summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core/math.hpp
blob: f95b89777168efc977ba2756d13650b2344c88db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/**************************************************************************/
/*  math.hpp                                                              */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             REDOT ENGINE                               */
/*                        https://redotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2024-present Redot Engine contributors                   */
/*                                          (see REDOT_AUTHORS.md)        */
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef GODOT_MATH_HPP
#define GODOT_MATH_HPP

#include <godot_cpp/core/defs.hpp>

#include <gdextension_interface.h>

#include <cmath>

namespace godot {

#define Math_SQRT12 0.7071067811865475244008443621048490
#define Math_SQRT2 1.4142135623730950488016887242
#define Math_LN2 0.6931471805599453094172321215
#define Math_PI 3.1415926535897932384626433833
#define Math_TAU 6.2831853071795864769252867666
#define Math_E 2.7182818284590452353602874714
#define Math_INF INFINITY
#define Math_NAN NAN

// Make room for our constexpr's below by overriding potential system-specific macros.
#undef ABS
#undef SIGN
#undef MIN
#undef MAX
#undef CLAMP

// Generic ABS function, for math uses please use Math::abs.
template <typename T>
constexpr T ABS(T m_v) {
	return m_v < 0 ? -m_v : m_v;
}

template <typename T>
constexpr const T SIGN(const T m_v) {
	return m_v == 0 ? 0.0f : (m_v < 0 ? -1.0f : +1.0f);
}

template <typename T, typename T2>
constexpr auto MIN(const T m_a, const T2 m_b) {
	return m_a < m_b ? m_a : m_b;
}

template <typename T, typename T2>
constexpr auto MAX(const T m_a, const T2 m_b) {
	return m_a > m_b ? m_a : m_b;
}

template <typename T, typename T2, typename T3>
constexpr auto CLAMP(const T m_a, const T2 m_min, const T3 m_max) {
	return m_a < m_min ? m_min : (m_a > m_max ? m_max : m_a);
}

// Generic swap template.
#ifndef SWAP
#define SWAP(m_x, m_y) __swap_tmpl((m_x), (m_y))
template <typename T>
inline void __swap_tmpl(T &x, T &y) {
	T aux = x;
	x = y;
	y = aux;
}
#endif // SWAP

/* Functions to handle powers of 2 and shifting. */

// Function to find the next power of 2 to an integer.
static _FORCE_INLINE_ unsigned int next_power_of_2(unsigned int x) {
	if (x == 0) {
		return 0;
	}

	--x;
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;

	return ++x;
}

// Function to find the previous power of 2 to an integer.
static _FORCE_INLINE_ unsigned int previous_power_of_2(unsigned int x) {
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;
	return x - (x >> 1);
}

// Function to find the closest power of 2 to an integer.
static _FORCE_INLINE_ unsigned int closest_power_of_2(unsigned int x) {
	unsigned int nx = next_power_of_2(x);
	unsigned int px = previous_power_of_2(x);
	return (nx - x) > (x - px) ? px : nx;
}

// Get a shift value from a power of 2.
static inline int get_shift_from_power_of_2(unsigned int p_bits) {
	for (unsigned int i = 0; i < 32; i++) {
		if (p_bits == (unsigned int)(1 << i)) {
			return i;
		}
	}

	return -1;
}

template <typename T>
static _FORCE_INLINE_ T nearest_power_of_2_templated(T x) {
	--x;

	// The number of operations on x is the base two logarithm
	// of the number of bits in the type. Add three to account
	// for sizeof(T) being in bytes.
	size_t num = get_shift_from_power_of_2(sizeof(T)) + 3;

	// If the compiler is smart, it unrolls this loop.
	// If it's dumb, this is a bit slow.
	for (size_t i = 0; i < num; i++) {
		x |= x >> (1 << i);
	}

	return ++x;
}

// Function to find the nearest (bigger) power of 2 to an integer.
static inline unsigned int nearest_shift(unsigned int p_number) {
	for (int i = 30; i >= 0; i--) {
		if (p_number & (1 << i)) {
			return i + 1;
		}
	}

	return 0;
}

// constexpr function to find the floored log2 of a number
template <typename T>
constexpr T floor_log2(T x) {
	return x < 2 ? x : 1 + floor_log2(x >> 1);
}

// Get the number of bits needed to represent the number.
// IE, if you pass in 8, you will get 4.
// If you want to know how many bits are needed to store 8 values however, pass in (8 - 1).
template <typename T>
constexpr T get_num_bits(T x) {
	return floor_log2(x);
}

// Swap 16, 32 and 64 bits value for endianness.
#if defined(__GNUC__)
#define BSWAP16(x) __builtin_bswap16(x)
#define BSWAP32(x) __builtin_bswap32(x)
#define BSWAP64(x) __builtin_bswap64(x)
#else
static inline uint16_t BSWAP16(uint16_t x) {
	return (x >> 8) | (x << 8);
}

static inline uint32_t BSWAP32(uint32_t x) {
	return ((x << 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x >> 24));
}

static inline uint64_t BSWAP64(uint64_t x) {
	x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32;
	x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16;
	x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8;
	return x;
}
#endif

namespace Math {

// This epsilon should match the one used by Godot for consistency.
// Using `f` when `real_t` is float.
#define CMP_EPSILON 0.00001f
#define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON)

// This epsilon is for values related to a unit size (scalar or vector len).
#ifdef PRECISE_MATH_CHECKS
#define UNIT_EPSILON 0.00001
#else
// Tolerate some more floating point error normally.
#define UNIT_EPSILON 0.001
#endif

// Functions reproduced as in Godot's source code `math_funcs.h`.
// Some are overloads to automatically support changing real_t into either double or float in the way Godot does.

inline double fmod(double p_x, double p_y) {
	return ::fmod(p_x, p_y);
}
inline float fmod(float p_x, float p_y) {
	return ::fmodf(p_x, p_y);
}

inline double fposmod(double p_x, double p_y) {
	double value = Math::fmod(p_x, p_y);
	if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
		value += p_y;
	}
	value += 0.0;
	return value;
}
inline float fposmod(float p_x, float p_y) {
	float value = Math::fmod(p_x, p_y);
	if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
		value += p_y;
	}
	value += 0.0f;
	return value;
}

inline float fposmodp(float p_x, float p_y) {
	float value = Math::fmod(p_x, p_y);
	if (value < 0) {
		value += p_y;
	}
	value += 0.0f;
	return value;
}
inline double fposmodp(double p_x, double p_y) {
	double value = Math::fmod(p_x, p_y);
	if (value < 0) {
		value += p_y;
	}
	value += 0.0;
	return value;
}

inline int64_t posmod(int64_t p_x, int64_t p_y) {
	int64_t value = p_x % p_y;
	if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
		value += p_y;
	}
	return value;
}

inline double floor(double p_x) {
	return ::floor(p_x);
}
inline float floor(float p_x) {
	return ::floorf(p_x);
}

inline double ceil(double p_x) {
	return ::ceil(p_x);
}
inline float ceil(float p_x) {
	return ::ceilf(p_x);
}

inline double exp(double p_x) {
	return ::exp(p_x);
}
inline float exp(float p_x) {
	return ::expf(p_x);
}

inline double sin(double p_x) {
	return ::sin(p_x);
}
inline float sin(float p_x) {
	return ::sinf(p_x);
}

inline double cos(double p_x) {
	return ::cos(p_x);
}
inline float cos(float p_x) {
	return ::cosf(p_x);
}

inline double tan(double p_x) {
	return ::tan(p_x);
}
inline float tan(float p_x) {
	return ::tanf(p_x);
}

inline double sinh(double p_x) {
	return ::sinh(p_x);
}
inline float sinh(float p_x) {
	return ::sinhf(p_x);
}

inline float sinc(float p_x) {
	return p_x == 0 ? 1 : ::sin(p_x) / p_x;
}
inline double sinc(double p_x) {
	return p_x == 0 ? 1 : ::sin(p_x) / p_x;
}

inline float sincn(float p_x) {
	return (float)sinc(Math_PI * p_x);
}
inline double sincn(double p_x) {
	return sinc(Math_PI * p_x);
}

inline double cosh(double p_x) {
	return ::cosh(p_x);
}
inline float cosh(float p_x) {
	return ::coshf(p_x);
}

inline double tanh(double p_x) {
	return ::tanh(p_x);
}
inline float tanh(float p_x) {
	return ::tanhf(p_x);
}

inline double asin(double p_x) {
	return ::asin(p_x);
}
inline float asin(float p_x) {
	return ::asinf(p_x);
}

inline double acos(double p_x) {
	return ::acos(p_x);
}
inline float acos(float p_x) {
	return ::acosf(p_x);
}

inline double atan(double p_x) {
	return ::atan(p_x);
}
inline float atan(float p_x) {
	return ::atanf(p_x);
}

inline double atan2(double p_y, double p_x) {
	return ::atan2(p_y, p_x);
}
inline float atan2(float p_y, float p_x) {
	return ::atan2f(p_y, p_x);
}

inline double sqrt(double p_x) {
	return ::sqrt(p_x);
}
inline float sqrt(float p_x) {
	return ::sqrtf(p_x);
}

inline double pow(double p_x, double p_y) {
	return ::pow(p_x, p_y);
}
inline float pow(float p_x, float p_y) {
	return ::powf(p_x, p_y);
}

inline double log(double p_x) {
	return ::log(p_x);
}
inline float log(float p_x) {
	return ::logf(p_x);
}

inline float lerp(float minv, float maxv, float t) {
	return minv + t * (maxv - minv);
}
inline double lerp(double minv, double maxv, double t) {
	return minv + t * (maxv - minv);
}

inline double lerp_angle(double p_from, double p_to, double p_weight) {
	double difference = fmod(p_to - p_from, Math_TAU);
	double distance = fmod(2.0 * difference, Math_TAU) - difference;
	return p_from + distance * p_weight;
}
inline float lerp_angle(float p_from, float p_to, float p_weight) {
	float difference = fmod(p_to - p_from, (float)Math_TAU);
	float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
	return p_from + distance * p_weight;
}

inline double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
	return 0.5 *
			((p_from * 2.0) +
					(-p_pre + p_to) * p_weight +
					(2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
					(-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
}

inline float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
	return 0.5f *
			((p_from * 2.0f) +
					(-p_pre + p_to) * p_weight +
					(2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
					(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
}

inline double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
	double from_rot = fmod(p_from, Math_TAU);

	double pre_diff = fmod(p_pre - from_rot, Math_TAU);
	double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;

	double to_diff = fmod(p_to - from_rot, Math_TAU);
	double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;

	double post_diff = fmod(p_post - to_rot, Math_TAU);
	double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;

	return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
}

inline float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
	float from_rot = fmod(p_from, (float)Math_TAU);

	float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
	float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;

	float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
	float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;

	float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
	float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;

	return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
}

inline double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
		double p_to_t, double p_pre_t, double p_post_t) {
	/* Barry-Goldman method */
	double t = Math::lerp(0.0, p_to_t, p_weight);
	double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
	double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
	double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
	double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
	double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
	return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
}

inline float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
		float p_to_t, float p_pre_t, float p_post_t) {
	/* Barry-Goldman method */
	float t = Math::lerp(0.0f, p_to_t, p_weight);
	float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
	float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
	float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
	float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
	float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
	return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
}

inline double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
		double p_to_t, double p_pre_t, double p_post_t) {
	double from_rot = fmod(p_from, Math_TAU);

	double pre_diff = fmod(p_pre - from_rot, Math_TAU);
	double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;

	double to_diff = fmod(p_to - from_rot, Math_TAU);
	double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;

	double post_diff = fmod(p_post - to_rot, Math_TAU);
	double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;

	return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
}

inline float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
		float p_to_t, float p_pre_t, float p_post_t) {
	float from_rot = fmod(p_from, (float)Math_TAU);

	float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
	float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;

	float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
	float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;

	float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
	float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;

	return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
}

inline double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
	/* Formula from Wikipedia article on Bezier curves. */
	double omt = (1.0 - p_t);
	double omt2 = omt * omt;
	double omt3 = omt2 * omt;
	double t2 = p_t * p_t;
	double t3 = t2 * p_t;

	return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}

inline float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
	/* Formula from Wikipedia article on Bezier curves. */
	float omt = (1.0f - p_t);
	float omt2 = omt * omt;
	float omt3 = omt2 * omt;
	float t2 = p_t * p_t;
	float t3 = t2 * p_t;

	return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
}

template <typename T>
inline T clamp(T x, T minv, T maxv) {
	if (x < minv) {
		return minv;
	}
	if (x > maxv) {
		return maxv;
	}
	return x;
}

template <typename T>
inline T min(T a, T b) {
	return a < b ? a : b;
}

template <typename T>
inline T max(T a, T b) {
	return a > b ? a : b;
}

template <typename T>
inline T sign(T x) {
	return static_cast<T>(SIGN(x));
}

template <typename T>
inline T abs(T x) {
	return std::abs(x);
}

inline double deg_to_rad(double p_y) {
	return p_y * Math_PI / 180.0;
}
inline float deg_to_rad(float p_y) {
	return p_y * static_cast<float>(Math_PI) / 180.f;
}

inline double rad_to_deg(double p_y) {
	return p_y * 180.0 / Math_PI;
}
inline float rad_to_deg(float p_y) {
	return p_y * 180.f / static_cast<float>(Math_PI);
}

inline double inverse_lerp(double p_from, double p_to, double p_value) {
	return (p_value - p_from) / (p_to - p_from);
}
inline float inverse_lerp(float p_from, float p_to, float p_value) {
	return (p_value - p_from) / (p_to - p_from);
}

inline double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
	return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
}
inline float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
	return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
}

inline bool is_nan(float p_val) {
	return std::isnan(p_val);
}

inline bool is_nan(double p_val) {
	return std::isnan(p_val);
}

inline bool is_inf(float p_val) {
	return std::isinf(p_val);
}

inline bool is_inf(double p_val) {
	return std::isinf(p_val);
}

inline bool is_finite(float p_val) {
	return std::isfinite(p_val);
}

inline bool is_finite(double p_val) {
	return std::isfinite(p_val);
}

inline bool is_equal_approx(float a, float b) {
	// Check for exact equality first, required to handle "infinity" values.
	if (a == b) {
		return true;
	}
	// Then check for approximate equality.
	float tolerance = (float)CMP_EPSILON * abs(a);
	if (tolerance < (float)CMP_EPSILON) {
		tolerance = (float)CMP_EPSILON;
	}
	return abs(a - b) < tolerance;
}

inline bool is_equal_approx(float a, float b, float tolerance) {
	// Check for exact equality first, required to handle "infinity" values.
	if (a == b) {
		return true;
	}
	// Then check for approximate equality.
	return abs(a - b) < tolerance;
}

inline bool is_zero_approx(float s) {
	return abs(s) < (float)CMP_EPSILON;
}

inline bool is_equal_approx(double a, double b) {
	// Check for exact equality first, required to handle "infinity" values.
	if (a == b) {
		return true;
	}
	// Then check for approximate equality.
	double tolerance = CMP_EPSILON * abs(a);
	if (tolerance < CMP_EPSILON) {
		tolerance = CMP_EPSILON;
	}
	return abs(a - b) < tolerance;
}

inline bool is_equal_approx(double a, double b, double tolerance) {
	// Check for exact equality first, required to handle "infinity" values.
	if (a == b) {
		return true;
	}
	// Then check for approximate equality.
	return abs(a - b) < tolerance;
}

inline bool is_zero_approx(double s) {
	return abs(s) < CMP_EPSILON;
}

inline float absf(float g) {
	union {
		float f;
		uint32_t i;
	} u;

	u.f = g;
	u.i &= 2147483647u;
	return u.f;
}

inline double absd(double g) {
	union {
		double d;
		uint64_t i;
	} u;
	u.d = g;
	u.i &= (uint64_t)9223372036854775807ull;
	return u.d;
}

inline double smoothstep(double p_from, double p_to, double p_weight) {
	if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
		return p_from;
	}
	double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
	return x * x * (3.0 - 2.0 * x);
}
inline float smoothstep(float p_from, float p_to, float p_weight) {
	if (is_equal_approx(p_from, p_to)) {
		return p_from;
	}
	float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
	return x * x * (3.0f - 2.0f * x);
}

inline double move_toward(double p_from, double p_to, double p_delta) {
	return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
}

inline float move_toward(float p_from, float p_to, float p_delta) {
	return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
}

inline double linear2db(double p_linear) {
	return log(p_linear) * 8.6858896380650365530225783783321;
}
inline float linear2db(float p_linear) {
	return log(p_linear) * 8.6858896380650365530225783783321f;
}

inline double db2linear(double p_db) {
	return exp(p_db * 0.11512925464970228420089957273422);
}
inline float db2linear(float p_db) {
	return exp(p_db * 0.11512925464970228420089957273422f);
}

inline double round(double p_val) {
	return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
}
inline float round(float p_val) {
	return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
}

inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
	int64_t range = max - min;
	return range == 0 ? min : min + ((((value - min) % range) + range) % range);
}

inline float wrapf(real_t value, real_t min, real_t max) {
	const real_t range = max - min;
	return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
}

inline float fract(float value) {
	return value - floor(value);
}

inline double fract(double value) {
	return value - floor(value);
}

inline float pingpong(float value, float length) {
	return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
}

inline double pingpong(double value, double length) {
	return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
}

// This function should be as fast as possible and rounding mode should not matter.
inline int fast_ftoi(float a) {
	static int b;

#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
	b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));

#elif defined(_MSC_VER) && _MSC_VER < 1800
	__asm fld a __asm fistp b
	/*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
	// use AT&T inline assembly style, document that
	// we use memory as output (=m) and input (m)
	__asm__ __volatile__ (
	"flds %1        \n\t"
	"fistpl %0      \n\t"
	: "=m" (b)
	: "m" (a));*/

#else
	b = lrintf(a); // assuming everything but msvc 2012 or earlier has lrint
#endif
	return b;
}

inline double snapped(double p_value, double p_step) {
	if (p_step != 0) {
		p_value = Math::floor(p_value / p_step + 0.5) * p_step;
	}
	return p_value;
}

inline float snap_scalar(float p_offset, float p_step, float p_target) {
	return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target;
}

inline float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
	if (p_step != 0) {
		float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset;
		float b = a;
		if (p_target >= 0) {
			b -= p_separation;
		} else {
			b += p_step;
		}
		return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
	}
	return p_target;
}

} // namespace Math
} // namespace godot

#endif // GODOT_MATH_HPP