summaryrefslogtreecommitdiffstats
path: root/drivers/vulkan/rendering_device_vulkan.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/vulkan/rendering_device_vulkan.h')
-rw-r--r--drivers/vulkan/rendering_device_vulkan.h830
1 files changed, 830 insertions, 0 deletions
diff --git a/drivers/vulkan/rendering_device_vulkan.h b/drivers/vulkan/rendering_device_vulkan.h
new file mode 100644
index 0000000000..ca1cb89480
--- /dev/null
+++ b/drivers/vulkan/rendering_device_vulkan.h
@@ -0,0 +1,830 @@
+#ifndef RENDERING_DEVICE_VULKAN_H
+#define RENDERING_DEVICE_VULKAN_H
+
+#include "core/oa_hash_map.h"
+#include "core/os/thread_safe.h"
+#include "servers/visual/rendering_device.h"
+#include "thirdparty/glslang/glslang/Public/ShaderLang.h"
+#include "vk_mem_alloc.h"
+#include <vulkan/vulkan.h>
+
+//todo:
+//compute
+//push constants
+//views of texture slices
+
+class VulkanContext;
+
+class RenderingDeviceVulkan : public RenderingDevice {
+
+ _THREAD_SAFE_CLASS_
+
+ // Miscellaneous tables that map
+ // our enums to enums used
+ // by vulkan.
+
+ VkPhysicalDeviceLimits limits;
+ static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
+ static const char *named_formats[DATA_FORMAT_MAX];
+ static const VkCompareOp compare_operators[COMPARE_OP_MAX];
+ static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
+ static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
+ static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
+ static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
+ static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
+ static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
+ static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
+
+ // Functions used for format
+ // validation, and ensures the
+ // user passes valid data.
+
+ static int get_format_vertex_size(DataFormat p_format);
+ static uint32_t get_image_format_pixel_size(DataFormat p_format);
+ static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
+ uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
+ static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
+ static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmap, uint32_t *r_blockw = NULL, uint32_t *r_blockh = NULL);
+ static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
+
+ /***************************/
+ /**** ID INFRASTRUCTURE ****/
+ /***************************/
+
+ // Everything is exposed to the user
+ // as IDs instead of pointers. This
+ // has a negligible CPU performance
+ // impact (Open Addressing is used to
+ // improve cache efficiency), but
+ // makes sure the user can't screw up
+ // by providing a safety layer.
+
+ enum IDType {
+ ID_TYPE_TEXTURE,
+ ID_TYPE_FRAMEBUFFER_FORMAT,
+ ID_TYPE_FRAMEBUFFER,
+ ID_TYPE_SAMPLER,
+ ID_TYPE_VERTEX_DESCRIPTION,
+ ID_TYPE_VERTEX_BUFFER,
+ ID_TYPE_INDEX_BUFFER,
+ ID_TYPE_VERTEX_ARRAY,
+ ID_TYPE_INDEX_ARRAY,
+ ID_TYPE_SHADER,
+ ID_TYPE_UNIFORM_BUFFER,
+ ID_TYPE_STORAGE_BUFFER,
+ ID_TYPE_TEXTURE_BUFFER,
+ ID_TYPE_UNIFORM_SET,
+ ID_TYPE_RENDER_PIPELINE,
+ ID_TYPE_DRAW_LIST_THREAD_CONTEXT,
+ ID_TYPE_DRAW_LIST,
+ ID_TYPE_SPLIT_DRAW_LIST,
+ ID_TYPE_MAX,
+ ID_BASE_SHIFT = 58 //5 bits for ID types
+ };
+
+ VkDevice device;
+
+ // this is meant to be fast, not flexible
+ // so never keep pointers to the elements
+ // inside this structure
+
+ template <class T, IDType id_type>
+ class ID_Pool {
+ ID counter;
+ OAHashMap<ID, T> map;
+
+ public:
+ ID make_id(const T &p_instance) {
+ ID new_id = (ID(id_type) << ID_BASE_SHIFT) + counter;
+ counter++;
+ map.insert(new_id, p_instance);
+ return new_id;
+ }
+
+ bool owns(ID p_id) const {
+ if (p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type) {
+ return false;
+ }
+
+ return map.has(p_id);
+ }
+
+ T *getornull(ID p_id) const {
+ if (p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type) {
+ return NULL;
+ }
+
+ return map.lookup_ptr(p_id);
+ }
+
+ void free(ID p_id) {
+ ERR_FAIL_COND(p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type);
+ map.remove(p_id);
+ }
+
+ ID_Pool() {
+ counter = 1;
+ }
+ };
+
+ Map<ID, Set<ID> > dependency_map; //IDs to IDs that depend on it
+ Map<ID, Set<ID> > reverse_dependency_map; //same as above, but in reverse
+
+ void _add_dependency(ID p_id, ID p_depends_on);
+ void _free_dependencies(ID p_id);
+
+ /*****************/
+ /**** TEXTURE ****/
+ /*****************/
+
+ // In Vulkan, the concept of textures does not exist,
+ // intead there is the image (the memory prety much,
+ // the view (how the memory is interpreted) and the
+ // sampler (how it's sampled from the shader).
+ //
+ // Texture here includes the first two stages, but
+ // It's possible to create textures sharing the image
+ // but with different views. The main use case for this
+ // is textures that can be read as both SRGB/Linear,
+ // or slices of a texture (a mipmap, a layer, a 3D slice)
+ // for a framebuffer to render into it.
+
+ struct Texture {
+
+ VkImage image;
+ VmaAllocation allocation;
+ VmaAllocationInfo allocation_info;
+ VkImageView view;
+
+ TextureType type;
+ DataFormat format;
+ TextureSamples samples;
+ uint32_t width;
+ uint32_t height;
+ uint32_t depth;
+ uint32_t layers;
+ uint32_t mipmaps;
+ uint32_t usage_flags;
+
+ VkImageLayout bound_layout; //layout used for reading
+ VkImageLayout reading_layout; //layout used for reading
+ uint32_t aspect_mask;
+ bool bound; //bound to framebffer
+ ID owner;
+ };
+
+ ID_Pool<Texture, ID_TYPE_TEXTURE> texture_owner;
+ uint32_t texture_upload_region_size_px;
+
+ /*****************/
+ /**** SAMPLER ****/
+ /*****************/
+
+ ID_Pool<VkSampler, ID_TYPE_SAMPLER> sampler_owner;
+
+ /***************************/
+ /**** BUFFER MANAGEMENT ****/
+ /***************************/
+
+ // These are temporary buffers on CPU memory that hold
+ // the information until the CPU fetches it and places it
+ // either on GPU buffers, or images (textures). It ensures
+ // updates are properly synchronized with whathever the
+ // GPU is doing.
+ //
+ // The logic here is as follows, only 3 of these
+ // blocks are created at the beginning (one per frame)
+ // they can each belong to a frame (assigned to current when
+ // used) and they can only be reused after the same frame is
+ // recycled.
+ //
+ // When CPU requires to allocate more than what is available,
+ // more of these buffers are created. If a limit is reached,
+ // then a fence will ensure will wait for blocks allocated
+ // in previous frames are processed. If that fails, then
+ // another fence will ensure everything pending for the current
+ // frame is processed (effectively stalling).
+ //
+ // See the comments in the code to understand better how it works.
+
+ struct StagingBufferBlock {
+ VkBuffer buffer;
+ VmaAllocation allocation;
+ uint64_t frame_used;
+ uint32_t fill_amount;
+ };
+
+ Vector<StagingBufferBlock> staging_buffer_blocks;
+ int staging_buffer_current;
+ uint32_t staging_buffer_block_size;
+ uint64_t staging_buffer_max_size;
+ bool staging_buffer_used;
+
+ Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false);
+ Error _insert_staging_block();
+
+ struct Buffer {
+
+ uint32_t size;
+ VkBuffer buffer;
+ VmaAllocation allocation;
+ VkDescriptorBufferInfo buffer_info; //used for binding
+ Buffer() {
+ size = 0;
+ buffer = NULL;
+ allocation = NULL;
+ }
+ };
+
+ Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping);
+ Error _buffer_free(Buffer *p_buffer);
+ Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);
+
+ /*********************/
+ /**** FRAMEBUFFER ****/
+ /*********************/
+
+ // In Vulkan, framebuffers work similar to how they
+ // do in OpenGL, with the exception that
+ // the "format" (vkRenderPass) is not dynamic
+ // and must be more or less the same as the one
+ // used for the render pipelines.
+
+ struct FramebufferFormatKey {
+ Vector<AttachmentFormat> attachments;
+ bool operator<(const FramebufferFormatKey &p_key) const {
+
+ int as = attachments.size();
+ int bs = p_key.attachments.size();
+ if (as != bs) {
+ return as < bs;
+ }
+
+ const AttachmentFormat *af_a = attachments.ptr();
+ const AttachmentFormat *af_b = p_key.attachments.ptr();
+ for (int i = 0; i < as; i++) {
+ const AttachmentFormat &a = af_a[i];
+ const AttachmentFormat &b = af_b[i];
+ if (a.format != b.format) {
+ return a.format < b.format;
+ }
+ if (a.samples != b.samples) {
+ return a.samples < b.samples;
+ }
+ if (a.usage_flags != b.usage_flags) {
+ return a.usage_flags < b.usage_flags;
+ }
+ }
+
+ return false; //equal
+ }
+ };
+
+ VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count = NULL);
+
+ // This is a cache and it's never freed, it ensures
+ // IDs for a given format are always unique.
+ Map<FramebufferFormatKey, ID> framebuffer_format_cache;
+ struct FramebufferFormat {
+ const Map<FramebufferFormatKey, ID>::Element *E;
+ VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec)
+ int color_attachments; //used for pipeline validation
+ };
+
+ Map<ID, FramebufferFormat> framebuffer_formats;
+
+ struct Framebuffer {
+ ID format_id;
+ struct VersionKey {
+ InitialAction initial_action;
+ FinalAction final_action;
+ bool operator<(const VersionKey &p_key) const {
+ if (initial_action == p_key.initial_action) {
+ return final_action < p_key.final_action;
+ } else {
+ return initial_action < p_key.initial_action;
+ }
+ }
+ };
+
+ Vector<ID> texture_ids;
+
+ struct Version {
+ VkFramebuffer framebuffer;
+ VkRenderPass render_pass; //this one is owned
+ };
+
+ Map<VersionKey, Version> framebuffers;
+ Size2 size;
+ };
+
+ ID_Pool<Framebuffer, ID_TYPE_FRAMEBUFFER> framebuffer_owner;
+
+ /***********************/
+ /**** VERTEX BUFFER ****/
+ /***********************/
+
+ // Vertex buffers in Vulkan are similar to how
+ // they work in OpenGL, except that instead of
+ // an attribtue index, there is a buffer binding
+ // index (for binding the buffers in real-time)
+ // and a location index (what is used in the shader).
+ //
+ // This mapping is done here internally, and it's not
+ // exposed.
+
+ ID_Pool<Buffer, ID_TYPE_VERTEX_BUFFER> vertex_buffer_owner;
+
+ struct VertexDescriptionKey {
+ Vector<VertexDescription> vertex_descriptions;
+ int buffer_count;
+ bool operator<(const VertexDescriptionKey &p_key) const {
+ if (buffer_count != p_key.buffer_count) {
+ return buffer_count < p_key.buffer_count;
+ }
+ if (vertex_descriptions.size() != p_key.vertex_descriptions.size()) {
+ return vertex_descriptions.size() < p_key.vertex_descriptions.size();
+ } else {
+ int vdc = vertex_descriptions.size();
+ const VertexDescription *a_ptr = vertex_descriptions.ptr();
+ const VertexDescription *b_ptr = p_key.vertex_descriptions.ptr();
+ for (int i = 0; i < vdc; i++) {
+ const VertexDescription &a = a_ptr[i];
+ const VertexDescription &b = b_ptr[i];
+
+ if (a.location != b.location) {
+ return a.location < b.location;
+ }
+ if (a.offset != b.offset) {
+ return a.offset < b.offset;
+ }
+ if (a.format != b.format) {
+ return a.format < b.format;
+ }
+ if (a.stride != b.stride) {
+ return a.stride < b.stride;
+ }
+ return a.frequency < b.frequency;
+ }
+ return false; //they are equal
+ }
+ }
+ };
+
+ // This is a cache and it's never freed, it ensures that
+ // ID used for a specific format always remain the same.
+ Map<VertexDescriptionKey, ID> vertex_description_cache;
+ struct VertexDescriptionCache {
+ const Map<VertexDescriptionKey, ID>::Element *E;
+ VkVertexInputBindingDescription *bindings;
+ VkVertexInputAttributeDescription *attributes;
+ VkPipelineVertexInputStateCreateInfo create_info;
+ };
+
+ Map<ID, VertexDescriptionCache> vertex_descriptions;
+
+ struct VertexArray {
+ ID buffer;
+ ID description;
+ int vertex_count;
+ uint32_t max_instances_allowed;
+
+ Vector<VkBuffer> buffers; //not owned, just referenced
+ Vector<VkDeviceSize> offsets;
+ };
+
+ ID_Pool<VertexArray, ID_TYPE_VERTEX_ARRAY> vertex_array_owner;
+
+ struct IndexBuffer : public Buffer {
+ uint32_t max_index; //used for validation
+ uint32_t index_count;
+ VkIndexType index_type;
+ bool supports_restart_indices;
+ };
+
+ ID_Pool<IndexBuffer, ID_TYPE_INDEX_BUFFER> index_buffer_owner;
+
+ struct IndexArray {
+ uint32_t max_index; //remember the maximum index here too, for validation
+ VkBuffer buffer; //not owned, inherited from index buffer
+ uint32_t offset;
+ uint32_t indices;
+ VkIndexType index_type;
+ bool supports_restart_indices;
+ };
+
+ ID_Pool<IndexArray, ID_TYPE_INDEX_ARRAY> index_array_owner;
+
+ /****************/
+ /**** SHADER ****/
+ /****************/
+
+ // Shaders in Vulkan are just pretty much
+ // precompiled blocks of SPIR-V bytecode. They
+ // are most likely not really compiled to host
+ // assembly until a pipeline is created.
+ //
+ // When supplying the shaders, this implementation
+ // will use the reflection abilities of glslang to
+ // understand and cache everything required to
+ // create and use the descriptor sets (Vulkan's
+ // biggest pain).
+ //
+ // Additionally, hashes are created for every set
+ // to do quick validation and ensuring the user
+ // does not submit something invalid.
+
+ struct Shader {
+
+ struct UniformInfo {
+ UniformType type;
+ int binding;
+ uint32_t stages;
+ int length; //size of arrays (in total elements), or ubos (in bytes * total elements)
+ bool operator<(const UniformInfo &p_info) const {
+ if (type != p_info.type) {
+ return type < p_info.type;
+ }
+ if (binding != p_info.binding) {
+ return binding < p_info.binding;
+ }
+ if (stages != p_info.stages) {
+ return stages < p_info.stages;
+ }
+ return length < p_info.length;
+ }
+ };
+
+ struct Set {
+
+ Vector<UniformInfo> uniform_info;
+ VkDescriptorSetLayout descriptor_set_layout;
+ };
+
+ Vector<int> vertex_input_locations; //inputs used, this is mostly for validation
+ int fragment_outputs;
+
+ int max_output;
+ Vector<Set> sets;
+ Vector<uint32_t> set_hashes;
+ Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
+ VkPipelineLayout pipeline_layout;
+ };
+
+ bool _uniform_add_binding(Vector<Vector<VkDescriptorSetLayoutBinding> > &bindings, Vector<Vector<Shader::UniformInfo> > &uniform_infos, const glslang::TObjectReflection &reflection, RenderingDevice::ShaderStage p_stage, String *r_error);
+
+ ID_Pool<Shader, ID_TYPE_SHADER> shader_owner;
+
+ /******************/
+ /**** UNIFORMS ****/
+ /******************/
+
+ // Descriptor sets require allocation from a pool.
+ // The documentation on how to use pools properly
+ // is scarce, and the documentation is strange.
+ //
+ // Basically, you can mix and match pools as you
+ // like, but you'll run into fragmentation issues.
+ // Because of this, the recommended approach is to
+ // create a a pool for every descriptor set type,
+ // as this prevents fragmentation.
+ //
+ // This is implemented here as a having a list of
+ // pools (each can contain up to 64 sets) for each
+ // set layout. The amount of sets for each type
+ // is used as the key.
+
+ enum {
+ MAX_DESCRIPTOR_POOL_ELEMENT = 65535
+ };
+
+ struct DescriptorPoolKey {
+ union {
+ struct {
+ uint16_t uniform_type[UNIFORM_TYPE_MAX]; //using 16 bits because, for sending arrays, each element is a pool set.
+ };
+ struct {
+ uint64_t key1;
+ uint64_t key2;
+ uint64_t key3;
+ };
+ };
+ bool operator<(const DescriptorPoolKey &p_key) const {
+ if (key1 != p_key.key1) {
+ return key1 < p_key.key1;
+ }
+ if (key2 != p_key.key2) {
+ return key2 < p_key.key2;
+ }
+
+ return key3 < p_key.key3;
+ }
+ DescriptorPoolKey() {
+ key1 = 0;
+ key2 = 0;
+ key3 = 0;
+ }
+ };
+
+ struct DescriptorPool {
+ VkDescriptorPool pool;
+ uint32_t usage;
+ };
+
+ Map<DescriptorPoolKey, Set<DescriptorPool *> > descriptor_pools;
+ uint32_t max_descriptors_per_pool;
+
+ DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
+ void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);
+
+ ID_Pool<Buffer, ID_TYPE_UNIFORM_BUFFER> uniform_buffer_owner;
+ ID_Pool<Buffer, ID_TYPE_STORAGE_BUFFER> storage_buffer_owner;
+
+ //texture buffer needs a view
+ struct TextureBuffer {
+ Buffer buffer;
+ VkBufferView view;
+ };
+
+ ID_Pool<TextureBuffer, ID_TYPE_TEXTURE_BUFFER> texture_buffer_owner;
+
+ // This structure contains the descriptor set. They _need_ to be allocated
+ // for a shader (and will be erased when this shader is erased), but should
+ // work for other shaders as long as the hash matches. This covers using
+ // them in shader variants.
+ //
+ // Keep also in mind that you can share buffers between descriptor sets, so
+ // the above restriction is not too serious.
+
+ struct UniformSet {
+ uint32_t hash;
+ ID shader_id;
+ DescriptorPool *pool;
+ DescriptorPoolKey pool_key;
+ VkDescriptorSet descriptor_set;
+ VkPipelineLayout pipeline_layout; //not owned, inherited from shader
+ Vector<ID> textures;
+ };
+
+ ID_Pool<UniformSet, ID_TYPE_UNIFORM_SET> uniform_set_owner;
+
+ /*******************/
+ /**** PIPELINES ****/
+ /*******************/
+
+ // Render pipeline contains ALL the
+ // information required for drawing.
+ // This includes all the rasterizer state
+ // as well as shader used, framebuffer format,
+ // etc.
+ // While the pipeline is just a single object
+ // (VkPipeline) a lot of values are also saved
+ // here to do validation (vulkan does none by
+ // default) and warn the user if something
+ // was not supplied as intended.
+
+ struct RenderPipeline {
+ //Cached values for validation
+ ID framebuffer_format;
+ uint32_t dynamic_state;
+ ID vertex_format;
+ bool uses_restart_indices;
+ uint32_t primitive_minimum;
+ uint32_t primitive_divisor;
+ Vector<uint32_t> set_hashes;
+ //Actual pipeline
+ VkPipeline pipeline;
+ };
+
+ ID_Pool<RenderPipeline, ID_TYPE_RENDER_PIPELINE> pipeline_owner;
+
+ /*******************/
+ /**** DRAW LIST ****/
+ /*******************/
+
+ // Draw list contains both the command buffer
+ // used for drawing as well as a LOT of
+ // information used for validation. This
+ // validation is cheap so most of it can
+ // also run in release builds.
+
+ // When using split command lists, this is
+ // implemented internally using secondary command
+ // buffers. As they can be created in threads,
+ // each needs it's own command pool.
+
+ struct SplitDrawListAllocator {
+ VkCommandPool command_pool;
+ Vector<VkCommandBuffer> command_buffers; //one for each frame
+ };
+
+ Vector<SplitDrawListAllocator> split_draw_list_allocators;
+
+ struct DrawList {
+
+ VkCommandBuffer command_buffer; //if persistent, this is owned, otherwise it's shared with the ringbuffer
+
+ struct Validation {
+ bool active; //means command buffer was not closes, so you can keep adding things
+ ID framebuffer_format;
+ //actual render pass values
+ uint32_t dynamic_state;
+ ID vertex_format; //INVALID_ID if not set
+ uint32_t vertex_array_size; //0 if not set
+ uint32_t vertex_max_instances_allowed;
+ bool index_buffer_uses_restart_indices;
+ uint32_t index_array_size; //0 if index buffer not set
+ uint32_t index_array_max_index;
+ uint32_t index_array_offset;
+ Vector<uint32_t> set_hashes;
+ //last pipeline set values
+ bool pipeline_active;
+ uint32_t pipeline_dynamic_state;
+ ID pipeline_vertex_format;
+ bool pipeline_uses_restart_indices;
+ uint32_t pipeline_primitive_divisor;
+ uint32_t pipeline_primitive_minimum;
+ Vector<uint32_t> pipeline_set_hashes;
+
+ Validation() {
+ active = true;
+ dynamic_state = 0;
+ vertex_format = INVALID_ID;
+ vertex_array_size = INVALID_ID;
+ vertex_max_instances_allowed = 0xFFFFFFFF;
+ framebuffer_format = INVALID_ID;
+ index_array_size = 0; //not sent
+ index_array_max_index = 0; //not set
+ index_buffer_uses_restart_indices = false;
+
+ //pipeline state initalize
+ pipeline_active = false;
+ pipeline_dynamic_state = 0;
+ pipeline_vertex_format = INVALID_ID;
+ pipeline_uses_restart_indices = false;
+ }
+ } validation;
+ };
+
+ DrawList *draw_list; //one for regular draw lists, multiple for split.
+ uint32_t draw_list_count;
+ bool draw_list_split;
+ Vector<ID> draw_list_bound_textures;
+ bool draw_list_unbind_textures;
+
+ Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass);
+ Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents);
+ _FORCE_INLINE_ DrawList *_get_draw_list_ptr(ID p_id);
+
+ /**************************/
+ /**** FRAME MANAGEMENT ****/
+ /**************************/
+
+ // This is the frame structure. There are normally
+ // 3 of these (used for triple buffering), or 2
+ // (double buffering). They are cycled constantly.
+ //
+ // It contains two command buffers, one that is
+ // used internally for setting up (creating stuff)
+ // and another used mostly for drawing.
+ //
+ // They also contains a list of things that need
+ // to be disposed of when deleted, which can't
+ // happen immediately due to the asynchronous
+ // nature of the GPU. They will get deleted
+ // when the frame is cycled.
+
+ struct Frame {
+ //list in usage order, from last to free to first to free
+ List<Buffer> buffers_to_dispose_of;
+ List<Texture> textures_to_dispose_of;
+ List<Framebuffer> framebuffers_to_dispose_of;
+ List<VkSampler> samplers_to_dispose_of;
+ List<Shader> shaders_to_dispose_of;
+ List<VkBufferView> buffer_views_to_dispose_of;
+ List<UniformSet> uniform_sets_to_dispose_of;
+ List<RenderPipeline> pipelines_to_dispose_of;
+
+ VkCommandPool command_pool;
+ VkCommandBuffer setup_command_buffer; //used at the begining of every frame for set-up
+ VkCommandBuffer draw_command_buffer; //used at the begining of every frame for set-up
+ };
+
+ Frame *frames; //frames available, they are cycled (usually 3)
+ int frame; //current frame
+ int frame_count; //total amount of frames
+ uint64_t frames_drawn;
+
+ void _free_pending_resources();
+
+ VmaAllocator allocator;
+
+ VulkanContext *context;
+
+ void _free_internal(ID p_id);
+
+public:
+ virtual ID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<PoolVector<uint8_t> > &p_data = Vector<PoolVector<uint8_t> >());
+ virtual ID texture_create_shared(const TextureView &p_view, ID p_with_texture);
+ virtual Error texture_update(ID p_texture, uint32_t p_mipmap, uint32_t p_layer, const PoolVector<uint8_t> &p_data, bool p_sync_with_draw = false);
+
+ virtual bool texture_is_format_supported_for_usage(DataFormat p_format, TextureUsageBits p_usage) const;
+
+ /*********************/
+ /**** FRAMEBUFFER ****/
+ /*********************/
+
+ ID framebuffer_format_create(const Vector<AttachmentFormat> &p_format);
+
+ virtual ID framebuffer_create(const Vector<ID> &p_texture_attachments, ID p_format_check = INVALID_ID);
+
+ virtual ID framebuffer_get_format(ID p_framebuffer);
+
+ /*****************/
+ /**** SAMPLER ****/
+ /*****************/
+
+ virtual ID sampler_create(const SamplerState &p_state);
+
+ /**********************/
+ /**** VERTEX ARRAY ****/
+ /**********************/
+
+ virtual ID vertex_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
+
+ // Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated
+ virtual ID vertex_description_create(const Vector<VertexDescription> &p_vertex_descriptions);
+ virtual ID vertex_array_create(uint32_t p_vertex_count, ID p_vertex_description, const Vector<ID> &p_src_buffers);
+
+ virtual ID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>(), bool p_use_restart_indices = false);
+
+ virtual ID index_array_create(ID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
+
+ /****************/
+ /**** SHADER ****/
+ /****************/
+
+ virtual ID shader_create_from_source(const Vector<ShaderStageSource> &p_stages, String *r_error = NULL, bool p_allow_cache = true);
+
+ /*****************/
+ /**** UNIFORM ****/
+ /*****************/
+
+ virtual ID uniform_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
+ virtual ID storage_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
+ virtual ID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
+
+ virtual ID uniform_set_create(const Vector<Uniform> &p_uniforms, ID p_shader, uint32_t p_shader_set);
+
+ virtual Error buffer_update(ID p_buffer, uint32_t p_offset, uint32_t p_size, void *p_data, bool p_sync_with_draw = false); //works for any buffer
+
+ /*************************/
+ /**** RENDER PIPELINE ****/
+ /*************************/
+
+ virtual ID render_pipeline_create(ID p_shader, ID p_framebuffer_format, ID p_vertex_description, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0);
+
+ /****************/
+ /**** SCREEN ****/
+ /****************/
+
+ virtual int screen_get_width(int p_screen = 0) const;
+ virtual int screen_get_height(int p_screen = 0) const;
+ virtual ID screen_get_framebuffer_format() const;
+
+ /********************/
+ /**** DRAW LISTS ****/
+ /********************/
+
+ virtual ID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color());
+ virtual ID draw_list_begin(ID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
+ virtual Error draw_list_begin_split(ID p_framebuffer, uint32_t p_splits, ID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
+
+ virtual void draw_list_bind_render_pipeline(ID p_list, ID p_render_pipeline);
+ virtual void draw_list_bind_uniform_set(ID p_list, ID p_uniform_set, uint32_t p_index);
+ virtual void draw_list_bind_vertex_array(ID p_list, ID p_vertex_array);
+ virtual void draw_list_bind_index_array(ID p_list, ID p_index_array);
+
+ virtual void draw_list_draw(ID p_list, bool p_use_indices, uint32_t p_instances = 1);
+
+ virtual void draw_list_enable_scissor(ID p_list, const Rect2 &p_rect);
+ virtual void draw_list_disable_scissor(ID p_list);
+
+ virtual void draw_list_end();
+
+ virtual void free(ID p_id);
+
+ /**************/
+ /**** FREE ****/
+ /**************/
+
+ void initialize(VulkanContext *p_context);
+ void finalize();
+
+ void finalize_frame();
+ void advance_frame();
+
+ RenderingDeviceVulkan();
+};
+
+#endif // RENDERING_DEVICE_VULKAN_H