diff options
Diffstat (limited to 'scene/3d/gi_probe.cpp')
-rw-r--r-- | scene/3d/gi_probe.cpp | 1317 |
1 files changed, 622 insertions, 695 deletions
diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp index b22795e74d..cb1292a9d1 100644 --- a/scene/3d/gi_probe.cpp +++ b/scene/3d/gi_probe.cpp @@ -30,180 +30,158 @@ #include "mesh_instance.h" +void GIProbeData::set_bounds(const Rect3 &p_bounds) { -void GIProbeData::set_bounds(const Rect3& p_bounds) { - - VS::get_singleton()->gi_probe_set_bounds(probe,p_bounds); + VS::get_singleton()->gi_probe_set_bounds(probe, p_bounds); } -Rect3 GIProbeData::get_bounds() const{ +Rect3 GIProbeData::get_bounds() const { return VS::get_singleton()->gi_probe_get_bounds(probe); } void GIProbeData::set_cell_size(float p_size) { - VS::get_singleton()->gi_probe_set_cell_size(probe,p_size); - + VS::get_singleton()->gi_probe_set_cell_size(probe, p_size); } float GIProbeData::get_cell_size() const { return VS::get_singleton()->gi_probe_get_cell_size(probe); - } -void GIProbeData::set_to_cell_xform(const Transform& p_xform) { - - VS::get_singleton()->gi_probe_set_to_cell_xform(probe,p_xform); +void GIProbeData::set_to_cell_xform(const Transform &p_xform) { + VS::get_singleton()->gi_probe_set_to_cell_xform(probe, p_xform); } Transform GIProbeData::get_to_cell_xform() const { return VS::get_singleton()->gi_probe_get_to_cell_xform(probe); - } +void GIProbeData::set_dynamic_data(const PoolVector<int> &p_data) { -void GIProbeData::set_dynamic_data(const PoolVector<int>& p_data){ - - VS::get_singleton()->gi_probe_set_dynamic_data(probe,p_data); - + VS::get_singleton()->gi_probe_set_dynamic_data(probe, p_data); } -PoolVector<int> GIProbeData::get_dynamic_data() const{ +PoolVector<int> GIProbeData::get_dynamic_data() const { return VS::get_singleton()->gi_probe_get_dynamic_data(probe); } -void GIProbeData::set_dynamic_range(int p_range){ - - VS::get_singleton()->gi_probe_set_dynamic_range(probe,p_range); +void GIProbeData::set_dynamic_range(int p_range) { + VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range); } void GIProbeData::set_energy(float p_range) { - VS::get_singleton()->gi_probe_set_energy(probe,p_range); + VS::get_singleton()->gi_probe_set_energy(probe, p_range); } -float GIProbeData::get_energy() const{ +float GIProbeData::get_energy() const { return VS::get_singleton()->gi_probe_get_energy(probe); - } - void GIProbeData::set_bias(float p_range) { - VS::get_singleton()->gi_probe_set_bias(probe,p_range); + VS::get_singleton()->gi_probe_set_bias(probe, p_range); } -float GIProbeData::get_bias() const{ +float GIProbeData::get_bias() const { return VS::get_singleton()->gi_probe_get_bias(probe); - } - void GIProbeData::set_propagation(float p_range) { - VS::get_singleton()->gi_probe_set_propagation(probe,p_range); + VS::get_singleton()->gi_probe_set_propagation(probe, p_range); } -float GIProbeData::get_propagation() const{ +float GIProbeData::get_propagation() const { return VS::get_singleton()->gi_probe_get_propagation(probe); - } - void GIProbeData::set_interior(bool p_enable) { - VS::get_singleton()->gi_probe_set_interior(probe,p_enable); - + VS::get_singleton()->gi_probe_set_interior(probe, p_enable); } -bool GIProbeData::is_interior() const{ +bool GIProbeData::is_interior() const { return VS::get_singleton()->gi_probe_is_interior(probe); } - -bool GIProbeData::is_compressed() const{ +bool GIProbeData::is_compressed() const { return VS::get_singleton()->gi_probe_is_compressed(probe); } - void GIProbeData::set_compress(bool p_enable) { - VS::get_singleton()->gi_probe_set_compress(probe,p_enable); - + VS::get_singleton()->gi_probe_set_compress(probe, p_enable); } -int GIProbeData::get_dynamic_range() const{ - +int GIProbeData::get_dynamic_range() const { return VS::get_singleton()->gi_probe_get_dynamic_range(probe); } - RID GIProbeData::get_rid() const { return probe; } - void GIProbeData::_bind_methods() { - ClassDB::bind_method(D_METHOD("set_bounds","bounds"),&GIProbeData::set_bounds); - ClassDB::bind_method(D_METHOD("get_bounds"),&GIProbeData::get_bounds); + ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &GIProbeData::set_bounds); + ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds); - ClassDB::bind_method(D_METHOD("set_cell_size","cell_size"),&GIProbeData::set_cell_size); - ClassDB::bind_method(D_METHOD("get_cell_size"),&GIProbeData::get_cell_size); + ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &GIProbeData::set_cell_size); + ClassDB::bind_method(D_METHOD("get_cell_size"), &GIProbeData::get_cell_size); - ClassDB::bind_method(D_METHOD("set_to_cell_xform","to_cell_xform"),&GIProbeData::set_to_cell_xform); - ClassDB::bind_method(D_METHOD("get_to_cell_xform"),&GIProbeData::get_to_cell_xform); + ClassDB::bind_method(D_METHOD("set_to_cell_xform", "to_cell_xform"), &GIProbeData::set_to_cell_xform); + ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform); - ClassDB::bind_method(D_METHOD("set_dynamic_data","dynamic_data"),&GIProbeData::set_dynamic_data); - ClassDB::bind_method(D_METHOD("get_dynamic_data"),&GIProbeData::get_dynamic_data); + ClassDB::bind_method(D_METHOD("set_dynamic_data", "dynamic_data"), &GIProbeData::set_dynamic_data); + ClassDB::bind_method(D_METHOD("get_dynamic_data"), &GIProbeData::get_dynamic_data); - ClassDB::bind_method(D_METHOD("set_dynamic_range","dynamic_range"),&GIProbeData::set_dynamic_range); - ClassDB::bind_method(D_METHOD("get_dynamic_range"),&GIProbeData::get_dynamic_range); + ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range); + ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range); - ClassDB::bind_method(D_METHOD("set_energy","energy"),&GIProbeData::set_energy); - ClassDB::bind_method(D_METHOD("get_energy"),&GIProbeData::get_energy); + ClassDB::bind_method(D_METHOD("set_energy", "energy"), &GIProbeData::set_energy); + ClassDB::bind_method(D_METHOD("get_energy"), &GIProbeData::get_energy); - ClassDB::bind_method(D_METHOD("set_bias","bias"),&GIProbeData::set_bias); - ClassDB::bind_method(D_METHOD("get_bias"),&GIProbeData::get_bias); + ClassDB::bind_method(D_METHOD("set_bias", "bias"), &GIProbeData::set_bias); + ClassDB::bind_method(D_METHOD("get_bias"), &GIProbeData::get_bias); - ClassDB::bind_method(D_METHOD("set_propagation","propagation"),&GIProbeData::set_propagation); - ClassDB::bind_method(D_METHOD("get_propagation"),&GIProbeData::get_propagation); + ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation); + ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation); - ClassDB::bind_method(D_METHOD("set_interior","interior"),&GIProbeData::set_interior); - ClassDB::bind_method(D_METHOD("is_interior"),&GIProbeData::is_interior); + ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior); + ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior); - ClassDB::bind_method(D_METHOD("set_compress","compress"),&GIProbeData::set_compress); - ClassDB::bind_method(D_METHOD("is_compressed"),&GIProbeData::is_compressed); + ClassDB::bind_method(D_METHOD("set_compress", "compress"), &GIProbeData::set_compress); + ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbeData::is_compressed); - ADD_PROPERTY(PropertyInfo(Variant::RECT3,"bounds",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_bounds","get_bounds"); - ADD_PROPERTY(PropertyInfo(Variant::REAL,"cell_size",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_cell_size","get_cell_size"); - ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM,"to_cell_xform",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_to_cell_xform","get_to_cell_xform"); - - ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY,"dynamic_data",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_dynamic_data","get_dynamic_data"); - ADD_PROPERTY(PropertyInfo(Variant::INT,"dynamic_range",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_dynamic_range","get_dynamic_range"); - ADD_PROPERTY(PropertyInfo(Variant::REAL,"energy",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_energy","get_energy"); - ADD_PROPERTY(PropertyInfo(Variant::REAL,"bias",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_bias","get_bias"); - ADD_PROPERTY(PropertyInfo(Variant::REAL,"propagation",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_propagation","get_propagation"); - ADD_PROPERTY(PropertyInfo(Variant::BOOL,"interior",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_interior","is_interior"); - ADD_PROPERTY(PropertyInfo(Variant::BOOL,"compress",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_compress","is_compressed"); + ADD_PROPERTY(PropertyInfo(Variant::RECT3, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "cell_size", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_size", "get_cell_size"); + ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "to_cell_xform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_to_cell_xform", "get_to_cell_xform"); + ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY, "dynamic_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_data", "get_dynamic_data"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_range", "get_dynamic_range"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_energy", "get_energy"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bias", "get_bias"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_propagation", "get_propagation"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_interior", "is_interior"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_compress", "is_compressed"); } GIProbeData::GIProbeData() { - probe=VS::get_singleton()->gi_probe_create(); + probe = VS::get_singleton()->gi_probe_create(); } GIProbeData::~GIProbeData() { @@ -211,20 +189,18 @@ GIProbeData::~GIProbeData() { VS::get_singleton()->free(probe); } - ////////////////////// ////////////////////// - -void GIProbe::set_probe_data(const Ref<GIProbeData>& p_data) { +void GIProbe::set_probe_data(const Ref<GIProbeData> &p_data) { if (p_data.is_valid()) { - VS::get_singleton()->instance_set_base(get_instance(),p_data->get_rid()); + VS::get_singleton()->instance_set_base(get_instance(), p_data->get_rid()); } else { - VS::get_singleton()->instance_set_base(get_instance(),RID()); + VS::get_singleton()->instance_set_base(get_instance(), RID()); } - probe_data=p_data; + probe_data = p_data; } Ref<GIProbeData> GIProbe::get_probe_data() const { @@ -234,8 +210,8 @@ Ref<GIProbeData> GIProbe::get_probe_data() const { void GIProbe::set_subdiv(Subdiv p_subdiv) { - ERR_FAIL_INDEX(p_subdiv,SUBDIV_MAX); - subdiv=p_subdiv; + ERR_FAIL_INDEX(p_subdiv, SUBDIV_MAX); + subdiv = p_subdiv; update_gizmo(); } @@ -244,9 +220,9 @@ GIProbe::Subdiv GIProbe::get_subdiv() const { return subdiv; } -void GIProbe::set_extents(const Vector3& p_extents) { +void GIProbe::set_extents(const Vector3 &p_extents) { - extents=p_extents; + extents = p_extents; update_gizmo(); } @@ -257,7 +233,7 @@ Vector3 GIProbe::get_extents() const { void GIProbe::set_dynamic_range(int p_dynamic_range) { - dynamic_range=p_dynamic_range; + dynamic_range = p_dynamic_range; } int GIProbe::get_dynamic_range() const { @@ -266,7 +242,7 @@ int GIProbe::get_dynamic_range() const { void GIProbe::set_energy(float p_energy) { - energy=p_energy; + energy = p_energy; if (probe_data.is_valid()) { probe_data->set_energy(energy); } @@ -278,7 +254,7 @@ float GIProbe::get_energy() const { void GIProbe::set_bias(float p_bias) { - bias=p_bias; + bias = p_bias; if (probe_data.is_valid()) { probe_data->set_bias(bias); } @@ -290,7 +266,7 @@ float GIProbe::get_bias() const { void GIProbe::set_propagation(float p_propagation) { - propagation=p_propagation; + propagation = p_propagation; if (probe_data.is_valid()) { probe_data->set_propagation(propagation); } @@ -302,7 +278,7 @@ float GIProbe::get_propagation() const { void GIProbe::set_interior(bool p_enable) { - interior=p_enable; + interior = p_enable; if (probe_data.is_valid()) { probe_data->set_interior(p_enable); } @@ -313,10 +289,9 @@ bool GIProbe::is_interior() const { return interior; } - void GIProbe::set_compress(bool p_enable) { - compress=p_enable; + compress = p_enable; if (probe_data.is_valid()) { probe_data->set_compress(p_enable); } @@ -327,263 +302,287 @@ bool GIProbe::is_compressed() const { return compress; } - #include "math.h" -#define FINDMINMAX(x0,x1,x2,min,max) \ - min = max = x0; \ - if(x1<min) min=x1;\ - if(x1>max) max=x1;\ - if(x2<min) min=x2;\ - if(x2>max) max=x2; - -static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox) -{ - int q; - Vector3 vmin,vmax; - for(q=0;q<=2;q++) - { - if(normal[q]>0.0f) - { - vmin[q]=-maxbox[q]; - vmax[q]=maxbox[q]; - } - else - { - vmin[q]=maxbox[q]; - vmax[q]=-maxbox[q]; - } - } - if(normal.dot(vmin)+d>0.0f) return false; - if(normal.dot(vmax)+d>=0.0f) return true; - - return false; -} +#define FINDMINMAX(x0, x1, x2, min, max) \ + min = max = x0; \ + if (x1 < min) min = x1; \ + if (x1 > max) max = x1; \ + if (x2 < min) min = x2; \ + if (x2 > max) max = x2; + +static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { + int q; + Vector3 vmin, vmax; + for (q = 0; q <= 2; q++) { + if (normal[q] > 0.0f) { + vmin[q] = -maxbox[q]; + vmax[q] = maxbox[q]; + } else { + vmin[q] = maxbox[q]; + vmax[q] = -maxbox[q]; + } + } + if (normal.dot(vmin) + d > 0.0f) return false; + if (normal.dot(vmax) + d >= 0.0f) return true; + return false; +} /*======================== X-tests ========================*/ -#define AXISTEST_X01(a, b, fa, fb) \ - p0 = a*v0.y - b*v0.z; \ - p2 = a*v2.y - b*v2.z; \ - if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if(min>rad || max<-rad) return false; - -#define AXISTEST_X2(a, b, fa, fb) \ - p0 = a*v0.y - b*v0.z; \ - p1 = a*v1.y - b*v1.z; \ - if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if(min>rad || max<-rad) return false; +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p2 = a * v2.y - b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p1 = a * v1.y - b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; /*======================== Y-tests ========================*/ -#define AXISTEST_Y02(a, b, fa, fb) \ - p0 = -a*v0.x + b*v0.z; \ - p2 = -a*v2.x + b*v2.z; \ - if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if(min>rad || max<-rad) return false; - -#define AXISTEST_Y1(a, b, fa, fb) \ - p0 = -a*v0.x + b*v0.z; \ - p1 = -a*v1.x + b*v1.z; \ - if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if(min>rad || max<-rad) return false; +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p2 = -a * v2.x + b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p1 = -a * v1.x + b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; /*======================== Z-tests ========================*/ -#define AXISTEST_Z12(a, b, fa, fb) \ - p1 = a*v1.x - b*v1.y; \ - p2 = a*v2.x - b*v2.y; \ - if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if(min>rad || max<-rad) return false; - -#define AXISTEST_Z0(a, b, fa, fb) \ - p0 = a*v0.x - b*v0.y; \ - p1 = a*v1.x - b*v1.y; \ - if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if(min>rad || max<-rad) return false; - -static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) { - - /* use separating axis theorem to test overlap between triangle and box */ - /* need to test for overlap in these directions: */ - /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ - /* we do not even need to test these) */ - /* 2) normal of the triangle */ - /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ - /* this gives 3x3=9 more tests */ - Vector3 v0,v1,v2; - float min,max,d,p0,p1,p2,rad,fex,fey,fez; - Vector3 normal,e0,e1,e2; - - /* This is the fastest branch on Sun */ - /* move everything so that the boxcenter is in (0,0,0) */ - - v0=triverts[0]-boxcenter; - v1=triverts[1]-boxcenter; - v2=triverts[2]-boxcenter; - - /* compute triangle edges */ - e0=v1-v0; /* tri edge 0 */ - e1=v2-v1; /* tri edge 1 */ - e2=v0-v2; /* tri edge 2 */ - - /* Bullet 3: */ - /* test the 9 tests first (this was faster) */ - fex = Math::abs(e0.x); - fey = Math::abs(e0.y); - fez = Math::abs(e0.z); - AXISTEST_X01(e0.z, e0.y, fez, fey); - AXISTEST_Y02(e0.z, e0.x, fez, fex); - AXISTEST_Z12(e0.y, e0.x, fey, fex); - - fex = Math::abs(e1.x); - fey = Math::abs(e1.y); - fez = Math::abs(e1.z); - AXISTEST_X01(e1.z, e1.y, fez, fey); - AXISTEST_Y02(e1.z, e1.x, fez, fex); - AXISTEST_Z0(e1.y, e1.x, fey, fex); - - fex = Math::abs(e2.x); - fey = Math::abs(e2.y); - fez = Math::abs(e2.z); - AXISTEST_X2(e2.z, e2.y, fez, fey); - AXISTEST_Y1(e2.z, e2.x, fez, fex); - AXISTEST_Z12(e2.y, e2.x, fey, fex); - - /* Bullet 1: */ - /* first test overlap in the {x,y,z}-directions */ - /* find min, max of the triangle each direction, and test for overlap in */ - /* that direction -- this is equivalent to testing a minimal AABB around */ - /* the triangle against the AABB */ - - /* test in X-direction */ - FINDMINMAX(v0.x,v1.x,v2.x,min,max); - if(min>boxhalfsize.x || max<-boxhalfsize.x) return false; - - /* test in Y-direction */ - FINDMINMAX(v0.y,v1.y,v2.y,min,max); - if(min>boxhalfsize.y || max<-boxhalfsize.y) return false; - - /* test in Z-direction */ - FINDMINMAX(v0.z,v1.z,v2.z,min,max); - if(min>boxhalfsize.z || max<-boxhalfsize.z) return false; - - /* Bullet 2: */ - /* test if the box intersects the plane of the triangle */ - /* compute plane equation of triangle: normal*x+d=0 */ - normal=e0.cross(e1); - d=-normal.dot(v0); /* plane eq: normal.x+d=0 */ - if(!planeBoxOverlap(normal,d,boxhalfsize)) return false; - - return true; /* box and triangle overlaps */ +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a * v1.x - b * v1.y; \ + p2 = a * v2.x - b * v2.y; \ + if (p2 < p1) { \ + min = p2; \ + max = p1; \ + } else { \ + min = p1; \ + max = p2; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a * v0.x - b * v0.y; \ + p1 = a * v1.x - b * v1.y; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) return false; + +static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { + + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + Vector3 v0, v1, v2; + float min, max, d, p0, p1, p2, rad, fex, fey, fez; + Vector3 normal, e0, e1, e2; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + + v0 = triverts[0] - boxcenter; + v1 = triverts[1] - boxcenter; + v2 = triverts[2] - boxcenter; + + /* compute triangle edges */ + e0 = v1 - v0; /* tri edge 0 */ + e1 = v2 - v1; /* tri edge 1 */ + e2 = v0 - v2; /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = Math::abs(e0.x); + fey = Math::abs(e0.y); + fez = Math::abs(e0.z); + AXISTEST_X01(e0.z, e0.y, fez, fey); + AXISTEST_Y02(e0.z, e0.x, fez, fex); + AXISTEST_Z12(e0.y, e0.x, fey, fex); + + fex = Math::abs(e1.x); + fey = Math::abs(e1.y); + fez = Math::abs(e1.z); + AXISTEST_X01(e1.z, e1.y, fez, fey); + AXISTEST_Y02(e1.z, e1.x, fez, fex); + AXISTEST_Z0(e1.y, e1.x, fey, fex); + + fex = Math::abs(e2.x); + fey = Math::abs(e2.y); + fez = Math::abs(e2.z); + AXISTEST_X2(e2.z, e2.y, fez, fey); + AXISTEST_Y1(e2.z, e2.x, fez, fex); + AXISTEST_Z12(e2.y, e2.x, fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; + + /* test in Y-direction */ + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; + + /* test in Z-direction */ + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + normal = e0.cross(e1); + d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ + if (!planeBoxOverlap(normal, d, boxhalfsize)) return false; + + return true; /* box and triangle overlaps */ } +static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) { - -static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) { - - if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2) + if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) return p_uv[0]; - if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2) + if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) return p_uv[1]; - if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2) + if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) return p_uv[2]; Vector3 v0 = p_vtx[1] - p_vtx[0]; Vector3 v1 = p_vtx[2] - p_vtx[0]; Vector3 v2 = p_pos - p_vtx[0]; - float d00 = v0.dot( v0); - float d01 = v0.dot( v1); - float d11 = v1.dot( v1); - float d20 = v2.dot( v0); - float d21 = v2.dot( v1); + float d00 = v0.dot(v0); + float d01 = v0.dot(v1); + float d11 = v1.dot(v1); + float d20 = v2.dot(v0); + float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); - if (denom==0) + if (denom == 0) return p_uv[0]; float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; - return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w; + return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; } -void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const Vector3 *p_vtx, const Vector2* p_uv, const Baker::MaterialCache& p_material, const Rect3 &p_aabb,Baker *p_baker) { - - +void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const Rect3 &p_aabb, Baker *p_baker) { - if (p_level==p_baker->cell_subdiv-1) { + if (p_level == p_baker->cell_subdiv - 1) { //plot the face by guessing it's albedo and emission value //find best axis to map to, for scanning values int closest_axis; float closest_dot; - Plane plane = Plane(p_vtx[0],p_vtx[1],p_vtx[2]); + Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 normal = plane.normal; - for(int i=0;i<3;i++) { + for (int i = 0; i < 3; i++) { Vector3 axis; - axis[i]=1.0; - float dot=ABS(normal.dot(axis)); - if (i==0 || dot>closest_dot) { - closest_axis=i; - closest_dot=dot; + axis[i] = 1.0; + float dot = ABS(normal.dot(axis)); + if (i == 0 || dot > closest_dot) { + closest_axis = i; + closest_dot = dot; } } - Vector3 axis; - axis[closest_axis]=1.0; + axis[closest_axis] = 1.0; Vector3 t1; - t1[(closest_axis+1)%3]=1.0; + t1[(closest_axis + 1) % 3] = 1.0; Vector3 t2; - t2[(closest_axis+2)%3]=1.0; + t2[(closest_axis + 2) % 3] = 1.0; - t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width); - t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width); + t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); + t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); Color albedo_accum; Color emission_accum; Vector3 normal_accum; - float alpha=0.0; + float alpha = 0.0; //map to a grid average in the best axis for this face - for(int i=0;i<color_scan_cell_width;i++) { + for (int i = 0; i < color_scan_cell_width; i++) { - Vector3 ofs_i=float(i)*t1; + Vector3 ofs_i = float(i) * t1; - for(int j=0;j<color_scan_cell_width;j++) { + for (int j = 0; j < color_scan_cell_width; j++) { - Vector3 ofs_j=float(j)*t2; + Vector3 ofs_j = float(j) * t2; - Vector3 from = p_aabb.pos+ofs_i+ofs_j; + Vector3 from = p_aabb.pos + ofs_i + ofs_j; Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; - Vector3 half = (to-from)*0.5; + Vector3 half = (to - from) * 0.5; //is in this cell? - if (!fast_tri_box_overlap(from+half,half,p_vtx)) { + if (!fast_tri_box_overlap(from + half, half, p_vtx)) { continue; //face does not span this cell } //go from -size to +size*2 to avoid skipping collisions - Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis]; - Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2; + Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; + Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; - if (normal.dot(ray_from-ray_to)<0) { - SWAP(ray_from,ray_to); + if (normal.dot(ray_from - ray_to) < 0) { + SWAP(ray_from, ray_to); } Vector3 intersection; - if (!plane.intersects_segment(ray_from,ray_to,&intersection)) { + if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { intersection = plane.project(ray_from); } else { @@ -592,96 +591,91 @@ void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const V } } - intersection=Face3(p_vtx[0],p_vtx[1],p_vtx[2]).get_closest_point_to(intersection); - - Vector2 uv = get_uv(intersection,p_vtx,p_uv); + intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); + Vector2 uv = get_uv(intersection, p_vtx, p_uv); - int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1); - int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1); + int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int ofs = uv_y*bake_texture_size+uv_x; - albedo_accum.r+=p_material.albedo[ofs].r; - albedo_accum.g+=p_material.albedo[ofs].g; - albedo_accum.b+=p_material.albedo[ofs].b; - albedo_accum.a+=p_material.albedo[ofs].a; + int ofs = uv_y * bake_texture_size + uv_x; + albedo_accum.r += p_material.albedo[ofs].r; + albedo_accum.g += p_material.albedo[ofs].g; + albedo_accum.b += p_material.albedo[ofs].b; + albedo_accum.a += p_material.albedo[ofs].a; - emission_accum.r+=p_material.emission[ofs].r; - emission_accum.g+=p_material.emission[ofs].g; - emission_accum.b+=p_material.emission[ofs].b; + emission_accum.r += p_material.emission[ofs].r; + emission_accum.g += p_material.emission[ofs].g; + emission_accum.b += p_material.emission[ofs].b; - normal_accum+=normal; - - alpha+=1.0; + normal_accum += normal; + alpha += 1.0; } } - - if (alpha==0) { + if (alpha == 0) { //could not in any way get texture information.. so use closest point to center - Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]); - Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5); + Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); + Vector3 inters = f.get_closest_point_to(p_aabb.pos + p_aabb.size * 0.5); - Vector2 uv = get_uv(inters,p_vtx,p_uv); + Vector2 uv = get_uv(inters, p_vtx, p_uv); - int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1); - int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1); + int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int ofs = uv_y*bake_texture_size+uv_x; + int ofs = uv_y * bake_texture_size + uv_x; - alpha = 1.0/(color_scan_cell_width*color_scan_cell_width); + alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); - albedo_accum.r=p_material.albedo[ofs].r*alpha; - albedo_accum.g=p_material.albedo[ofs].g*alpha; - albedo_accum.b=p_material.albedo[ofs].b*alpha; - albedo_accum.a=p_material.albedo[ofs].a*alpha; + albedo_accum.r = p_material.albedo[ofs].r * alpha; + albedo_accum.g = p_material.albedo[ofs].g * alpha; + albedo_accum.b = p_material.albedo[ofs].b * alpha; + albedo_accum.a = p_material.albedo[ofs].a * alpha; - emission_accum.r=p_material.emission[ofs].r*alpha; - emission_accum.g=p_material.emission[ofs].g*alpha; - emission_accum.b=p_material.emission[ofs].b*alpha; - - normal_accum*=alpha; + emission_accum.r = p_material.emission[ofs].r * alpha; + emission_accum.g = p_material.emission[ofs].g * alpha; + emission_accum.b = p_material.emission[ofs].b * alpha; + normal_accum *= alpha; } else { - float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width); - alpha*=accdiv; - - albedo_accum.r*=accdiv; - albedo_accum.g*=accdiv; - albedo_accum.b*=accdiv; - albedo_accum.a*=accdiv; + float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); + alpha *= accdiv; - emission_accum.r*=accdiv; - emission_accum.g*=accdiv; - emission_accum.b*=accdiv; + albedo_accum.r *= accdiv; + albedo_accum.g *= accdiv; + albedo_accum.b *= accdiv; + albedo_accum.a *= accdiv; - normal_accum*=accdiv; + emission_accum.r *= accdiv; + emission_accum.g *= accdiv; + emission_accum.b *= accdiv; + normal_accum *= accdiv; } //put this temporarily here, corrected in a later step - p_baker->bake_cells[p_idx].albedo[0]+=albedo_accum.r; - p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g; - p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b; - p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r; - p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g; - p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b; - p_baker->bake_cells[p_idx].normal[0]+=normal_accum.x; - p_baker->bake_cells[p_idx].normal[1]+=normal_accum.y; - p_baker->bake_cells[p_idx].normal[2]+=normal_accum.z; - p_baker->bake_cells[p_idx].alpha+=alpha; - - static const Vector3 side_normals[6]={ + p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r; + p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g; + p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b; + p_baker->bake_cells[p_idx].emission[0] += emission_accum.r; + p_baker->bake_cells[p_idx].emission[1] += emission_accum.g; + p_baker->bake_cells[p_idx].emission[2] += emission_accum.b; + p_baker->bake_cells[p_idx].normal[0] += normal_accum.x; + p_baker->bake_cells[p_idx].normal[1] += normal_accum.y; + p_baker->bake_cells[p_idx].normal[2] += normal_accum.z; + p_baker->bake_cells[p_idx].alpha += alpha; + + static const Vector3 side_normals[6] = { Vector3(-1, 0, 0), - Vector3( 1, 0, 0), - Vector3( 0,-1, 0), - Vector3( 0, 1, 0), - Vector3( 0, 0,-1), - Vector3( 0, 0, 1), + Vector3(1, 0, 0), + Vector3(0, -1, 0), + Vector3(0, 1, 0), + Vector3(0, 0, -1), + Vector3(0, 0, 1), }; /* @@ -691,104 +685,95 @@ void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const V } }*/ - } else { //go down - int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1); - for(int i=0;i<8;i++) { + int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1); + for (int i = 0; i < 8; i++) { - Rect3 aabb=p_aabb; - aabb.size*=0.5; + Rect3 aabb = p_aabb; + aabb.size *= 0.5; - int nx=p_x; - int ny=p_y; - int nz=p_z; + int nx = p_x; + int ny = p_y; + int nz = p_z; - if (i&1) { - aabb.pos.x+=aabb.size.x; - nx+=half; + if (i & 1) { + aabb.pos.x += aabb.size.x; + nx += half; } - if (i&2) { - aabb.pos.y+=aabb.size.y; - ny+=half; + if (i & 2) { + aabb.pos.y += aabb.size.y; + ny += half; } - if (i&4) { - aabb.pos.z+=aabb.size.z; - nz+=half; + if (i & 4) { + aabb.pos.z += aabb.size.z; + nz += half; } //make sure to not plot beyond limits - if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2]) + if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2]) continue; { - Rect3 test_aabb=aabb; + Rect3 test_aabb = aabb; //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time - Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test + Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test - if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) { - //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { + if (!fast_tri_box_overlap(test_aabb.pos + qsize, qsize, p_vtx)) { + //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { //does not fit in child, go on continue; } - } - if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) { + if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) { //sub cell must be created uint32_t child_idx = p_baker->bake_cells.size(); - p_baker->bake_cells[p_idx].childs[i]=child_idx; - p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1); - p_baker->bake_cells[child_idx].level=p_level+1; - + p_baker->bake_cells[p_idx].childs[i] = child_idx; + p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1); + p_baker->bake_cells[child_idx].level = p_level + 1; } - - _plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker); + _plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker); } } } +void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) { - -void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker *p_baker) { - - - - if (p_level==p_baker->cell_subdiv-1) { + if (p_level == p_baker->cell_subdiv - 1) { p_baker->leaf_voxel_count++; float alpha = p_baker->bake_cells[p_idx].alpha; - p_baker->bake_cells[p_idx].albedo[0]/=alpha; - p_baker->bake_cells[p_idx].albedo[1]/=alpha; - p_baker->bake_cells[p_idx].albedo[2]/=alpha; + p_baker->bake_cells[p_idx].albedo[0] /= alpha; + p_baker->bake_cells[p_idx].albedo[1] /= alpha; + p_baker->bake_cells[p_idx].albedo[2] /= alpha; //transfer emission to light - p_baker->bake_cells[p_idx].emission[0]/=alpha; - p_baker->bake_cells[p_idx].emission[1]/=alpha; - p_baker->bake_cells[p_idx].emission[2]/=alpha; + p_baker->bake_cells[p_idx].emission[0] /= alpha; + p_baker->bake_cells[p_idx].emission[1] /= alpha; + p_baker->bake_cells[p_idx].emission[2] /= alpha; - p_baker->bake_cells[p_idx].normal[0]/=alpha; - p_baker->bake_cells[p_idx].normal[1]/=alpha; - p_baker->bake_cells[p_idx].normal[2]/=alpha; + p_baker->bake_cells[p_idx].normal[0] /= alpha; + p_baker->bake_cells[p_idx].normal[1] /= alpha; + p_baker->bake_cells[p_idx].normal[2] /= alpha; - Vector3 n(p_baker->bake_cells[p_idx].normal[0],p_baker->bake_cells[p_idx].normal[1],p_baker->bake_cells[p_idx].normal[2]); - if (n.length()<0.01) { + Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]); + if (n.length() < 0.01) { //too much fight over normal, zero it - p_baker->bake_cells[p_idx].normal[0]=0; - p_baker->bake_cells[p_idx].normal[1]=0; - p_baker->bake_cells[p_idx].normal[2]=0; + p_baker->bake_cells[p_idx].normal[0] = 0; + p_baker->bake_cells[p_idx].normal[1] = 0; + p_baker->bake_cells[p_idx].normal[2] = 0; } else { n.normalize(); - p_baker->bake_cells[p_idx].normal[0]=n.x; - p_baker->bake_cells[p_idx].normal[1]=n.y; - p_baker->bake_cells[p_idx].normal[2]=n.z; + p_baker->bake_cells[p_idx].normal[0] = n.x; + p_baker->bake_cells[p_idx].normal[1] = n.y; + p_baker->bake_cells[p_idx].normal[2] = n.z; } - - p_baker->bake_cells[p_idx].alpha=1.0; + p_baker->bake_cells[p_idx].alpha = 1.0; /* //remove neighbours from used sides @@ -856,60 +841,54 @@ void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker */ } else { - //go down - float alpha_average=0; - int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1); - for(int i=0;i<8;i++) { + float alpha_average = 0; + int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1); + for (int i = 0; i < 8; i++) { uint32_t child = p_baker->bake_cells[p_idx].childs[i]; - if (child==Baker::CHILD_EMPTY) + if (child == Baker::CHILD_EMPTY) continue; + int nx = p_x; + int ny = p_y; + int nz = p_z; - int nx=p_x; - int ny=p_y; - int nz=p_z; - - if (i&1) - nx+=half; - if (i&2) - ny+=half; - if (i&4) - nz+=half; + if (i & 1) + nx += half; + if (i & 2) + ny += half; + if (i & 4) + nz += half; - _fixup_plot(child,p_level+1,nx,ny,nz,p_baker); - alpha_average+=p_baker->bake_cells[child].alpha; + _fixup_plot(child, p_level + 1, nx, ny, nz, p_baker); + alpha_average += p_baker->bake_cells[child].alpha; } - p_baker->bake_cells[p_idx].alpha=alpha_average/8.0; - p_baker->bake_cells[p_idx].emission[0]=0; - p_baker->bake_cells[p_idx].emission[1]=0; - p_baker->bake_cells[p_idx].emission[2]=0; - p_baker->bake_cells[p_idx].normal[0]=0; - p_baker->bake_cells[p_idx].normal[1]=0; - p_baker->bake_cells[p_idx].normal[2]=0; - p_baker->bake_cells[p_idx].albedo[0]=0; - p_baker->bake_cells[p_idx].albedo[1]=0; - p_baker->bake_cells[p_idx].albedo[2]=0; - + p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0; + p_baker->bake_cells[p_idx].emission[0] = 0; + p_baker->bake_cells[p_idx].emission[1] = 0; + p_baker->bake_cells[p_idx].emission[2] = 0; + p_baker->bake_cells[p_idx].normal[0] = 0; + p_baker->bake_cells[p_idx].normal[1] = 0; + p_baker->bake_cells[p_idx].normal[2] = 0; + p_baker->bake_cells[p_idx].albedo[0] = 0; + p_baker->bake_cells[p_idx].albedo[1] = 0; + p_baker->bake_cells[p_idx].albedo[2] = 0; } - } - - -Vector<Color> GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) { +Vector<Color> GIProbe::_get_bake_texture(Image &p_image, const Color &p_color) { Vector<Color> ret; if (p_image.empty()) { - ret.resize(bake_texture_size*bake_texture_size); - for(int i=0;i<bake_texture_size*bake_texture_size;i++) { - ret[i]=p_color; + ret.resize(bake_texture_size * bake_texture_size); + for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { + ret[i] = p_color; } return ret; @@ -920,27 +899,24 @@ Vector<Color> GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) { p_image.decompress(); } p_image.convert(Image::FORMAT_RGBA8); - p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC); - + p_image.resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); PoolVector<uint8_t>::Read r = p_image.get_data().read(); - ret.resize(bake_texture_size*bake_texture_size); + ret.resize(bake_texture_size * bake_texture_size); - for(int i=0;i<bake_texture_size*bake_texture_size;i++) { + for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { Color c; - c.r = r[i*4+0]/255.0; - c.g = r[i*4+1]/255.0; - c.b = r[i*4+2]/255.0; - c.a = r[i*4+3]/255.0; - ret[i]=c; - + c.r = r[i * 4 + 0] / 255.0; + c.g = r[i * 4 + 1] / 255.0; + c.b = r[i * 4 + 2] / 255.0; + c.a = r[i * 4 + 3] / 255.0; + ret[i] = c; } return ret; } - -GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material,Baker *p_baker) { +GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material, Baker *p_baker) { //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref<FixedSpatialMaterial> mat = p_material; @@ -962,17 +938,16 @@ GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_mater img_albedo = albedo_tex->get_data(); } else { - } - mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo()); + mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo()); Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION); Color emission_col = mat->get_emission(); - emission_col.r*=mat->get_emission_energy(); - emission_col.g*=mat->get_emission_energy(); - emission_col.b*=mat->get_emission_energy(); + emission_col.r *= mat->get_emission_energy(); + emission_col.g *= mat->get_emission_energy(); + emission_col.b *= mat->get_emission_energy(); Image img_emission; @@ -981,122 +956,110 @@ GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_mater img_emission = emission_tex->get_data(); } - mc.emission=_get_bake_texture(img_emission,emission_col); + mc.emission = _get_bake_texture(img_emission, emission_col); } else { Image empty; - mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7)); - mc.emission=_get_bake_texture(empty,Color(0,0,0)); - - + mc.albedo = _get_bake_texture(empty, Color(0.7, 0.7, 0.7)); + mc.emission = _get_bake_texture(empty, Color(0, 0, 0)); } - p_baker->material_cache[p_material]=mc; + p_baker->material_cache[p_material] = mc; return mc; - - } -void GIProbe::_plot_mesh(const Transform& p_xform, Ref<Mesh>& p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { +void GIProbe::_plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { + for (int i = 0; i < p_mesh->get_surface_count(); i++) { - for(int i=0;i<p_mesh->get_surface_count();i++) { - - if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) + if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles Ref<Material> src_material; if (p_override_material.is_valid()) { - src_material=p_override_material; - } else if (i<p_materials.size() && p_materials[i].is_valid()) { - src_material=p_materials[i]; + src_material = p_override_material; + } else if (i < p_materials.size() && p_materials[i].is_valid()) { + src_material = p_materials[i]; } else { - src_material=p_mesh->surface_get_material(i); - + src_material = p_mesh->surface_get_material(i); } - Baker::MaterialCache material = _get_material_cache(src_material,p_baker); + Baker::MaterialCache material = _get_material_cache(src_material, p_baker); Array a = p_mesh->surface_get_arrays(i); - PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3>::Read vr=vertices.read(); + PoolVector<Vector3>::Read vr = vertices.read(); PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; PoolVector<Vector2>::Read uvr; PoolVector<int> index = a[Mesh::ARRAY_INDEX]; - bool read_uv=false; + bool read_uv = false; if (uv.size()) { - uvr=uv.read(); - read_uv=true; + uvr = uv.read(); + read_uv = true; } if (index.size()) { - int facecount = index.size()/3; - PoolVector<int>::Read ir=index.read(); + int facecount = index.size() / 3; + PoolVector<int>::Read ir = index.read(); - for(int j=0;j<facecount;j++) { + for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; - for(int k=0;k<3;k++) { - vtxs[k]=p_xform.xform(vr[ir[j*3+k]]); + for (int k = 0; k < 3; k++) { + vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); } if (read_uv) { - for(int k=0;k<3;k++) { - uvs[k]=uvr[ir[j*3+k]]; + for (int k = 0; k < 3; k++) { + uvs[k] = uvr[ir[j * 3 + k]]; } } //test against original bounds - if (!fast_tri_box_overlap(-extents,extents*2,vtxs)) + if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) continue; //plot - _plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker); + _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); } - - } else { - int facecount = vertices.size()/3; + int facecount = vertices.size() / 3; - for(int j=0;j<facecount;j++) { + for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; - for(int k=0;k<3;k++) { - vtxs[k]=p_xform.xform(vr[j*3+k]); + for (int k = 0; k < 3; k++) { + vtxs[k] = p_xform.xform(vr[j * 3 + k]); } if (read_uv) { - for(int k=0;k<3;k++) { - uvs[k]=uvr[j*3+k]; + for (int k = 0; k < 3; k++) { + uvs[k] = uvr[j * 3 + k]; } } //test against original bounds - if (!fast_tri_box_overlap(-extents,extents*2,vtxs)) + if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) continue; //plot face - _plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker); + _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); } - } } } - - -void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){ +void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { MeshInstance *mi = p_at_node->cast_to<MeshInstance>(); if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT)) { @@ -1107,16 +1070,15 @@ void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){ Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); - if (Rect3(-extents,extents*2).intersects(xf.xform(aabb))) { + if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) { Baker::PlotMesh pm; - pm.local_xform=xf; - pm.mesh=mesh; - for(int i=0;i<mesh->get_surface_count();i++) { + pm.local_xform = xf; + pm.mesh = mesh; + for (int i = 0; i < mesh->get_surface_count(); i++) { pm.instance_materials.push_back(mi->get_surface_material(i)); } - pm.override_material=mi->get_material_override(); + pm.override_material = mi->get_material_override(); p_baker->mesh_list.push_back(pm); - } } } @@ -1125,10 +1087,10 @@ void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){ Spatial *s = p_at_node->cast_to<Spatial>(); Array meshes = p_at_node->call("get_meshes"); - for(int i=0;i<meshes.size();i+=2) { + for (int i = 0; i < meshes.size(); i += 2) { Transform mxf = meshes[i]; - Ref<Mesh> mesh = meshes[i+1]; + Ref<Mesh> mesh = meshes[i + 1]; if (!mesh.is_valid()) continue; @@ -1136,166 +1098,151 @@ void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){ Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf); - if (Rect3(-extents,extents*2).intersects(xf.xform(aabb))) { + if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) { Baker::PlotMesh pm; - pm.local_xform=xf; - pm.mesh=mesh; + pm.local_xform = xf; + pm.mesh = mesh; p_baker->mesh_list.push_back(pm); - } } } - for(int i=0;i<p_at_node->get_child_count();i++) { + for (int i = 0; i < p_at_node->get_child_count(); i++) { Node *child = p_at_node->get_child(i); if (!child->get_owner()) continue; //maybe a helper - _find_meshes(child,p_baker); - + _find_meshes(child, p_baker); } } - - - -void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){ +void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { Baker baker; - static const int subdiv_value[SUBDIV_MAX]={7,8,9,10}; + static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 }; - baker.cell_subdiv=subdiv_value[subdiv]; + baker.cell_subdiv = subdiv_value[subdiv]; baker.bake_cells.resize(1); //find out the actual real bounds, power of 2, which gets the highest subdivision - baker.po2_bounds=Rect3(-extents,extents*2.0); + baker.po2_bounds = Rect3(-extents, extents * 2.0); int longest_axis = baker.po2_bounds.get_longest_axis_index(); - baker.axis_cell_size[longest_axis]=(1<<(baker.cell_subdiv-1)); - baker.leaf_voxel_count=0; + baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1)); + baker.leaf_voxel_count = 0; - for(int i=0;i<3;i++) { + for (int i = 0; i < 3; i++) { - if (i==longest_axis) + if (i == longest_axis) continue; - baker.axis_cell_size[i]=baker.axis_cell_size[longest_axis]; + baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis]; float axis_size = baker.po2_bounds.size[longest_axis]; //shrink until fit subdiv - while (axis_size/2.0 >= baker.po2_bounds.size[i]) { - axis_size/=2.0; - baker.axis_cell_size[i]>>=1; + while (axis_size / 2.0 >= baker.po2_bounds.size[i]) { + axis_size /= 2.0; + baker.axis_cell_size[i] >>= 1; } - baker.po2_bounds.size[i]=baker.po2_bounds.size[longest_axis]; + baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis]; } - - Transform to_bounds; - to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis])); - to_bounds.origin=baker.po2_bounds.pos; + to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis])); + to_bounds.origin = baker.po2_bounds.pos; Transform to_grid; - to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis])); + to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis])); baker.to_cell_space = to_grid * to_bounds.affine_inverse(); + _find_meshes(p_from_node ? p_from_node : get_parent(), &baker); - _find_meshes(p_from_node?p_from_node:get_parent(),&baker); - - + int pmc = 0; - int pmc=0; + for (List<Baker::PlotMesh>::Element *E = baker.mesh_list.front(); E; E = E->next()) { - for(List<Baker::PlotMesh>::Element *E=baker.mesh_list.front();E;E=E->next()) { + print_line("plotting mesh " + itos(pmc++) + "/" + itos(baker.mesh_list.size())); - print_line("plotting mesh "+itos(pmc++)+"/"+itos(baker.mesh_list.size())); - - _plot_mesh(E->get().local_xform,E->get().mesh,&baker,E->get().instance_materials,E->get().override_material); + _plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material); } - _fixup_plot(0,0,0,0,0,&baker); + _fixup_plot(0, 0, 0, 0, 0, &baker); //create the data for visual server PoolVector<int> data; - data.resize( 16+(8+1+1+1+1)*baker.bake_cells.size() ); //4 for header, rest for rest. + data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest. { PoolVector<int>::Write w = data.write(); - uint32_t * w32 = (uint32_t*)w.ptr(); + uint32_t *w32 = (uint32_t *)w.ptr(); - w32[0]=0;//version - w32[1]=baker.cell_subdiv; //subdiv - w32[2]=baker.axis_cell_size[0]; - w32[3]=baker.axis_cell_size[1]; - w32[4]=baker.axis_cell_size[2]; - w32[5]=baker.bake_cells.size(); - w32[6]=baker.leaf_voxel_count; + w32[0] = 0; //version + w32[1] = baker.cell_subdiv; //subdiv + w32[2] = baker.axis_cell_size[0]; + w32[3] = baker.axis_cell_size[1]; + w32[4] = baker.axis_cell_size[2]; + w32[5] = baker.bake_cells.size(); + w32[6] = baker.leaf_voxel_count; - int ofs=16; + int ofs = 16; - for(int i=0;i<baker.bake_cells.size();i++) { + for (int i = 0; i < baker.bake_cells.size(); i++) { - for(int j=0;j<8;j++) { - w32[ofs++]=baker.bake_cells[i].childs[j]; + for (int j = 0; j < 8; j++) { + w32[ofs++] = baker.bake_cells[i].childs[j]; } { //albedo - uint32_t rgba=uint32_t(CLAMP(baker.bake_cells[i].albedo[0]*255.0,0,255))<<16; - rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[1]*255.0,0,255))<<8; - rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[2]*255.0,0,255))<<0; - - w32[ofs++]=rgba; - + uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; + rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; + rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; + w32[ofs++] = rgba; } { //emission - Vector3 e(baker.bake_cells[i].emission[0],baker.bake_cells[i].emission[1],baker.bake_cells[i].emission[2]); + Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]); float l = e.length(); - if (l>0) { + if (l > 0) { e.normalize(); - l=CLAMP(l/8.0,0,1.0); + l = CLAMP(l / 8.0, 0, 1.0); } - uint32_t em=uint32_t(CLAMP(e[0]*255,0,255))<<24; - em|=uint32_t(CLAMP(e[1]*255,0,255))<<16; - em|=uint32_t(CLAMP(e[2]*255,0,255))<<8; - em|=uint32_t(CLAMP(l*255,0,255)); + uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; + em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; + em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; + em |= uint32_t(CLAMP(l * 255, 0, 255)); - w32[ofs++]=em; + w32[ofs++] = em; } //w32[ofs++]=baker.bake_cells[i].used_sides; { //normal - Vector3 n(baker.bake_cells[i].normal[0],baker.bake_cells[i].normal[1],baker.bake_cells[i].normal[2]); - n=n*Vector3(0.5,0.5,0.5)+Vector3(0.5,0.5,0.5); - uint32_t norm=0; - + Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]); + n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); + uint32_t norm = 0; - norm|=uint32_t(CLAMP( n.x*255.0, 0, 255))<<16; - norm|=uint32_t(CLAMP( n.y*255.0, 0, 255))<<8; - norm|=uint32_t(CLAMP( n.z*255.0, 0, 255))<<0; + norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; + norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; + norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; - w32[ofs++]=norm; + w32[ofs++] = norm; } { - uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha*65535.0),0,65535); + uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535); uint16_t level = baker.bake_cells[i].level; - w32[ofs++] = (uint32_t(level)<<16)|uint32_t(alpha); + w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); } - } - } if (p_create_visual_debug) { @@ -1304,8 +1251,8 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){ Ref<GIProbeData> probe_data; probe_data.instance(); - probe_data->set_bounds(Rect3(-extents,extents*2.0)); - probe_data->set_cell_size(baker.po2_bounds.size[longest_axis]/baker.axis_cell_size[longest_axis]); + probe_data->set_bounds(Rect3(-extents, extents * 2.0)); + probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]); probe_data->set_dynamic_data(data); probe_data->set_dynamic_range(dynamic_range); probe_data->set_energy(energy); @@ -1317,54 +1264,44 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){ set_probe_data(probe_data); } - - - - - } +void GIProbe::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker) { -void GIProbe::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb,Ref<MultiMesh> &p_multimesh,int &idx,Baker *p_baker) { + if (p_level == p_baker->cell_subdiv - 1) { - - if (p_level==p_baker->cell_subdiv-1) { - - Vector3 center = p_aabb.pos+p_aabb.size*0.5; + Vector3 center = p_aabb.pos + p_aabb.size * 0.5; Transform xform; - xform.origin=center; - xform.basis.scale(p_aabb.size*0.5); - p_multimesh->set_instance_transform(idx,xform); - Color col=Color(p_baker->bake_cells[p_idx].albedo[0],p_baker->bake_cells[p_idx].albedo[1],p_baker->bake_cells[p_idx].albedo[2]); - p_multimesh->set_instance_color(idx,col); + xform.origin = center; + xform.basis.scale(p_aabb.size * 0.5); + p_multimesh->set_instance_transform(idx, xform); + Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]); + p_multimesh->set_instance_color(idx, col); idx++; } else { - for(int i=0;i<8;i++) { + for (int i = 0; i < 8; i++) { - if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) + if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) continue; - Rect3 aabb=p_aabb; - aabb.size*=0.5; + Rect3 aabb = p_aabb; + aabb.size *= 0.5; - if (i&1) - aabb.pos.x+=aabb.size.x; - if (i&2) - aabb.pos.y+=aabb.size.y; - if (i&4) - aabb.pos.z+=aabb.size.z; + if (i & 1) + aabb.pos.x += aabb.size.x; + if (i & 2) + aabb.pos.y += aabb.size.y; + if (i & 4) + aabb.pos.z += aabb.size.z; - _debug_mesh(p_baker->bake_cells[p_idx].childs[i],p_level+1,aabb,p_multimesh,idx,p_baker); + _debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker); } - } - } - void GIProbe::_create_debug_mesh(Baker *p_baker) { Ref<MultiMesh> mm; @@ -1372,7 +1309,7 @@ void GIProbe::_create_debug_mesh(Baker *p_baker) { mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_color_format(MultiMesh::COLOR_8BIT); - print_line("leaf voxels: "+itos(p_baker->leaf_voxel_count)); + print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count)); mm->set_instance_count(p_baker->leaf_voxel_count); Ref<Mesh> mesh; @@ -1385,76 +1322,72 @@ void GIProbe::_create_debug_mesh(Baker *p_baker) { PoolVector<Vector3> vertices; PoolVector<Color> colors; - int vtx_idx=0; - #define ADD_VTX(m_idx);\ - vertices.push_back( face_points[m_idx] );\ - colors.push_back( Color(1,1,1,1) );\ - vtx_idx++;\ - - for (int i=0;i<6;i++) { + int vtx_idx = 0; +#define ADD_VTX(m_idx) \ + ; \ + vertices.push_back(face_points[m_idx]); \ + colors.push_back(Color(1, 1, 1, 1)); \ + vtx_idx++; + for (int i = 0; i < 6; i++) { Vector3 face_points[4]; - for (int j=0;j<4;j++) { + for (int j = 0; j < 4; j++) { float v[3]; - v[0]=1.0; - v[1]=1-2*((j>>1)&1); - v[2]=v[1]*(1-2*(j&1)); + v[0] = 1.0; + v[1] = 1 - 2 * ((j >> 1) & 1); + v[2] = v[1] * (1 - 2 * (j & 1)); - for (int k=0;k<3;k++) { + for (int k = 0; k < 3; k++) { - if (i<3) - face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); + if (i < 3) + face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); else - face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); + face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); } } - //tri 1 + //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); - //tri 2 + //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); - } - - arr[Mesh::ARRAY_VERTEX]=vertices; - arr[Mesh::ARRAY_COLOR]=colors; - mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr); + arr[Mesh::ARRAY_VERTEX] = vertices; + arr[Mesh::ARRAY_COLOR] = colors; + mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); } { Ref<FixedSpatialMaterial> fsm; fsm.instance(); - fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true); - fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true); - fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true); - fsm->set_albedo(Color(1,1,1,1)); + fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); + fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); + fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED, true); + fsm->set_albedo(Color(1, 1, 1, 1)); - mesh->surface_set_material(0,fsm); + mesh->surface_set_material(0, fsm); } mm->set_mesh(mesh); + int idx = 0; + _debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker); - int idx=0; - _debug_mesh(0,0,p_baker->po2_bounds,mm,idx,p_baker); - - MultiMeshInstance *mmi = memnew( MultiMeshInstance ); + MultiMeshInstance *mmi = memnew(MultiMeshInstance); mmi->set_multimesh(mm); add_child(mmi); #ifdef TOOLS_ENABLED - if (get_tree()->get_edited_scene_root()==this){ + if (get_tree()->get_edited_scene_root() == this) { mmi->set_owner(this); } else { mmi->set_owner(get_owner()); - } #else mmi->set_owner(get_owner()); @@ -1463,12 +1396,12 @@ void GIProbe::_create_debug_mesh(Baker *p_baker) { void GIProbe::_debug_bake() { - bake(NULL,true); + bake(NULL, true); } Rect3 GIProbe::get_aabb() const { - return Rect3(-extents,extents*2); + return Rect3(-extents, extents * 2); } PoolVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const { @@ -1478,74 +1411,68 @@ PoolVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const { void GIProbe::_bind_methods() { - ClassDB::bind_method(D_METHOD("set_probe_data","data"),&GIProbe::set_probe_data); - ClassDB::bind_method(D_METHOD("get_probe_data"),&GIProbe::get_probe_data); + ClassDB::bind_method(D_METHOD("set_probe_data", "data"), &GIProbe::set_probe_data); + ClassDB::bind_method(D_METHOD("get_probe_data"), &GIProbe::get_probe_data); - ClassDB::bind_method(D_METHOD("set_subdiv","subdiv"),&GIProbe::set_subdiv); - ClassDB::bind_method(D_METHOD("get_subdiv"),&GIProbe::get_subdiv); + ClassDB::bind_method(D_METHOD("set_subdiv", "subdiv"), &GIProbe::set_subdiv); + ClassDB::bind_method(D_METHOD("get_subdiv"), &GIProbe::get_subdiv); - ClassDB::bind_method(D_METHOD("set_extents","extents"),&GIProbe::set_extents); - ClassDB::bind_method(D_METHOD("get_extents"),&GIProbe::get_extents); + ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents); + ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents); - ClassDB::bind_method(D_METHOD("set_dynamic_range","max"),&GIProbe::set_dynamic_range); - ClassDB::bind_method(D_METHOD("get_dynamic_range"),&GIProbe::get_dynamic_range); + ClassDB::bind_method(D_METHOD("set_dynamic_range", "max"), &GIProbe::set_dynamic_range); + ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbe::get_dynamic_range); - ClassDB::bind_method(D_METHOD("set_energy","max"),&GIProbe::set_energy); - ClassDB::bind_method(D_METHOD("get_energy"),&GIProbe::get_energy); + ClassDB::bind_method(D_METHOD("set_energy", "max"), &GIProbe::set_energy); + ClassDB::bind_method(D_METHOD("get_energy"), &GIProbe::get_energy); - ClassDB::bind_method(D_METHOD("set_bias","max"),&GIProbe::set_bias); - ClassDB::bind_method(D_METHOD("get_bias"),&GIProbe::get_bias); + ClassDB::bind_method(D_METHOD("set_bias", "max"), &GIProbe::set_bias); + ClassDB::bind_method(D_METHOD("get_bias"), &GIProbe::get_bias); - ClassDB::bind_method(D_METHOD("set_propagation","max"),&GIProbe::set_propagation); - ClassDB::bind_method(D_METHOD("get_propagation"),&GIProbe::get_propagation); + ClassDB::bind_method(D_METHOD("set_propagation", "max"), &GIProbe::set_propagation); + ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbe::get_propagation); - ClassDB::bind_method(D_METHOD("set_interior","enable"),&GIProbe::set_interior); - ClassDB::bind_method(D_METHOD("is_interior"),&GIProbe::is_interior); + ClassDB::bind_method(D_METHOD("set_interior", "enable"), &GIProbe::set_interior); + ClassDB::bind_method(D_METHOD("is_interior"), &GIProbe::is_interior); - ClassDB::bind_method(D_METHOD("set_compress","enable"),&GIProbe::set_compress); - ClassDB::bind_method(D_METHOD("is_compressed"),&GIProbe::is_compressed); + ClassDB::bind_method(D_METHOD("set_compress", "enable"), &GIProbe::set_compress); + ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbe::is_compressed); - ClassDB::bind_method(D_METHOD("bake","from_node","create_visual_debug"),&GIProbe::bake,DEFVAL(Variant()),DEFVAL(false)); - ClassDB::bind_method(D_METHOD("debug_bake"),&GIProbe::_debug_bake); - ClassDB::set_method_flags(get_class_static(),_scs_create("debug_bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false)); + ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake); + ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); - ADD_PROPERTY( PropertyInfo(Variant::INT,"subdiv",PROPERTY_HINT_ENUM,"64,128,256,512"),"set_subdiv","get_subdiv"); - ADD_PROPERTY( PropertyInfo(Variant::VECTOR3,"extents"),"set_extents","get_extents"); - ADD_PROPERTY( PropertyInfo(Variant::INT,"dynamic_range",PROPERTY_HINT_RANGE,"1,16,1"),"set_dynamic_range","get_dynamic_range"); - ADD_PROPERTY( PropertyInfo(Variant::REAL,"energy",PROPERTY_HINT_RANGE,"0,16,0.01"),"set_energy","get_energy"); - ADD_PROPERTY( PropertyInfo(Variant::REAL,"propagation",PROPERTY_HINT_RANGE,"0,1,0.01"),"set_propagation","get_propagation"); - ADD_PROPERTY( PropertyInfo(Variant::REAL,"bias",PROPERTY_HINT_RANGE,"0,4,0.001"),"set_bias","get_bias"); - ADD_PROPERTY( PropertyInfo(Variant::BOOL,"interior"),"set_interior","is_interior"); - ADD_PROPERTY( PropertyInfo(Variant::BOOL,"compress"),"set_compress","is_compressed"); - ADD_PROPERTY( PropertyInfo(Variant::OBJECT,"data",PROPERTY_HINT_RESOURCE_TYPE,"GIProbeData"),"set_probe_data","get_probe_data"); - - - BIND_CONSTANT( SUBDIV_64 ); - BIND_CONSTANT( SUBDIV_128 ); - BIND_CONSTANT( SUBDIV_256 ); - BIND_CONSTANT( SUBDIV_MAX ); + ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv"); + ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "1,16,1"), "set_dynamic_range", "get_dynamic_range"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_energy", "get_energy"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_bias", "get_bias"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress"), "set_compress", "is_compressed"); + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData"), "set_probe_data", "get_probe_data"); + BIND_CONSTANT(SUBDIV_64); + BIND_CONSTANT(SUBDIV_128); + BIND_CONSTANT(SUBDIV_256); + BIND_CONSTANT(SUBDIV_MAX); } GIProbe::GIProbe() { - subdiv=SUBDIV_128; - dynamic_range=4; - energy=1.0; - bias=0.4; - propagation=1.0; - extents=Vector3(10,10,10); - color_scan_cell_width=4; - bake_texture_size=128; - interior=false; - compress=false; + subdiv = SUBDIV_128; + dynamic_range = 4; + energy = 1.0; + bias = 0.4; + propagation = 1.0; + extents = Vector3(10, 10, 10); + color_scan_cell_width = 4; + bake_texture_size = 128; + interior = false; + compress = false; gi_probe = VS::get_singleton()->gi_probe_create(); - - } GIProbe::~GIProbe() { - - } |