summaryrefslogtreecommitdiffstats
path: root/modules/gltf/gltf_document.cpp
diff options
context:
space:
mode:
authorAaron Franke <arnfranke@yahoo.com>2024-06-29 11:14:09 -0700
committerAaron Franke <arnfranke@yahoo.com>2024-11-04 17:55:40 -0800
commitd373d207c14d37c9360f915371569f4d0502db17 (patch)
tree67ea628fe1635aea3579e06417cbb4f3659fc82e /modules/gltf/gltf_document.cpp
parent11576b89dd7e87991dcc1156e827df31a8c9afa9 (diff)
downloadredot-engine-d373d207c14d37c9360f915371569f4d0502db17.tar.gz
GLTF: Add functions to encode and decode Variants to/from accessors
Diffstat (limited to 'modules/gltf/gltf_document.cpp')
-rw-r--r--modules/gltf/gltf_document.cpp319
1 files changed, 319 insertions, 0 deletions
diff --git a/modules/gltf/gltf_document.cpp b/modules/gltf/gltf_document.cpp
index c364b5b61d..c6351a52c0 100644
--- a/modules/gltf/gltf_document.cpp
+++ b/modules/gltf/gltf_document.cpp
@@ -2459,6 +2459,325 @@ Vector<Transform3D> GLTFDocument::_decode_accessor_as_xform(Ref<GLTFState> p_sta
return ret;
}
+Vector<Variant> GLTFDocument::_decode_accessor_as_variant(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, Variant::Type p_variant_type, GLTFAccessor::GLTFAccessorType p_accessor_type) {
+ const Vector<double> attribs = _decode_accessor(p_state, p_accessor, false);
+ Vector<Variant> ret;
+ ERR_FAIL_COND_V_MSG(attribs.is_empty(), ret, "glTF: The accessor was empty.");
+ const int component_count = COMPONENT_COUNT_FOR_ACCESSOR_TYPE[p_accessor_type];
+ ERR_FAIL_COND_V_MSG(attribs.size() % component_count != 0, ret, "glTF: The accessor size was not a multiple of the component count.");
+ const int ret_size = attribs.size() / component_count;
+ ret.resize(ret_size);
+ for (int i = 0; i < ret_size; i++) {
+ switch (p_variant_type) {
+ case Variant::BOOL: {
+ ret.write[i] = attribs[i * component_count] != 0.0;
+ } break;
+ case Variant::INT: {
+ ret.write[i] = (int64_t)attribs[i * component_count];
+ } break;
+ case Variant::FLOAT: {
+ ret.write[i] = attribs[i * component_count];
+ } break;
+ case Variant::VECTOR2:
+ case Variant::RECT2:
+ case Variant::VECTOR3:
+ case Variant::VECTOR4:
+ case Variant::PLANE:
+ case Variant::QUATERNION: {
+ // General-purpose code for importing glTF accessor data with any component count into structs up to 4 `real_t`s in size.
+ Variant v;
+ switch (component_count) {
+ case 1: {
+ v = Vector4(attribs[i * component_count], 0.0f, 0.0f, 0.0f);
+ } break;
+ case 2: {
+ v = Vector4(attribs[i * component_count], attribs[i * component_count + 1], 0.0f, 0.0f);
+ } break;
+ case 3: {
+ v = Vector4(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], 0.0f);
+ } break;
+ default: {
+ v = Vector4(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], attribs[i * component_count + 3]);
+ } break;
+ }
+ // Evil hack that relies on the structure of Variant, but it's the
+ // only way to accomplish this without a ton of code duplication.
+ *(Variant::Type *)&v = p_variant_type;
+ ret.write[i] = v;
+ } break;
+ case Variant::VECTOR2I:
+ case Variant::RECT2I:
+ case Variant::VECTOR3I:
+ case Variant::VECTOR4I: {
+ // General-purpose code for importing glTF accessor data with any component count into structs up to 4 `int32_t`s in size.
+ Variant v;
+ switch (component_count) {
+ case 1: {
+ v = Vector4i((int32_t)attribs[i * component_count], 0, 0, 0);
+ } break;
+ case 2: {
+ v = Vector4i((int32_t)attribs[i * component_count], (int32_t)attribs[i * component_count + 1], 0, 0);
+ } break;
+ case 3: {
+ v = Vector4i((int32_t)attribs[i * component_count], (int32_t)attribs[i * component_count + 1], (int32_t)attribs[i * component_count + 2], 0);
+ } break;
+ default: {
+ v = Vector4i((int32_t)attribs[i * component_count], (int32_t)attribs[i * component_count + 1], (int32_t)attribs[i * component_count + 2], (int32_t)attribs[i * component_count + 3]);
+ } break;
+ }
+ // Evil hack that relies on the structure of Variant, but it's the
+ // only way to accomplish this without a ton of code duplication.
+ *(Variant::Type *)&v = p_variant_type;
+ ret.write[i] = v;
+ } break;
+ // No more generalized hacks, each of the below types needs a lot of repetitive code.
+ case Variant::COLOR: {
+ Variant v;
+ switch (component_count) {
+ case 1: {
+ v = Color(attribs[i * component_count], 0.0f, 0.0f, 1.0f);
+ } break;
+ case 2: {
+ v = Color(attribs[i * component_count], attribs[i * component_count + 1], 0.0f, 1.0f);
+ } break;
+ case 3: {
+ v = Color(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], 1.0f);
+ } break;
+ default: {
+ v = Color(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], attribs[i * component_count + 3]);
+ } break;
+ }
+ ret.write[i] = v;
+ } break;
+ case Variant::TRANSFORM2D: {
+ Transform2D t;
+ switch (component_count) {
+ case 4: {
+ t.columns[0] = Vector2(attribs[i * component_count + 0], attribs[i * component_count + 1]);
+ t.columns[1] = Vector2(attribs[i * component_count + 2], attribs[i * component_count + 3]);
+ } break;
+ case 9: {
+ t.columns[0] = Vector2(attribs[i * component_count + 0], attribs[i * component_count + 1]);
+ t.columns[1] = Vector2(attribs[i * component_count + 3], attribs[i * component_count + 4]);
+ t.columns[2] = Vector2(attribs[i * component_count + 6], attribs[i * component_count + 7]);
+ } break;
+ case 16: {
+ t.columns[0] = Vector2(attribs[i * component_count + 0], attribs[i * component_count + 1]);
+ t.columns[1] = Vector2(attribs[i * component_count + 4], attribs[i * component_count + 5]);
+ t.columns[2] = Vector2(attribs[i * component_count + 12], attribs[i * component_count + 13]);
+ } break;
+ }
+ ret.write[i] = t;
+ } break;
+ case Variant::BASIS: {
+ Basis b;
+ switch (component_count) {
+ case 4: {
+ b.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 2], 0.0f);
+ b.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 3], 0.0f);
+ } break;
+ case 9: {
+ b.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 3], attribs[i * component_count + 6]);
+ b.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 4], attribs[i * component_count + 7]);
+ b.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 5], attribs[i * component_count + 8]);
+ } break;
+ case 16: {
+ b.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 4], attribs[i * component_count + 8]);
+ b.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 5], attribs[i * component_count + 9]);
+ b.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 6], attribs[i * component_count + 10]);
+ } break;
+ }
+ ret.write[i] = b;
+ } break;
+ case Variant::TRANSFORM3D: {
+ Transform3D t;
+ switch (component_count) {
+ case 4: {
+ t.basis.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 2], 0.0f);
+ t.basis.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 3], 0.0f);
+ } break;
+ case 9: {
+ t.basis.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 3], attribs[i * component_count + 6]);
+ t.basis.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 4], attribs[i * component_count + 7]);
+ t.basis.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 5], attribs[i * component_count + 8]);
+ } break;
+ case 16: {
+ t.basis.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 4], attribs[i * component_count + 8]);
+ t.basis.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 5], attribs[i * component_count + 9]);
+ t.basis.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 6], attribs[i * component_count + 10]);
+ t.origin = Vector3(attribs[i * component_count + 12], attribs[i * component_count + 13], attribs[i * component_count + 14]);
+ } break;
+ }
+ ret.write[i] = t;
+ } break;
+ case Variant::PROJECTION: {
+ Projection p;
+ switch (component_count) {
+ case 4: {
+ p.columns[0] = Vector4(attribs[i * component_count + 0], attribs[i * component_count + 1], 0.0f, 0.0f);
+ p.columns[1] = Vector4(attribs[i * component_count + 4], attribs[i * component_count + 5], 0.0f, 0.0f);
+ } break;
+ case 9: {
+ p.columns[0] = Vector4(attribs[i * component_count + 0], attribs[i * component_count + 1], attribs[i * component_count + 2], 0.0f);
+ p.columns[1] = Vector4(attribs[i * component_count + 4], attribs[i * component_count + 5], attribs[i * component_count + 6], 0.0f);
+ p.columns[2] = Vector4(attribs[i * component_count + 8], attribs[i * component_count + 9], attribs[i * component_count + 10], 0.0f);
+ } break;
+ case 16: {
+ p.columns[0] = Vector4(attribs[i * component_count + 0], attribs[i * component_count + 1], attribs[i * component_count + 2], attribs[i * component_count + 3]);
+ p.columns[1] = Vector4(attribs[i * component_count + 4], attribs[i * component_count + 5], attribs[i * component_count + 6], attribs[i * component_count + 7]);
+ p.columns[2] = Vector4(attribs[i * component_count + 8], attribs[i * component_count + 9], attribs[i * component_count + 10], attribs[i * component_count + 11]);
+ p.columns[3] = Vector4(attribs[i * component_count + 12], attribs[i * component_count + 13], attribs[i * component_count + 14], attribs[i * component_count + 15]);
+ } break;
+ }
+ ret.write[i] = p;
+ } break;
+ default: {
+ ERR_FAIL_V_MSG(ret, "glTF: Cannot decode accessor as Variant of type " + Variant::get_type_name(p_variant_type) + ".");
+ }
+ }
+ }
+ return ret;
+}
+
+GLTFAccessorIndex GLTFDocument::_encode_accessor_as_variant(Ref<GLTFState> p_state, Vector<Variant> p_attribs, Variant::Type p_variant_type, GLTFAccessor::GLTFAccessorType p_accessor_type, GLTFAccessor::GLTFComponentType p_component_type) {
+ const int accessor_component_count = COMPONENT_COUNT_FOR_ACCESSOR_TYPE[p_accessor_type];
+ Vector<double> encoded_attribs;
+ for (const Variant &v : p_attribs) {
+ switch (p_variant_type) {
+ case Variant::NIL:
+ case Variant::BOOL:
+ case Variant::INT:
+ case Variant::FLOAT: {
+ // For scalar values, just append them. Variant can convert all of these to double. Some padding may also be needed.
+ encoded_attribs.append(v);
+ if (unlikely(accessor_component_count > 1)) {
+ for (int i = 1; i < accessor_component_count; i++) {
+ encoded_attribs.append(0.0);
+ }
+ }
+ } break;
+ case Variant::VECTOR2:
+ case Variant::VECTOR2I:
+ case Variant::VECTOR3:
+ case Variant::VECTOR3I:
+ case Variant::VECTOR4:
+ case Variant::VECTOR4I: {
+ // Variant can handle converting Vector2/2i/3/3i/4/4i to Vector4 for us.
+ Vector4 vec = v;
+ if (likely(accessor_component_count < 5)) {
+ for (int i = 0; i < accessor_component_count; i++) {
+ encoded_attribs.append(vec[i]);
+ }
+ }
+ } break;
+ case Variant::PLANE: {
+ Plane p = v;
+ if (likely(accessor_component_count == 4)) {
+ encoded_attribs.append(p.normal.x);
+ encoded_attribs.append(p.normal.y);
+ encoded_attribs.append(p.normal.z);
+ encoded_attribs.append(p.d);
+ }
+ } break;
+ case Variant::QUATERNION: {
+ Quaternion q = v;
+ if (likely(accessor_component_count < 5)) {
+ for (int i = 0; i < accessor_component_count; i++) {
+ encoded_attribs.append(q[i]);
+ }
+ }
+ } break;
+ case Variant::COLOR: {
+ Color c = v;
+ if (likely(accessor_component_count < 5)) {
+ for (int i = 0; i < accessor_component_count; i++) {
+ encoded_attribs.append(c[i]);
+ }
+ }
+ } break;
+ case Variant::RECT2:
+ case Variant::RECT2I: {
+ // Variant can handle converting Rect2i to Rect2 for us.
+ Rect2 r = v;
+ if (likely(accessor_component_count == 4)) {
+ encoded_attribs.append(r.position.x);
+ encoded_attribs.append(r.position.y);
+ encoded_attribs.append(r.size.x);
+ encoded_attribs.append(r.size.y);
+ }
+ } break;
+ case Variant::TRANSFORM2D:
+ case Variant::BASIS:
+ case Variant::TRANSFORM3D:
+ case Variant::PROJECTION: {
+ // Variant can handle converting Transform2D/Transform3D/Basis to Projection for us.
+ Projection p = v;
+ if (accessor_component_count == 16) {
+ for (int i = 0; i < 4; i++) {
+ encoded_attribs.append(p.columns[i][0]);
+ encoded_attribs.append(p.columns[i][1]);
+ encoded_attribs.append(p.columns[i][2]);
+ encoded_attribs.append(p.columns[i][3]);
+ }
+ } else if (accessor_component_count == 9) {
+ for (int i = 0; i < 3; i++) {
+ encoded_attribs.append(p.columns[i][0]);
+ encoded_attribs.append(p.columns[i][1]);
+ encoded_attribs.append(p.columns[i][2]);
+ }
+ } else if (accessor_component_count == 4) {
+ encoded_attribs.append(p.columns[0][0]);
+ encoded_attribs.append(p.columns[0][1]);
+ encoded_attribs.append(p.columns[1][0]);
+ encoded_attribs.append(p.columns[1][1]);
+ }
+ } break;
+ default: {
+ ERR_FAIL_V_MSG(-1, "glTF: Cannot encode accessor from Variant of type " + Variant::get_type_name(p_variant_type) + ".");
+ }
+ }
+ }
+ // Determine the min and max values for the accessor.
+ Vector<double> type_max;
+ type_max.resize(accessor_component_count);
+ Vector<double> type_min;
+ type_min.resize(accessor_component_count);
+ for (int i = 0; i < encoded_attribs.size(); i++) {
+ if (Math::is_zero_approx(encoded_attribs[i])) {
+ encoded_attribs.write[i] = 0.0;
+ } else {
+ encoded_attribs.write[i] = _filter_number(encoded_attribs[i]);
+ }
+ }
+ for (int i = 0; i < p_attribs.size(); i++) {
+ _calc_accessor_min_max(i, accessor_component_count, type_max, encoded_attribs, type_min);
+ }
+ _round_min_max_components(type_min, type_max);
+ // Encode the data in a buffer view.
+ GLTFBufferIndex buffer_view_index = 0;
+ if (p_state->buffers.is_empty()) {
+ p_state->buffers.push_back(Vector<uint8_t>());
+ }
+ const int64_t buffer_size = p_state->buffers[buffer_view_index].size();
+ Error err = _encode_buffer_view(p_state, encoded_attribs.ptr(), p_attribs.size(), p_accessor_type, p_component_type, false, buffer_size, false, buffer_view_index);
+ if (err != OK) {
+ return -1;
+ }
+ // Create the accessor and fill it with the data.
+ Ref<GLTFAccessor> accessor;
+ accessor.instantiate();
+ accessor->max = type_max;
+ accessor->min = type_min;
+ accessor->count = p_attribs.size();
+ accessor->accessor_type = p_accessor_type;
+ accessor->component_type = p_component_type;
+ accessor->byte_offset = 0;
+ accessor->buffer_view = buffer_view_index;
+ const GLTFAccessorIndex new_accessor_index = p_state->accessors.size();
+ p_state->accessors.push_back(accessor);
+ return new_accessor_index;
+}
+
Error GLTFDocument::_serialize_meshes(Ref<GLTFState> p_state) {
Array meshes;
for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < p_state->meshes.size(); gltf_mesh_i++) {