diff options
author | Juan Linietsky <reduzio@gmail.com> | 2016-12-20 00:21:07 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2016-12-20 00:21:07 -0300 |
commit | 075fde7f26d6c3b02df5108065d1a9f979437bb8 (patch) | |
tree | 991058c18d9715c8015fc3cfff0263d9d1e3cc1a /scene/3d/gi_probe.cpp | |
parent | 22a90e8f2acce60f92958788a52b3f0bdb1a0cdf (diff) | |
download | redot-engine-075fde7f26d6c3b02df5108065d1a9f979437bb8.tar.gz |
work in progress global illumination
Diffstat (limited to 'scene/3d/gi_probe.cpp')
-rw-r--r-- | scene/3d/gi_probe.cpp | 1248 |
1 files changed, 1248 insertions, 0 deletions
diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp new file mode 100644 index 0000000000..ce360859d6 --- /dev/null +++ b/scene/3d/gi_probe.cpp @@ -0,0 +1,1248 @@ +#include "gi_probe.h" +#include "mesh_instance.h" + +enum DataFormat { + DATA_RGBA8, + DATA_DXT5, + DATA_ETC2_EAC, +}; + + +void GIProbeData::set_bounds(const AABB& p_bounds) { + + VS::get_singleton()->gi_probe_set_bounds(probe,p_bounds); +} + +AABB GIProbeData::get_bounds() const{ + + return VS::get_singleton()->gi_probe_get_bounds(probe); +} + +void GIProbeData::set_cell_size(float p_size) { + + VS::get_singleton()->gi_probe_set_cell_size(probe,p_size); + +} + +float GIProbeData::get_cell_size() const { + + return VS::get_singleton()->gi_probe_get_cell_size(probe); + +} + +void GIProbeData::set_to_cell_xform(const Transform& p_xform) { + + VS::get_singleton()->gi_probe_set_to_cell_xform(probe,p_xform); + +} + +Transform GIProbeData::get_to_cell_xform() const { + + return VS::get_singleton()->gi_probe_get_to_cell_xform(probe); + +} + + +void GIProbeData::set_dynamic_data(const DVector<int>& p_data){ + + VS::get_singleton()->gi_probe_set_dynamic_data(probe,p_data); + +} +DVector<int> GIProbeData::get_dynamic_data() const{ + + return VS::get_singleton()->gi_probe_get_dynamic_data(probe); +} + +void GIProbeData::set_dynamic_range(float p_range){ + + VS::get_singleton()->gi_probe_set_dynamic_range(probe,p_range); + +} +float GIProbeData::get_dynamic_range() const{ + + + return VS::get_singleton()->gi_probe_get_dynamic_range(probe); +} + +void GIProbeData::set_static_data(const DVector<uint8_t>& p_data,DataFormat p_format,int p_width,int p_height,int p_depth){ + + VS::get_singleton()->gi_probe_set_static_data(probe,p_data,VS::GIProbeDataFormat(p_format),p_width,p_height,p_depth); + +} +DVector<uint8_t> GIProbeData::get_static_data() const{ + + return VS::get_singleton()->gi_probe_get_static_data(probe); + +} +GIProbeData::DataFormat GIProbeData::get_static_data_format() const{ + + return GIProbeData::DataFormat(VS::get_singleton()->gi_probe_get_static_data_format(probe)); + +} +int GIProbeData::get_static_data_width() const{ + + return VS::get_singleton()->gi_probe_get_static_data_width(probe); + +} +int GIProbeData::get_static_data_height() const{ + + return VS::get_singleton()->gi_probe_get_static_data_height(probe); + +} +int GIProbeData::get_static_data_depth() const{ + + return VS::get_singleton()->gi_probe_get_static_data_depth(probe); + +} + +RID GIProbeData::get_rid() const { + + return probe; +} + +GIProbeData::GIProbeData() { + + probe=VS::get_singleton()->gi_probe_create(); +} + +GIProbeData::~GIProbeData() { + + VS::get_singleton()->free(probe); +} + + +////////////////////// +////////////////////// + + +void GIProbe::set_probe_data(const Ref<GIProbeData>& p_data) { + + if (p_data.is_valid()) { + VS::get_singleton()->instance_set_base(get_instance(),p_data->get_rid()); + } else { + VS::get_singleton()->instance_set_base(get_instance(),RID()); + } + + probe_data=p_data; +} + +Ref<GIProbeData> GIProbe::get_probe_data() const { + + return probe_data; +} + +void GIProbe::set_subdiv(Subdiv p_subdiv) { + + ERR_FAIL_INDEX(p_subdiv,SUBDIV_MAX); + subdiv=p_subdiv; + update_gizmo(); +} + +GIProbe::Subdiv GIProbe::get_subdiv() const { + + return subdiv; +} + +void GIProbe::set_extents(const Vector3& p_extents) { + + extents=p_extents; + update_gizmo(); +} + +Vector3 GIProbe::get_extents() const { + + return extents; +} + +void GIProbe::set_dynamic_range(float p_dynamic_range) { + + dynamic_range=p_dynamic_range; +} +float GIProbe::get_dynamic_range() const { + + return dynamic_range; +} + +#include "math.h" + +#define FINDMINMAX(x0,x1,x2,min,max) \ + min = max = x0; \ + if(x1<min) min=x1;\ + if(x1>max) max=x1;\ + if(x2<min) min=x2;\ + if(x2>max) max=x2; + +static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox) +{ + int q; + Vector3 vmin,vmax; + for(q=0;q<=2;q++) + { + if(normal[q]>0.0f) + { + vmin[q]=-maxbox[q]; + vmax[q]=maxbox[q]; + } + else + { + vmin[q]=maxbox[q]; + vmax[q]=-maxbox[q]; + } + } + if(normal.dot(vmin)+d>0.0f) return false; + if(normal.dot(vmax)+d>=0.0f) return true; + + return false; +} + + +/*======================== X-tests ========================*/ +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a*v0.y - b*v0.z; \ + p2 = a*v2.y - b*v2.z; \ + if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a*v0.y - b*v0.z; \ + p1 = a*v1.y - b*v1.z; \ + if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +/*======================== Y-tests ========================*/ +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a*v0.x + b*v0.z; \ + p2 = -a*v2.x + b*v2.z; \ + if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a*v0.x + b*v0.z; \ + p1 = -a*v1.x + b*v1.z; \ + if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +/*======================== Z-tests ========================*/ + +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a*v1.x - b*v1.y; \ + p2 = a*v2.x - b*v2.y; \ + if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if(min>rad || max<-rad) return false; + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a*v0.x - b*v0.y; \ + p1 = a*v1.x - b*v1.y; \ + if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if(min>rad || max<-rad) return false; + +static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) { + + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + Vector3 v0,v1,v2; + float min,max,d,p0,p1,p2,rad,fex,fey,fez; + Vector3 normal,e0,e1,e2; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + + v0=triverts[0]-boxcenter; + v1=triverts[1]-boxcenter; + v2=triverts[2]-boxcenter; + + /* compute triangle edges */ + e0=v1-v0; /* tri edge 0 */ + e1=v2-v1; /* tri edge 1 */ + e2=v0-v2; /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = Math::abs(e0.x); + fey = Math::abs(e0.y); + fez = Math::abs(e0.z); + AXISTEST_X01(e0.z, e0.y, fez, fey); + AXISTEST_Y02(e0.z, e0.x, fez, fex); + AXISTEST_Z12(e0.y, e0.x, fey, fex); + + fex = Math::abs(e1.x); + fey = Math::abs(e1.y); + fez = Math::abs(e1.z); + AXISTEST_X01(e1.z, e1.y, fez, fey); + AXISTEST_Y02(e1.z, e1.x, fez, fex); + AXISTEST_Z0(e1.y, e1.x, fey, fex); + + fex = Math::abs(e2.x); + fey = Math::abs(e2.y); + fez = Math::abs(e2.z); + AXISTEST_X2(e2.z, e2.y, fez, fey); + AXISTEST_Y1(e2.z, e2.x, fez, fex); + AXISTEST_Z12(e2.y, e2.x, fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0.x,v1.x,v2.x,min,max); + if(min>boxhalfsize.x || max<-boxhalfsize.x) return false; + + /* test in Y-direction */ + FINDMINMAX(v0.y,v1.y,v2.y,min,max); + if(min>boxhalfsize.y || max<-boxhalfsize.y) return false; + + /* test in Z-direction */ + FINDMINMAX(v0.z,v1.z,v2.z,min,max); + if(min>boxhalfsize.z || max<-boxhalfsize.z) return false; + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + normal=e0.cross(e1); + d=-normal.dot(v0); /* plane eq: normal.x+d=0 */ + if(!planeBoxOverlap(normal,d,boxhalfsize)) return false; + + return true; /* box and triangle overlaps */ +} + + + +static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) { + + if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2) + return p_uv[0]; + if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2) + return p_uv[1]; + if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2) + return p_uv[2]; + + Vector3 v0 = p_vtx[1] - p_vtx[0]; + Vector3 v1 = p_vtx[2] - p_vtx[0]; + Vector3 v2 = p_pos - p_vtx[0]; + + float d00 = v0.dot( v0); + float d01 = v0.dot( v1); + float d11 = v1.dot( v1); + float d20 = v2.dot( v0); + float d21 = v2.dot( v1); + float denom = (d00 * d11 - d01 * d01); + if (denom==0) + return p_uv[0]; + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + + return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w; +} + +void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const Vector3 *p_vtx, const Vector2* p_uv, const Baker::MaterialCache& p_material, const AABB &p_aabb,Baker *p_baker) { + + + + if (p_level==p_baker->cell_subdiv-1) { + //plot the face by guessing it's albedo and emission value + + //find best axis to map to, for scanning values + int closest_axis; + float closest_dot; + + Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal; + + for(int i=0;i<3;i++) { + + Vector3 axis; + axis[i]=1.0; + float dot=ABS(normal.dot(axis)); + if (i==0 || dot>closest_dot) { + closest_axis=i; + closest_dot=dot; + } + } + + Vector3 axis; + axis[closest_axis]=1.0; + Vector3 t1; + t1[(closest_axis+1)%3]=1.0; + Vector3 t2; + t2[(closest_axis+2)%3]=1.0; + + t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width); + t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width); + + Color albedo_accum; + Color emission_accum; + float alpha=0.0; + + //map to a grid average in the best axis for this face + for(int i=0;i<color_scan_cell_width;i++) { + + Vector3 ofs_i=float(i)*t1; + + for(int j=0;j<color_scan_cell_width;j++) { + + Vector3 ofs_j=float(j)*t2; + + Vector3 from = p_aabb.pos+ofs_i+ofs_j; + Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; + Vector3 half = (to-from)*0.5; + + //is in this cell? + if (!fast_tri_box_overlap(from+half,half,p_vtx)) { + continue; //face does not span this cell + } + + //go from -size to +size*2 to avoid skipping collisions + Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis]; + Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2; + + Vector3 intersection; + + if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) { + //no intersect? look in edges + + float closest_dist=1e20; + for(int j=0;j<3;j++) { + Vector3 c; + Vector3 inters; + Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c); + float d=c.distance_to(intersection); + if (j==0 || d<closest_dist) { + closest_dist=d; + intersection=inters; + } + } + } + + Vector2 uv = get_uv(intersection,p_vtx,p_uv); + + + int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1); + int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1); + + int ofs = uv_y*bake_texture_size+uv_x; + albedo_accum.r+=p_material.albedo[ofs].r; + albedo_accum.g+=p_material.albedo[ofs].g; + albedo_accum.b+=p_material.albedo[ofs].b; + albedo_accum.a+=p_material.albedo[ofs].a; + + emission_accum.r+=p_material.emission[ofs].r; + emission_accum.g+=p_material.emission[ofs].g; + emission_accum.b+=p_material.emission[ofs].b; + alpha+=1.0; + + } + } + + + if (alpha==0) { + //could not in any way get texture information.. so use closest point to center + + Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]); + Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5); + + Vector2 uv = get_uv(inters,p_vtx,p_uv); + + int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1); + int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1); + + int ofs = uv_y*bake_texture_size+uv_x; + + alpha = 1.0/(color_scan_cell_width*color_scan_cell_width); + + albedo_accum.r=p_material.albedo[ofs].r*alpha; + albedo_accum.g=p_material.albedo[ofs].g*alpha; + albedo_accum.b=p_material.albedo[ofs].b*alpha; + albedo_accum.a=p_material.albedo[ofs].a*alpha; + + emission_accum.r=p_material.emission[ofs].r*alpha; + emission_accum.g=p_material.emission[ofs].g*alpha; + emission_accum.b=p_material.emission[ofs].b*alpha; + + + + } else { + + float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width); + alpha*=accdiv; + + albedo_accum.r*=accdiv; + albedo_accum.g*=accdiv; + albedo_accum.b*=accdiv; + albedo_accum.a*=accdiv; + + emission_accum.r*=accdiv; + emission_accum.g*=accdiv; + emission_accum.b*=accdiv; + } + + //put this temporarily here, corrected in a later step + p_baker->bake_cells[p_idx].albedo[0]+=albedo_accum.r; + p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g; + p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b; + p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r; + p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g; + p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b; + p_baker->bake_cells[p_idx].alpha+=alpha; + + static const Vector3 side_normals[6]={ + Vector3(-1, 0, 0), + Vector3( 1, 0, 0), + Vector3( 0,-1, 0), + Vector3( 0, 1, 0), + Vector3( 0, 0,-1), + Vector3( 0, 0, 1), + }; + + for(int i=0;i<6;i++) { + if (normal.dot(side_normals[i])>CMP_EPSILON) { + p_baker->bake_cells[p_idx].used_sides|=(1<<i); + } + } + + + } else { + //go down + + int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1); + for(int i=0;i<8;i++) { + + AABB aabb=p_aabb; + aabb.size*=0.5; + + int nx=p_x; + int ny=p_y; + int nz=p_z; + + if (i&1) { + aabb.pos.x+=aabb.size.x; + nx+=half; + } + if (i&2) { + aabb.pos.y+=aabb.size.y; + ny+=half; + } + if (i&4) { + aabb.pos.z+=aabb.size.z; + nz+=half; + } + //make sure to not plot beyond limits + if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2]) + continue; + + { + AABB test_aabb=aabb; + //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time + Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test + + if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) { + //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { + //does not fit in child, go on + continue; + } + + } + + if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) { + //sub cell must be created + + p_baker->bake_cells[p_idx].childs[i]=p_baker->bake_cells.size(); + p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1); + + } + + + _plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker); + } + } +} + + + +void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker *p_baker) { + + + + if (p_level==p_baker->cell_subdiv-1) { + + p_baker->leaf_voxel_count++; + float alpha = p_baker->bake_cells[p_idx].alpha; + + p_baker->bake_cells[p_idx].albedo[0]/=alpha; + p_baker->bake_cells[p_idx].albedo[1]/=alpha; + p_baker->bake_cells[p_idx].albedo[2]/=alpha; + + //transfer emission to light + p_baker->bake_cells[p_idx].emission[0]/=alpha; + p_baker->bake_cells[p_idx].emission[1]/=alpha; + p_baker->bake_cells[p_idx].emission[2]/=alpha; + + p_baker->bake_cells[p_idx].alpha=1.0; + + //remove neighbours from used sides + + for(int n=0;n<6;n++) { + + int ofs[3]={0,0,0}; + + ofs[n/2]=(n&1)?1:-1; + + //convert to x,y,z on this level + int x=p_x; + int y=p_y; + int z=p_z; + + x+=ofs[0]; + y+=ofs[1]; + z+=ofs[2]; + + int ofs_x=0; + int ofs_y=0; + int ofs_z=0; + int size = 1<<p_level; + int half=size/2; + + + if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) { + //neighbour is out, can't use it + p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n)); + continue; + } + + uint32_t neighbour=0; + + for(int i=0;i<p_baker->cell_subdiv-1;i++) { + + Baker::Cell *bc = &p_baker->bake_cells[neighbour]; + + int child = 0; + if (x >= ofs_x + half) { + child|=1; + ofs_x+=half; + } + if (y >= ofs_y + half) { + child|=2; + ofs_y+=half; + } + if (z >= ofs_z + half) { + child|=4; + ofs_z+=half; + } + + neighbour = bc->childs[child]; + if (neighbour==Baker::CHILD_EMPTY) { + break; + } + + half>>=1; + } + + if (neighbour!=Baker::CHILD_EMPTY) { + p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n)); + } + } + } else { + + + //go down + + float alpha_average=0; + int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1); + for(int i=0;i<8;i++) { + + uint32_t child = p_baker->bake_cells[p_idx].childs[i]; + + if (child==Baker::CHILD_EMPTY) + continue; + + + int nx=p_x; + int ny=p_y; + int nz=p_z; + + if (i&1) + nx+=half; + if (i&2) + ny+=half; + if (i&4) + nz+=half; + + _fixup_plot(child,p_level+1,nx,ny,nz,p_baker); + alpha_average+=p_baker->bake_cells[child].alpha; + } + + p_baker->bake_cells[p_idx].alpha=alpha_average/8.0; + p_baker->bake_cells[p_idx].emission[0]=0; + p_baker->bake_cells[p_idx].emission[1]=0; + p_baker->bake_cells[p_idx].emission[2]=0; + p_baker->bake_cells[p_idx].albedo[0]=0; + p_baker->bake_cells[p_idx].albedo[1]=0; + p_baker->bake_cells[p_idx].albedo[2]=0; + + } + +} + + + +Vector<Color> GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) { + + Vector<Color> ret; + + if (p_image.empty()) { + + ret.resize(bake_texture_size*bake_texture_size); + for(int i=0;i<bake_texture_size*bake_texture_size;i++) { + ret[i]=p_color; + } + + return ret; + } + + p_image.convert(Image::FORMAT_RGBA8); + p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC); + + + DVector<uint8_t>::Read r = p_image.get_data().read(); + ret.resize(bake_texture_size*bake_texture_size); + + for(int i=0;i<bake_texture_size*bake_texture_size;i++) { + Color c; + c.r = r[i*4+0]/255.0; + c.g = r[i*4+1]/255.0; + c.b = r[i*4+2]/255.0; + c.a = r[i*4+3]/255.0; + ret[i]=c; + + } + + return ret; +} + + +GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material,Baker *p_baker) { + + //this way of obtaining materials is inaccurate and also does not support some compressed formats very well + Ref<FixedSpatialMaterial> mat = p_material; + + Ref<Material> material = mat; //hack for now + + if (p_baker->material_cache.has(material)) { + return p_baker->material_cache[material]; + } + + Baker::MaterialCache mc; + + if (mat.is_valid()) { + + + Ref<ImageTexture> albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO); + + Image img_albedo; + if (albedo_tex.is_valid()) { + + img_albedo = albedo_tex->get_data(); + } + + mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo()); + + Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION); + + Color emission_col = mat->get_emission(); + emission_col.r*=mat->get_emission_energy(); + emission_col.g*=mat->get_emission_energy(); + emission_col.b*=mat->get_emission_energy(); + + Image img_emission; + + if (emission_tex.is_valid()) { + + img_emission = emission_tex->get_data(); + } + + mc.emission=_get_bake_texture(img_emission,emission_col); + + } else { + Image empty; + + mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7)); + mc.emission=_get_bake_texture(empty,Color(0,0,0)); + + + } + + p_baker->material_cache[p_material]=mc; + return mc; + + +} + +void GIProbe::_plot_mesh(const Transform& p_xform, Ref<Mesh>& p_mesh, Baker *p_baker) { + + + for(int i=0;i<p_mesh->get_surface_count();i++) { + + if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) + continue; //only triangles + + Baker::MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i),p_baker); + + Array a = p_mesh->surface_get_arrays(i); + + + DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; + DVector<Vector3>::Read vr=vertices.read(); + DVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; + DVector<Vector2>::Read uvr; + DVector<int> index = a[Mesh::ARRAY_INDEX]; + + bool read_uv=false; + + if (uv.size()) { + + uvr=uv.read(); + read_uv=true; + } + + if (index.size()) { + + int facecount = index.size()/3; + DVector<int>::Read ir=index.read(); + + for(int j=0;j<facecount;j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + + for(int k=0;k<3;k++) { + vtxs[k]=p_xform.xform(vr[ir[j*3+k]]); + } + + if (read_uv) { + for(int k=0;k<3;k++) { + uvs[k]=uvr[ir[j*3+k]]; + } + } + + //test against original bounds + if (!fast_tri_box_overlap(-extents,extents*2,vtxs)) + continue; + //plot + _plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker); + } + + + + } else { + + int facecount = vertices.size()/3; + + for(int j=0;j<facecount;j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + + for(int k=0;k<3;k++) { + vtxs[k]=p_xform.xform(vr[j*3+k]); + } + + if (read_uv) { + for(int k=0;k<3;k++) { + uvs[k]=uvr[j*3+k]; + } + } + + //test against original bounds + if (!fast_tri_box_overlap(-extents,extents*2,vtxs)) + continue; + //plot face + _plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker); + } + + } + } +} + + + +void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){ + + MeshInstance *mi = p_at_node->cast_to<MeshInstance>(); + if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT)) { + Ref<Mesh> mesh = mi->get_mesh(); + if (mesh.is_valid()) { + + AABB aabb = mesh->get_aabb(); + + Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); + + if (AABB(-extents,extents*2).intersects(xf.xform(aabb))) { + Baker::PlotMesh pm; + pm.local_xform=xf; + pm.mesh=mesh; + p_baker->mesh_list.push_back(pm); + + } + } + } + + for(int i=0;i<p_at_node->get_child_count();i++) { + + Node *child = p_at_node->get_child(i); + if (!child->get_owner()) + continue; //maybe a helper + + _find_meshes(child,p_baker); + + } +} + + + + +void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){ + + Baker baker; + + static const int subdiv_value[SUBDIV_MAX]={7,8,9,10}; + + baker.cell_subdiv=subdiv_value[subdiv]; + baker.bake_cells.resize(1); + + //find out the actual real bounds, power of 2, which gets the highest subdivision + baker.po2_bounds=AABB(-extents,extents*2.0); + int longest_axis = baker.po2_bounds.get_longest_axis_index(); + baker.axis_cell_size[longest_axis]=(1<<(baker.cell_subdiv-1)); + baker.leaf_voxel_count=0; + + for(int i=0;i<3;i++) { + + if (i==longest_axis) + continue; + + baker.axis_cell_size[i]=baker.axis_cell_size[longest_axis]; + float axis_size = baker.po2_bounds.size[longest_axis]; + + //shrink until fit subdiv + while (axis_size/2.0 >= baker.po2_bounds.size[i]) { + axis_size/=2.0; + baker.axis_cell_size[i]>>=1; + } + + baker.po2_bounds.size[i]=baker.po2_bounds.size[longest_axis]; + } + + + + Transform to_bounds; + to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis])); + to_bounds.origin=baker.po2_bounds.pos; + + Transform to_grid; + to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis])); + + baker.to_cell_space = to_grid * to_bounds.affine_inverse(); + + + _find_meshes(p_from_node?p_from_node:get_parent(),&baker); + + + + int pmc=0; + + for(List<Baker::PlotMesh>::Element *E=baker.mesh_list.front();E;E=E->next()) { + + print_line("plotting mesh "+itos(pmc++)+"/"+itos(baker.mesh_list.size())); + + _plot_mesh(E->get().local_xform,E->get().mesh,&baker); + } + + _fixup_plot(0,0,0,0,0,&baker); + + //create the data for visual server + + DVector<int> data; + + data.resize( 16+(8+1+1+1+1)*baker.bake_cells.size() ); //4 for header, rest for rest. + + { + DVector<int>::Write w = data.write(); + + uint32_t * w32 = (uint32_t*)w.ptr(); + + w32[0]=0;//version + w32[1]=baker.cell_subdiv; //subdiv + w32[2]=baker.axis_cell_size[0]; + w32[3]=baker.axis_cell_size[1]; + w32[4]=baker.axis_cell_size[2]; + w32[5]=baker.bake_cells.size(); + w32[6]=baker.leaf_voxel_count; + + int ofs=16; + + for(int i=0;i<baker.bake_cells.size();i++) { + + for(int j=0;j<8;j++) { + w32[ofs++]=baker.bake_cells[i].childs[j]; + } + + { //albedo + uint32_t rgba=uint32_t(CLAMP(baker.bake_cells[i].albedo[0]*255.0,0,255))<<16; + rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[1]*255.0,0,255))<<8; + rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[2]*255.0,0,255))<<0; + + w32[ofs++]=rgba; + + + } + { //emission + + Vector3 e(baker.bake_cells[i].emission[0],baker.bake_cells[i].emission[1],baker.bake_cells[i].emission[2]); + float l = e.length(); + if (l>0) { + e.normalize(); + l=CLAMP(l/8.0,0,1.0); + } + + uint32_t em=uint32_t(CLAMP(e[0]*255,0,255))<<24; + em|=uint32_t(CLAMP(e[1]*255,0,255))<<16; + em|=uint32_t(CLAMP(e[2]*255,0,255))<<8; + em|=uint32_t(CLAMP(l*255,0,255)); + + w32[ofs++]=em; + } + + w32[ofs++]=baker.bake_cells[i].used_sides; + w32[ofs++]=uint32_t(baker.bake_cells[i].alpha*65535.0); + + } + + } + + Ref<GIProbeData> probe_data; + probe_data.instance(); + probe_data->set_bounds(AABB(-extents,extents*2.0)); + probe_data->set_cell_size(baker.po2_bounds.size[longest_axis]/baker.axis_cell_size[longest_axis]); + probe_data->set_dynamic_data(data); + probe_data->set_to_cell_xform(baker.to_cell_space); + + set_probe_data(probe_data); + + + if (p_create_visual_debug) { + // _create_debug_mesh(&baker); + } + + + +} + + +void GIProbe::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,Ref<MultiMesh> &p_multimesh,int &idx,Baker *p_baker) { + + + if (p_level==p_baker->cell_subdiv-1) { + + Vector3 center = p_aabb.pos+p_aabb.size*0.5; + Transform xform; + xform.origin=center; + xform.basis.scale(p_aabb.size*0.5); + p_multimesh->set_instance_transform(idx,xform); + Color col=Color(p_baker->bake_cells[p_idx].albedo[0],p_baker->bake_cells[p_idx].albedo[1],p_baker->bake_cells[p_idx].albedo[2]); + p_multimesh->set_instance_color(idx,col); + + idx++; + + } else { + + for(int i=0;i<8;i++) { + + if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) + continue; + + AABB aabb=p_aabb; + aabb.size*=0.5; + + if (i&1) + aabb.pos.x+=aabb.size.x; + if (i&2) + aabb.pos.y+=aabb.size.y; + if (i&4) + aabb.pos.z+=aabb.size.z; + + _debug_mesh(p_baker->bake_cells[p_idx].childs[i],p_level+1,aabb,p_multimesh,idx,p_baker); + } + + } + +} + + +void GIProbe::_create_debug_mesh(Baker *p_baker) { + + Ref<MultiMesh> mm; + mm.instance(); + + mm->set_transform_format(MultiMesh::TRANSFORM_3D); + mm->set_color_format(MultiMesh::COLOR_8BIT); + print_line("leaf voxels: "+itos(p_baker->leaf_voxel_count)); + mm->set_instance_count(p_baker->leaf_voxel_count); + + Ref<Mesh> mesh; + mesh.instance(); + + { + Array arr; + arr.resize(Mesh::ARRAY_MAX); + + DVector<Vector3> vertices; + DVector<Color> colors; + + int vtx_idx=0; + #define ADD_VTX(m_idx);\ + vertices.push_back( face_points[m_idx] );\ + colors.push_back( Color(1,1,1,1) );\ + vtx_idx++;\ + + for (int i=0;i<6;i++) { + + + Vector3 face_points[4]; + + for (int j=0;j<4;j++) { + + float v[3]; + v[0]=1.0; + v[1]=1-2*((j>>1)&1); + v[2]=v[1]*(1-2*(j&1)); + + for (int k=0;k<3;k++) { + + if (i<3) + face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); + else + face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); + } + } + + //tri 1 + ADD_VTX(0); + ADD_VTX(1); + ADD_VTX(2); + //tri 2 + ADD_VTX(2); + ADD_VTX(3); + ADD_VTX(0); + + } + + + arr[Mesh::ARRAY_VERTEX]=vertices; + arr[Mesh::ARRAY_COLOR]=colors; + mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr); + } + + { + Ref<FixedSpatialMaterial> fsm; + fsm.instance(); + fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true); + fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true); + fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true); + fsm->set_albedo(Color(1,1,1,1)); + + mesh->surface_set_material(0,fsm); + } + + mm->set_mesh(mesh); + + + int idx=0; + _debug_mesh(0,0,p_baker->po2_bounds,mm,idx,p_baker); + + MultiMeshInstance *mmi = memnew( MultiMeshInstance ); + mmi->set_multimesh(mm); + add_child(mmi); + if (get_tree()->get_edited_scene_root()==this){ + mmi->set_owner(this); + } else { + mmi->set_owner(get_owner()); + + } + +} + +void GIProbe::_debug_bake() { + + bake(NULL,true); +} + +AABB GIProbe::get_aabb() const { + + return AABB(-extents,extents*2); +} + +DVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const { + + return DVector<Face3>(); +} + +void GIProbe::_bind_methods() { + + ObjectTypeDB::bind_method(_MD("set_probe_data","data"),&GIProbe::set_probe_data); + ObjectTypeDB::bind_method(_MD("get_probe_data"),&GIProbe::get_probe_data); + + ObjectTypeDB::bind_method(_MD("set_subdiv","subdiv"),&GIProbe::set_subdiv); + ObjectTypeDB::bind_method(_MD("get_subdiv"),&GIProbe::get_subdiv); + + ObjectTypeDB::bind_method(_MD("set_extents","extents"),&GIProbe::set_extents); + ObjectTypeDB::bind_method(_MD("get_extents"),&GIProbe::get_extents); + + ObjectTypeDB::bind_method(_MD("set_dynamic_range","max"),&GIProbe::set_dynamic_range); + ObjectTypeDB::bind_method(_MD("get_dynamic_range"),&GIProbe::get_dynamic_range); + + ObjectTypeDB::bind_method(_MD("bake","from_node","create_visual_debug"),&GIProbe::bake,DEFVAL(Variant()),DEFVAL(false)); + ObjectTypeDB::bind_method(_MD("debug_bake"),&GIProbe::_debug_bake); + ObjectTypeDB::set_method_flags(get_type_static(),_SCS("debug_bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + + ADD_PROPERTY( PropertyInfo(Variant::INT,"subdiv",PROPERTY_HINT_ENUM,"64,128,256,512"),_SCS("set_subdiv"),_SCS("get_subdiv")); + ADD_PROPERTY( PropertyInfo(Variant::VECTOR3,"extents"),_SCS("set_extents"),_SCS("get_extents")); + ADD_PROPERTY( PropertyInfo(Variant::REAL,"dynamic_range",PROPERTY_HINT_RANGE,"0,8,0.01"),_SCS("set_dynamic_range"),_SCS("get_dynamic_range")); + ADD_PROPERTY( PropertyInfo(Variant::OBJECT,"data",PROPERTY_HINT_RESOURCE_TYPE,"GIProbeData"),_SCS("set_probe_data"),_SCS("get_probe_data")); + + + BIND_CONSTANT( SUBDIV_64 ); + BIND_CONSTANT( SUBDIV_128 ); + BIND_CONSTANT( SUBDIV_256 ); + BIND_CONSTANT( SUBDIV_MAX ); + +} + +GIProbe::GIProbe() { + + subdiv=SUBDIV_128; + dynamic_range=1.0; + extents=Vector3(10,10,10); + color_scan_cell_width=4; + bake_texture_size=128; + + gi_probe = VS::get_singleton()->gi_probe_create(); + + +} + +GIProbe::~GIProbe() { + + +} |