diff options
Diffstat (limited to 'src/variant/quaternion.cpp')
-rw-r--r-- | src/variant/quaternion.cpp | 204 |
1 files changed, 162 insertions, 42 deletions
diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp index 7a06cda..6b1ff14 100644 --- a/src/variant/quaternion.cpp +++ b/src/variant/quaternion.cpp @@ -35,13 +35,18 @@ namespace godot { +real_t Quaternion::angle_to(const Quaternion &p_to) const { + real_t d = dot(p_to); + return Math::acos(CLAMP(d * d * 2 - 1, -1, 1)); +} + // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); - return m.get_euler_xyz(); + return m.get_euler(Basis::EULER_ORDER_XYZ); } // get_euler_yxz returns a vector containing the Euler angles in the format @@ -50,17 +55,20 @@ Vector3 Quaternion::get_euler_xyz() const { // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_yxz() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0)); + ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); - return m.get_euler_yxz(); + return m.get_euler(Basis::EULER_ORDER_YXZ); } void Quaternion::operator*=(const Quaternion &p_q) { - x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; - y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; - z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; + real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; + real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; + real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; + x = xx; + y = yy; + z = zz; } Quaternion Quaternion::operator*(const Quaternion &p_q) const { @@ -69,8 +77,8 @@ Quaternion Quaternion::operator*(const Quaternion &p_q) const { return r; } -bool Quaternion::is_equal_approx(const Quaternion &p_quat) const { - return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); +bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const { + return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w); } real_t Quaternion::length() const { @@ -91,15 +99,32 @@ bool Quaternion::is_normalized() const { Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized."); #endif return Quaternion(-x, -y, -z, w); } +Quaternion Quaternion::log() const { + Quaternion src = *this; + Vector3 src_v = src.get_axis() * src.get_angle(); + return Quaternion(src_v.x, src_v.y, src_v.z, 0); +} + +Quaternion Quaternion::exp() const { + Quaternion src = *this; + Vector3 src_v = Vector3(src.x, src.y, src.z); + real_t theta = src_v.length(); + src_v = src_v.normalized(); + if (theta < CMP_EPSILON || !src_v.is_normalized()) { + return Quaternion(0, 0, 0, 1); + } + return Quaternion(src_v, theta); +} + Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); - ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; @@ -108,22 +133,16 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con cosom = dot(p_to); // adjust signs (if necessary) - if (cosom < 0.0) { + if (cosom < 0.0f) { cosom = -cosom; - to1.x = -p_to.x; - to1.y = -p_to.y; - to1.z = -p_to.z; - to1.w = -p_to.w; + to1 = -p_to; } else { - to1.x = p_to.x; - to1.y = p_to.y; - to1.z = p_to.z; - to1.w = p_to.w; + to1 = p_to; } // calculate coefficients - if ((1.0 - cosom) > CMP_EPSILON) { + if ((1.0f - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); @@ -132,7 +151,7 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation - scale0 = 1.0 - p_weight; + scale0 = 1.0f - p_weight; scale1 = p_weight; } // calculate final values @@ -145,21 +164,21 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); - ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif const Quaternion &from = *this; real_t dot = from.dot(p_to); - if (Math::abs(dot) > 0.9999) { + if (Math::absf(dot) > 0.9999f) { return from; } real_t theta = Math::acos(dot), - sinT = 1.0 / Math::sin(theta), + sinT = 1.0f / Math::sin(theta), newFactor = Math::sin(p_weight * theta) * sinT, - invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; + invFactor = Math::sin((1.0f - p_weight) * theta) * sinT; return Quaternion(invFactor * from.x + newFactor * p_to.x, invFactor * from.y + newFactor * p_to.y, @@ -167,25 +186,126 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c invFactor * from.w + newFactor * p_to.w); } -Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); +#endif + Quaternion from_q = *this; + Quaternion pre_q = p_pre_a; + Quaternion to_q = p_b; + Quaternion post_q = p_post_b; + + // Align flip phases. + from_q = Basis(from_q).get_rotation_quaternion(); + pre_q = Basis(pre_q).get_rotation_quaternion(); + to_q = Basis(to_q).get_rotation_quaternion(); + post_q = Basis(post_q).get_rotation_quaternion(); + + // Flip quaternions to shortest path if necessary. + bool flip1 = Math::sign(from_q.dot(pre_q)); + pre_q = flip1 ? -pre_q : pre_q; + bool flip2 = Math::sign(from_q.dot(to_q)); + to_q = flip2 ? -to_q : to_q; + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : Math::sign(to_q.dot(post_q)); + post_q = flip3 ? -post_q : post_q; + + // Calc by Expmap in from_q space. + Quaternion ln_from = Quaternion(0, 0, 0, 0); + Quaternion ln_to = (from_q.inverse() * to_q).log(); + Quaternion ln_pre = (from_q.inverse() * pre_q).log(); + Quaternion ln_post = (from_q.inverse() * post_q).log(); + Quaternion ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); + ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); + ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); + Quaternion q1 = from_q * ln.exp(); + + // Calc by Expmap in to_q space. + ln_from = (to_q.inverse() * from_q).log(); + ln_to = Quaternion(0, 0, 0, 0); + ln_pre = (to_q.inverse() * pre_q).log(); + ln_post = (to_q.inverse() * post_q).log(); + ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); + ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); + ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); + Quaternion q2 = to_q * ln.exp(); + + // To cancel error made by Expmap ambiguity, do blends. + return q1.slerp(q2, p_weight); +} + +Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, + const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); - ERR_FAIL_COND_V(!p_b.is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif - //the only way to do slerp :| - real_t t2 = (1.0 - p_weight) * p_weight * 2; - Quaternion sp = this->slerp(p_b, p_weight); - Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight); - return sp.slerpni(sq, t2); + Quaternion from_q = *this; + Quaternion pre_q = p_pre_a; + Quaternion to_q = p_b; + Quaternion post_q = p_post_b; + + // Align flip phases. + from_q = Basis(from_q).get_rotation_quaternion(); + pre_q = Basis(pre_q).get_rotation_quaternion(); + to_q = Basis(to_q).get_rotation_quaternion(); + post_q = Basis(post_q).get_rotation_quaternion(); + + // Flip quaternions to shortest path if necessary. + bool flip1 = Math::sign(from_q.dot(pre_q)); + pre_q = flip1 ? -pre_q : pre_q; + bool flip2 = Math::sign(from_q.dot(to_q)); + to_q = flip2 ? -to_q : to_q; + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : Math::sign(to_q.dot(post_q)); + post_q = flip3 ? -post_q : post_q; + + // Calc by Expmap in from_q space. + Quaternion ln_from = Quaternion(0, 0, 0, 0); + Quaternion ln_to = (from_q.inverse() * to_q).log(); + Quaternion ln_pre = (from_q.inverse() * pre_q).log(); + Quaternion ln_post = (from_q.inverse() * post_q).log(); + Quaternion ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + Quaternion q1 = from_q * ln.exp(); + + // Calc by Expmap in to_q space. + ln_from = (to_q.inverse() * from_q).log(); + ln_to = Quaternion(0, 0, 0, 0); + ln_pre = (to_q.inverse() * pre_q).log(); + ln_post = (to_q.inverse() * post_q).log(); + ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + Quaternion q2 = to_q * ln.exp(); + + // To cancel error made by Expmap ambiguity, do blends. + return q1.slerp(q2, p_weight); } Quaternion::operator String() const { - return String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5) + ", " + String::num(w, 5); + return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; +} + +Vector3 Quaternion::get_axis() const { + if (Math::abs(w) > 1 - CMP_EPSILON) { + return Vector3(x, y, z); + } + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + return Vector3(x * r, y * r, z * r); +} + +real_t Quaternion::get_angle() const { + return 2 * Math::acos(w); } Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS - ERR_FAIL_COND(!p_axis.is_normalized()); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif real_t d = p_axis.length(); if (d == 0) { @@ -194,8 +314,8 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { z = 0; w = 0; } else { - real_t sin_angle = Math::sin(p_angle * 0.5); - real_t cos_angle = Math::cos(p_angle * 0.5); + real_t sin_angle = Math::sin(p_angle * 0.5f); + real_t cos_angle = Math::cos(p_angle * 0.5f); real_t s = sin_angle / d; x = p_axis.x * s; y = p_axis.y * s; @@ -209,9 +329,9 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Quaternion::Quaternion(const Vector3 &p_euler) { - real_t half_a1 = p_euler.y * 0.5; - real_t half_a2 = p_euler.x * 0.5; - real_t half_a3 = p_euler.z * 0.5; + real_t half_a1 = p_euler.y * 0.5f; + real_t half_a2 = p_euler.x * 0.5f; + real_t half_a3 = p_euler.z * 0.5f; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) |