diff options
author | Bastiaan Olij <mux213@gmail.com> | 2021-09-01 13:11:10 +1000 |
---|---|---|
committer | Bastiaan Olij <mux213@gmail.com> | 2021-09-27 23:08:10 +1000 |
commit | 46c63af715cf42a6e27feb48a3e7ed6d6dd9458c (patch) | |
tree | 14b3049fc155209d617b89fb3e45b95269519f9f /include/godot_cpp/core | |
parent | 3a5bd210921ac668949e20c494976660a986ea4a (diff) | |
download | redot-cpp-46c63af715cf42a6e27feb48a3e7ed6d6dd9458c.tar.gz |
Re-introduce build-in type code for core types
Diffstat (limited to 'include/godot_cpp/core')
-rw-r--r-- | include/godot_cpp/core/defs.hpp | 17 | ||||
-rw-r--r-- | include/godot_cpp/core/math.hpp | 424 |
2 files changed, 441 insertions, 0 deletions
diff --git a/include/godot_cpp/core/defs.hpp b/include/godot_cpp/core/defs.hpp index a103985..21edc9f 100644 --- a/include/godot_cpp/core/defs.hpp +++ b/include/godot_cpp/core/defs.hpp @@ -92,6 +92,23 @@ #define unlikely(x) x #endif +#ifdef REAL_T_IS_DOUBLE +typedef double real_t; +#else +typedef float real_t; +#endif + +// Generic swap template. +#ifndef SWAP +#define SWAP(m_x, m_y) __swap_tmpl((m_x), (m_y)) +template <class T> +inline void __swap_tmpl(T &x, T &y) { + T aux = x; + x = y; + y = aux; +} +#endif // SWAP + // Home-made index sequence trick, so it can be used everywhere without the costly include of std::tuple. // https://stackoverflow.com/questions/15014096/c-index-of-type-during-variadic-template-expansion template <size_t... Is> diff --git a/include/godot_cpp/core/math.hpp b/include/godot_cpp/core/math.hpp new file mode 100644 index 0000000..1394901 --- /dev/null +++ b/include/godot_cpp/core/math.hpp @@ -0,0 +1,424 @@ +#ifndef GODOT_MATH_H +#define GODOT_MATH_H + +#include <godot_cpp/core/defs.hpp> + +#include <godot/gdnative_interface.h> + +#include <cmath> + +namespace godot { +namespace Math { + +// This epsilon should match the one used by Godot for consistency. +// Using `f` when `real_t` is float. +#define CMP_EPSILON 0.00001f +#define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON) + +// This epsilon is for values related to a unit size (scalar or vector len). +#ifdef PRECISE_MATH_CHECKS +#define UNIT_EPSILON 0.00001 +#else +// Tolerate some more floating point error normally. +#define UNIT_EPSILON 0.001 +#endif + +#define Math_SQRT12 0.7071067811865475244008443621048490 +#define Math_SQRT2 1.4142135623730950488016887242 +#define Math_LN2 0.6931471805599453094172321215 +#define Math_PI 3.1415926535897932384626433833 +#define Math_TAU 6.2831853071795864769252867666 +#define Math_E 2.7182818284590452353602874714 +#define Math_INF INFINITY +#define Math_NAN NAN + +// Functions reproduced as in Godot's source code `math_funcs.h`. +// Some are overloads to automatically support changing real_t into either double or float in the way Godot does. + +inline double fmod(double p_x, double p_y) { + return ::fmod(p_x, p_y); +} +inline float fmod(float p_x, float p_y) { + return ::fmodf(p_x, p_y); +} + +inline double fposmod(double p_x, double p_y) { + double value = Math::fmod(p_x, p_y); + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + value += 0.0; + return value; +} +inline float fposmod(float p_x, float p_y) { + float value = Math::fmod(p_x, p_y); + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + value += 0.0; + return value; +} + +inline float fposmodp(float p_x, float p_y) { + float value = Math::fmod(p_x, p_y); + if (value < 0) { + value += p_y; + } + value += 0.0; + return value; +} +inline double fposmodp(double p_x, double p_y) { + double value = Math::fmod(p_x, p_y); + if (value < 0) { + value += p_y; + } + value += 0.0; + return value; +} + +inline double floor(double p_x) { + return ::floor(p_x); +} +inline float floor(float p_x) { + return ::floorf(p_x); +} + +inline double ceil(double p_x) { + return ::ceil(p_x); +} +inline float ceil(float p_x) { + return ::ceilf(p_x); +} + +inline double exp(double p_x) { + return ::exp(p_x); +} +inline float exp(float p_x) { + return ::expf(p_x); +} + +inline double sin(double p_x) { + return ::sin(p_x); +} +inline float sin(float p_x) { + return ::sinf(p_x); +} + +inline double cos(double p_x) { + return ::cos(p_x); +} +inline float cos(float p_x) { + return ::cosf(p_x); +} + +inline double tan(double p_x) { + return ::tan(p_x); +} +inline float tan(float p_x) { + return ::tanf(p_x); +} + +inline double sinh(double p_x) { + return ::sinh(p_x); +} +inline float sinh(float p_x) { + return ::sinhf(p_x); +} + +inline float sinc(float p_x) { + return p_x == 0 ? 1 : ::sin(p_x) / p_x; +} +inline double sinc(double p_x) { + return p_x == 0 ? 1 : ::sin(p_x) / p_x; +} + +inline float sincn(float p_x) { + return sinc(Math_PI * p_x); +} +inline double sincn(double p_x) { + return sinc(Math_PI * p_x); +} + +inline double cosh(double p_x) { + return ::cosh(p_x); +} +inline float cosh(float p_x) { + return ::coshf(p_x); +} + +inline double tanh(double p_x) { + return ::tanh(p_x); +} +inline float tanh(float p_x) { + return ::tanhf(p_x); +} + +inline double asin(double p_x) { + return ::asin(p_x); +} +inline float asin(float p_x) { + return ::asinf(p_x); +} + +inline double acos(double p_x) { + return ::acos(p_x); +} +inline float acos(float p_x) { + return ::acosf(p_x); +} + +inline double atan(double p_x) { + return ::atan(p_x); +} +inline float atan(float p_x) { + return ::atanf(p_x); +} + +inline double atan2(double p_y, double p_x) { + return ::atan2(p_y, p_x); +} +inline float atan2(float p_y, float p_x) { + return ::atan2f(p_y, p_x); +} + +inline double sqrt(double p_x) { + return ::sqrt(p_x); +} +inline float sqrt(float p_x) { + return ::sqrtf(p_x); +} + +inline double pow(double p_x, double p_y) { + return ::pow(p_x, p_y); +} +inline float pow(float p_x, float p_y) { + return ::powf(p_x, p_y); +} + +inline double log(double p_x) { + return ::log(p_x); +} +inline float log(float p_x) { + return ::logf(p_x); +} + +inline float lerp(float minv, float maxv, float t) { + return minv + t * (maxv - minv); +} +inline double lerp(double minv, double maxv, double t) { + return minv + t * (maxv - minv); +} + +inline double lerp_angle(double p_from, double p_to, double p_weight) { + double difference = fmod(p_to - p_from, Math_TAU); + double distance = fmod(2.0 * difference, Math_TAU) - difference; + return p_from + distance * p_weight; +} +inline float lerp_angle(float p_from, float p_to, float p_weight) { + float difference = fmod(p_to - p_from, (float)Math_TAU); + float distance = fmod(2.0f * difference, (float)Math_TAU) - difference; + return p_from + distance * p_weight; +} + +template <typename T> +inline T clamp(T x, T minv, T maxv) { + if (x < minv) { + return minv; + } + if (x > maxv) { + return maxv; + } + return x; +} + +template <typename T> +inline T min(T a, T b) { + return a < b ? a : b; +} + +template <typename T> +inline T max(T a, T b) { + return a > b ? a : b; +} + +template <typename T> +inline T sign(T x) { + return static_cast<T>(x < 0 ? -1 : 1); +} + +template <typename T> +inline T abs(T x) { + return std::abs(x); +} + +inline double deg2rad(double p_y) { + return p_y * Math_PI / 180.0; +} +inline float deg2rad(float p_y) { + return p_y * static_cast<float>(Math_PI) / 180.f; +} + +inline double rad2deg(double p_y) { + return p_y * 180.0 / Math_PI; +} +inline float rad2deg(float p_y) { + return p_y * 180.f / static_cast<float>(Math_PI); +} + +inline double inverse_lerp(double p_from, double p_to, double p_value) { + return (p_value - p_from) / (p_to - p_from); +} +inline float inverse_lerp(float p_from, float p_to, float p_value) { + return (p_value - p_from) / (p_to - p_from); +} + +inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { + return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); +} +inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { + return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); +} + +inline bool is_equal_approx(real_t a, real_t b) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + real_t tolerance = CMP_EPSILON * std::abs(a); + if (tolerance < CMP_EPSILON) { + tolerance = CMP_EPSILON; + } + return std::abs(a - b) < tolerance; +} + +inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + return std::abs(a - b) < tolerance; +} + +inline bool is_zero_approx(real_t s) { + return std::abs(s) < CMP_EPSILON; +} + +inline double smoothstep(double p_from, double p_to, double p_weight) { + if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) { + return p_from; + } + double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0); + return x * x * (3.0 - 2.0 * x); +} +inline float smoothstep(float p_from, float p_to, float p_weight) { + if (is_equal_approx(p_from, p_to)) { + return p_from; + } + float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f); + return x * x * (3.0f - 2.0f * x); +} + +inline double move_toward(double p_from, double p_to, double p_delta) { + return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta; +} + +inline float move_toward(float p_from, float p_to, float p_delta) { + return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta; +} + +inline double linear2db(double p_linear) { + return log(p_linear) * 8.6858896380650365530225783783321; +} +inline float linear2db(float p_linear) { + return log(p_linear) * 8.6858896380650365530225783783321f; +} + +inline double db2linear(double p_db) { + return exp(p_db * 0.11512925464970228420089957273422); +} +inline float db2linear(float p_db) { + return exp(p_db * 0.11512925464970228420089957273422f); +} + +inline double round(double p_val) { + return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5); +} +inline float round(float p_val) { + return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f); +} + +inline int64_t wrapi(int64_t value, int64_t min, int64_t max) { + int64_t range = max - min; + return range == 0 ? min : min + ((((value - min) % range) + range) % range); +} + +inline float wrapf(real_t value, real_t min, real_t max) { + const real_t range = max - min; + return is_zero_approx(range) ? min : value - (range * floor((value - min) / range)); +} + +inline float stepify(float p_value, float p_step) { + if (p_step != 0) { + p_value = floor(p_value / p_step + 0.5f) * p_step; + } + return p_value; +} +inline double stepify(double p_value, double p_step) { + if (p_step != 0) { + p_value = floor(p_value / p_step + 0.5) * p_step; + } + return p_value; +} + +inline unsigned int next_power_of_2(unsigned int x) { + + if (x == 0) + return 0; + + --x; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; + + return ++x; +} + +// This function should be as fast as possible and rounding mode should not matter. +inline int fast_ftoi(float a) { + static int b; + +#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone? + b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5)); + +#elif defined(_MSC_VER) && _MSC_VER < 1800 + __asm fld a __asm fistp b + /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) ) + // use AT&T inline assembly style, document that + // we use memory as output (=m) and input (m) + __asm__ __volatile__ ( + "flds %1 \n\t" + "fistpl %0 \n\t" + : "=m" (b) + : "m" (a));*/ + +#else + b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint +#endif + return b; +} + +inline double snapped(double p_value, double p_step) { + if (p_step != 0) { + p_value = Math::floor(p_value / p_step + 0.5) * p_step; + } + return p_value; +} + +} // namespace Math +} // namespace godot + +#endif // GODOT_MATH_H |