summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core/Basis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/core/Basis.cpp')
-rw-r--r--include/godot_cpp/core/Basis.cpp664
1 files changed, 0 insertions, 664 deletions
diff --git a/include/godot_cpp/core/Basis.cpp b/include/godot_cpp/core/Basis.cpp
deleted file mode 100644
index dff6e4f..0000000
--- a/include/godot_cpp/core/Basis.cpp
+++ /dev/null
@@ -1,664 +0,0 @@
-#include "Basis.hpp"
-
-
-#include "Defs.hpp"
-
-#include "Vector3.hpp"
-
-#include "Quat.hpp"
-
-#include <algorithm>
-
-
-namespace godot {
-
-
-Basis::Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2)
-{
- elements[0]=row0;
- elements[1]=row1;
- elements[2]=row2;
-}
-
-Basis::Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
-
- set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
-}
-
-Basis::Basis() {
-
- elements[0][0]=1;
- elements[0][1]=0;
- elements[0][2]=0;
- elements[1][0]=0;
- elements[1][1]=1;
- elements[1][2]=0;
- elements[2][0]=0;
- elements[2][1]=0;
- elements[2][2]=1;
-}
-
-
-
-
-
-const Vector3& Basis::operator[](int axis) const {
-
- return elements[axis];
-}
-Vector3&Basis:: operator[](int axis) {
-
- return elements[axis];
-}
-
-#define cofac(row1,col1, row2, col2)\
-(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
-
-void Basis::invert()
-{
- real_t co[3]={
- cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
- };
- real_t det = elements[0][0] * co[0]+
- elements[0][1] * co[1]+
- elements[0][2] * co[2];
-
-
- ERR_FAIL_COND(det != 0);
-
- real_t s = 1.0/det;
-
- set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
-}
-#undef cofac
-
-bool Basis::isequal_approx(const Basis& a, const Basis& b) const {
-
- for (int i=0;i<3;i++) {
- for (int j=0;j<3;j++) {
- if ((::fabs(a.elements[i][j]-b.elements[i][j]) < CMP_EPSILON) == false)
- return false;
- }
- }
-
- return true;
-}
-
-
-bool Basis::is_orthogonal() const
-{
- Basis id;
- Basis m = (*this)*transposed();
-
- return isequal_approx(id,m);
-}
-
-bool Basis::is_rotation() const
-{
- return ::fabs(determinant()-1) < CMP_EPSILON && is_orthogonal();
-}
-
-void Basis::transpose()
-{
- std::swap(elements[0][1],elements[1][0]);
- std::swap(elements[0][2],elements[2][0]);
- std::swap(elements[1][2],elements[2][1]);
-}
-
-Basis Basis::inverse() const
-{
- Basis b = *this;
- b.invert();
- return b;
-}
-
-Basis Basis::transposed() const
-{
- Basis b = *this;
- b.transpose();
- return b;
-}
-
-real_t Basis::determinant() const
-{
- return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
- elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
- elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
-}
-
-Vector3 Basis::get_axis(int p_axis) const {
- // get actual basis axis (elements is transposed for performance)
- return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
-}
-void Basis::set_axis(int p_axis, const Vector3& p_value) {
- // get actual basis axis (elements is transposed for performance)
- elements[0][p_axis]=p_value.x;
- elements[1][p_axis]=p_value.y;
- elements[2][p_axis]=p_value.z;
-}
-
-void Basis::rotate(const Vector3& p_axis, real_t p_phi)
-{
- *this = rotated(p_axis, p_phi);
-}
-
-Basis Basis::rotated(const Vector3& p_axis, real_t p_phi) const
-{
- return Basis(p_axis, p_phi) * (*this);
-}
-
-void Basis::scale( const Vector3& p_scale )
-{
- elements[0][0]*=p_scale.x;
- elements[0][1]*=p_scale.x;
- elements[0][2]*=p_scale.x;
- elements[1][0]*=p_scale.y;
- elements[1][1]*=p_scale.y;
- elements[1][2]*=p_scale.y;
- elements[2][0]*=p_scale.z;
- elements[2][1]*=p_scale.z;
- elements[2][2]*=p_scale.z;
-}
-
-Basis Basis::scaled( const Vector3& p_scale ) const
-{
- Basis b = *this;
- b.scale(p_scale);
- return b;
-}
-
-Vector3 Basis::get_scale() const
-{
- // We are assuming M = R.S, and performing a polar decomposition to extract R and S.
- // FIXME: We eventually need a proper polar decomposition.
- // As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
- // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
- // As such, it works in conjuction with get_rotation().
- real_t det_sign = determinant() > 0 ? 1 : -1;
- return det_sign*Vector3(
- Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
- Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
- Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
- );
-}
-
-Vector3 Basis::get_euler() const
-{
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
-
- Vector3 euler;
-
- if (is_rotation() == false)
- return euler;
-
- euler.y = ::asin(elements[0][2]);
- if ( euler.y < Math_PI*0.5) {
- if ( euler.y > -Math_PI*0.5) {
- euler.x = ::atan2(-elements[1][2],elements[2][2]);
- euler.z = ::atan2(-elements[0][1],elements[0][0]);
-
- } else {
- real_t r = ::atan2(elements[1][0],elements[1][1]);
- euler.z = 0.0;
- euler.x = euler.z - r;
-
- }
- } else {
- real_t r = ::atan2(elements[0][1],elements[1][1]);
- euler.z = 0;
- euler.x = r - euler.z;
- }
-
- return euler;
-}
-
-void Basis::set_euler(const Vector3& p_euler)
-{
- real_t c, s;
-
- c = ::cos(p_euler.x);
- s = ::sin(p_euler.x);
- Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
-
- c = ::cos(p_euler.y);
- s = ::sin(p_euler.y);
- Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
-
- c = ::cos(p_euler.z);
- s = ::sin(p_euler.z);
- Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
-
- //optimizer will optimize away all this anyway
- *this = xmat*(ymat*zmat);
-}
-
-// transposed dot products
-real_t Basis::tdotx(const Vector3& v) const {
- return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
-}
-real_t Basis::tdoty(const Vector3& v) const {
- return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
-}
-real_t Basis::tdotz(const Vector3& v) const {
- return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
-}
-
-bool Basis::operator==(const Basis& p_matrix) const
-{
- for (int i=0;i<3;i++) {
- for (int j=0;j<3;j++) {
- if (elements[i][j] != p_matrix.elements[i][j])
- return false;
- }
- }
-
- return true;
-}
-
-bool Basis::operator!=(const Basis& p_matrix) const
-{
- return (!(*this==p_matrix));
-}
-
-Vector3 Basis::xform(const Vector3& p_vector) const {
-
- return Vector3(
- elements[0].dot(p_vector),
- elements[1].dot(p_vector),
- elements[2].dot(p_vector)
- );
-}
-
-Vector3 Basis::xform_inv(const Vector3& p_vector) const {
-
- return Vector3(
- (elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
- (elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
- (elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
- );
-}
-void Basis::operator*=(const Basis& p_matrix)
-{
- set(
- p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
- p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
- p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
-
-}
-
-Basis Basis::operator*(const Basis& p_matrix) const
-{
- return Basis(
- p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
- p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
- p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
-
-}
-
-
-void Basis::operator+=(const Basis& p_matrix) {
-
- elements[0] += p_matrix.elements[0];
- elements[1] += p_matrix.elements[1];
- elements[2] += p_matrix.elements[2];
-}
-
-Basis Basis::operator+(const Basis& p_matrix) const {
-
- Basis ret(*this);
- ret += p_matrix;
- return ret;
-}
-
-void Basis::operator-=(const Basis& p_matrix) {
-
- elements[0] -= p_matrix.elements[0];
- elements[1] -= p_matrix.elements[1];
- elements[2] -= p_matrix.elements[2];
-}
-
-Basis Basis::operator-(const Basis& p_matrix) const {
-
- Basis ret(*this);
- ret -= p_matrix;
- return ret;
-}
-
-void Basis::operator*=(real_t p_val) {
-
- elements[0]*=p_val;
- elements[1]*=p_val;
- elements[2]*=p_val;
-}
-
-Basis Basis::operator*(real_t p_val) const {
-
- Basis ret(*this);
- ret *= p_val;
- return ret;
-}
-
-
-Basis::operator String() const
-{
- String s;
- // @Todo
- return s;
-}
-
-/* create / set */
-
-
-void Basis::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
-
- elements[0][0]=xx;
- elements[0][1]=xy;
- elements[0][2]=xz;
- elements[1][0]=yx;
- elements[1][1]=yy;
- elements[1][2]=yz;
- elements[2][0]=zx;
- elements[2][1]=zy;
- elements[2][2]=zz;
-}
-Vector3 Basis::get_column(int i) const {
-
- return Vector3(elements[0][i],elements[1][i],elements[2][i]);
-}
-
-Vector3 Basis::get_row(int i) const {
-
- return Vector3(elements[i][0],elements[i][1],elements[i][2]);
-}
-Vector3 Basis::get_main_diagonal() const {
- return Vector3(elements[0][0],elements[1][1],elements[2][2]);
-}
-
-void Basis::set_row(int i, const Vector3& p_row) {
- elements[i][0]=p_row.x;
- elements[i][1]=p_row.y;
- elements[i][2]=p_row.z;
-}
-
-Basis Basis::transpose_xform(const Basis& m) const
-{
- return Basis(
- elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
- elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
- elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
- elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
- elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
- elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
- elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
- elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
- elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
-}
-
-void Basis::orthonormalize()
-{
- ERR_FAIL_COND(determinant() != 0);
-
- // Gram-Schmidt Process
-
- Vector3 x=get_axis(0);
- Vector3 y=get_axis(1);
- Vector3 z=get_axis(2);
-
- x.normalize();
- y = (y-x*(x.dot(y)));
- y.normalize();
- z = (z-x*(x.dot(z))-y*(y.dot(z)));
- z.normalize();
-
- set_axis(0,x);
- set_axis(1,y);
- set_axis(2,z);
-}
-
-Basis Basis::orthonormalized() const
-{
- Basis b = *this;
- b.orthonormalize();
- return b;
-}
-
-bool Basis::is_symmetric() const
-{
- if (::fabs(elements[0][1] - elements[1][0]) > CMP_EPSILON)
- return false;
- if (::fabs(elements[0][2] - elements[2][0]) > CMP_EPSILON)
- return false;
- if (::fabs(elements[1][2] - elements[2][1]) > CMP_EPSILON)
- return false;
-
- return true;
-}
-
-Basis Basis::diagonalize()
-{
- // I love copy paste
-
- if (!is_symmetric())
- return Basis();
-
- const int ite_max = 1024;
-
- real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
-
- int ite = 0;
- Basis acc_rot;
- while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) {
- real_t el01_2 = elements[0][1] * elements[0][1];
- real_t el02_2 = elements[0][2] * elements[0][2];
- real_t el12_2 = elements[1][2] * elements[1][2];
- // Find the pivot element
- int i, j;
- if (el01_2 > el02_2) {
- if (el12_2 > el01_2) {
- i = 1;
- j = 2;
- } else {
- i = 0;
- j = 1;
- }
- } else {
- if (el12_2 > el02_2) {
- i = 1;
- j = 2;
- } else {
- i = 0;
- j = 2;
- }
- }
-
- // Compute the rotation angle
- real_t angle;
- if (::fabs(elements[j][j] - elements[i][i]) < CMP_EPSILON) {
- angle = Math_PI / 4;
- } else {
- angle = 0.5 * ::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
- }
-
- // Compute the rotation matrix
- Basis rot;
- rot.elements[i][i] = rot.elements[j][j] = ::cos(angle);
- rot.elements[i][j] = - (rot.elements[j][i] = ::sin(angle));
-
- // Update the off matrix norm
- off_matrix_norm_2 -= elements[i][j] * elements[i][j];
-
- // Apply the rotation
- *this = rot * *this * rot.transposed();
- acc_rot = rot * acc_rot;
- }
-
- return acc_rot;
-}
-
-
-static const Basis _ortho_bases[24]={
- Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
- Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
- Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
- Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
- Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
- Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
- Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
- Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
- Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
- Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
- Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
- Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
- Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
- Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
- Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
- Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
- Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
- Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
- Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
- Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
- Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
- Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
- Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
- Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
-};
-
-
-int Basis::get_orthogonal_index() const
-{
- //could be sped up if i come up with a way
- Basis orth=*this;
- for(int i=0;i<3;i++) {
- for(int j=0;j<3;j++) {
-
- real_t v = orth[i][j];
- if (v>0.5)
- v=1.0;
- else if (v<-0.5)
- v=-1.0;
- else
- v=0;
-
- orth[i][j]=v;
- }
- }
-
- for(int i=0;i<24;i++) {
-
- if (_ortho_bases[i]==orth)
- return i;
-
-
- }
-
- return 0;
-}
-
-
-void Basis::set_orthogonal_index(int p_index){
-
- //there only exist 24 orthogonal bases in r3
- ERR_FAIL_COND(p_index >= 24);
-
- *this=_ortho_bases[p_index];
-
-}
-
-
-
-Basis::Basis(const Vector3& p_euler) {
-
- set_euler( p_euler );
-
-}
-
-}
-
-#include "Quat.hpp"
-
-namespace godot {
-
-Basis::Basis(const Quat& p_quat) {
-
- real_t d = p_quat.length_squared();
- real_t s = 2.0 / d;
- real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
- real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
- real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
- real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
- set( 1.0 - (yy + zz), xy - wz, xz + wy,
- xy + wz, 1.0 - (xx + zz), yz - wx,
- xz - wy, yz + wx, 1.0 - (xx + yy)) ;
-
-}
-
-Basis::Basis(const Vector3& p_axis, real_t p_phi) {
- // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
-
- Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
-
- real_t cosine= ::cos(p_phi);
- real_t sine= ::sin(p_phi);
-
- elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
- elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
- elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
-
- elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
- elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
- elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
-
- elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
- elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
- elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
-
-}
-
-Basis::operator Quat() const {
- ERR_FAIL_COND_V(is_rotation() == false, Quat());
-
- real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
- real_t temp[4];
-
- if (trace > 0.0)
- {
- real_t s = ::sqrt(trace + 1.0);
- temp[3]=(s * 0.5);
- s = 0.5 / s;
-
- temp[0]=((elements[2][1] - elements[1][2]) * s);
- temp[1]=((elements[0][2] - elements[2][0]) * s);
- temp[2]=((elements[1][0] - elements[0][1]) * s);
- }
- else
- {
- int i = elements[0][0] < elements[1][1] ?
- (elements[1][1] < elements[2][2] ? 2 : 1) :
- (elements[0][0] < elements[2][2] ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
-
- real_t s = ::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
- temp[i] = s * 0.5;
- s = 0.5 / s;
-
- temp[3] = (elements[k][j] - elements[j][k]) * s;
- temp[j] = (elements[j][i] + elements[i][j]) * s;
- temp[k] = (elements[k][i] + elements[i][k]) * s;
- }
-
- return Quat(temp[0],temp[1],temp[2],temp[3]);
-
-}
-
-
-
-
-}