }
+
+ if (size.z > max_size) {
+ axis = Vector3(0, 0, 1);
+ }
+
+ return axis;
+}
+
+int AABB::get_longest_axis_index() const {
+ int axis = 0;
+ real_t max_size = size.x;
+
+ if (size.y > max_size) {
+ axis = 1;
+ max_size = size.y;
+ }
+
+ if (size.z > max_size) {
+ axis = 2;
+ }
+
+ return axis;
+}
+
+Vector3 AABB::get_shortest_axis() const {
+ Vector3 axis(1, 0, 0);
+ real_t max_size = size.x;
+
+ if (size.y < max_size) {
+ axis = Vector3(0, 1, 0);
+ max_size = size.y;
+ }
+
+ if (size.z < max_size) {
+ axis = Vector3(0, 0, 1);
+ }
+
+ return axis;
+}
+
+int AABB::get_shortest_axis_index() const {
+ int axis = 0;
+ real_t max_size = size.x;
+
+ if (size.y < max_size) {
+ axis = 1;
+ max_size = size.y;
+ }
+
+ if (size.z < max_size) {
+ axis = 2;
+ }
+
+ return axis;
+}
+
+AABB AABB::merge(const AABB &p_with) const {
+ AABB aabb = *this;
+ aabb.merge_with(p_with);
+ return aabb;
+}
+
+AABB AABB::expand(const Vector3 &p_vector) const {
+ AABB aabb = *this;
+ aabb.expand_to(p_vector);
+ return aabb;
+}
+
+AABB AABB::grow(real_t p_by) const {
+ AABB aabb = *this;
+ aabb.grow_by(p_by);
+ return aabb;
+}
+
+void AABB::get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const {
+ ERR_FAIL_INDEX(p_edge, 12);
+ switch (p_edge) {
+ case 0: {
+ r_from = Vector3(position.x + size.x, position.y, position.z);
+ r_to = Vector3(position.x, position.y, position.z);
+ } break;
+ case 1: {
+ r_from = Vector3(position.x + size.x, position.y, position.z + size.z);
+ r_to = Vector3(position.x + size.x, position.y, position.z);
+ } break;
+ case 2: {
+ r_from = Vector3(position.x, position.y, position.z + size.z);
+ r_to = Vector3(position.x + size.x, position.y, position.z + size.z);
+
+ } break;
+ case 3: {
+ r_from = Vector3(position.x, position.y, position.z);
+ r_to = Vector3(position.x, position.y, position.z + size.z);
+
+ } break;
+ case 4: {
+ r_from = Vector3(position.x, position.y + size.y, position.z);
+ r_to = Vector3(position.x + size.x, position.y + size.y, position.z);
+ } break;
+ case 5: {
+ r_from = Vector3(position.x + size.x, position.y + size.y, position.z);
+ r_to = Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
+ } break;
+ case 6: {
+ r_from = Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
+ r_to = Vector3(position.x, position.y + size.y, position.z + size.z);
+
+ } break;
+ case 7: {
+ r_from = Vector3(position.x, position.y + size.y, position.z + size.z);
+ r_to = Vector3(position.x, position.y + size.y, position.z);
+
+ } break;
+ case 8: {
+ r_from = Vector3(position.x, position.y, position.z + size.z);
+ r_to = Vector3(position.x, position.y + size.y, position.z + size.z);
+
+ } break;
+ case 9: {
+ r_from = Vector3(position.x, position.y, position.z);
+ r_to = Vector3(position.x, position.y + size.y, position.z);
+
+ } break;
+ case 10: {
+ r_from = Vector3(position.x + size.x, position.y, position.z);
+ r_to = Vector3(position.x + size.x, position.y + size.y, position.z);
+
+ } break;
+ case 11: {
+ r_from = Vector3(position.x + size.x, position.y, position.z + size.z);
+ r_to = Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
+
+ } break;
+ }
+}
+
+AABB::operator String() const {
+ return position.operator String() + " - " + size.operator String();
+}
+
+} // namespace godot
diff --git a/src/variant/basis.cpp b/src/variant/basis.cpp
new file mode 100644
index 0000000..6fa7de9
--- /dev/null
+++ b/src/variant/basis.cpp
@@ -0,0 +1,1113 @@
+#include <godot_cpp/core/error_macros.hpp>
+#include <godot_cpp/variant/basis.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+#define cofac(row1, col1, row2, col2) \
+ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
+
+namespace godot {
+
+void Basis::from_z(const Vector3 &p_z) {
+ if (Math::abs(p_z.z) > Math_SQRT12) {
+ // choose p in y-z plane
+ real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
+ real_t k = 1.0 / Math::sqrt(a);
+ elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
+ elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
+ } else {
+ // choose p in x-y plane
+ real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
+ real_t k = 1.0 / Math::sqrt(a);
+ elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
+ elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
+ }
+ elements[2] = p_z;
+}
+
+void Basis::invert() {
+ real_t co[3] = {
+ cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
+ };
+ real_t det = elements[0][0] * co[0] +
+ elements[0][1] * co[1] +
+ elements[0][2] * co[2];
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(det == 0);
+#endif
+ real_t s = 1.0 / det;
+
+ set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
+ co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
+ co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
+}
+
+void Basis::orthonormalize() {
+ // Gram-Schmidt Process
+
+ Vector3 x = get_axis(0);
+ Vector3 y = get_axis(1);
+ Vector3 z = get_axis(2);
+
+ x.normalize();
+ y = (y - x * (x.dot(y)));
+ y.normalize();
+ z = (z - x * (x.dot(z)) - y * (y.dot(z)));
+ z.normalize();
+
+ set_axis(0, x);
+ set_axis(1, y);
+ set_axis(2, z);
+}
+
+Basis Basis::orthonormalized() const {
+ Basis c = *this;
+ c.orthonormalize();
+ return c;
+}
+
+bool Basis::is_orthogonal() const {
+ Basis identity;
+ Basis m = (*this) * transposed();
+
+ return m.is_equal_approx(identity);
+}
+
+bool Basis::is_diagonal() const {
+ return (
+ Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) &&
+ Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) &&
+ Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1]));
+}
+
+bool Basis::is_rotation() const {
+ return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal();
+}
+
+#ifdef MATH_CHECKS
+// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
+bool Basis::is_symmetric() const {
+ if (!Math::is_equal_approx(elements[0][1], elements[1][0])) {
+ return false;
+ }
+ if (!Math::is_equal_approx(elements[0][2], elements[2][0])) {
+ return false;
+ }
+ if (!Math::is_equal_approx(elements[1][2], elements[2][1])) {
+ return false;
+ }
+
+ return true;
+}
+#endif
+
+Basis Basis::diagonalize() {
+//NOTE: only implemented for symmetric matrices
+//with the Jacobi iterative method method
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_symmetric(), Basis());
+#endif
+ const int ite_max = 1024;
+
+ real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
+
+ int ite = 0;
+ Basis acc_rot;
+ while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
+ real_t el01_2 = elements[0][1] * elements[0][1];
+ real_t el02_2 = elements[0][2] * elements[0][2];
+ real_t el12_2 = elements[1][2] * elements[1][2];
+ // Find the pivot element
+ int i, j;
+ if (el01_2 > el02_2) {
+ if (el12_2 > el01_2) {
+ i = 1;
+ j = 2;
+ } else {
+ i = 0;
+ j = 1;
+ }
+ } else {
+ if (el12_2 > el02_2) {
+ i = 1;
+ j = 2;
+ } else {
+ i = 0;
+ j = 2;
+ }
+ }
+
+ // Compute the rotation angle
+ real_t angle;
+ if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
+ angle = Math_PI / 4;
+ } else {
+ angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
+ }
+
+ // Compute the rotation matrix
+ Basis rot;
+ rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
+ rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));
+
+ // Update the off matrix norm
+ off_matrix_norm_2 -= elements[i][j] * elements[i][j];
+
+ // Apply the rotation
+ *this = rot * *this * rot.transposed();
+ acc_rot = rot * acc_rot;
+ }
+
+ return acc_rot;
+}
+
+Basis Basis::inverse() const {
+ Basis inv = *this;
+ inv.invert();
+ return inv;
+}
+
+void Basis::transpose() {
+ SWAP(elements[0][1], elements[1][0]);
+ SWAP(elements[0][2], elements[2][0]);
+ SWAP(elements[1][2], elements[2][1]);
+}
+
+Basis Basis::transposed() const {
+ Basis tr = *this;
+ tr.transpose();
+ return tr;
+}
+
+// Multiplies the matrix from left by the scaling matrix: M -> S.M
+// See the comment for Basis::rotated for further explanation.
+void Basis::scale(const Vector3 &p_scale) {
+ elements[0][0] *= p_scale.x;
+ elements[0][1] *= p_scale.x;
+ elements[0][2] *= p_scale.x;
+ elements[1][0] *= p_scale.y;
+ elements[1][1] *= p_scale.y;
+ elements[1][2] *= p_scale.y;
+ elements[2][0] *= p_scale.z;
+ elements[2][1] *= p_scale.z;
+ elements[2][2] *= p_scale.z;
+}
+
+Basis Basis::scaled(const Vector3 &p_scale) const {
+ Basis m = *this;
+ m.scale(p_scale);
+ return m;
+}
+
+void Basis::scale_local(const Vector3 &p_scale) {
+ // performs a scaling in object-local coordinate system:
+ // M -> (M.S.Minv).M = M.S.
+ *this = scaled_local(p_scale);
+}
+
+float Basis::get_uniform_scale() const {
+ return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0;
+}
+
+void Basis::make_scale_uniform() {
+ float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0;
+ for (int i = 0; i < 3; i++) {
+ elements[i].normalize();
+ elements[i] *= l;
+ }
+}
+
+Basis Basis::scaled_local(const Vector3 &p_scale) const {
+ Basis b;
+ b.set_diagonal(p_scale);
+
+ return (*this) * b;
+}
+
+Vector3 Basis::get_scale_abs() const {
+ return Vector3(
+ Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
+ Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
+ Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
+}
+
+Vector3 Basis::get_scale_local() const {
+ real_t det_sign = Math::sign(determinant());
+ return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length());
+}
+
+// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
+Vector3 Basis::get_scale() const {
+ // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
+ // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
+ // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
+ //
+ // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
+ // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
+ // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
+ // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
+ // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
+ // Therefore, we are going to do this decomposition by sticking to a particular convention.
+ // This may lead to confusion for some users though.
+ //
+ // The convention we use here is to absorb the sign flip into the scaling matrix.
+ // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
+ //
+ // A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
+ // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
+ // matrix elements.
+ //
+ // The rotation part of this decomposition is returned by get_rotation* functions.
+ real_t det_sign = Math::sign(determinant());
+ return det_sign * Vector3(
+ Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
+ Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
+ Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
+}
+
+// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
+// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
+// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
+Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(determinant() == 0, Vector3());
+
+ Basis m = transposed() * (*this);
+ ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
+#endif
+ Vector3 scale = get_scale();
+ Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
+ rotref = (*this) * inv_scale;
+
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
+#endif
+ return scale.abs();
+}
+
+// Multiplies the matrix from left by the rotation matrix: M -> R.M
+// Note that this does *not* rotate the matrix itself.
+//
+// The main use of Basis is as Transform3D.basis, which is used a the transformation matrix
+// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
+// not the matrix itself (which is R * (*this) * R.transposed()).
+Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
+ return Basis(p_axis, p_phi) * (*this);
+}
+
+void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
+ *this = rotated(p_axis, p_phi);
+}
+
+void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) {
+ // performs a rotation in object-local coordinate system:
+ // M -> (M.R.Minv).M = M.R.
+ *this = rotated_local(p_axis, p_phi);
+}
+
+Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const {
+ return (*this) * Basis(p_axis, p_phi);
+}
+
+Basis Basis::rotated(const Vector3 &p_euler) const {
+ return Basis(p_euler) * (*this);
+}
+
+void Basis::rotate(const Vector3 &p_euler) {
+ *this = rotated(p_euler);
+}
+
+Basis Basis::rotated(const Quaternion &p_quat) const {
+ return Basis(p_quat) * (*this);
+}
+
+void Basis::rotate(const Quaternion &p_quat) {
+ *this = rotated(p_quat);
+}
+
+Vector3 Basis::get_rotation_euler() const {
+ // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
+ // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
+ // See the comment in get_scale() for further information.
+ Basis m = orthonormalized();
+ real_t det = m.determinant();
+ if (det < 0) {
+ // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
+ m.scale(Vector3(-1, -1, -1));
+ }
+
+ return m.get_euler();
+}
+
+Quaternion Basis::get_rotation_quat() const {
+ // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
+ // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
+ // See the comment in get_scale() for further information.
+ Basis m = orthonormalized();
+ real_t det = m.determinant();
+ if (det < 0) {
+ // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
+ m.scale(Vector3(-1, -1, -1));
+ }
+
+ return m.get_quat();
+}
+
+void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
+ // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
+ // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
+ // See the comment in get_scale() for further information.
+ Basis m = orthonormalized();
+ real_t det = m.determinant();
+ if (det < 0) {
+ // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
+ m.scale(Vector3(-1, -1, -1));
+ }
+
+ m.get_axis_angle(p_axis, p_angle);
+}
+
+void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
+ // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
+ // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
+ // See the comment in get_scale() for further information.
+ Basis m = transposed();
+ m.orthonormalize();
+ real_t det = m.determinant();
+ if (det < 0) {
+ // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
+ m.scale(Vector3(-1, -1, -1));
+ }
+
+ m.get_axis_angle(p_axis, p_angle);
+ p_angle = -p_angle;
+}
+
+// get_euler_xyz returns a vector containing the Euler angles in the format
+// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
+// (following the convention they are commonly defined in the literature).
+//
+// The current implementation uses XYZ convention (Z is the first rotation),
+// so euler.z is the angle of the (first) rotation around Z axis and so on,
+//
+// And thus, assuming the matrix is a rotation matrix, this function returns
+// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
+// around the z-axis by a and so on.
+Vector3 Basis::get_euler_xyz() const {
+ // Euler angles in XYZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+
+ Vector3 euler;
+ real_t sy = elements[0][2];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ // is this a pure Y rotation?
+ if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = 0;
+ euler.y = atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ } else {
+ euler.x = Math::atan2(-elements[1][2], elements[2][2]);
+ euler.y = Math::asin(sy);
+ euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ }
+ } else {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = -Math_PI / 2.0;
+ euler.z = 0.0;
+ }
+ } else {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math_PI / 2.0;
+ euler.z = 0.0;
+ }
+ return euler;
+}
+
+// set_euler_xyz expects a vector containing the Euler angles in the format
+// (ax,ay,az), where ax is the angle of rotation around x axis,
+// and similar for other axes.
+// The current implementation uses XYZ convention (Z is the first rotation).
+void Basis::set_euler_xyz(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ //optimizer will optimize away all this anyway
+ *this = xmat * (ymat * zmat);
+}
+
+Vector3 Basis::get_euler_xzy() const {
+ // Euler angles in XZY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy -sz cz*sy
+ // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
+ // cy*sx*sz cz*sx cx*cy+sx*sz*sy
+
+ Vector3 euler;
+ real_t sz = elements[0][1];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = Math::asin(-sz);
+ } else {
+ // It's -1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ return euler;
+}
+
+void Basis::set_euler_xzy(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = xmat * zmat * ymat;
+}
+
+Vector3 Basis::get_euler_yzx() const {
+ // Euler angles in YZX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+
+ Vector3 euler;
+ real_t sz = elements[1][0];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(-elements[1][2], elements[1][1]);
+ euler.y = Math::atan2(-elements[2][0], elements[0][0]);
+ euler.z = Math::asin(sz);
+ } else {
+ // It's -1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ return euler;
+}
+
+void Basis::set_euler_yzx(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = ymat * zmat * xmat;
+}
+
+// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
+// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
+// as the x, y, and z components of a Vector3 respectively.
+Vector3 Basis::get_euler_yxz() const {
+ // Euler angles in YXZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
+ // cx*sz cx*cz -sx
+ // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
+
+ Vector3 euler;
+
+ real_t m12 = elements[1][2];
+
+ if (m12 < (1 - CMP_EPSILON)) {
+ if (m12 > -(1 - CMP_EPSILON)) {
+ // is this a pure X rotation?
+ if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = atan2(-m12, elements[1][1]);
+ euler.y = 0;
+ euler.z = 0;
+ } else {
+ euler.x = asin(-m12);
+ euler.y = atan2(elements[0][2], elements[2][2]);
+ euler.z = atan2(elements[1][0], elements[1][1]);
+ }
+ } else { // m12 == -1
+ euler.x = Math_PI * 0.5;
+ euler.y = atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
+ }
+ } else { // m12 == 1
+ euler.x = -Math_PI * 0.5;
+ euler.y = -atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
+ }
+
+ return euler;
+}
+
+// set_euler_yxz expects a vector containing the Euler angles in the format
+// (ax,ay,az), where ax is the angle of rotation around x axis,
+// and similar for other axes.
+// The current implementation uses YXZ convention (Z is the first rotation).
+void Basis::set_euler_yxz(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ //optimizer will optimize away all this anyway
+ *this = ymat * xmat * zmat;
+}
+
+Vector3 Basis::get_euler_zxy() const {
+ // Euler angles in ZXY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
+ // -cx*sy sx cx*cy
+ Vector3 euler;
+ real_t sx = elements[2][1];
+ if (sx < (1.0 - CMP_EPSILON)) {
+ if (sx > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::asin(sx);
+ euler.y = Math::atan2(-elements[2][0], elements[2][2]);
+ euler.z = Math::atan2(-elements[0][1], elements[1][1]);
+ } else {
+ // It's -1
+ euler.x = -Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ return euler;
+}
+
+void Basis::set_euler_zxy(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = zmat * xmat * ymat;
+}
+
+Vector3 Basis::get_euler_zyx() const {
+ // Euler angles in ZYX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+ Vector3 euler;
+ real_t sy = elements[2][0];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = Math::asin(-sy);
+ euler.z = Math::atan2(elements[1][0], elements[0][0]);
+ } else {
+ // It's -1
+ euler.x = 0;
+ euler.y = Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
+ } else {
+ // It's 1
+ euler.x = 0;
+ euler.y = -Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
+ return euler;
+}
+
+void Basis::set_euler_zyx(const Vector3 &p_euler) {
+ real_t c, s;
+
+ c = Math::cos(p_euler.x);
+ s = Math::sin(p_euler.x);
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
+
+ c = Math::cos(p_euler.y);
+ s = Math::sin(p_euler.y);
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
+
+ c = Math::cos(p_euler.z);
+ s = Math::sin(p_euler.z);
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
+
+ *this = zmat * ymat * xmat;
+}
+
+bool Basis::is_equal_approx(const Basis &p_basis) const {
+ return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]);
+}
+
+bool Basis::operator==(const Basis &p_matrix) const {
+ for (int i = 0; i < 3; i++) {
+ for (int j = 0; j < 3; j++) {
+ if (elements[i][j] != p_matrix.elements[i][j]) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+bool Basis::operator!=(const Basis &p_matrix) const {
+ return (!(*this == p_matrix));
+}
+
+Basis::operator String() const {
+ String mtx;
+ for (int i = 0; i < 3; i++) {
+ for (int j = 0; j < 3; j++) {
+ if (i != 0 || j != 0) {
+ mtx = mtx + ", ";
+ }
+
+ mtx = mtx + String::num(elements[j][i]); //matrix is stored transposed for performance, so print it transposed
+ }
+ }
+
+ return mtx;
+}
+
+Quaternion Basis::get_quat() const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_rotation(), Quaternion());
+#endif
+ /* Allow getting a quaternion from an unnormalized transform */
+ Basis m = *this;
+ real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
+ real_t temp[4];
+
+ if (trace > 0.0) {
+ real_t s = Math::sqrt(trace + 1.0);
+ temp[3] = (s * 0.5);
+ s = 0.5 / s;
+
+ temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
+ temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
+ temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
+ } else {
+ int i = m.elements[0][0] < m.elements[1][1] ?
+ (m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
+ (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
+ int j = (i + 1) % 3;
+ int k = (i + 2) % 3;
+
+ real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0);
+ temp[i] = s * 0.5;
+ s = 0.5 / s;
+
+ temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
+ temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
+ temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
+ }
+
+ return Quaternion(temp[0], temp[1], temp[2], temp[3]);
+}
+
+static const Basis _ortho_bases[24] = {
+ Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
+ Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
+ Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
+ Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
+ Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
+ Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
+ Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
+ Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
+ Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
+ Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
+ Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
+ Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
+ Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
+ Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
+ Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
+ Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
+ Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
+ Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
+ Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
+ Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
+ Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
+ Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
+ Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
+ Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
+};
+
+int Basis::get_orthogonal_index() const {
+ //could be sped up if i come up with a way
+ Basis orth = *this;
+ for (int i = 0; i < 3; i++) {
+ for (int j = 0; j < 3; j++) {
+ real_t v = orth[i][j];
+ if (v > 0.5) {
+ v = 1.0;
+ } else if (v < -0.5) {
+ v = -1.0;
+ } else {
+ v = 0;
+ }
+
+ orth[i][j] = v;
+ }
+ }
+
+ for (int i = 0; i < 24; i++) {
+ if (_ortho_bases[i] == orth) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+void Basis::set_orthogonal_index(int p_index) {
+ //there only exist 24 orthogonal bases in r3
+ ERR_FAIL_INDEX(p_index, 24);
+
+ *this = _ortho_bases[p_index];
+}
+
+void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
+ /* checking this is a bad idea, because obtaining from scaled transform is a valid use case
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(!is_rotation());
+#endif
+*/
+ real_t angle, x, y, z; // variables for result
+ real_t epsilon = 0.01; // margin to allow for rounding errors
+ real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
+
+ if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
+ // singularity found
+ // first check for identity matrix which must have +1 for all terms
+ // in leading diagonaland zero in other terms
+ if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
+ // this singularity is identity matrix so angle = 0
+ r_axis = Vector3(0, 1, 0);
+ r_angle = 0;
+ return;
+ }
+ // otherwise this singularity is angle = 180
+ angle = Math_PI;
+ real_t xx = (elements[0][0] + 1) / 2;
+ real_t yy = (elements[1][1] + 1) / 2;
+ real_t zz = (elements[2][2] + 1) / 2;
+ real_t xy = (elements[1][0] + elements[0][1]) / 4;
+ real_t xz = (elements[2][0] + elements[0][2]) / 4;
+ real_t yz = (elements[2][1] + elements[1][2]) / 4;
+ if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
+ if (xx < epsilon) {
+ x = 0;
+ y = Math_SQRT12;
+ z = Math_SQRT12;
+ } else {
+ x = Math::sqrt(xx);
+ y = xy / x;
+ z = xz / x;
+ }
+ } else if (yy > zz) { // elements[1][1] is the largest diagonal term
+ if (yy < epsilon) {
+ x = Math_SQRT12;
+ y = 0;
+ z = Math_SQRT12;
+ } else {
+ y = Math::sqrt(yy);
+ x = xy / y;
+ z = yz / y;
+ }
+ } else { // elements[2][2] is the largest diagonal term so base result on this
+ if (zz < epsilon) {
+ x = Math_SQRT12;
+ y = Math_SQRT12;
+ z = 0;
+ } else {
+ z = Math::sqrt(zz);
+ x = xz / z;
+ y = yz / z;
+ }
+ }
+ r_axis = Vector3(x, y, z);
+ r_angle = angle;
+ return;
+ }
+ // as we have reached here there are no singularities so we can handle normally
+ real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
+
+ angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
+ if (angle < 0) {
+ s = -s;
+ }
+ x = (elements[2][1] - elements[1][2]) / s;
+ y = (elements[0][2] - elements[2][0]) / s;
+ z = (elements[1][0] - elements[0][1]) / s;
+
+ r_axis = Vector3(x, y, z);
+ r_angle = angle;
+}
+
+void Basis::set_quat(const Quaternion &p_quat) {
+ real_t d = p_quat.length_squared();
+ real_t s = 2.0 / d;
+ real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
+ real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
+ real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
+ real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
+ set(1.0 - (yy + zz), xy - wz, xz + wy,
+ xy + wz, 1.0 - (xx + zz), yz - wx,
+ xz - wy, yz + wx, 1.0 - (xx + yy));
+}
+
+void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
+// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(!p_axis.is_normalized());
+#endif
+ Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
+ real_t cosine = Math::cos(p_phi);
+ elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
+ elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
+ elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
+
+ real_t sine = Math::sin(p_phi);
+ real_t t = 1 - cosine;
+
+ real_t xyzt = p_axis.x * p_axis.y * t;
+ real_t zyxs = p_axis.z * sine;
+ elements[0][1] = xyzt - zyxs;
+ elements[1][0] = xyzt + zyxs;
+
+ xyzt = p_axis.x * p_axis.z * t;
+ zyxs = p_axis.y * sine;
+ elements[0][2] = xyzt + zyxs;
+ elements[2][0] = xyzt - zyxs;
+
+ xyzt = p_axis.y * p_axis.z * t;
+ zyxs = p_axis.x * sine;
+ elements[1][2] = xyzt - zyxs;
+ elements[2][1] = xyzt + zyxs;
+}
+
+void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {
+ set_diagonal(p_scale);
+ rotate(p_axis, p_phi);
+}
+
+void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
+ set_diagonal(p_scale);
+ rotate(p_euler);
+}
+
+void Basis::set_quat_scale(const Quaternion &p_quat, const Vector3 &p_scale) {
+ set_diagonal(p_scale);
+ rotate(p_quat);
+}
+
+void Basis::set_diagonal(const Vector3 &p_diag) {
+ elements[0][0] = p_diag.x;
+ elements[0][1] = 0;
+ elements[0][2] = 0;
+
+ elements[1][0] = 0;
+ elements[1][1] = p_diag.y;
+ elements[1][2] = 0;
+
+ elements[2][0] = 0;
+ elements[2][1] = 0;
+ elements[2][2] = p_diag.z;
+}
+
+Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
+ //consider scale
+ Quaternion from(*this);
+ Quaternion to(p_to);
+
+ Basis b(from.slerp(to, p_weight));
+ b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight);
+ b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight);
+ b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight);
+
+ return b;
+}
+
+void Basis::rotate_sh(real_t *p_values) {
+ // code by John Hable
+ // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
+ // this code is Public Domain
+
+ const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
+ const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
+ const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))
+
+ const static real_t s_c_scale = 1.0 / 0.91529123286551084;
+ const static real_t s_c_scale_inv = 0.91529123286551084;
+
+ const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
+ const static real_t s_c4_div_c3 = s_c4 / s_c3;
+ const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;
+
+ const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
+ const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
+
+ real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
+
+ real_t m00 = elements[0][0];
+ real_t m01 = elements[0][1];
+ real_t m02 = elements[0][2];
+ real_t m10 = elements[1][0];
+ real_t m11 = elements[1][1];
+ real_t m12 = elements[1][2];
+ real_t m20 = elements[2][0];
+ real_t m21 = elements[2][1];
+ real_t m22 = elements[2][2];
+
+ p_values[0] = src[0];
+ p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
+ p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
+ p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];
+
+ real_t sh0 = src[7] + src[8] + src[8] - src[5];
+ real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
+ real_t sh2 = src[4];
+ real_t sh3 = -src[7];
+ real_t sh4 = -src[5];
+
+ // Rotations. R0 and R1 just use the raw matrix columns
+ real_t r2x = m00 + m01;
+ real_t r2y = m10 + m11;
+ real_t r2z = m20 + m21;
+
+ real_t r3x = m00 + m02;
+ real_t r3y = m10 + m12;
+ real_t r3z = m20 + m22;
+
+ real_t r4x = m01 + m02;
+ real_t r4y = m11 + m12;
+ real_t r4z = m21 + m22;
+
+ // dense matrix multiplication one column at a time
+
+ // column 0
+ real_t sh0_x = sh0 * m00;
+ real_t sh0_y = sh0 * m10;
+ real_t d0 = sh0_x * m10;
+ real_t d1 = sh0_y * m20;
+ real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
+ real_t d3 = sh0_x * m20;
+ real_t d4 = sh0_x * m00 - sh0_y * m10;
+
+ // column 1
+ real_t sh1_x = sh1 * m02;
+ real_t sh1_y = sh1 * m12;
+ d0 += sh1_x * m12;
+ d1 += sh1_y * m22;
+ d2 += sh1 * (m22 * m22 + s_c4_div_c3);
+ d3 += sh1_x * m22;
+ d4 += sh1_x * m02 - sh1_y * m12;
+
+ // column 2
+ real_t sh2_x = sh2 * r2x;
+ real_t sh2_y = sh2 * r2y;
+ d0 += sh2_x * r2y;
+ d1 += sh2_y * r2z;
+ d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
+ d3 += sh2_x * r2z;
+ d4 += sh2_x * r2x - sh2_y * r2y;
+
+ // column 3
+ real_t sh3_x = sh3 * r3x;
+ real_t sh3_y = sh3 * r3y;
+ d0 += sh3_x * r3y;
+ d1 += sh3_y * r3z;
+ d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
+ d3 += sh3_x * r3z;
+ d4 += sh3_x * r3x - sh3_y * r3y;
+
+ // column 4
+ real_t sh4_x = sh4 * r4x;
+ real_t sh4_y = sh4 * r4y;
+ d0 += sh4_x * r4y;
+ d1 += sh4_y * r4z;
+ d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
+ d3 += sh4_x * r4z;
+ d4 += sh4_x * r4x - sh4_y * r4y;
+
+ // extra multipliers
+ p_values[4] = d0;
+ p_values[5] = -d1;
+ p_values[6] = d2 * s_scale_dst2;
+ p_values[7] = -d3;
+ p_values[8] = d4 * s_scale_dst4;
+}
+
+} // namespace godot
diff --git a/src/variant/char_string.cpp b/src/variant/char_string.cpp
index 19c99b4..72f4a6c 100644
--- a/src/variant/char_string.cpp
+++ b/src/variant/char_string.cpp
@@ -192,6 +192,14 @@ bool String::operator!=(const char32_t *p_str) const {
return *this != String(p_str);
}
+const char32_t &String::operator[](int p_index) const {
+ return *internal::interface->string_operator_index_const((GDNativeStringPtr) this, p_index);
+}
+
+char32_t &String::operator[](int p_index) {
+ return *internal::interface->string_operator_index((GDNativeStringPtr) this, p_index);
+}
+
bool operator==(const char *p_chr, const String &p_str) {
return p_str == String(p_chr);
}
diff --git a/src/variant/color.cpp b/src/variant/color.cpp
new file mode 100644
index 0000000..6af55a6
--- /dev/null
+++ b/src/variant/color.cpp
@@ -0,0 +1,532 @@
+#include <godot_cpp/core/error_macros.hpp>
+#include <godot_cpp/variant/color.hpp>
+#include <godot_cpp/variant/color_names.inc.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+uint32_t Color::to_argb32() const {
+ uint32_t c = (uint8_t)Math::round(a * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(r * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(g * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(b * 255);
+
+ return c;
+}
+
+uint32_t Color::to_abgr32() const {
+ uint32_t c = (uint8_t)Math::round(a * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(b * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(g * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(r * 255);
+
+ return c;
+}
+
+uint32_t Color::to_rgba32() const {
+ uint32_t c = (uint8_t)Math::round(r * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(g * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(b * 255);
+ c <<= 8;
+ c |= (uint8_t)Math::round(a * 255);
+
+ return c;
+}
+
+uint64_t Color::to_abgr64() const {
+ uint64_t c = (uint16_t)Math::round(a * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(b * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(g * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(r * 65535);
+
+ return c;
+}
+
+uint64_t Color::to_argb64() const {
+ uint64_t c = (uint16_t)Math::round(a * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(r * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(g * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(b * 65535);
+
+ return c;
+}
+
+uint64_t Color::to_rgba64() const {
+ uint64_t c = (uint16_t)Math::round(r * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(g * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(b * 65535);
+ c <<= 16;
+ c |= (uint16_t)Math::round(a * 65535);
+
+ return c;
+}
+
+float Color::get_h() const {
+ float min = Math::min(r, g);
+ min = Math::min(min, b);
+ float max = Math::max(r, g);
+ max = Math::max(max, b);
+
+ float delta = max - min;
+
+ if (delta == 0) {
+ return 0;
+ }
+
+ float h;
+ if (r == max) {
+ h = (g - b) / delta; // between yellow & magenta
+ } else if (g == max) {
+ h = 2 + (b - r) / delta; // between cyan & yellow
+ } else {
+ h = 4 + (r - g) / delta; // between magenta & cyan
+ }
+
+ h /= 6.0;
+ if (h < 0) {
+ h += 1.0;
+ }
+
+ return h;
+}
+
+float Color::get_s() const {
+ float min = Math::min(r, g);
+ min = Math::min(min, b);
+ float max = Math::max(r, g);
+ max = Math::max(max, b);
+
+ float delta = max - min;
+
+ return (max != 0) ? (delta / max) : 0;
+}
+
+float Color::get_v() const {
+ float max = Math::max(r, g);
+ max = Math::max(max, b);
+ return max;
+}
+
+void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) {
+ int i;
+ float f, p, q, t;
+ a = p_alpha;
+
+ if (p_s == 0) {
+ // Achromatic (grey)
+ r = g = b = p_v;
+ return;
+ }
+
+ p_h *= 6.0;
+ p_h = Math::fmod(p_h, 6);
+ i = Math::floor(p_h);
+
+ f = p_h - i;
+ p = p_v * (1 - p_s);
+ q = p_v * (1 - p_s * f);
+ t = p_v * (1 - p_s * (1 - f));
+
+ switch (i) {
+ case 0: // Red is the dominant color
+ r = p_v;
+ g = t;
+ b = p;
+ break;
+ case 1: // Green is the dominant color
+ r = q;
+ g = p_v;
+ b = p;
+ break;
+ case 2:
+ r = p;
+ g = p_v;
+ b = t;
+ break;
+ case 3: // Blue is the dominant color
+ r = p;
+ g = q;
+ b = p_v;
+ break;
+ case 4:
+ r = t;
+ g = p;
+ b = p_v;
+ break;
+ default: // (5) Red is the dominant color
+ r = p_v;
+ g = p;
+ b = q;
+ break;
+ }
+}
+
+bool Color::is_equal_approx(const Color &p_color) const {
+ return Math::is_equal_approx(r, p_color.r) && Math::is_equal_approx(g, p_color.g) && Math::is_equal_approx(b, p_color.b) && Math::is_equal_approx(a, p_color.a);
+}
+
+void Color::invert() {
+ r = 1.0 - r;
+ g = 1.0 - g;
+ b = 1.0 - b;
+}
+
+Color Color::hex(uint32_t p_hex) {
+ float a = (p_hex & 0xFF) / 255.0;
+ p_hex >>= 8;
+ float b = (p_hex & 0xFF) / 255.0;
+ p_hex >>= 8;
+ float g = (p_hex & 0xFF) / 255.0;
+ p_hex >>= 8;
+ float r = (p_hex & 0xFF) / 255.0;
+
+ return Color(r, g, b, a);
+}
+
+Color Color::hex64(uint64_t p_hex) {
+ float a = (p_hex & 0xFFFF) / 65535.0;
+ p_hex >>= 16;
+ float b = (p_hex & 0xFFFF) / 65535.0;
+ p_hex >>= 16;
+ float g = (p_hex & 0xFFFF) / 65535.0;
+ p_hex >>= 16;
+ float r = (p_hex & 0xFFFF) / 65535.0;
+
+ return Color(r, g, b, a);
+}
+
+Color Color::from_rgbe9995(uint32_t p_rgbe) {
+ float r = p_rgbe & 0x1ff;
+ float g = (p_rgbe >> 9) & 0x1ff;
+ float b = (p_rgbe >> 18) & 0x1ff;
+ float e = (p_rgbe >> 27);
+ float m = Math::pow(2, e - 15.0 - 9.0);
+
+ float rd = r * m;
+ float gd = g * m;
+ float bd = b * m;
+
+ return Color(rd, gd, bd, 1.0f);
+}
+
+static int _parse_col4(const String &p_str, int p_ofs) {
+ char character = p_str[p_ofs];
+
+ if (character >= '0' && character <= '9') {
+ return character - '0';
+ } else if (character >= 'a' && character <= 'f') {
+ return character + (10 - 'a');
+ } else if (character >= 'A' && character <= 'F') {
+ return character + (10 - 'A');
+ }
+ return -1;
+}
+
+static int _parse_col8(const String &p_str, int p_ofs) {
+ return _parse_col4(p_str, p_ofs) * 16 + _parse_col4(p_str, p_ofs + 1);
+}
+
+Color Color::inverted() const {
+ Color c = *this;
+ c.invert();
+ return c;
+}
+
+Color Color::html(const String &p_rgba) {
+ String color = p_rgba;
+ if (color.length() == 0) {
+ return Color();
+ }
+ if (color[0] == '#') {
+ color = color.substr(1);
+ }
+
+ // If enabled, use 1 hex digit per channel instead of 2.
+ // Other sizes aren't in the HTML/CSS spec but we could add them if desired.
+ bool is_shorthand = color.length() < 5;
+ bool alpha = false;
+
+ if (color.length() == 8) {
+ alpha = true;
+ } else if (color.length() == 6) {
+ alpha = false;
+ } else if (color.length() == 4) {
+ alpha = true;
+ } else if (color.length() == 3) {
+ alpha = false;
+ } else {
+ ERR_FAIL_V(Color());
+ }
+
+ float r, g, b, a = 1.0;
+ if (is_shorthand) {
+ r = _parse_col4(color, 0) / 15.0;
+ g = _parse_col4(color, 1) / 15.0;
+ b = _parse_col4(color, 2) / 15.0;
+ if (alpha) {
+ a = _parse_col4(color, 3) / 15.0;
+ }
+ } else {
+ r = _parse_col8(color, 0) / 255.0;
+ g = _parse_col8(color, 2) / 255.0;
+ b = _parse_col8(color, 4) / 255.0;
+ if (alpha) {
+ a = _parse_col8(color, 6) / 255.0;
+ }
+ }
+ ERR_FAIL_COND_V(r < 0, Color());
+ ERR_FAIL_COND_V(g < 0, Color());
+ ERR_FAIL_COND_V(b < 0, Color());
+ ERR_FAIL_COND_V(a < 0, Color());
+
+ return Color(r, g, b, a);
+}
+
+bool Color::html_is_valid(const String &p_color) {
+ String color = p_color;
+
+ if (color.length() == 0) {
+ return false;
+ }
+ if (color[0] == '#') {
+ color = color.substr(1);
+ }
+
+ // Check if the amount of hex digits is valid.
+ int len = color.length();
+ if (!(len == 3 || len == 4 || len == 6 || len == 8)) {
+ return false;
+ }
+
+ // Check if each hex digit is valid.
+ for (int i = 0; i < len; i++) {
+ if (_parse_col4(color, i) == -1) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+Color Color::named(const String &p_name) {
+ int idx = find_named_color(p_name);
+ if (idx == -1) {
+ ERR_FAIL_V(Color());
+ return Color();
+ }
+ return get_named_color(idx);
+}
+
+Color Color::named(const String &p_name, const Color &p_default) {
+ int idx = find_named_color(p_name);
+ if (idx == -1) {
+ return p_default;
+ }
+ return get_named_color(idx);
+}
+
+int Color::find_named_color(const String &p_name) {
+ String name = p_name;
+ // Normalize name
+ name = name.replace(" ", "");
+ name = name.replace("-", "");
+ name = name.replace("_", "");
+ name = name.replace("'", "");
+ name = name.replace(".", "");
+ name = name.to_lower();
+
+ int idx = 0;
+ while (named_colors[idx].name != nullptr) {
+ if (name == String(named_colors[idx].name)) {
+ return idx;
+ }
+ idx++;
+ }
+
+ return -1;
+}
+
+int Color::get_named_color_count() {
+ int idx = 0;
+ while (named_colors[idx].name != nullptr) {
+ idx++;
+ }
+ return idx;
+}
+
+String Color::get_named_color_name(int p_idx) {
+ return named_colors[p_idx].name;
+}
+
+Color Color::get_named_color(int p_idx) {
+ return named_colors[p_idx].color;
+}
+
+// For a version that errors on invalid values instead of returning
+// a default color, use the Color(String) constructor instead.
+Color Color::from_string(const String &p_string, const Color &p_default) {
+ if (html_is_valid(p_string)) {
+ return html(p_string);
+ } else {
+ return named(p_string, p_default);
+ }
+}
+
+String _to_hex(float p_val) {
+ int v = Math::round(p_val * 255);
+ v = Math::clamp(v, 0, 255);
+ String ret;
+
+ for (int i = 0; i < 2; i++) {
+ char32_t c[2] = { 0, 0 };
+ int lv = v & 0xF;
+ if (lv < 10) {
+ c[0] = '0' + lv;
+ } else {
+ c[0] = 'a' + lv - 10;
+ }
+
+ v >>= 4;
+ String cs = (const char32_t *)c;
+ ret = cs + ret;
+ }
+
+ return ret;
+}
+
+String Color::to_html(bool p_alpha) const {
+ String txt;
+ txt = txt + _to_hex(g);
+ txt = txt + _to_hex(b);
+ txt = txt + _to_hex(r);
+ if (p_alpha) {
+ txt = txt + _to_hex(a);
+ }
+ return txt;
+}
+
+Color Color::from_hsv(float p_h, float p_s, float p_v, float p_a) {
+ Color result;
+ result.set_hsv(p_h, p_s, p_v, p_a);
+ return result;
+}
+
+Color::operator String() const {
+ return String::num(r, 3) + ", " + String::num(g, 3) + ", " + String::num(b, 3) + ", " + String::num(a, 3);
+}
+
+Color Color::operator+(const Color &p_color) const {
+ return Color(
+ r + p_color.r,
+ g + p_color.g,
+ b + p_color.b,
+ a + p_color.a);
+}
+
+void Color::operator+=(const Color &p_color) {
+ r = r + p_color.r;
+ g = g + p_color.g;
+ b = b + p_color.b;
+ a = a + p_color.a;
+}
+
+Color Color::operator-(const Color &p_color) const {
+ return Color(
+ r - p_color.r,
+ g - p_color.g,
+ b - p_color.b,
+ a - p_color.a);
+}
+
+void Color::operator-=(const Color &p_color) {
+ r = r - p_color.r;
+ g = g - p_color.g;
+ b = b - p_color.b;
+ a = a - p_color.a;
+}
+
+Color Color::operator*(const Color &p_color) const {
+ return Color(
+ r * p_color.r,
+ g * p_color.g,
+ b * p_color.b,
+ a * p_color.a);
+}
+
+Color Color::operator*(float p_scalar) const {
+ return Color(
+ r * p_scalar,
+ g * p_scalar,
+ b * p_scalar,
+ a * p_scalar);
+}
+
+void Color::operator*=(const Color &p_color) {
+ r = r * p_color.r;
+ g = g * p_color.g;
+ b = b * p_color.b;
+ a = a * p_color.a;
+}
+
+void Color::operator*=(float p_scalar) {
+ r = r * p_scalar;
+ g = g * p_scalar;
+ b = b * p_scalar;
+ a = a * p_scalar;
+}
+
+Color Color::operator/(const Color &p_color) const {
+ return Color(
+ r / p_color.r,
+ g / p_color.g,
+ b / p_color.b,
+ a / p_color.a);
+}
+
+Color Color::operator/(float p_scalar) const {
+ return Color(
+ r / p_scalar,
+ g / p_scalar,
+ b / p_scalar,
+ a / p_scalar);
+}
+
+void Color::operator/=(const Color &p_color) {
+ r = r / p_color.r;
+ g = g / p_color.g;
+ b = b / p_color.b;
+ a = a / p_color.a;
+}
+
+void Color::operator/=(float p_scalar) {
+ r = r / p_scalar;
+ g = g / p_scalar;
+ b = b / p_scalar;
+ a = a / p_scalar;
+}
+
+Color Color::operator-() const {
+ return Color(
+ 1.0 - r,
+ 1.0 - g,
+ 1.0 - b,
+ 1.0 - a);
+}
+
+} // namespace godot
diff --git a/src/variant/packed_arrays.cpp b/src/variant/packed_arrays.cpp
new file mode 100644
index 0000000..e3cfeab
--- /dev/null
+++ b/src/variant/packed_arrays.cpp
@@ -0,0 +1,97 @@
+// extra functions for packed arrays
+
+#include <godot_cpp/godot.hpp>
+
+#include <godot_cpp/variant/packed_byte_array.hpp>
+#include <godot_cpp/variant/packed_color_array.hpp>
+#include <godot_cpp/variant/packed_float32_array.hpp>
+#include <godot_cpp/variant/packed_float64_array.hpp>
+#include <godot_cpp/variant/packed_int32_array.hpp>
+#include <godot_cpp/variant/packed_int64_array.hpp>
+#include <godot_cpp/variant/packed_string_array.hpp>
+#include <godot_cpp/variant/packed_vector2_array.hpp>
+#include <godot_cpp/variant/packed_vector3_array.hpp>
+
+namespace godot {
+
+const uint8_t &PackedByteArray::operator[](int p_index) const {
+ return *internal::interface->packed_byte_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+}
+
+uint8_t &PackedByteArray::operator[](int p_index) {
+ return *internal::interface->packed_byte_array_operator_index((GDNativeTypePtr *)this, p_index);
+}
+
+const Color &PackedColorArray::operator[](int p_index) const {
+ const Color *color = (const Color *) internal::interface->packed_color_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+ return *color;
+}
+
+Color &PackedColorArray::operator[](int p_index) {
+ Color *color = (Color *) internal::interface->packed_color_array_operator_index((GDNativeTypePtr *)this, p_index);
+ return *color;
+}
+
+const float &PackedFloat32Array::operator[](int p_index) const {
+ return *internal::interface->packed_float32_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+}
+
+float &PackedFloat32Array::operator[](int p_index) {
+ return *internal::interface->packed_float32_array_operator_index((GDNativeTypePtr *)this, p_index);
+}
+
+const double &PackedFloat64Array::operator[](int p_index) const {
+ return *internal::interface->packed_float64_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+}
+
+double &PackedFloat64Array::operator[](int p_index) {
+ return *internal::interface->packed_float64_array_operator_index((GDNativeTypePtr *)this, p_index);
+}
+
+const int32_t &PackedInt32Array::operator[](int p_index) const {
+ return *internal::interface->packed_int32_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+}
+
+int32_t &PackedInt32Array::operator[](int p_index) {
+ return *internal::interface->packed_int32_array_operator_index((GDNativeTypePtr *)this, p_index);
+}
+
+const int64_t &PackedInt64Array::operator[](int p_index) const {
+ return *internal::interface->packed_int64_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+}
+
+int64_t &PackedInt64Array::operator[](int p_index) {
+ return *internal::interface->packed_int64_array_operator_index((GDNativeTypePtr *)this, p_index);
+}
+
+const String &PackedStringArray::operator[](int p_index) const {
+ const String *string = (const String *) internal::interface->packed_string_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+ return *string;
+}
+
+String &PackedStringArray::operator[](int p_index) {
+ String *string = (String *) internal::interface->packed_string_array_operator_index((GDNativeTypePtr *)this, p_index);
+ return *string;
+}
+
+const Vector2 &PackedVector2Array::operator[](int p_index) const {
+ const Vector2 *vec = (const Vector2 *) internal::interface->packed_vector2_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+ return *vec;
+}
+
+Vector2 &PackedVector2Array::operator[](int p_index) {
+ Vector2 *vec = (Vector2 *) internal::interface->packed_vector2_array_operator_index((GDNativeTypePtr *)this, p_index);
+ return *vec;
+}
+
+const Vector3 &PackedVector3Array::operator[](int p_index) const {
+ const Vector3 *vec = (const Vector3 *) internal::interface->packed_vector3_array_operator_index_const((GDNativeTypePtr *)this, p_index);
+ return *vec;
+}
+
+Vector3 &PackedVector3Array::operator[](int p_index) {
+ Vector3 *vec = (Vector3 *) internal::interface->packed_vector3_array_operator_index((GDNativeTypePtr *)this, p_index);
+ return *vec;
+}
+
+} // namespace godot
diff --git a/src/variant/plane.cpp b/src/variant/plane.cpp
new file mode 100644
index 0000000..aa9be34
--- /dev/null
+++ b/src/variant/plane.cpp
@@ -0,0 +1,127 @@
+#include <godot_cpp/variant/plane.hpp>
+
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+void Plane::set_normal(const Vector3 &p_normal) {
+ normal = p_normal;
+}
+
+void Plane::normalize() {
+ real_t l = normal.length();
+ if (l == 0) {
+ *this = Plane(0, 0, 0, 0);
+ return;
+ }
+ normal /= l;
+ d /= l;
+}
+
+Plane Plane::normalized() const {
+ Plane p = *this;
+ p.normalize();
+ return p;
+}
+
+Vector3 Plane::get_any_perpendicular_normal() const {
+ static const Vector3 p1 = Vector3(1, 0, 0);
+ static const Vector3 p2 = Vector3(0, 1, 0);
+ Vector3 p;
+
+ if (Math::abs(normal.dot(p1)) > 0.99) { // if too similar to p1
+ p = p2; // use p2
+ } else {
+ p = p1; // use p1
+ }
+
+ p -= normal * normal.dot(p);
+ p.normalize();
+
+ return p;
+}
+
+/* intersections */
+
+bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result) const {
+ const Plane &p_plane0 = *this;
+ Vector3 normal0 = p_plane0.normal;
+ Vector3 normal1 = p_plane1.normal;
+ Vector3 normal2 = p_plane2.normal;
+
+ real_t denom = vec3_cross(normal0, normal1).dot(normal2);
+
+ if (Math::is_zero_approx(denom)) {
+ return false;
+ }
+
+ if (r_result) {
+ *r_result = ((vec3_cross(normal1, normal2) * p_plane0.d) +
+ (vec3_cross(normal2, normal0) * p_plane1.d) +
+ (vec3_cross(normal0, normal1) * p_plane2.d)) /
+ denom;
+ }
+
+ return true;
+}
+
+bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const {
+ Vector3 segment = p_dir;
+ real_t den = normal.dot(segment);
+
+ //printf("den is %i\n",den);
+ if (Math::is_zero_approx(den)) {
+ return false;
+ }
+
+ real_t dist = (normal.dot(p_from) - d) / den;
+ //printf("dist is %i\n",dist);
+
+ if (dist > CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
+
+ return false;
+ }
+
+ dist = -dist;
+ *p_intersection = p_from + segment * dist;
+
+ return true;
+}
+
+bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 *p_intersection) const {
+ Vector3 segment = p_begin - p_end;
+ real_t den = normal.dot(segment);
+
+ //printf("den is %i\n",den);
+ if (Math::is_zero_approx(den)) {
+ return false;
+ }
+
+ real_t dist = (normal.dot(p_begin) - d) / den;
+ //printf("dist is %i\n",dist);
+
+ if (dist < -CMP_EPSILON || dist > (1.0 + CMP_EPSILON)) {
+ return false;
+ }
+
+ dist = -dist;
+ *p_intersection = p_begin + segment * dist;
+
+ return true;
+}
+
+/* misc */
+
+bool Plane::is_equal_approx_any_side(const Plane &p_plane) const {
+ return (normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d)) || (normal.is_equal_approx(-p_plane.normal) && Math::is_equal_approx(d, -p_plane.d));
+}
+
+bool Plane::is_equal_approx(const Plane &p_plane) const {
+ return normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d);
+}
+
+Plane::operator String() const {
+ return normal.operator String() + ", " + String::num(d,3);
+}
+
+} // namespace godot
diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp
new file mode 100644
index 0000000..5ceaf23
--- /dev/null
+++ b/src/variant/quaternion.cpp
@@ -0,0 +1,203 @@
+#include <godot_cpp/variant/quaternion.hpp>
+
+#include <godot_cpp/variant/basis.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+// get_euler_xyz returns a vector containing the Euler angles in the format
+// (ax,ay,az), where ax is the angle of rotation around x axis,
+// and similar for other axes.
+// This implementation uses XYZ convention (Z is the first rotation).
+Vector3 Quaternion::get_euler_xyz() const {
+ Basis m(*this);
+ return m.get_euler_xyz();
+}
+
+// get_euler_yxz returns a vector containing the Euler angles in the format
+// (ax,ay,az), where ax is the angle of rotation around x axis,
+// and similar for other axes.
+// This implementation uses YXZ convention (Z is the first rotation).
+Vector3 Quaternion::get_euler_yxz() const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0));
+#endif
+ Basis m(*this);
+ return m.get_euler_yxz();
+}
+
+void Quaternion::operator*=(const Quaternion &p_q) {
+ x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
+ y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
+ z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
+ w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
+}
+
+Quaternion Quaternion::operator*(const Quaternion &p_q) const {
+ Quaternion r = *this;
+ r *= p_q;
+ return r;
+}
+
+bool Quaternion::is_equal_approx(const Quaternion &p_quat) const {
+ return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w);
+}
+
+real_t Quaternion::length() const {
+ return Math::sqrt(length_squared());
+}
+
+void Quaternion::normalize() {
+ *this /= length();
+}
+
+Quaternion Quaternion::normalized() const {
+ return *this / length();
+}
+
+bool Quaternion::is_normalized() const {
+ return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon
+}
+
+Quaternion Quaternion::inverse() const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_normalized(), Quaternion());
+#endif
+ return Quaternion(-x, -y, -z, w);
+}
+
+Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_normalized(), Quaternion());
+ ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion());
+#endif
+ Quaternion to1;
+ real_t omega, cosom, sinom, scale0, scale1;
+
+ // calc cosine
+ cosom = dot(p_to);
+
+ // adjust signs (if necessary)
+ if (cosom < 0.0) {
+ cosom = -cosom;
+ to1.x = -p_to.x;
+ to1.y = -p_to.y;
+ to1.z = -p_to.z;
+ to1.w = -p_to.w;
+ } else {
+ to1.x = p_to.x;
+ to1.y = p_to.y;
+ to1.z = p_to.z;
+ to1.w = p_to.w;
+ }
+
+ // calculate coefficients
+
+ if ((1.0 - cosom) > CMP_EPSILON) {
+ // standard case (slerp)
+ omega = Math::acos(cosom);
+ sinom = Math::sin(omega);
+ scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
+ scale1 = Math::sin(p_weight * omega) / sinom;
+ } else {
+ // "from" and "to" quaternions are very close
+ // ... so we can do a linear interpolation
+ scale0 = 1.0 - p_weight;
+ scale1 = p_weight;
+ }
+ // calculate final values
+ return Quaternion(
+ scale0 * x + scale1 * to1.x,
+ scale0 * y + scale1 * to1.y,
+ scale0 * z + scale1 * to1.z,
+ scale0 * w + scale1 * to1.w);
+}
+
+Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_normalized(), Quaternion());
+ ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion());
+#endif
+ const Quaternion &from = *this;
+
+ real_t dot = from.dot(p_to);
+
+ if (Math::abs(dot) > 0.9999) {
+ return from;
+ }
+
+ real_t theta = Math::acos(dot),
+ sinT = 1.0 / Math::sin(theta),
+ newFactor = Math::sin(p_weight * theta) * sinT,
+ invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
+
+ return Quaternion(invFactor * from.x + newFactor * p_to.x,
+ invFactor * from.y + newFactor * p_to.y,
+ invFactor * from.z + newFactor * p_to.z,
+ invFactor * from.w + newFactor * p_to.w);
+}
+
+Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!is_normalized(), Quaternion());
+ ERR_FAIL_COND_V(!p_b.is_normalized(), Quaternion());
+#endif
+ //the only way to do slerp :|
+ real_t t2 = (1.0 - p_weight) * p_weight * 2;
+ Quaternion sp = this->slerp(p_b, p_weight);
+ Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight);
+ return sp.slerpni(sq, t2);
+}
+
+Quaternion::operator String() const {
+ return String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5) + ", " + String::num(w, 5);
+}
+
+Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(!p_axis.is_normalized());
+#endif
+ real_t d = p_axis.length();
+ if (d == 0) {
+ x = 0;
+ y = 0;
+ z = 0;
+ w = 0;
+ } else {
+ real_t sin_angle = Math::sin(p_angle * 0.5);
+ real_t cos_angle = Math::cos(p_angle * 0.5);
+ real_t s = sin_angle / d;
+ x = p_axis.x * s;
+ y = p_axis.y * s;
+ z = p_axis.z * s;
+ w = cos_angle;
+ }
+}
+
+// Euler constructor expects a vector containing the Euler angles in the format
+// (ax, ay, az), where ax is the angle of rotation around x axis,
+// and similar for other axes.
+// This implementation uses YXZ convention (Z is the first rotation).
+Quaternion::Quaternion(const Vector3 &p_euler) {
+ real_t half_a1 = p_euler.y * 0.5;
+ real_t half_a2 = p_euler.x * 0.5;
+ real_t half_a3 = p_euler.z * 0.5;
+
+ // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
+ // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
+ // a3 is the angle of the first rotation, following the notation in this reference.
+
+ real_t cos_a1 = Math::cos(half_a1);
+ real_t sin_a1 = Math::sin(half_a1);
+ real_t cos_a2 = Math::cos(half_a2);
+ real_t sin_a2 = Math::sin(half_a2);
+ real_t cos_a3 = Math::cos(half_a3);
+ real_t sin_a3 = Math::sin(half_a3);
+
+ x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
+ y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
+ z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
+ w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
+}
+
+} // namespace godot
diff --git a/src/variant/rect2.cpp b/src/variant/rect2.cpp
new file mode 100644
index 0000000..e737f61
--- /dev/null
+++ b/src/variant/rect2.cpp
@@ -0,0 +1,241 @@
+#include <godot_cpp/variant/rect2.hpp>
+
+#include <godot_cpp/variant/transform2d.hpp>
+
+namespace godot {
+
+bool Rect2::is_equal_approx(const Rect2 &p_rect) const {
+ return position.is_equal_approx(p_rect.position) && size.is_equal_approx(p_rect.size);
+}
+
+bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
+ real_t min = 0, max = 1;
+ int axis = 0;
+ real_t sign = 0;
+
+ for (int i = 0; i < 2; i++) {
+ real_t seg_from = p_from[i];
+ real_t seg_to = p_to[i];
+ real_t box_begin = position[i];
+ real_t box_end = box_begin + size[i];
+ real_t cmin, cmax;
+ real_t csign;
+
+ if (seg_from < seg_to) {
+ if (seg_from > box_end || seg_to < box_begin) {
+ return false;
+ }
+ real_t length = seg_to - seg_from;
+ cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
+ cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
+ csign = -1.0;
+
+ } else {
+ if (seg_to > box_end || seg_from < box_begin) {
+ return false;
+ }
+ real_t length = seg_to - seg_from;
+ cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
+ cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
+ csign = 1.0;
+ }
+
+ if (cmin > min) {
+ min = cmin;
+ axis = i;
+ sign = csign;
+ }
+ if (cmax < max) {
+ max = cmax;
+ }
+ if (max < min) {
+ return false;
+ }
+ }
+
+ Vector2 rel = p_to - p_from;
+
+ if (r_normal) {
+ Vector2 normal;
+ normal[axis] = sign;
+ *r_normal = normal;
+ }
+
+ if (r_pos) {
+ *r_pos = p_from + rel * min;
+ }
+
+ return true;
+}
+
+bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const {
+ //SAT intersection between local and transformed rect2
+
+ Vector2 xf_points[4] = {
+ p_xform.xform(p_rect.position),
+ p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y)),
+ p_xform.xform(Vector2(p_rect.position.x, p_rect.position.y + p_rect.size.y)),
+ p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y + p_rect.size.y)),
+ };
+
+ real_t low_limit;
+
+ //base rect2 first (faster)
+
+ if (xf_points[0].y > position.y) {
+ goto next1;
+ }
+ if (xf_points[1].y > position.y) {
+ goto next1;
+ }
+ if (xf_points[2].y > position.y) {
+ goto next1;
+ }
+ if (xf_points[3].y > position.y) {
+ goto next1;
+ }
+
+ return false;
+
+next1:
+
+ low_limit = position.y + size.y;
+
+ if (xf_points[0].y < low_limit) {
+ goto next2;
+ }
+ if (xf_points[1].y < low_limit) {
+ goto next2;
+ }
+ if (xf_points[2].y < low_limit) {
+ goto next2;
+ }
+ if (xf_points[3].y < low_limit) {
+ goto next2;
+ }
+
+ return false;
+
+next2:
+
+ if (xf_points[0].x > position.x) {
+ goto next3;
+ }
+ if (xf_points[1].x > position.x) {
+ goto next3;
+ }
+ if (xf_points[2].x > position.x) {
+ goto next3;
+ }
+ if (xf_points[3].x > position.x) {
+ goto next3;
+ }
+
+ return false;
+
+next3:
+
+ low_limit = position.x + size.x;
+
+ if (xf_points[0].x < low_limit) {
+ goto next4;
+ }
+ if (xf_points[1].x < low_limit) {
+ goto next4;
+ }
+ if (xf_points[2].x < low_limit) {
+ goto next4;
+ }
+ if (xf_points[3].x < low_limit) {
+ goto next4;
+ }
+
+ return false;
+
+next4:
+
+ Vector2 xf_points2[4] = {
+ position,
+ Vector2(position.x + size.x, position.y),
+ Vector2(position.x, position.y + size.y),
+ Vector2(position.x + size.x, position.y + size.y),
+ };
+
+ real_t maxa = p_xform.elements[0].dot(xf_points2[0]);
+ real_t mina = maxa;
+
+ real_t dp = p_xform.elements[0].dot(xf_points2[1]);
+ maxa = Math::max(dp, maxa);
+ mina = Math::min(dp, mina);
+
+ dp = p_xform.elements[0].dot(xf_points2[2]);
+ maxa = Math::max(dp, maxa);
+ mina = Math::min(dp, mina);
+
+ dp = p_xform.elements[0].dot(xf_points2[3]);
+ maxa = Math::max(dp, maxa);
+ mina = Math::min(dp, mina);
+
+ real_t maxb = p_xform.elements[0].dot(xf_points[0]);
+ real_t minb = maxb;
+
+ dp = p_xform.elements[0].dot(xf_points[1]);
+ maxb = Math::max(dp, maxb);
+ minb = Math::min(dp, minb);
+
+ dp = p_xform.elements[0].dot(xf_points[2]);
+ maxb = Math::max(dp, maxb);
+ minb = Math::min(dp, minb);
+
+ dp = p_xform.elements[0].dot(xf_points[3]);
+ maxb = Math::max(dp, maxb);
+ minb = Math::min(dp, minb);
+
+ if (mina > maxb) {
+ return false;
+ }
+ if (minb > maxa) {
+ return false;
+ }
+
+ maxa = p_xform.elements[1].dot(xf_points2[0]);
+ mina = maxa;
+
+ dp = p_xform.elements[1].dot(xf_points2[1]);
+ maxa = Math::max(dp, maxa);
+ mina = Math::min(dp, mina);
+
+ dp = p_xform.elements[1].dot(xf_points2[2]);
+ maxa = Math::max(dp, maxa);
+ mina = Math::min(dp, mina);
+
+ dp = p_xform.elements[1].dot(xf_points2[3]);
+ maxa = Math::max(dp, maxa);
+ mina = Math::min(dp, mina);
+
+ maxb = p_xform.elements[1].dot(xf_points[0]);
+ minb = maxb;
+
+ dp = p_xform.elements[1].dot(xf_points[1]);
+ maxb = Math::max(dp, maxb);
+ minb = Math::min(dp, minb);
+
+ dp = p_xform.elements[1].dot(xf_points[2]);
+ maxb = Math::max(dp, maxb);
+ minb = Math::min(dp, minb);
+
+ dp = p_xform.elements[1].dot(xf_points[3]);
+ maxb = Math::max(dp, maxb);
+ minb = Math::min(dp, minb);
+
+ if (mina > maxb) {
+ return false;
+ }
+ if (minb > maxa) {
+ return false;
+ }
+
+ return true;
+}
+
+} // namespace godot
diff --git a/src/variant/rect2i.cpp b/src/variant/rect2i.cpp
new file mode 100644
index 0000000..ee9b723
--- /dev/null
+++ b/src/variant/rect2i.cpp
@@ -0,0 +1,3 @@
+#include <godot_cpp/variant/rect2i.hpp>
+
+// No implementation left. This is here to add the header as a compiled unit.
diff --git a/src/variant/transform2d.cpp b/src/variant/transform2d.cpp
new file mode 100644
index 0000000..4a4a6d5
--- /dev/null
+++ b/src/variant/transform2d.cpp
@@ -0,0 +1,248 @@
+#include <godot_cpp/variant/transform2d.hpp>
+
+namespace godot {
+
+void Transform2D::invert() {
+ // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
+ // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
+ SWAP(elements[0][1], elements[1][0]);
+ elements[2] = basis_xform(-elements[2]);
+}
+
+Transform2D Transform2D::inverse() const {
+ Transform2D inv = *this;
+ inv.invert();
+ return inv;
+}
+
+void Transform2D::affine_invert() {
+ real_t det = basis_determinant();
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(det == 0);
+#endif
+ real_t idet = 1.0 / det;
+
+ SWAP(elements[0][0], elements[1][1]);
+ elements[0] *= Vector2(idet, -idet);
+ elements[1] *= Vector2(-idet, idet);
+
+ elements[2] = basis_xform(-elements[2]);
+}
+
+Transform2D Transform2D::affine_inverse() const {
+ Transform2D inv = *this;
+ inv.affine_invert();
+ return inv;
+}
+
+void Transform2D::rotate(real_t p_phi) {
+ *this = Transform2D(p_phi, Vector2()) * (*this);
+}
+
+real_t Transform2D::get_skew() const {
+ real_t det = basis_determinant();
+ return Math::acos(elements[0].normalized().dot(Math::sign(det) * elements[1].normalized())) - Math_PI * 0.5;
+}
+
+void Transform2D::set_skew(float p_angle) {
+ real_t det = basis_determinant();
+ elements[1] = Math::sign(det) * elements[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * elements[1].length();
+}
+
+real_t Transform2D::get_rotation() const {
+ return Math::atan2(elements[0].y, elements[0].x);
+}
+
+void Transform2D::set_rotation(real_t p_rot) {
+ Size2 scale = get_scale();
+ real_t cr = Math::cos(p_rot);
+ real_t sr = Math::sin(p_rot);
+ elements[0][0] = cr;
+ elements[0][1] = sr;
+ elements[1][0] = -sr;
+ elements[1][1] = cr;
+ set_scale(scale);
+}
+
+Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
+ real_t cr = Math::cos(p_rot);
+ real_t sr = Math::sin(p_rot);
+ elements[0][0] = cr;
+ elements[0][1] = sr;
+ elements[1][0] = -sr;
+ elements[1][1] = cr;
+ elements[2] = p_pos;
+}
+
+Size2 Transform2D::get_scale() const {
+ real_t det_sign = Math::sign(basis_determinant());
+ return Size2(elements[0].length(), det_sign * elements[1].length());
+}
+
+void Transform2D::set_scale(const Size2 &p_scale) {
+ elements[0].normalize();
+ elements[1].normalize();
+ elements[0] *= p_scale.x;
+ elements[1] *= p_scale.y;
+}
+
+void Transform2D::scale(const Size2 &p_scale) {
+ scale_basis(p_scale);
+ elements[2] *= p_scale;
+}
+
+void Transform2D::scale_basis(const Size2 &p_scale) {
+ elements[0][0] *= p_scale.x;
+ elements[0][1] *= p_scale.y;
+ elements[1][0] *= p_scale.x;
+ elements[1][1] *= p_scale.y;
+}
+
+void Transform2D::translate(real_t p_tx, real_t p_ty) {
+ translate(Vector2(p_tx, p_ty));
+}
+
+void Transform2D::translate(const Vector2 &p_translation) {
+ elements[2] += basis_xform(p_translation);
+}
+
+void Transform2D::orthonormalize() {
+ // Gram-Schmidt Process
+
+ Vector2 x = elements[0];
+ Vector2 y = elements[1];
+
+ x.normalize();
+ y = (y - x * (x.dot(y)));
+ y.normalize();
+
+ elements[0] = x;
+ elements[1] = y;
+}
+
+Transform2D Transform2D::orthonormalized() const {
+ Transform2D on = *this;
+ on.orthonormalize();
+ return on;
+}
+
+bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
+ return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]);
+}
+
+bool Transform2D::operator==(const Transform2D &p_transform) const {
+ for (int i = 0; i < 3; i++) {
+ if (elements[i] != p_transform.elements[i]) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool Transform2D::operator!=(const Transform2D &p_transform) const {
+ for (int i = 0; i < 3; i++) {
+ if (elements[i] != p_transform.elements[i]) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void Transform2D::operator*=(const Transform2D &p_transform) {
+ elements[2] = xform(p_transform.elements[2]);
+
+ real_t x0, x1, y0, y1;
+
+ x0 = tdotx(p_transform.elements[0]);
+ x1 = tdoty(p_transform.elements[0]);
+ y0 = tdotx(p_transform.elements[1]);
+ y1 = tdoty(p_transform.elements[1]);
+
+ elements[0][0] = x0;
+ elements[0][1] = x1;
+ elements[1][0] = y0;
+ elements[1][1] = y1;
+}
+
+Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
+ Transform2D t = *this;
+ t *= p_transform;
+ return t;
+}
+
+Transform2D Transform2D::scaled(const Size2 &p_scale) const {
+ Transform2D copy = *this;
+ copy.scale(p_scale);
+ return copy;
+}
+
+Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
+ Transform2D copy = *this;
+ copy.scale_basis(p_scale);
+ return copy;
+}
+
+Transform2D Transform2D::untranslated() const {
+ Transform2D copy = *this;
+ copy.elements[2] = Vector2();
+ return copy;
+}
+
+Transform2D Transform2D::translated(const Vector2 &p_offset) const {
+ Transform2D copy = *this;
+ copy.translate(p_offset);
+ return copy;
+}
+
+Transform2D Transform2D::rotated(real_t p_phi) const {
+ Transform2D copy = *this;
+ copy.rotate(p_phi);
+ return copy;
+}
+
+real_t Transform2D::basis_determinant() const {
+ return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
+}
+
+Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
+ //extract parameters
+ Vector2 p1 = get_origin();
+ Vector2 p2 = p_transform.get_origin();
+
+ real_t r1 = get_rotation();
+ real_t r2 = p_transform.get_rotation();
+
+ Size2 s1 = get_scale();
+ Size2 s2 = p_transform.get_scale();
+
+ //slerp rotation
+ Vector2 v1(Math::cos(r1), Math::sin(r1));
+ Vector2 v2(Math::cos(r2), Math::sin(r2));
+
+ real_t dot = v1.dot(v2);
+
+ dot = Math::clamp(dot, (real_t)-1.0, (real_t)1.0);
+
+ Vector2 v;
+
+ if (dot > 0.9995) {
+ v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
+ } else {
+ real_t angle = p_c * Math::acos(dot);
+ Vector2 v3 = (v2 - v1 * dot).normalized();
+ v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
+ }
+
+ //construct matrix
+ Transform2D res(Math::atan2(v.y, v.x), p1.lerp(p2, p_c));
+ res.scale_basis(s1.lerp(s2, p_c));
+ return res;
+}
+
+Transform2D::operator String() const {
+ return elements[0].operator String() + ", " + elements[1].operator String() + ", " + elements[2].operator String();
+}
+
+} // namespace godot
diff --git a/src/variant/transform3d.cpp b/src/variant/transform3d.cpp
new file mode 100644
index 0000000..10b927c
--- /dev/null
+++ b/src/variant/transform3d.cpp
@@ -0,0 +1,185 @@
+#include <godot_cpp/variant/transform3d.hpp>
+
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+void Transform3D::affine_invert() {
+ basis.invert();
+ origin = basis.xform(-origin);
+}
+
+Transform3D Transform3D::affine_inverse() const {
+ Transform3D ret = *this;
+ ret.affine_invert();
+ return ret;
+}
+
+void Transform3D::invert() {
+ basis.transpose();
+ origin = basis.xform(-origin);
+}
+
+Transform3D Transform3D::inverse() const {
+ // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
+ // Transform3D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
+ Transform3D ret = *this;
+ ret.invert();
+ return ret;
+}
+
+void Transform3D::rotate(const Vector3 &p_axis, real_t p_phi) {
+ *this = rotated(p_axis, p_phi);
+}
+
+Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_phi) const {
+ return Transform3D(Basis(p_axis, p_phi), Vector3()) * (*this);
+}
+
+void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
+ basis.rotate(p_axis, p_phi);
+}
+
+Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
+ Transform3D t = *this;
+ t.set_look_at(origin, p_target, p_up);
+ return t;
+}
+
+void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(p_eye == p_target);
+ ERR_FAIL_COND(p_up.length() == 0);
+#endif
+ // RefCounted: MESA source code
+ Vector3 v_x, v_y, v_z;
+
+ /* Make rotation matrix */
+
+ /* Z vector */
+ v_z = p_eye - p_target;
+
+ v_z.normalize();
+
+ v_y = p_up;
+
+ v_x = v_y.cross(v_z);
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(v_x.length() == 0);
+#endif
+
+ /* Recompute Y = Z cross X */
+ v_y = v_z.cross(v_x);
+
+ v_x.normalize();
+ v_y.normalize();
+
+ basis.set(v_x, v_y, v_z);
+
+ origin = p_eye;
+}
+
+Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const {
+ /* not sure if very "efficient" but good enough? */
+
+ Vector3 src_scale = basis.get_scale();
+ Quaternion src_rot = basis.get_rotation_quat();
+ Vector3 src_loc = origin;
+
+ Vector3 dst_scale = p_transform.basis.get_scale();
+ Quaternion dst_rot = p_transform.basis.get_rotation_quat();
+ Vector3 dst_loc = p_transform.origin;
+
+ Transform3D interp;
+ interp.basis.set_quat_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c));
+ interp.origin = src_loc.lerp(dst_loc, p_c);
+
+ return interp;
+}
+
+void Transform3D::scale(const Vector3 &p_scale) {
+ basis.scale(p_scale);
+ origin *= p_scale;
+}
+
+Transform3D Transform3D::scaled(const Vector3 &p_scale) const {
+ Transform3D t = *this;
+ t.scale(p_scale);
+ return t;
+}
+
+void Transform3D::scale_basis(const Vector3 &p_scale) {
+ basis.scale(p_scale);
+}
+
+void Transform3D::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
+ translate(Vector3(p_tx, p_ty, p_tz));
+}
+
+void Transform3D::translate(const Vector3 &p_translation) {
+ for (int i = 0; i < 3; i++) {
+ origin[i] += basis[i].dot(p_translation);
+ }
+}
+
+Transform3D Transform3D::translated(const Vector3 &p_translation) const {
+ Transform3D t = *this;
+ t.translate(p_translation);
+ return t;
+}
+
+void Transform3D::orthonormalize() {
+ basis.orthonormalize();
+}
+
+Transform3D Transform3D::orthonormalized() const {
+ Transform3D _copy = *this;
+ _copy.orthonormalize();
+ return _copy;
+}
+
+bool Transform3D::is_equal_approx(const Transform3D &p_transform) const {
+ return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin);
+}
+
+bool Transform3D::operator==(const Transform3D &p_transform) const {
+ return (basis == p_transform.basis && origin == p_transform.origin);
+}
+
+bool Transform3D::operator!=(const Transform3D &p_transform) const {
+ return (basis != p_transform.basis || origin != p_transform.origin);
+}
+
+void Transform3D::operator*=(const Transform3D &p_transform) {
+ origin = xform(p_transform.origin);
+ basis *= p_transform.basis;
+}
+
+Transform3D Transform3D::operator*(const Transform3D &p_transform) const {
+ Transform3D t = *this;
+ t *= p_transform;
+ return t;
+}
+
+Transform3D::operator String() const {
+ return basis.operator String() + " - " + origin.operator String();
+}
+
+Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) :
+ basis(p_basis),
+ origin(p_origin) {
+}
+
+Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) :
+ origin(p_origin) {
+ basis.set_axis(0, p_x);
+ basis.set_axis(1, p_y);
+ basis.set_axis(2, p_z);
+}
+
+Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) {
+ basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz);
+ origin = Vector3(ox, oy, oz);
+}
+
+} // namespace godot
diff --git a/src/variant/variant.cpp b/src/variant/variant.cpp
index fa1d54c..dc8ce6e 100644
--- a/src/variant/variant.cpp
+++ b/src/variant/variant.cpp
@@ -50,19 +50,6 @@ void Variant::init_bindings() {
}
String::init_bindings();
- Vector2::init_bindings();
- Vector2i::init_bindings();
- Rect2::init_bindings();
- Rect2i::init_bindings();
- Vector3::init_bindings();
- Vector3i::init_bindings();
- Transform2D::init_bindings();
- Plane::init_bindings();
- Quaternion::init_bindings();
- AABB::init_bindings();
- Basis::init_bindings();
- Transform3D::init_bindings();
- Color::init_bindings();
StringName::init_bindings();
NodePath::init_bindings();
RID::init_bindings();
diff --git a/src/variant/vector2.cpp b/src/variant/vector2.cpp
new file mode 100644
index 0000000..a91bdde
--- /dev/null
+++ b/src/variant/vector2.cpp
@@ -0,0 +1,168 @@
+#include <godot_cpp/core/error_macros.hpp>
+#include <godot_cpp/variant/vector2.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+Vector2::operator String() const {
+ return String::num(x, 5) + ", " + String::num(y, 5);
+}
+
+real_t Vector2::angle() const {
+ return Math::atan2(y, x);
+}
+
+real_t Vector2::length() const {
+ return Math::sqrt(x * x + y * y);
+}
+
+real_t Vector2::length_squared() const {
+ return x * x + y * y;
+}
+
+void Vector2::normalize() {
+ real_t l = x * x + y * y;
+ if (l != 0) {
+ l = Math::sqrt(l);
+ x /= l;
+ y /= l;
+ }
+}
+
+Vector2 Vector2::normalized() const {
+ Vector2 v = *this;
+ v.normalize();
+ return v;
+}
+
+bool Vector2::is_normalized() const {
+ // use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
+ return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
+}
+
+real_t Vector2::distance_to(const Vector2 &p_vector2) const {
+ return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
+}
+
+real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
+ return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
+}
+
+real_t Vector2::angle_to(const Vector2 &p_vector2) const {
+ return Math::atan2(cross(p_vector2), dot(p_vector2));
+}
+
+real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
+ return Math::atan2(y - p_vector2.y, x - p_vector2.x);
+}
+
+real_t Vector2::dot(const Vector2 &p_other) const {
+ return x * p_other.x + y * p_other.y;
+}
+
+real_t Vector2::cross(const Vector2 &p_other) const {
+ return x * p_other.y - y * p_other.x;
+}
+
+Vector2 Vector2::sign() const {
+ return Vector2(Math::sign(x), Math::sign(y));
+}
+
+Vector2 Vector2::floor() const {
+ return Vector2(Math::floor(x), Math::floor(y));
+}
+
+Vector2 Vector2::ceil() const {
+ return Vector2(Math::ceil(x), Math::ceil(y));
+}
+
+Vector2 Vector2::round() const {
+ return Vector2(Math::round(x), Math::round(y));
+}
+
+Vector2 Vector2::rotated(real_t p_by) const {
+ real_t sine = Math::sin(p_by);
+ real_t cosi = Math::cos(p_by);
+ return Vector2(
+ x * cosi - y * sine,
+ x * sine + y * cosi);
+}
+
+Vector2 Vector2::posmod(const real_t p_mod) const {
+ return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
+}
+
+Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
+ return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
+}
+
+Vector2 Vector2::project(const Vector2 &p_to) const {
+ return p_to * (dot(p_to) / p_to.length_squared());
+}
+
+Vector2 Vector2::snapped(const Vector2 &p_step) const {
+ return Vector2(
+ Math::snapped(x, p_step.x),
+ Math::snapped(y, p_step.y));
+}
+
+Vector2 Vector2::clamped(real_t p_len) const {
+ real_t l = length();
+ Vector2 v = *this;
+ if (l > 0 && p_len < l) {
+ v /= l;
+ v *= p_len;
+ }
+
+ return v;
+}
+
+Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const {
+ Vector2 p0 = p_pre_a;
+ Vector2 p1 = *this;
+ Vector2 p2 = p_b;
+ Vector2 p3 = p_post_b;
+
+ real_t t = p_weight;
+ real_t t2 = t * t;
+ real_t t3 = t2 * t;
+
+ Vector2 out;
+ out = 0.5 * ((p1 * 2.0) +
+ (-p0 + p2) * t +
+ (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
+ (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
+ return out;
+}
+
+Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
+ Vector2 v = *this;
+ Vector2 vd = p_to - v;
+ real_t len = vd.length();
+ return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
+}
+
+// slide returns the component of the vector along the given plane, specified by its normal vector.
+Vector2 Vector2::slide(const Vector2 &p_normal) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
+#endif
+ return *this - p_normal * this->dot(p_normal);
+}
+
+Vector2 Vector2::bounce(const Vector2 &p_normal) const {
+ return -reflect(p_normal);
+}
+
+Vector2 Vector2::reflect(const Vector2 &p_normal) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
+#endif
+ return 2.0 * p_normal * this->dot(p_normal) - *this;
+}
+
+bool Vector2::is_equal_approx(const Vector2 &p_v) const {
+ return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
+}
+
+} // namespace godot
diff --git a/src/variant/vector2i.cpp b/src/variant/vector2i.cpp
new file mode 100644
index 0000000..ccd524a
--- /dev/null
+++ b/src/variant/vector2i.cpp
@@ -0,0 +1,80 @@
+#include <godot_cpp/core/error_macros.hpp>
+#include <godot_cpp/variant/vector2i.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+Vector2i::operator String() const {
+ return String::num(x, 0) + ", " + String::num(y, 0);
+}
+
+Vector2i Vector2i::operator+(const Vector2i &p_v) const {
+ return Vector2i(x + p_v.x, y + p_v.y);
+}
+
+void Vector2i::operator+=(const Vector2i &p_v) {
+ x += p_v.x;
+ y += p_v.y;
+}
+
+Vector2i Vector2i::operator-(const Vector2i &p_v) const {
+ return Vector2i(x - p_v.x, y - p_v.y);
+}
+
+void Vector2i::operator-=(const Vector2i &p_v) {
+ x -= p_v.x;
+ y -= p_v.y;
+}
+
+Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
+ return Vector2i(x * p_v1.x, y * p_v1.y);
+}
+
+Vector2i Vector2i::operator*(const int32_t &rvalue) const {
+ return Vector2i(x * rvalue, y * rvalue);
+}
+
+void Vector2i::operator*=(const int32_t &rvalue) {
+ x *= rvalue;
+ y *= rvalue;
+}
+
+Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
+ return Vector2i(x / p_v1.x, y / p_v1.y);
+}
+
+Vector2i Vector2i::operator/(const int32_t &rvalue) const {
+ return Vector2i(x / rvalue, y / rvalue);
+}
+
+void Vector2i::operator/=(const int32_t &rvalue) {
+ x /= rvalue;
+ y /= rvalue;
+}
+
+Vector2i Vector2i::operator%(const Vector2i &p_v1) const {
+ return Vector2i(x % p_v1.x, y % p_v1.y);
+}
+
+Vector2i Vector2i::operator%(const int32_t &rvalue) const {
+ return Vector2i(x % rvalue, y % rvalue);
+}
+
+void Vector2i::operator%=(const int32_t &rvalue) {
+ x %= rvalue;
+ y %= rvalue;
+}
+
+Vector2i Vector2i::operator-() const {
+ return Vector2i(-x, -y);
+}
+
+bool Vector2i::operator==(const Vector2i &p_vec2) const {
+ return x == p_vec2.x && y == p_vec2.y;
+}
+
+bool Vector2i::operator!=(const Vector2i &p_vec2) const {
+ return x != p_vec2.x || y != p_vec2.y;
+}
+
+} // namespace godot
diff --git a/src/variant/vector3.cpp b/src/variant/vector3.cpp
new file mode 100644
index 0000000..b835e03
--- /dev/null
+++ b/src/variant/vector3.cpp
@@ -0,0 +1,94 @@
+#include <godot_cpp/core/error_macros.hpp>
+#include <godot_cpp/variant/vector3.hpp>
+#include <godot_cpp/variant/basis.hpp>
+
+namespace godot {
+
+void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) {
+ *this = Basis(p_axis, p_phi).xform(*this);
+}
+
+Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_phi) const {
+ Vector3 r = *this;
+ r.rotate(p_axis, p_phi);
+ return r;
+}
+
+void Vector3::set_axis(int p_axis, real_t p_value) {
+ ERR_FAIL_INDEX(p_axis, 3);
+ coord[p_axis] = p_value;
+}
+
+real_t Vector3::get_axis(int p_axis) const {
+ ERR_FAIL_INDEX_V(p_axis, 3, 0);
+ return operator[](p_axis);
+}
+
+int Vector3::min_axis() const {
+ return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
+}
+
+int Vector3::max_axis() const {
+ return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
+}
+
+void Vector3::snap(Vector3 p_step) {
+ x = Math::snapped(x, p_step.x);
+ y = Math::snapped(y, p_step.y);
+ z = Math::snapped(z, p_step.z);
+}
+
+Vector3 Vector3::snapped(Vector3 p_step) const {
+ Vector3 v = *this;
+ v.snap(p_step);
+ return v;
+}
+
+Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const {
+ Vector3 p0 = p_pre_a;
+ Vector3 p1 = *this;
+ Vector3 p2 = p_b;
+ Vector3 p3 = p_post_b;
+
+ real_t t = p_weight;
+ real_t t2 = t * t;
+ real_t t3 = t2 * t;
+
+ Vector3 out;
+ out = 0.5 * ((p1 * 2.0) +
+ (-p0 + p2) * t +
+ (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3) * t2 +
+ (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
+ return out;
+}
+
+Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const {
+ Vector3 v = *this;
+ Vector3 vd = p_to - v;
+ real_t len = vd.length();
+ return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
+}
+
+Basis Vector3::outer(const Vector3 &p_b) const {
+ Vector3 row0(x * p_b.x, x * p_b.y, x * p_b.z);
+ Vector3 row1(y * p_b.x, y * p_b.y, y * p_b.z);
+ Vector3 row2(z * p_b.x, z * p_b.y, z * p_b.z);
+
+ return Basis(row0, row1, row2);
+}
+
+Basis Vector3::to_diagonal_matrix() const {
+ return Basis(x, 0, 0,
+ 0, y, 0,
+ 0, 0, z);
+}
+
+bool Vector3::is_equal_approx(const Vector3 &p_v) const {
+ return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z);
+}
+
+Vector3::operator String() const {
+ return (String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5));
+}
+
+} // namespace godot
diff --git a/src/variant/vector3i.cpp b/src/variant/vector3i.cpp
new file mode 100644
index 0000000..d80c8ea
--- /dev/null
+++ b/src/variant/vector3i.cpp
@@ -0,0 +1,29 @@
+#include <godot_cpp/core/error_macros.hpp>
+#include <godot_cpp/variant/vector3i.hpp>
+#include <godot_cpp/variant/string.hpp>
+
+namespace godot {
+
+void Vector3i::set_axis(int p_axis, int32_t p_value) {
+ ERR_FAIL_INDEX(p_axis, 3);
+ coord[p_axis] = p_value;
+}
+
+int32_t Vector3i::get_axis(int p_axis) const {
+ ERR_FAIL_INDEX_V(p_axis, 3, 0);
+ return operator[](p_axis);
+}
+
+int Vector3i::min_axis() const {
+ return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
+}
+
+int Vector3i::max_axis() const {
+ return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
+}
+
+Vector3i::operator String() const {
+ return (String::num(x, 0) + ", " + String::num(y, 0) + ", " + String::num(z, 5));
+}
+
+} // namespace godot