summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core/Quat.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/core/Quat.cpp')
-rw-r--r--include/godot_cpp/core/Quat.cpp277
1 files changed, 0 insertions, 277 deletions
diff --git a/include/godot_cpp/core/Quat.cpp b/include/godot_cpp/core/Quat.cpp
deleted file mode 100644
index 866de2b..0000000
--- a/include/godot_cpp/core/Quat.cpp
+++ /dev/null
@@ -1,277 +0,0 @@
-#include "Quat.hpp"
-
-
-#include <cmath>
-
-#include "Defs.hpp"
-
-#include "Vector3.hpp"
-
-#include "Basis.hpp"
-
-namespace godot {
-
-real_t Quat::length() const
-{
- return ::sqrt(length_squared());
-}
-
-void Quat::normalize()
-{
- *this /= length();
-}
-
-Quat Quat::normalized() const
-{
- return *this / length();
-}
-
-Quat Quat::inverse() const
-{
- return Quat( -x, -y, -z, w );
-}
-
-void Quat::set_euler(const Vector3& p_euler)
-{
- real_t half_a1 = p_euler.x * 0.5;
- real_t half_a2 = p_euler.y * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
-
- // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
- // a3 is the angle of the first rotation, following the notation in this reference.
-
- real_t cos_a1 = ::cos(half_a1);
- real_t sin_a1 = ::sin(half_a1);
- real_t cos_a2 = ::cos(half_a2);
- real_t sin_a2 = ::sin(half_a2);
- real_t cos_a3 = ::cos(half_a3);
- real_t sin_a3 = ::sin(half_a3);
-
- set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
- -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
- sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
- -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
-}
-
-Quat Quat::slerp(const Quat& q, const real_t& t) const {
-
- Quat to1;
- real_t omega, cosom, sinom, scale0, scale1;
-
-
- // calc cosine
- cosom = dot(q);
-
- // adjust signs (if necessary)
- if ( cosom <0.0 ) {
- cosom = -cosom;
- to1.x = - q.x;
- to1.y = - q.y;
- to1.z = - q.z;
- to1.w = - q.w;
- } else {
- to1.x = q.x;
- to1.y = q.y;
- to1.z = q.z;
- to1.w = q.w;
- }
-
-
- // calculate coefficients
-
- if ( (1.0 - cosom) > CMP_EPSILON ) {
- // standard case (slerp)
- omega = ::acos(cosom);
- sinom = ::sin(omega);
- scale0 = ::sin((1.0 - t) * omega) / sinom;
- scale1 = ::sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- return Quat(
- scale0 * x + scale1 * to1.x,
- scale0 * y + scale1 * to1.y,
- scale0 * z + scale1 * to1.z,
- scale0 * w + scale1 * to1.w
- );
-}
-
-Quat Quat::slerpni(const Quat& q, const real_t& t) const {
-
- const Quat &from = *this;
-
- real_t dot = from.dot(q);
-
- if (::fabs(dot) > 0.9999) return from;
-
- real_t theta = ::acos(dot),
- sinT = 1.0 / ::sin(theta),
- newFactor = ::sin(t * theta) * sinT,
- invFactor = ::sin((1.0 - t) * theta) * sinT;
-
- return Quat(invFactor * from.x + newFactor * q.x,
- invFactor * from.y + newFactor * q.y,
- invFactor * from.z + newFactor * q.z,
- invFactor * from.w + newFactor * q.w);
-}
-
-Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const
-{
- //the only way to do slerp :|
- real_t t2 = (1.0-t)*t*2;
- Quat sp = this->slerp(q,t);
- Quat sq = prep.slerpni(postq,t);
- return sp.slerpni(sq,t2);
-}
-
-void Quat::get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const {
- r_angle = 2 * ::acos(w);
- r_axis.x = x / ::sqrt(1-w*w);
- r_axis.y = y / ::sqrt(1-w*w);
- r_axis.z = z / ::sqrt(1-w*w);
-}
-
-
-
-Quat Quat::operator*(const Vector3& v) const
-{
- return Quat( w * v.x + y * v.z - z * v.y,
- w * v.y + z * v.x - x * v.z,
- w * v.z + x * v.y - y * v.x,
- -x * v.x - y * v.y - z * v.z);
-}
-
-Vector3 Quat::xform(const Vector3& v) const {
-
- Quat q = *this * v;
- q *= this->inverse();
- return Vector3(q.x,q.y,q.z);
-}
-
-
-Quat::operator String() const
-{
- return String(); // @Todo
-}
-
-
-Quat::Quat(const Vector3& axis, const real_t& angle)
-{
- real_t d = axis.length();
- if (d==0)
- set(0,0,0,0);
- else {
- real_t sin_angle = ::sin(angle * 0.5);
- real_t cos_angle = ::cos(angle * 0.5);
- real_t s = sin_angle / d;
- set(axis.x * s, axis.y * s, axis.z * s,
- cos_angle);
- }
-}
-
-Quat::Quat(const Vector3& v0, const Vector3& v1) // shortest arc
-{
- Vector3 c = v0.cross(v1);
- real_t d = v0.dot(v1);
-
- if (d < -1.0 + CMP_EPSILON) {
- x=0;
- y=1;
- z=0;
- w=0;
- } else {
-
- real_t s = ::sqrt((1.0 + d) * 2.0);
- real_t rs = 1.0 / s;
-
- x=c.x*rs;
- y=c.y*rs;
- z=c.z*rs;
- w=s * 0.5;
- }
-}
-
-
-real_t Quat::dot(const Quat& q) const {
- return x * q.x+y * q.y+z * q.z+w * q.w;
-}
-
-real_t Quat::length_squared() const {
- return dot(*this);
-}
-
-void Quat::operator+=(const Quat& q) {
- x += q.x; y += q.y; z += q.z; w += q.w;
-}
-
-void Quat::operator-=(const Quat& q) {
- x -= q.x; y -= q.y; z -= q.z; w -= q.w;
-}
-
-void Quat::operator*=(const Quat& q) {
- x *= q.x; y *= q.y; z *= q.z; w *= q.w;
-}
-
-
-void Quat::operator*=(const real_t& s) {
- x *= s; y *= s; z *= s; w *= s;
-}
-
-
-void Quat::operator/=(const real_t& s) {
-
- *this *= 1.0 / s;
-}
-
-Quat Quat::operator+(const Quat& q2) const {
- const Quat& q1 = *this;
- return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w );
-}
-
-Quat Quat::operator-(const Quat& q2) const {
- const Quat& q1 = *this;
- return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w);
-}
-
-Quat Quat::operator*(const Quat& q2) const {
- Quat q1 = *this;
- q1 *= q2;
- return q1;
-}
-
-
-Quat Quat::operator-() const {
- const Quat& q2 = *this;
- return Quat( -q2.x, -q2.y, -q2.z, -q2.w);
-}
-
-Quat Quat::operator*(const real_t& s) const {
- return Quat(x * s, y * s, z * s, w * s);
-}
-
-Quat Quat::operator/(const real_t& s) const {
- return *this * (1.0 / s);
-}
-
-
-bool Quat::operator==(const Quat& p_quat) const {
- return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w;
-}
-
-bool Quat::operator!=(const Quat& p_quat) const {
- return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w;
-}
-
-
-Vector3 Quat::get_euler() const
-{
- Basis m(*this);
- return m.get_euler();
-}
-
-}