diff options
author | Aaron Franke <arnfranke@yahoo.com> | 2023-10-12 19:38:43 -0500 |
---|---|---|
committer | Aaron Franke <arnfranke@yahoo.com> | 2023-12-06 13:12:05 -0600 |
commit | 7ee273723d815e1e211107244dcbc8735ca189a1 (patch) | |
tree | 1b3898a705bda4db60e5eba6bce4e0bc14e0e454 /core/math/basis.cpp | |
parent | 2f73a059cefadcd944b6874f2557ec82e46a562d (diff) | |
download | redot-engine-7ee273723d815e1e211107244dcbc8735ca189a1.tar.gz |
Fix Basis is_orthogonal and is_rotation methods, add is_orthonormal
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 23 |
1 files changed, 19 insertions, 4 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index 9796ac59c2..cd8c87b158 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -89,13 +89,26 @@ Basis Basis::orthogonalized() const { return c; } +// Returns true if the basis vectors are orthogonal (perpendicular), so it has no skew or shear, and can be decomposed into rotation and scale. +// See https://en.wikipedia.org/wiki/Orthogonal_basis bool Basis::is_orthogonal() const { - Basis identity; - Basis m = (*this) * transposed(); + const Vector3 x = get_column(0); + const Vector3 y = get_column(1); + const Vector3 z = get_column(2); + return Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z)); +} - return m.is_equal_approx(identity); +// Returns true if the basis vectors are orthonormal (orthogonal and normalized), so it has no scale, skew, or shear. +// See https://en.wikipedia.org/wiki/Orthonormal_basis +bool Basis::is_orthonormal() const { + const Vector3 x = get_column(0); + const Vector3 y = get_column(1); + const Vector3 z = get_column(2); + return Math::is_equal_approx(x.length_squared(), 1) && Math::is_equal_approx(y.length_squared(), 1) && Math::is_equal_approx(z.length_squared(), 1) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z)); } +// Returns true if the basis is conformal (orthogonal, uniform scale, preserves angles and distance ratios). +// See https://en.wikipedia.org/wiki/Conformal_linear_transformation bool Basis::is_conformal() const { const Vector3 x = get_column(0); const Vector3 y = get_column(1); @@ -104,6 +117,7 @@ bool Basis::is_conformal() const { return Math::is_equal_approx(x_len_sq, y.length_squared()) && Math::is_equal_approx(x_len_sq, z.length_squared()) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z)); } +// Returns true if the basis only has diagonal elements, so it may only have scale or flip, but no rotation, skew, or shear. bool Basis::is_diagonal() const { return ( Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && @@ -111,8 +125,9 @@ bool Basis::is_diagonal() const { Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); } +// Returns true if the basis is a pure rotation matrix, so it has no scale, skew, shear, or flip. bool Basis::is_rotation() const { - return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); + return is_conformal() && Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON); } #ifdef MATH_CHECKS |