summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/core')
-rw-r--r--include/godot_cpp/core/defs.hpp17
-rw-r--r--include/godot_cpp/core/math.hpp424
2 files changed, 441 insertions, 0 deletions
diff --git a/include/godot_cpp/core/defs.hpp b/include/godot_cpp/core/defs.hpp
index a103985..21edc9f 100644
--- a/include/godot_cpp/core/defs.hpp
+++ b/include/godot_cpp/core/defs.hpp
@@ -92,6 +92,23 @@
#define unlikely(x) x
#endif
+#ifdef REAL_T_IS_DOUBLE
+typedef double real_t;
+#else
+typedef float real_t;
+#endif
+
+// Generic swap template.
+#ifndef SWAP
+#define SWAP(m_x, m_y) __swap_tmpl((m_x), (m_y))
+template <class T>
+inline void __swap_tmpl(T &x, T &y) {
+ T aux = x;
+ x = y;
+ y = aux;
+}
+#endif // SWAP
+
// Home-made index sequence trick, so it can be used everywhere without the costly include of std::tuple.
// https://stackoverflow.com/questions/15014096/c-index-of-type-during-variadic-template-expansion
template <size_t... Is>
diff --git a/include/godot_cpp/core/math.hpp b/include/godot_cpp/core/math.hpp
new file mode 100644
index 0000000..1394901
--- /dev/null
+++ b/include/godot_cpp/core/math.hpp
@@ -0,0 +1,424 @@
+#ifndef GODOT_MATH_H
+#define GODOT_MATH_H
+
+#include <godot_cpp/core/defs.hpp>
+
+#include <godot/gdnative_interface.h>
+
+#include <cmath>
+
+namespace godot {
+namespace Math {
+
+// This epsilon should match the one used by Godot for consistency.
+// Using `f` when `real_t` is float.
+#define CMP_EPSILON 0.00001f
+#define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON)
+
+// This epsilon is for values related to a unit size (scalar or vector len).
+#ifdef PRECISE_MATH_CHECKS
+#define UNIT_EPSILON 0.00001
+#else
+// Tolerate some more floating point error normally.
+#define UNIT_EPSILON 0.001
+#endif
+
+#define Math_SQRT12 0.7071067811865475244008443621048490
+#define Math_SQRT2 1.4142135623730950488016887242
+#define Math_LN2 0.6931471805599453094172321215
+#define Math_PI 3.1415926535897932384626433833
+#define Math_TAU 6.2831853071795864769252867666
+#define Math_E 2.7182818284590452353602874714
+#define Math_INF INFINITY
+#define Math_NAN NAN
+
+// Functions reproduced as in Godot's source code `math_funcs.h`.
+// Some are overloads to automatically support changing real_t into either double or float in the way Godot does.
+
+inline double fmod(double p_x, double p_y) {
+ return ::fmod(p_x, p_y);
+}
+inline float fmod(float p_x, float p_y) {
+ return ::fmodf(p_x, p_y);
+}
+
+inline double fposmod(double p_x, double p_y) {
+ double value = Math::fmod(p_x, p_y);
+ if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
+ value += p_y;
+ }
+ value += 0.0;
+ return value;
+}
+inline float fposmod(float p_x, float p_y) {
+ float value = Math::fmod(p_x, p_y);
+ if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
+ value += p_y;
+ }
+ value += 0.0;
+ return value;
+}
+
+inline float fposmodp(float p_x, float p_y) {
+ float value = Math::fmod(p_x, p_y);
+ if (value < 0) {
+ value += p_y;
+ }
+ value += 0.0;
+ return value;
+}
+inline double fposmodp(double p_x, double p_y) {
+ double value = Math::fmod(p_x, p_y);
+ if (value < 0) {
+ value += p_y;
+ }
+ value += 0.0;
+ return value;
+}
+
+inline double floor(double p_x) {
+ return ::floor(p_x);
+}
+inline float floor(float p_x) {
+ return ::floorf(p_x);
+}
+
+inline double ceil(double p_x) {
+ return ::ceil(p_x);
+}
+inline float ceil(float p_x) {
+ return ::ceilf(p_x);
+}
+
+inline double exp(double p_x) {
+ return ::exp(p_x);
+}
+inline float exp(float p_x) {
+ return ::expf(p_x);
+}
+
+inline double sin(double p_x) {
+ return ::sin(p_x);
+}
+inline float sin(float p_x) {
+ return ::sinf(p_x);
+}
+
+inline double cos(double p_x) {
+ return ::cos(p_x);
+}
+inline float cos(float p_x) {
+ return ::cosf(p_x);
+}
+
+inline double tan(double p_x) {
+ return ::tan(p_x);
+}
+inline float tan(float p_x) {
+ return ::tanf(p_x);
+}
+
+inline double sinh(double p_x) {
+ return ::sinh(p_x);
+}
+inline float sinh(float p_x) {
+ return ::sinhf(p_x);
+}
+
+inline float sinc(float p_x) {
+ return p_x == 0 ? 1 : ::sin(p_x) / p_x;
+}
+inline double sinc(double p_x) {
+ return p_x == 0 ? 1 : ::sin(p_x) / p_x;
+}
+
+inline float sincn(float p_x) {
+ return sinc(Math_PI * p_x);
+}
+inline double sincn(double p_x) {
+ return sinc(Math_PI * p_x);
+}
+
+inline double cosh(double p_x) {
+ return ::cosh(p_x);
+}
+inline float cosh(float p_x) {
+ return ::coshf(p_x);
+}
+
+inline double tanh(double p_x) {
+ return ::tanh(p_x);
+}
+inline float tanh(float p_x) {
+ return ::tanhf(p_x);
+}
+
+inline double asin(double p_x) {
+ return ::asin(p_x);
+}
+inline float asin(float p_x) {
+ return ::asinf(p_x);
+}
+
+inline double acos(double p_x) {
+ return ::acos(p_x);
+}
+inline float acos(float p_x) {
+ return ::acosf(p_x);
+}
+
+inline double atan(double p_x) {
+ return ::atan(p_x);
+}
+inline float atan(float p_x) {
+ return ::atanf(p_x);
+}
+
+inline double atan2(double p_y, double p_x) {
+ return ::atan2(p_y, p_x);
+}
+inline float atan2(float p_y, float p_x) {
+ return ::atan2f(p_y, p_x);
+}
+
+inline double sqrt(double p_x) {
+ return ::sqrt(p_x);
+}
+inline float sqrt(float p_x) {
+ return ::sqrtf(p_x);
+}
+
+inline double pow(double p_x, double p_y) {
+ return ::pow(p_x, p_y);
+}
+inline float pow(float p_x, float p_y) {
+ return ::powf(p_x, p_y);
+}
+
+inline double log(double p_x) {
+ return ::log(p_x);
+}
+inline float log(float p_x) {
+ return ::logf(p_x);
+}
+
+inline float lerp(float minv, float maxv, float t) {
+ return minv + t * (maxv - minv);
+}
+inline double lerp(double minv, double maxv, double t) {
+ return minv + t * (maxv - minv);
+}
+
+inline double lerp_angle(double p_from, double p_to, double p_weight) {
+ double difference = fmod(p_to - p_from, Math_TAU);
+ double distance = fmod(2.0 * difference, Math_TAU) - difference;
+ return p_from + distance * p_weight;
+}
+inline float lerp_angle(float p_from, float p_to, float p_weight) {
+ float difference = fmod(p_to - p_from, (float)Math_TAU);
+ float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
+ return p_from + distance * p_weight;
+}
+
+template <typename T>
+inline T clamp(T x, T minv, T maxv) {
+ if (x < minv) {
+ return minv;
+ }
+ if (x > maxv) {
+ return maxv;
+ }
+ return x;
+}
+
+template <typename T>
+inline T min(T a, T b) {
+ return a < b ? a : b;
+}
+
+template <typename T>
+inline T max(T a, T b) {
+ return a > b ? a : b;
+}
+
+template <typename T>
+inline T sign(T x) {
+ return static_cast<T>(x < 0 ? -1 : 1);
+}
+
+template <typename T>
+inline T abs(T x) {
+ return std::abs(x);
+}
+
+inline double deg2rad(double p_y) {
+ return p_y * Math_PI / 180.0;
+}
+inline float deg2rad(float p_y) {
+ return p_y * static_cast<float>(Math_PI) / 180.f;
+}
+
+inline double rad2deg(double p_y) {
+ return p_y * 180.0 / Math_PI;
+}
+inline float rad2deg(float p_y) {
+ return p_y * 180.f / static_cast<float>(Math_PI);
+}
+
+inline double inverse_lerp(double p_from, double p_to, double p_value) {
+ return (p_value - p_from) / (p_to - p_from);
+}
+inline float inverse_lerp(float p_from, float p_to, float p_value) {
+ return (p_value - p_from) / (p_to - p_from);
+}
+
+inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
+ return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
+}
+inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
+ return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
+}
+
+inline bool is_equal_approx(real_t a, real_t b) {
+ // Check for exact equality first, required to handle "infinity" values.
+ if (a == b) {
+ return true;
+ }
+ // Then check for approximate equality.
+ real_t tolerance = CMP_EPSILON * std::abs(a);
+ if (tolerance < CMP_EPSILON) {
+ tolerance = CMP_EPSILON;
+ }
+ return std::abs(a - b) < tolerance;
+}
+
+inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
+ // Check for exact equality first, required to handle "infinity" values.
+ if (a == b) {
+ return true;
+ }
+ // Then check for approximate equality.
+ return std::abs(a - b) < tolerance;
+}
+
+inline bool is_zero_approx(real_t s) {
+ return std::abs(s) < CMP_EPSILON;
+}
+
+inline double smoothstep(double p_from, double p_to, double p_weight) {
+ if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
+ return p_from;
+ }
+ double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
+ return x * x * (3.0 - 2.0 * x);
+}
+inline float smoothstep(float p_from, float p_to, float p_weight) {
+ if (is_equal_approx(p_from, p_to)) {
+ return p_from;
+ }
+ float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
+ return x * x * (3.0f - 2.0f * x);
+}
+
+inline double move_toward(double p_from, double p_to, double p_delta) {
+ return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
+}
+
+inline float move_toward(float p_from, float p_to, float p_delta) {
+ return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
+}
+
+inline double linear2db(double p_linear) {
+ return log(p_linear) * 8.6858896380650365530225783783321;
+}
+inline float linear2db(float p_linear) {
+ return log(p_linear) * 8.6858896380650365530225783783321f;
+}
+
+inline double db2linear(double p_db) {
+ return exp(p_db * 0.11512925464970228420089957273422);
+}
+inline float db2linear(float p_db) {
+ return exp(p_db * 0.11512925464970228420089957273422f);
+}
+
+inline double round(double p_val) {
+ return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
+}
+inline float round(float p_val) {
+ return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
+}
+
+inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
+ int64_t range = max - min;
+ return range == 0 ? min : min + ((((value - min) % range) + range) % range);
+}
+
+inline float wrapf(real_t value, real_t min, real_t max) {
+ const real_t range = max - min;
+ return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
+}
+
+inline float stepify(float p_value, float p_step) {
+ if (p_step != 0) {
+ p_value = floor(p_value / p_step + 0.5f) * p_step;
+ }
+ return p_value;
+}
+inline double stepify(double p_value, double p_step) {
+ if (p_step != 0) {
+ p_value = floor(p_value / p_step + 0.5) * p_step;
+ }
+ return p_value;
+}
+
+inline unsigned int next_power_of_2(unsigned int x) {
+
+ if (x == 0)
+ return 0;
+
+ --x;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+
+ return ++x;
+}
+
+// This function should be as fast as possible and rounding mode should not matter.
+inline int fast_ftoi(float a) {
+ static int b;
+
+#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
+ b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
+
+#elif defined(_MSC_VER) && _MSC_VER < 1800
+ __asm fld a __asm fistp b
+ /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
+ // use AT&T inline assembly style, document that
+ // we use memory as output (=m) and input (m)
+ __asm__ __volatile__ (
+ "flds %1 \n\t"
+ "fistpl %0 \n\t"
+ : "=m" (b)
+ : "m" (a));*/
+
+#else
+ b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
+#endif
+ return b;
+}
+
+inline double snapped(double p_value, double p_step) {
+ if (p_step != 0) {
+ p_value = Math::floor(p_value / p_step + 0.5) * p_step;
+ }
+ return p_value;
+}
+
+} // namespace Math
+} // namespace godot
+
+#endif // GODOT_MATH_H