diff options
Diffstat (limited to 'drivers/vulkan/rendering_device_vulkan.h')
-rw-r--r-- | drivers/vulkan/rendering_device_vulkan.h | 830 |
1 files changed, 830 insertions, 0 deletions
diff --git a/drivers/vulkan/rendering_device_vulkan.h b/drivers/vulkan/rendering_device_vulkan.h new file mode 100644 index 0000000000..ca1cb89480 --- /dev/null +++ b/drivers/vulkan/rendering_device_vulkan.h @@ -0,0 +1,830 @@ +#ifndef RENDERING_DEVICE_VULKAN_H +#define RENDERING_DEVICE_VULKAN_H + +#include "core/oa_hash_map.h" +#include "core/os/thread_safe.h" +#include "servers/visual/rendering_device.h" +#include "thirdparty/glslang/glslang/Public/ShaderLang.h" +#include "vk_mem_alloc.h" +#include <vulkan/vulkan.h> + +//todo: +//compute +//push constants +//views of texture slices + +class VulkanContext; + +class RenderingDeviceVulkan : public RenderingDevice { + + _THREAD_SAFE_CLASS_ + + // Miscellaneous tables that map + // our enums to enums used + // by vulkan. + + VkPhysicalDeviceLimits limits; + static const VkFormat vulkan_formats[DATA_FORMAT_MAX]; + static const char *named_formats[DATA_FORMAT_MAX]; + static const VkCompareOp compare_operators[COMPARE_OP_MAX]; + static const VkStencilOp stencil_operations[STENCIL_OP_MAX]; + static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX]; + static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX]; + static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX]; + static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX]; + static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX]; + static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX]; + + // Functions used for format + // validation, and ensures the + // user passes valid data. + + static int get_format_vertex_size(DataFormat p_format); + static uint32_t get_image_format_pixel_size(DataFormat p_format); + static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h); + uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format); + static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format); + static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmap, uint32_t *r_blockw = NULL, uint32_t *r_blockh = NULL); + static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth); + + /***************************/ + /**** ID INFRASTRUCTURE ****/ + /***************************/ + + // Everything is exposed to the user + // as IDs instead of pointers. This + // has a negligible CPU performance + // impact (Open Addressing is used to + // improve cache efficiency), but + // makes sure the user can't screw up + // by providing a safety layer. + + enum IDType { + ID_TYPE_TEXTURE, + ID_TYPE_FRAMEBUFFER_FORMAT, + ID_TYPE_FRAMEBUFFER, + ID_TYPE_SAMPLER, + ID_TYPE_VERTEX_DESCRIPTION, + ID_TYPE_VERTEX_BUFFER, + ID_TYPE_INDEX_BUFFER, + ID_TYPE_VERTEX_ARRAY, + ID_TYPE_INDEX_ARRAY, + ID_TYPE_SHADER, + ID_TYPE_UNIFORM_BUFFER, + ID_TYPE_STORAGE_BUFFER, + ID_TYPE_TEXTURE_BUFFER, + ID_TYPE_UNIFORM_SET, + ID_TYPE_RENDER_PIPELINE, + ID_TYPE_DRAW_LIST_THREAD_CONTEXT, + ID_TYPE_DRAW_LIST, + ID_TYPE_SPLIT_DRAW_LIST, + ID_TYPE_MAX, + ID_BASE_SHIFT = 58 //5 bits for ID types + }; + + VkDevice device; + + // this is meant to be fast, not flexible + // so never keep pointers to the elements + // inside this structure + + template <class T, IDType id_type> + class ID_Pool { + ID counter; + OAHashMap<ID, T> map; + + public: + ID make_id(const T &p_instance) { + ID new_id = (ID(id_type) << ID_BASE_SHIFT) + counter; + counter++; + map.insert(new_id, p_instance); + return new_id; + } + + bool owns(ID p_id) const { + if (p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type) { + return false; + } + + return map.has(p_id); + } + + T *getornull(ID p_id) const { + if (p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type) { + return NULL; + } + + return map.lookup_ptr(p_id); + } + + void free(ID p_id) { + ERR_FAIL_COND(p_id <= 0 || (p_id >> ID_BASE_SHIFT) != id_type); + map.remove(p_id); + } + + ID_Pool() { + counter = 1; + } + }; + + Map<ID, Set<ID> > dependency_map; //IDs to IDs that depend on it + Map<ID, Set<ID> > reverse_dependency_map; //same as above, but in reverse + + void _add_dependency(ID p_id, ID p_depends_on); + void _free_dependencies(ID p_id); + + /*****************/ + /**** TEXTURE ****/ + /*****************/ + + // In Vulkan, the concept of textures does not exist, + // intead there is the image (the memory prety much, + // the view (how the memory is interpreted) and the + // sampler (how it's sampled from the shader). + // + // Texture here includes the first two stages, but + // It's possible to create textures sharing the image + // but with different views. The main use case for this + // is textures that can be read as both SRGB/Linear, + // or slices of a texture (a mipmap, a layer, a 3D slice) + // for a framebuffer to render into it. + + struct Texture { + + VkImage image; + VmaAllocation allocation; + VmaAllocationInfo allocation_info; + VkImageView view; + + TextureType type; + DataFormat format; + TextureSamples samples; + uint32_t width; + uint32_t height; + uint32_t depth; + uint32_t layers; + uint32_t mipmaps; + uint32_t usage_flags; + + VkImageLayout bound_layout; //layout used for reading + VkImageLayout reading_layout; //layout used for reading + uint32_t aspect_mask; + bool bound; //bound to framebffer + ID owner; + }; + + ID_Pool<Texture, ID_TYPE_TEXTURE> texture_owner; + uint32_t texture_upload_region_size_px; + + /*****************/ + /**** SAMPLER ****/ + /*****************/ + + ID_Pool<VkSampler, ID_TYPE_SAMPLER> sampler_owner; + + /***************************/ + /**** BUFFER MANAGEMENT ****/ + /***************************/ + + // These are temporary buffers on CPU memory that hold + // the information until the CPU fetches it and places it + // either on GPU buffers, or images (textures). It ensures + // updates are properly synchronized with whathever the + // GPU is doing. + // + // The logic here is as follows, only 3 of these + // blocks are created at the beginning (one per frame) + // they can each belong to a frame (assigned to current when + // used) and they can only be reused after the same frame is + // recycled. + // + // When CPU requires to allocate more than what is available, + // more of these buffers are created. If a limit is reached, + // then a fence will ensure will wait for blocks allocated + // in previous frames are processed. If that fails, then + // another fence will ensure everything pending for the current + // frame is processed (effectively stalling). + // + // See the comments in the code to understand better how it works. + + struct StagingBufferBlock { + VkBuffer buffer; + VmaAllocation allocation; + uint64_t frame_used; + uint32_t fill_amount; + }; + + Vector<StagingBufferBlock> staging_buffer_blocks; + int staging_buffer_current; + uint32_t staging_buffer_block_size; + uint64_t staging_buffer_max_size; + bool staging_buffer_used; + + Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false); + Error _insert_staging_block(); + + struct Buffer { + + uint32_t size; + VkBuffer buffer; + VmaAllocation allocation; + VkDescriptorBufferInfo buffer_info; //used for binding + Buffer() { + size = 0; + buffer = NULL; + allocation = NULL; + } + }; + + Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping); + Error _buffer_free(Buffer *p_buffer); + Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32); + + /*********************/ + /**** FRAMEBUFFER ****/ + /*********************/ + + // In Vulkan, framebuffers work similar to how they + // do in OpenGL, with the exception that + // the "format" (vkRenderPass) is not dynamic + // and must be more or less the same as the one + // used for the render pipelines. + + struct FramebufferFormatKey { + Vector<AttachmentFormat> attachments; + bool operator<(const FramebufferFormatKey &p_key) const { + + int as = attachments.size(); + int bs = p_key.attachments.size(); + if (as != bs) { + return as < bs; + } + + const AttachmentFormat *af_a = attachments.ptr(); + const AttachmentFormat *af_b = p_key.attachments.ptr(); + for (int i = 0; i < as; i++) { + const AttachmentFormat &a = af_a[i]; + const AttachmentFormat &b = af_b[i]; + if (a.format != b.format) { + return a.format < b.format; + } + if (a.samples != b.samples) { + return a.samples < b.samples; + } + if (a.usage_flags != b.usage_flags) { + return a.usage_flags < b.usage_flags; + } + } + + return false; //equal + } + }; + + VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count = NULL); + + // This is a cache and it's never freed, it ensures + // IDs for a given format are always unique. + Map<FramebufferFormatKey, ID> framebuffer_format_cache; + struct FramebufferFormat { + const Map<FramebufferFormatKey, ID>::Element *E; + VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec) + int color_attachments; //used for pipeline validation + }; + + Map<ID, FramebufferFormat> framebuffer_formats; + + struct Framebuffer { + ID format_id; + struct VersionKey { + InitialAction initial_action; + FinalAction final_action; + bool operator<(const VersionKey &p_key) const { + if (initial_action == p_key.initial_action) { + return final_action < p_key.final_action; + } else { + return initial_action < p_key.initial_action; + } + } + }; + + Vector<ID> texture_ids; + + struct Version { + VkFramebuffer framebuffer; + VkRenderPass render_pass; //this one is owned + }; + + Map<VersionKey, Version> framebuffers; + Size2 size; + }; + + ID_Pool<Framebuffer, ID_TYPE_FRAMEBUFFER> framebuffer_owner; + + /***********************/ + /**** VERTEX BUFFER ****/ + /***********************/ + + // Vertex buffers in Vulkan are similar to how + // they work in OpenGL, except that instead of + // an attribtue index, there is a buffer binding + // index (for binding the buffers in real-time) + // and a location index (what is used in the shader). + // + // This mapping is done here internally, and it's not + // exposed. + + ID_Pool<Buffer, ID_TYPE_VERTEX_BUFFER> vertex_buffer_owner; + + struct VertexDescriptionKey { + Vector<VertexDescription> vertex_descriptions; + int buffer_count; + bool operator<(const VertexDescriptionKey &p_key) const { + if (buffer_count != p_key.buffer_count) { + return buffer_count < p_key.buffer_count; + } + if (vertex_descriptions.size() != p_key.vertex_descriptions.size()) { + return vertex_descriptions.size() < p_key.vertex_descriptions.size(); + } else { + int vdc = vertex_descriptions.size(); + const VertexDescription *a_ptr = vertex_descriptions.ptr(); + const VertexDescription *b_ptr = p_key.vertex_descriptions.ptr(); + for (int i = 0; i < vdc; i++) { + const VertexDescription &a = a_ptr[i]; + const VertexDescription &b = b_ptr[i]; + + if (a.location != b.location) { + return a.location < b.location; + } + if (a.offset != b.offset) { + return a.offset < b.offset; + } + if (a.format != b.format) { + return a.format < b.format; + } + if (a.stride != b.stride) { + return a.stride < b.stride; + } + return a.frequency < b.frequency; + } + return false; //they are equal + } + } + }; + + // This is a cache and it's never freed, it ensures that + // ID used for a specific format always remain the same. + Map<VertexDescriptionKey, ID> vertex_description_cache; + struct VertexDescriptionCache { + const Map<VertexDescriptionKey, ID>::Element *E; + VkVertexInputBindingDescription *bindings; + VkVertexInputAttributeDescription *attributes; + VkPipelineVertexInputStateCreateInfo create_info; + }; + + Map<ID, VertexDescriptionCache> vertex_descriptions; + + struct VertexArray { + ID buffer; + ID description; + int vertex_count; + uint32_t max_instances_allowed; + + Vector<VkBuffer> buffers; //not owned, just referenced + Vector<VkDeviceSize> offsets; + }; + + ID_Pool<VertexArray, ID_TYPE_VERTEX_ARRAY> vertex_array_owner; + + struct IndexBuffer : public Buffer { + uint32_t max_index; //used for validation + uint32_t index_count; + VkIndexType index_type; + bool supports_restart_indices; + }; + + ID_Pool<IndexBuffer, ID_TYPE_INDEX_BUFFER> index_buffer_owner; + + struct IndexArray { + uint32_t max_index; //remember the maximum index here too, for validation + VkBuffer buffer; //not owned, inherited from index buffer + uint32_t offset; + uint32_t indices; + VkIndexType index_type; + bool supports_restart_indices; + }; + + ID_Pool<IndexArray, ID_TYPE_INDEX_ARRAY> index_array_owner; + + /****************/ + /**** SHADER ****/ + /****************/ + + // Shaders in Vulkan are just pretty much + // precompiled blocks of SPIR-V bytecode. They + // are most likely not really compiled to host + // assembly until a pipeline is created. + // + // When supplying the shaders, this implementation + // will use the reflection abilities of glslang to + // understand and cache everything required to + // create and use the descriptor sets (Vulkan's + // biggest pain). + // + // Additionally, hashes are created for every set + // to do quick validation and ensuring the user + // does not submit something invalid. + + struct Shader { + + struct UniformInfo { + UniformType type; + int binding; + uint32_t stages; + int length; //size of arrays (in total elements), or ubos (in bytes * total elements) + bool operator<(const UniformInfo &p_info) const { + if (type != p_info.type) { + return type < p_info.type; + } + if (binding != p_info.binding) { + return binding < p_info.binding; + } + if (stages != p_info.stages) { + return stages < p_info.stages; + } + return length < p_info.length; + } + }; + + struct Set { + + Vector<UniformInfo> uniform_info; + VkDescriptorSetLayout descriptor_set_layout; + }; + + Vector<int> vertex_input_locations; //inputs used, this is mostly for validation + int fragment_outputs; + + int max_output; + Vector<Set> sets; + Vector<uint32_t> set_hashes; + Vector<VkPipelineShaderStageCreateInfo> pipeline_stages; + VkPipelineLayout pipeline_layout; + }; + + bool _uniform_add_binding(Vector<Vector<VkDescriptorSetLayoutBinding> > &bindings, Vector<Vector<Shader::UniformInfo> > &uniform_infos, const glslang::TObjectReflection &reflection, RenderingDevice::ShaderStage p_stage, String *r_error); + + ID_Pool<Shader, ID_TYPE_SHADER> shader_owner; + + /******************/ + /**** UNIFORMS ****/ + /******************/ + + // Descriptor sets require allocation from a pool. + // The documentation on how to use pools properly + // is scarce, and the documentation is strange. + // + // Basically, you can mix and match pools as you + // like, but you'll run into fragmentation issues. + // Because of this, the recommended approach is to + // create a a pool for every descriptor set type, + // as this prevents fragmentation. + // + // This is implemented here as a having a list of + // pools (each can contain up to 64 sets) for each + // set layout. The amount of sets for each type + // is used as the key. + + enum { + MAX_DESCRIPTOR_POOL_ELEMENT = 65535 + }; + + struct DescriptorPoolKey { + union { + struct { + uint16_t uniform_type[UNIFORM_TYPE_MAX]; //using 16 bits because, for sending arrays, each element is a pool set. + }; + struct { + uint64_t key1; + uint64_t key2; + uint64_t key3; + }; + }; + bool operator<(const DescriptorPoolKey &p_key) const { + if (key1 != p_key.key1) { + return key1 < p_key.key1; + } + if (key2 != p_key.key2) { + return key2 < p_key.key2; + } + + return key3 < p_key.key3; + } + DescriptorPoolKey() { + key1 = 0; + key2 = 0; + key3 = 0; + } + }; + + struct DescriptorPool { + VkDescriptorPool pool; + uint32_t usage; + }; + + Map<DescriptorPoolKey, Set<DescriptorPool *> > descriptor_pools; + uint32_t max_descriptors_per_pool; + + DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key); + void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool); + + ID_Pool<Buffer, ID_TYPE_UNIFORM_BUFFER> uniform_buffer_owner; + ID_Pool<Buffer, ID_TYPE_STORAGE_BUFFER> storage_buffer_owner; + + //texture buffer needs a view + struct TextureBuffer { + Buffer buffer; + VkBufferView view; + }; + + ID_Pool<TextureBuffer, ID_TYPE_TEXTURE_BUFFER> texture_buffer_owner; + + // This structure contains the descriptor set. They _need_ to be allocated + // for a shader (and will be erased when this shader is erased), but should + // work for other shaders as long as the hash matches. This covers using + // them in shader variants. + // + // Keep also in mind that you can share buffers between descriptor sets, so + // the above restriction is not too serious. + + struct UniformSet { + uint32_t hash; + ID shader_id; + DescriptorPool *pool; + DescriptorPoolKey pool_key; + VkDescriptorSet descriptor_set; + VkPipelineLayout pipeline_layout; //not owned, inherited from shader + Vector<ID> textures; + }; + + ID_Pool<UniformSet, ID_TYPE_UNIFORM_SET> uniform_set_owner; + + /*******************/ + /**** PIPELINES ****/ + /*******************/ + + // Render pipeline contains ALL the + // information required for drawing. + // This includes all the rasterizer state + // as well as shader used, framebuffer format, + // etc. + // While the pipeline is just a single object + // (VkPipeline) a lot of values are also saved + // here to do validation (vulkan does none by + // default) and warn the user if something + // was not supplied as intended. + + struct RenderPipeline { + //Cached values for validation + ID framebuffer_format; + uint32_t dynamic_state; + ID vertex_format; + bool uses_restart_indices; + uint32_t primitive_minimum; + uint32_t primitive_divisor; + Vector<uint32_t> set_hashes; + //Actual pipeline + VkPipeline pipeline; + }; + + ID_Pool<RenderPipeline, ID_TYPE_RENDER_PIPELINE> pipeline_owner; + + /*******************/ + /**** DRAW LIST ****/ + /*******************/ + + // Draw list contains both the command buffer + // used for drawing as well as a LOT of + // information used for validation. This + // validation is cheap so most of it can + // also run in release builds. + + // When using split command lists, this is + // implemented internally using secondary command + // buffers. As they can be created in threads, + // each needs it's own command pool. + + struct SplitDrawListAllocator { + VkCommandPool command_pool; + Vector<VkCommandBuffer> command_buffers; //one for each frame + }; + + Vector<SplitDrawListAllocator> split_draw_list_allocators; + + struct DrawList { + + VkCommandBuffer command_buffer; //if persistent, this is owned, otherwise it's shared with the ringbuffer + + struct Validation { + bool active; //means command buffer was not closes, so you can keep adding things + ID framebuffer_format; + //actual render pass values + uint32_t dynamic_state; + ID vertex_format; //INVALID_ID if not set + uint32_t vertex_array_size; //0 if not set + uint32_t vertex_max_instances_allowed; + bool index_buffer_uses_restart_indices; + uint32_t index_array_size; //0 if index buffer not set + uint32_t index_array_max_index; + uint32_t index_array_offset; + Vector<uint32_t> set_hashes; + //last pipeline set values + bool pipeline_active; + uint32_t pipeline_dynamic_state; + ID pipeline_vertex_format; + bool pipeline_uses_restart_indices; + uint32_t pipeline_primitive_divisor; + uint32_t pipeline_primitive_minimum; + Vector<uint32_t> pipeline_set_hashes; + + Validation() { + active = true; + dynamic_state = 0; + vertex_format = INVALID_ID; + vertex_array_size = INVALID_ID; + vertex_max_instances_allowed = 0xFFFFFFFF; + framebuffer_format = INVALID_ID; + index_array_size = 0; //not sent + index_array_max_index = 0; //not set + index_buffer_uses_restart_indices = false; + + //pipeline state initalize + pipeline_active = false; + pipeline_dynamic_state = 0; + pipeline_vertex_format = INVALID_ID; + pipeline_uses_restart_indices = false; + } + } validation; + }; + + DrawList *draw_list; //one for regular draw lists, multiple for split. + uint32_t draw_list_count; + bool draw_list_split; + Vector<ID> draw_list_bound_textures; + bool draw_list_unbind_textures; + + Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass); + Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents); + _FORCE_INLINE_ DrawList *_get_draw_list_ptr(ID p_id); + + /**************************/ + /**** FRAME MANAGEMENT ****/ + /**************************/ + + // This is the frame structure. There are normally + // 3 of these (used for triple buffering), or 2 + // (double buffering). They are cycled constantly. + // + // It contains two command buffers, one that is + // used internally for setting up (creating stuff) + // and another used mostly for drawing. + // + // They also contains a list of things that need + // to be disposed of when deleted, which can't + // happen immediately due to the asynchronous + // nature of the GPU. They will get deleted + // when the frame is cycled. + + struct Frame { + //list in usage order, from last to free to first to free + List<Buffer> buffers_to_dispose_of; + List<Texture> textures_to_dispose_of; + List<Framebuffer> framebuffers_to_dispose_of; + List<VkSampler> samplers_to_dispose_of; + List<Shader> shaders_to_dispose_of; + List<VkBufferView> buffer_views_to_dispose_of; + List<UniformSet> uniform_sets_to_dispose_of; + List<RenderPipeline> pipelines_to_dispose_of; + + VkCommandPool command_pool; + VkCommandBuffer setup_command_buffer; //used at the begining of every frame for set-up + VkCommandBuffer draw_command_buffer; //used at the begining of every frame for set-up + }; + + Frame *frames; //frames available, they are cycled (usually 3) + int frame; //current frame + int frame_count; //total amount of frames + uint64_t frames_drawn; + + void _free_pending_resources(); + + VmaAllocator allocator; + + VulkanContext *context; + + void _free_internal(ID p_id); + +public: + virtual ID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<PoolVector<uint8_t> > &p_data = Vector<PoolVector<uint8_t> >()); + virtual ID texture_create_shared(const TextureView &p_view, ID p_with_texture); + virtual Error texture_update(ID p_texture, uint32_t p_mipmap, uint32_t p_layer, const PoolVector<uint8_t> &p_data, bool p_sync_with_draw = false); + + virtual bool texture_is_format_supported_for_usage(DataFormat p_format, TextureUsageBits p_usage) const; + + /*********************/ + /**** FRAMEBUFFER ****/ + /*********************/ + + ID framebuffer_format_create(const Vector<AttachmentFormat> &p_format); + + virtual ID framebuffer_create(const Vector<ID> &p_texture_attachments, ID p_format_check = INVALID_ID); + + virtual ID framebuffer_get_format(ID p_framebuffer); + + /*****************/ + /**** SAMPLER ****/ + /*****************/ + + virtual ID sampler_create(const SamplerState &p_state); + + /**********************/ + /**** VERTEX ARRAY ****/ + /**********************/ + + virtual ID vertex_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>()); + + // Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated + virtual ID vertex_description_create(const Vector<VertexDescription> &p_vertex_descriptions); + virtual ID vertex_array_create(uint32_t p_vertex_count, ID p_vertex_description, const Vector<ID> &p_src_buffers); + + virtual ID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>(), bool p_use_restart_indices = false); + + virtual ID index_array_create(ID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count); + + /****************/ + /**** SHADER ****/ + /****************/ + + virtual ID shader_create_from_source(const Vector<ShaderStageSource> &p_stages, String *r_error = NULL, bool p_allow_cache = true); + + /*****************/ + /**** UNIFORM ****/ + /*****************/ + + virtual ID uniform_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>()); + virtual ID storage_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>()); + virtual ID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>()); + + virtual ID uniform_set_create(const Vector<Uniform> &p_uniforms, ID p_shader, uint32_t p_shader_set); + + virtual Error buffer_update(ID p_buffer, uint32_t p_offset, uint32_t p_size, void *p_data, bool p_sync_with_draw = false); //works for any buffer + + /*************************/ + /**** RENDER PIPELINE ****/ + /*************************/ + + virtual ID render_pipeline_create(ID p_shader, ID p_framebuffer_format, ID p_vertex_description, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0); + + /****************/ + /**** SCREEN ****/ + /****************/ + + virtual int screen_get_width(int p_screen = 0) const; + virtual int screen_get_height(int p_screen = 0) const; + virtual ID screen_get_framebuffer_format() const; + + /********************/ + /**** DRAW LISTS ****/ + /********************/ + + virtual ID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color()); + virtual ID draw_list_begin(ID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2()); + virtual Error draw_list_begin_split(ID p_framebuffer, uint32_t p_splits, ID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2()); + + virtual void draw_list_bind_render_pipeline(ID p_list, ID p_render_pipeline); + virtual void draw_list_bind_uniform_set(ID p_list, ID p_uniform_set, uint32_t p_index); + virtual void draw_list_bind_vertex_array(ID p_list, ID p_vertex_array); + virtual void draw_list_bind_index_array(ID p_list, ID p_index_array); + + virtual void draw_list_draw(ID p_list, bool p_use_indices, uint32_t p_instances = 1); + + virtual void draw_list_enable_scissor(ID p_list, const Rect2 &p_rect); + virtual void draw_list_disable_scissor(ID p_list); + + virtual void draw_list_end(); + + virtual void free(ID p_id); + + /**************/ + /**** FREE ****/ + /**************/ + + void initialize(VulkanContext *p_context); + void finalize(); + + void finalize_frame(); + void advance_frame(); + + RenderingDeviceVulkan(); +}; + +#endif // RENDERING_DEVICE_VULKAN_H |