summaryrefslogtreecommitdiffstats
path: root/scene/3d/gi_probe.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/3d/gi_probe.cpp')
-rw-r--r--scene/3d/gi_probe.cpp1317
1 files changed, 622 insertions, 695 deletions
diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp
index b22795e74d..cb1292a9d1 100644
--- a/scene/3d/gi_probe.cpp
+++ b/scene/3d/gi_probe.cpp
@@ -30,180 +30,158 @@
#include "mesh_instance.h"
+void GIProbeData::set_bounds(const Rect3 &p_bounds) {
-void GIProbeData::set_bounds(const Rect3& p_bounds) {
-
- VS::get_singleton()->gi_probe_set_bounds(probe,p_bounds);
+ VS::get_singleton()->gi_probe_set_bounds(probe, p_bounds);
}
-Rect3 GIProbeData::get_bounds() const{
+Rect3 GIProbeData::get_bounds() const {
return VS::get_singleton()->gi_probe_get_bounds(probe);
}
void GIProbeData::set_cell_size(float p_size) {
- VS::get_singleton()->gi_probe_set_cell_size(probe,p_size);
-
+ VS::get_singleton()->gi_probe_set_cell_size(probe, p_size);
}
float GIProbeData::get_cell_size() const {
return VS::get_singleton()->gi_probe_get_cell_size(probe);
-
}
-void GIProbeData::set_to_cell_xform(const Transform& p_xform) {
-
- VS::get_singleton()->gi_probe_set_to_cell_xform(probe,p_xform);
+void GIProbeData::set_to_cell_xform(const Transform &p_xform) {
+ VS::get_singleton()->gi_probe_set_to_cell_xform(probe, p_xform);
}
Transform GIProbeData::get_to_cell_xform() const {
return VS::get_singleton()->gi_probe_get_to_cell_xform(probe);
-
}
+void GIProbeData::set_dynamic_data(const PoolVector<int> &p_data) {
-void GIProbeData::set_dynamic_data(const PoolVector<int>& p_data){
-
- VS::get_singleton()->gi_probe_set_dynamic_data(probe,p_data);
-
+ VS::get_singleton()->gi_probe_set_dynamic_data(probe, p_data);
}
-PoolVector<int> GIProbeData::get_dynamic_data() const{
+PoolVector<int> GIProbeData::get_dynamic_data() const {
return VS::get_singleton()->gi_probe_get_dynamic_data(probe);
}
-void GIProbeData::set_dynamic_range(int p_range){
-
- VS::get_singleton()->gi_probe_set_dynamic_range(probe,p_range);
+void GIProbeData::set_dynamic_range(int p_range) {
+ VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range);
}
void GIProbeData::set_energy(float p_range) {
- VS::get_singleton()->gi_probe_set_energy(probe,p_range);
+ VS::get_singleton()->gi_probe_set_energy(probe, p_range);
}
-float GIProbeData::get_energy() const{
+float GIProbeData::get_energy() const {
return VS::get_singleton()->gi_probe_get_energy(probe);
-
}
-
void GIProbeData::set_bias(float p_range) {
- VS::get_singleton()->gi_probe_set_bias(probe,p_range);
+ VS::get_singleton()->gi_probe_set_bias(probe, p_range);
}
-float GIProbeData::get_bias() const{
+float GIProbeData::get_bias() const {
return VS::get_singleton()->gi_probe_get_bias(probe);
-
}
-
void GIProbeData::set_propagation(float p_range) {
- VS::get_singleton()->gi_probe_set_propagation(probe,p_range);
+ VS::get_singleton()->gi_probe_set_propagation(probe, p_range);
}
-float GIProbeData::get_propagation() const{
+float GIProbeData::get_propagation() const {
return VS::get_singleton()->gi_probe_get_propagation(probe);
-
}
-
void GIProbeData::set_interior(bool p_enable) {
- VS::get_singleton()->gi_probe_set_interior(probe,p_enable);
-
+ VS::get_singleton()->gi_probe_set_interior(probe, p_enable);
}
-bool GIProbeData::is_interior() const{
+bool GIProbeData::is_interior() const {
return VS::get_singleton()->gi_probe_is_interior(probe);
}
-
-bool GIProbeData::is_compressed() const{
+bool GIProbeData::is_compressed() const {
return VS::get_singleton()->gi_probe_is_compressed(probe);
}
-
void GIProbeData::set_compress(bool p_enable) {
- VS::get_singleton()->gi_probe_set_compress(probe,p_enable);
-
+ VS::get_singleton()->gi_probe_set_compress(probe, p_enable);
}
-int GIProbeData::get_dynamic_range() const{
-
+int GIProbeData::get_dynamic_range() const {
return VS::get_singleton()->gi_probe_get_dynamic_range(probe);
}
-
RID GIProbeData::get_rid() const {
return probe;
}
-
void GIProbeData::_bind_methods() {
- ClassDB::bind_method(D_METHOD("set_bounds","bounds"),&GIProbeData::set_bounds);
- ClassDB::bind_method(D_METHOD("get_bounds"),&GIProbeData::get_bounds);
+ ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &GIProbeData::set_bounds);
+ ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds);
- ClassDB::bind_method(D_METHOD("set_cell_size","cell_size"),&GIProbeData::set_cell_size);
- ClassDB::bind_method(D_METHOD("get_cell_size"),&GIProbeData::get_cell_size);
+ ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &GIProbeData::set_cell_size);
+ ClassDB::bind_method(D_METHOD("get_cell_size"), &GIProbeData::get_cell_size);
- ClassDB::bind_method(D_METHOD("set_to_cell_xform","to_cell_xform"),&GIProbeData::set_to_cell_xform);
- ClassDB::bind_method(D_METHOD("get_to_cell_xform"),&GIProbeData::get_to_cell_xform);
+ ClassDB::bind_method(D_METHOD("set_to_cell_xform", "to_cell_xform"), &GIProbeData::set_to_cell_xform);
+ ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform);
- ClassDB::bind_method(D_METHOD("set_dynamic_data","dynamic_data"),&GIProbeData::set_dynamic_data);
- ClassDB::bind_method(D_METHOD("get_dynamic_data"),&GIProbeData::get_dynamic_data);
+ ClassDB::bind_method(D_METHOD("set_dynamic_data", "dynamic_data"), &GIProbeData::set_dynamic_data);
+ ClassDB::bind_method(D_METHOD("get_dynamic_data"), &GIProbeData::get_dynamic_data);
- ClassDB::bind_method(D_METHOD("set_dynamic_range","dynamic_range"),&GIProbeData::set_dynamic_range);
- ClassDB::bind_method(D_METHOD("get_dynamic_range"),&GIProbeData::get_dynamic_range);
+ ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range);
+ ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range);
- ClassDB::bind_method(D_METHOD("set_energy","energy"),&GIProbeData::set_energy);
- ClassDB::bind_method(D_METHOD("get_energy"),&GIProbeData::get_energy);
+ ClassDB::bind_method(D_METHOD("set_energy", "energy"), &GIProbeData::set_energy);
+ ClassDB::bind_method(D_METHOD("get_energy"), &GIProbeData::get_energy);
- ClassDB::bind_method(D_METHOD("set_bias","bias"),&GIProbeData::set_bias);
- ClassDB::bind_method(D_METHOD("get_bias"),&GIProbeData::get_bias);
+ ClassDB::bind_method(D_METHOD("set_bias", "bias"), &GIProbeData::set_bias);
+ ClassDB::bind_method(D_METHOD("get_bias"), &GIProbeData::get_bias);
- ClassDB::bind_method(D_METHOD("set_propagation","propagation"),&GIProbeData::set_propagation);
- ClassDB::bind_method(D_METHOD("get_propagation"),&GIProbeData::get_propagation);
+ ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation);
+ ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation);
- ClassDB::bind_method(D_METHOD("set_interior","interior"),&GIProbeData::set_interior);
- ClassDB::bind_method(D_METHOD("is_interior"),&GIProbeData::is_interior);
+ ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior);
+ ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior);
- ClassDB::bind_method(D_METHOD("set_compress","compress"),&GIProbeData::set_compress);
- ClassDB::bind_method(D_METHOD("is_compressed"),&GIProbeData::is_compressed);
+ ClassDB::bind_method(D_METHOD("set_compress", "compress"), &GIProbeData::set_compress);
+ ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbeData::is_compressed);
- ADD_PROPERTY(PropertyInfo(Variant::RECT3,"bounds",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_bounds","get_bounds");
- ADD_PROPERTY(PropertyInfo(Variant::REAL,"cell_size",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_cell_size","get_cell_size");
- ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM,"to_cell_xform",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_to_cell_xform","get_to_cell_xform");
-
- ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY,"dynamic_data",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_dynamic_data","get_dynamic_data");
- ADD_PROPERTY(PropertyInfo(Variant::INT,"dynamic_range",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_dynamic_range","get_dynamic_range");
- ADD_PROPERTY(PropertyInfo(Variant::REAL,"energy",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_energy","get_energy");
- ADD_PROPERTY(PropertyInfo(Variant::REAL,"bias",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_bias","get_bias");
- ADD_PROPERTY(PropertyInfo(Variant::REAL,"propagation",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_propagation","get_propagation");
- ADD_PROPERTY(PropertyInfo(Variant::BOOL,"interior",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_interior","is_interior");
- ADD_PROPERTY(PropertyInfo(Variant::BOOL,"compress",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),"set_compress","is_compressed");
+ ADD_PROPERTY(PropertyInfo(Variant::RECT3, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "cell_size", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_size", "get_cell_size");
+ ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "to_cell_xform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_to_cell_xform", "get_to_cell_xform");
+ ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY, "dynamic_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_data", "get_dynamic_data");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_range", "get_dynamic_range");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_energy", "get_energy");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bias", "get_bias");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_propagation", "get_propagation");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_interior", "is_interior");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_compress", "is_compressed");
}
GIProbeData::GIProbeData() {
- probe=VS::get_singleton()->gi_probe_create();
+ probe = VS::get_singleton()->gi_probe_create();
}
GIProbeData::~GIProbeData() {
@@ -211,20 +189,18 @@ GIProbeData::~GIProbeData() {
VS::get_singleton()->free(probe);
}
-
//////////////////////
//////////////////////
-
-void GIProbe::set_probe_data(const Ref<GIProbeData>& p_data) {
+void GIProbe::set_probe_data(const Ref<GIProbeData> &p_data) {
if (p_data.is_valid()) {
- VS::get_singleton()->instance_set_base(get_instance(),p_data->get_rid());
+ VS::get_singleton()->instance_set_base(get_instance(), p_data->get_rid());
} else {
- VS::get_singleton()->instance_set_base(get_instance(),RID());
+ VS::get_singleton()->instance_set_base(get_instance(), RID());
}
- probe_data=p_data;
+ probe_data = p_data;
}
Ref<GIProbeData> GIProbe::get_probe_data() const {
@@ -234,8 +210,8 @@ Ref<GIProbeData> GIProbe::get_probe_data() const {
void GIProbe::set_subdiv(Subdiv p_subdiv) {
- ERR_FAIL_INDEX(p_subdiv,SUBDIV_MAX);
- subdiv=p_subdiv;
+ ERR_FAIL_INDEX(p_subdiv, SUBDIV_MAX);
+ subdiv = p_subdiv;
update_gizmo();
}
@@ -244,9 +220,9 @@ GIProbe::Subdiv GIProbe::get_subdiv() const {
return subdiv;
}
-void GIProbe::set_extents(const Vector3& p_extents) {
+void GIProbe::set_extents(const Vector3 &p_extents) {
- extents=p_extents;
+ extents = p_extents;
update_gizmo();
}
@@ -257,7 +233,7 @@ Vector3 GIProbe::get_extents() const {
void GIProbe::set_dynamic_range(int p_dynamic_range) {
- dynamic_range=p_dynamic_range;
+ dynamic_range = p_dynamic_range;
}
int GIProbe::get_dynamic_range() const {
@@ -266,7 +242,7 @@ int GIProbe::get_dynamic_range() const {
void GIProbe::set_energy(float p_energy) {
- energy=p_energy;
+ energy = p_energy;
if (probe_data.is_valid()) {
probe_data->set_energy(energy);
}
@@ -278,7 +254,7 @@ float GIProbe::get_energy() const {
void GIProbe::set_bias(float p_bias) {
- bias=p_bias;
+ bias = p_bias;
if (probe_data.is_valid()) {
probe_data->set_bias(bias);
}
@@ -290,7 +266,7 @@ float GIProbe::get_bias() const {
void GIProbe::set_propagation(float p_propagation) {
- propagation=p_propagation;
+ propagation = p_propagation;
if (probe_data.is_valid()) {
probe_data->set_propagation(propagation);
}
@@ -302,7 +278,7 @@ float GIProbe::get_propagation() const {
void GIProbe::set_interior(bool p_enable) {
- interior=p_enable;
+ interior = p_enable;
if (probe_data.is_valid()) {
probe_data->set_interior(p_enable);
}
@@ -313,10 +289,9 @@ bool GIProbe::is_interior() const {
return interior;
}
-
void GIProbe::set_compress(bool p_enable) {
- compress=p_enable;
+ compress = p_enable;
if (probe_data.is_valid()) {
probe_data->set_compress(p_enable);
}
@@ -327,263 +302,287 @@ bool GIProbe::is_compressed() const {
return compress;
}
-
#include "math.h"
-#define FINDMINMAX(x0,x1,x2,min,max) \
- min = max = x0; \
- if(x1<min) min=x1;\
- if(x1>max) max=x1;\
- if(x2<min) min=x2;\
- if(x2>max) max=x2;
-
-static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox)
-{
- int q;
- Vector3 vmin,vmax;
- for(q=0;q<=2;q++)
- {
- if(normal[q]>0.0f)
- {
- vmin[q]=-maxbox[q];
- vmax[q]=maxbox[q];
- }
- else
- {
- vmin[q]=maxbox[q];
- vmax[q]=-maxbox[q];
- }
- }
- if(normal.dot(vmin)+d>0.0f) return false;
- if(normal.dot(vmax)+d>=0.0f) return true;
-
- return false;
-}
+#define FINDMINMAX(x0, x1, x2, min, max) \
+ min = max = x0; \
+ if (x1 < min) min = x1; \
+ if (x1 > max) max = x1; \
+ if (x2 < min) min = x2; \
+ if (x2 > max) max = x2;
+
+static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
+ int q;
+ Vector3 vmin, vmax;
+ for (q = 0; q <= 2; q++) {
+ if (normal[q] > 0.0f) {
+ vmin[q] = -maxbox[q];
+ vmax[q] = maxbox[q];
+ } else {
+ vmin[q] = maxbox[q];
+ vmax[q] = -maxbox[q];
+ }
+ }
+ if (normal.dot(vmin) + d > 0.0f) return false;
+ if (normal.dot(vmax) + d >= 0.0f) return true;
+ return false;
+}
/*======================== X-tests ========================*/
-#define AXISTEST_X01(a, b, fa, fb) \
- p0 = a*v0.y - b*v0.z; \
- p2 = a*v2.y - b*v2.z; \
- if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if(min>rad || max<-rad) return false;
-
-#define AXISTEST_X2(a, b, fa, fb) \
- p0 = a*v0.y - b*v0.z; \
- p1 = a*v1.y - b*v1.z; \
- if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
- rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
- if(min>rad || max<-rad) return false;
+#define AXISTEST_X01(a, b, fa, fb) \
+ p0 = a * v0.y - b * v0.z; \
+ p2 = a * v2.y - b * v2.z; \
+ if (p0 < p2) { \
+ min = p0; \
+ max = p2; \
+ } else { \
+ min = p2; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
+
+#define AXISTEST_X2(a, b, fa, fb) \
+ p0 = a * v0.y - b * v0.z; \
+ p1 = a * v1.y - b * v1.z; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
/*======================== Y-tests ========================*/
-#define AXISTEST_Y02(a, b, fa, fb) \
- p0 = -a*v0.x + b*v0.z; \
- p2 = -a*v2.x + b*v2.z; \
- if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if(min>rad || max<-rad) return false;
-
-#define AXISTEST_Y1(a, b, fa, fb) \
- p0 = -a*v0.x + b*v0.z; \
- p1 = -a*v1.x + b*v1.z; \
- if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
- if(min>rad || max<-rad) return false;
+#define AXISTEST_Y02(a, b, fa, fb) \
+ p0 = -a * v0.x + b * v0.z; \
+ p2 = -a * v2.x + b * v2.z; \
+ if (p0 < p2) { \
+ min = p0; \
+ max = p2; \
+ } else { \
+ min = p2; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
+
+#define AXISTEST_Y1(a, b, fa, fb) \
+ p0 = -a * v0.x + b * v0.z; \
+ p1 = -a * v1.x + b * v1.z; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if (min > rad || max < -rad) return false;
/*======================== Z-tests ========================*/
-#define AXISTEST_Z12(a, b, fa, fb) \
- p1 = a*v1.x - b*v1.y; \
- p2 = a*v2.x - b*v2.y; \
- if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if(min>rad || max<-rad) return false;
-
-#define AXISTEST_Z0(a, b, fa, fb) \
- p0 = a*v0.x - b*v0.y; \
- p1 = a*v1.x - b*v1.y; \
- if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
- rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
- if(min>rad || max<-rad) return false;
-
-static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) {
-
- /* use separating axis theorem to test overlap between triangle and box */
- /* need to test for overlap in these directions: */
- /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
- /* we do not even need to test these) */
- /* 2) normal of the triangle */
- /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
- /* this gives 3x3=9 more tests */
- Vector3 v0,v1,v2;
- float min,max,d,p0,p1,p2,rad,fex,fey,fez;
- Vector3 normal,e0,e1,e2;
-
- /* This is the fastest branch on Sun */
- /* move everything so that the boxcenter is in (0,0,0) */
-
- v0=triverts[0]-boxcenter;
- v1=triverts[1]-boxcenter;
- v2=triverts[2]-boxcenter;
-
- /* compute triangle edges */
- e0=v1-v0; /* tri edge 0 */
- e1=v2-v1; /* tri edge 1 */
- e2=v0-v2; /* tri edge 2 */
-
- /* Bullet 3: */
- /* test the 9 tests first (this was faster) */
- fex = Math::abs(e0.x);
- fey = Math::abs(e0.y);
- fez = Math::abs(e0.z);
- AXISTEST_X01(e0.z, e0.y, fez, fey);
- AXISTEST_Y02(e0.z, e0.x, fez, fex);
- AXISTEST_Z12(e0.y, e0.x, fey, fex);
-
- fex = Math::abs(e1.x);
- fey = Math::abs(e1.y);
- fez = Math::abs(e1.z);
- AXISTEST_X01(e1.z, e1.y, fez, fey);
- AXISTEST_Y02(e1.z, e1.x, fez, fex);
- AXISTEST_Z0(e1.y, e1.x, fey, fex);
-
- fex = Math::abs(e2.x);
- fey = Math::abs(e2.y);
- fez = Math::abs(e2.z);
- AXISTEST_X2(e2.z, e2.y, fez, fey);
- AXISTEST_Y1(e2.z, e2.x, fez, fex);
- AXISTEST_Z12(e2.y, e2.x, fey, fex);
-
- /* Bullet 1: */
- /* first test overlap in the {x,y,z}-directions */
- /* find min, max of the triangle each direction, and test for overlap in */
- /* that direction -- this is equivalent to testing a minimal AABB around */
- /* the triangle against the AABB */
-
- /* test in X-direction */
- FINDMINMAX(v0.x,v1.x,v2.x,min,max);
- if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
-
- /* test in Y-direction */
- FINDMINMAX(v0.y,v1.y,v2.y,min,max);
- if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
-
- /* test in Z-direction */
- FINDMINMAX(v0.z,v1.z,v2.z,min,max);
- if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
-
- /* Bullet 2: */
- /* test if the box intersects the plane of the triangle */
- /* compute plane equation of triangle: normal*x+d=0 */
- normal=e0.cross(e1);
- d=-normal.dot(v0); /* plane eq: normal.x+d=0 */
- if(!planeBoxOverlap(normal,d,boxhalfsize)) return false;
-
- return true; /* box and triangle overlaps */
+#define AXISTEST_Z12(a, b, fa, fb) \
+ p1 = a * v1.x - b * v1.y; \
+ p2 = a * v2.x - b * v2.y; \
+ if (p2 < p1) { \
+ min = p2; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p2; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if (min > rad || max < -rad) return false;
+
+#define AXISTEST_Z0(a, b, fa, fb) \
+ p0 = a * v0.x - b * v0.y; \
+ p1 = a * v1.x - b * v1.y; \
+ if (p0 < p1) { \
+ min = p0; \
+ max = p1; \
+ } else { \
+ min = p1; \
+ max = p0; \
+ } \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if (min > rad || max < -rad) return false;
+
+static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
+
+ /* use separating axis theorem to test overlap between triangle and box */
+ /* need to test for overlap in these directions: */
+ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
+ /* we do not even need to test these) */
+ /* 2) normal of the triangle */
+ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
+ /* this gives 3x3=9 more tests */
+ Vector3 v0, v1, v2;
+ float min, max, d, p0, p1, p2, rad, fex, fey, fez;
+ Vector3 normal, e0, e1, e2;
+
+ /* This is the fastest branch on Sun */
+ /* move everything so that the boxcenter is in (0,0,0) */
+
+ v0 = triverts[0] - boxcenter;
+ v1 = triverts[1] - boxcenter;
+ v2 = triverts[2] - boxcenter;
+
+ /* compute triangle edges */
+ e0 = v1 - v0; /* tri edge 0 */
+ e1 = v2 - v1; /* tri edge 1 */
+ e2 = v0 - v2; /* tri edge 2 */
+
+ /* Bullet 3: */
+ /* test the 9 tests first (this was faster) */
+ fex = Math::abs(e0.x);
+ fey = Math::abs(e0.y);
+ fez = Math::abs(e0.z);
+ AXISTEST_X01(e0.z, e0.y, fez, fey);
+ AXISTEST_Y02(e0.z, e0.x, fez, fex);
+ AXISTEST_Z12(e0.y, e0.x, fey, fex);
+
+ fex = Math::abs(e1.x);
+ fey = Math::abs(e1.y);
+ fez = Math::abs(e1.z);
+ AXISTEST_X01(e1.z, e1.y, fez, fey);
+ AXISTEST_Y02(e1.z, e1.x, fez, fex);
+ AXISTEST_Z0(e1.y, e1.x, fey, fex);
+
+ fex = Math::abs(e2.x);
+ fey = Math::abs(e2.y);
+ fez = Math::abs(e2.z);
+ AXISTEST_X2(e2.z, e2.y, fez, fey);
+ AXISTEST_Y1(e2.z, e2.x, fez, fex);
+ AXISTEST_Z12(e2.y, e2.x, fey, fex);
+
+ /* Bullet 1: */
+ /* first test overlap in the {x,y,z}-directions */
+ /* find min, max of the triangle each direction, and test for overlap in */
+ /* that direction -- this is equivalent to testing a minimal AABB around */
+ /* the triangle against the AABB */
+
+ /* test in X-direction */
+ FINDMINMAX(v0.x, v1.x, v2.x, min, max);
+ if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
+
+ /* test in Y-direction */
+ FINDMINMAX(v0.y, v1.y, v2.y, min, max);
+ if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
+
+ /* test in Z-direction */
+ FINDMINMAX(v0.z, v1.z, v2.z, min, max);
+ if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
+
+ /* Bullet 2: */
+ /* test if the box intersects the plane of the triangle */
+ /* compute plane equation of triangle: normal*x+d=0 */
+ normal = e0.cross(e1);
+ d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
+ if (!planeBoxOverlap(normal, d, boxhalfsize)) return false;
+
+ return true; /* box and triangle overlaps */
}
+static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) {
-
-static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) {
-
- if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2)
+ if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2)
return p_uv[0];
- if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2)
+ if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2)
return p_uv[1];
- if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2)
+ if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2)
return p_uv[2];
Vector3 v0 = p_vtx[1] - p_vtx[0];
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
- float d00 = v0.dot( v0);
- float d01 = v0.dot( v1);
- float d11 = v1.dot( v1);
- float d20 = v2.dot( v0);
- float d21 = v2.dot( v1);
+ float d00 = v0.dot(v0);
+ float d01 = v0.dot(v1);
+ float d11 = v1.dot(v1);
+ float d20 = v2.dot(v0);
+ float d21 = v2.dot(v1);
float denom = (d00 * d11 - d01 * d01);
- if (denom==0)
+ if (denom == 0)
return p_uv[0];
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
- return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w;
+ return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
}
-void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const Vector3 *p_vtx, const Vector2* p_uv, const Baker::MaterialCache& p_material, const Rect3 &p_aabb,Baker *p_baker) {
-
-
+void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const Rect3 &p_aabb, Baker *p_baker) {
- if (p_level==p_baker->cell_subdiv-1) {
+ if (p_level == p_baker->cell_subdiv - 1) {
//plot the face by guessing it's albedo and emission value
//find best axis to map to, for scanning values
int closest_axis;
float closest_dot;
- Plane plane = Plane(p_vtx[0],p_vtx[1],p_vtx[2]);
+ Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
Vector3 normal = plane.normal;
- for(int i=0;i<3;i++) {
+ for (int i = 0; i < 3; i++) {
Vector3 axis;
- axis[i]=1.0;
- float dot=ABS(normal.dot(axis));
- if (i==0 || dot>closest_dot) {
- closest_axis=i;
- closest_dot=dot;
+ axis[i] = 1.0;
+ float dot = ABS(normal.dot(axis));
+ if (i == 0 || dot > closest_dot) {
+ closest_axis = i;
+ closest_dot = dot;
}
}
-
Vector3 axis;
- axis[closest_axis]=1.0;
+ axis[closest_axis] = 1.0;
Vector3 t1;
- t1[(closest_axis+1)%3]=1.0;
+ t1[(closest_axis + 1) % 3] = 1.0;
Vector3 t2;
- t2[(closest_axis+2)%3]=1.0;
+ t2[(closest_axis + 2) % 3] = 1.0;
- t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
- t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);
+ t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
+ t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
Vector3 normal_accum;
- float alpha=0.0;
+ float alpha = 0.0;
//map to a grid average in the best axis for this face
- for(int i=0;i<color_scan_cell_width;i++) {
+ for (int i = 0; i < color_scan_cell_width; i++) {
- Vector3 ofs_i=float(i)*t1;
+ Vector3 ofs_i = float(i) * t1;
- for(int j=0;j<color_scan_cell_width;j++) {
+ for (int j = 0; j < color_scan_cell_width; j++) {
- Vector3 ofs_j=float(j)*t2;
+ Vector3 ofs_j = float(j) * t2;
- Vector3 from = p_aabb.pos+ofs_i+ofs_j;
+ Vector3 from = p_aabb.pos + ofs_i + ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
- Vector3 half = (to-from)*0.5;
+ Vector3 half = (to - from) * 0.5;
//is in this cell?
- if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
+ if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
continue; //face does not span this cell
}
//go from -size to +size*2 to avoid skipping collisions
- Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
- Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;
+ Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
+ Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
- if (normal.dot(ray_from-ray_to)<0) {
- SWAP(ray_from,ray_to);
+ if (normal.dot(ray_from - ray_to) < 0) {
+ SWAP(ray_from, ray_to);
}
Vector3 intersection;
- if (!plane.intersects_segment(ray_from,ray_to,&intersection)) {
+ if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
intersection = plane.project(ray_from);
} else {
@@ -592,96 +591,91 @@ void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const V
}
}
- intersection=Face3(p_vtx[0],p_vtx[1],p_vtx[2]).get_closest_point_to(intersection);
-
- Vector2 uv = get_uv(intersection,p_vtx,p_uv);
+ intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
+ Vector2 uv = get_uv(intersection, p_vtx, p_uv);
- int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1);
- int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1);
+ int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+ int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int ofs = uv_y*bake_texture_size+uv_x;
- albedo_accum.r+=p_material.albedo[ofs].r;
- albedo_accum.g+=p_material.albedo[ofs].g;
- albedo_accum.b+=p_material.albedo[ofs].b;
- albedo_accum.a+=p_material.albedo[ofs].a;
+ int ofs = uv_y * bake_texture_size + uv_x;
+ albedo_accum.r += p_material.albedo[ofs].r;
+ albedo_accum.g += p_material.albedo[ofs].g;
+ albedo_accum.b += p_material.albedo[ofs].b;
+ albedo_accum.a += p_material.albedo[ofs].a;
- emission_accum.r+=p_material.emission[ofs].r;
- emission_accum.g+=p_material.emission[ofs].g;
- emission_accum.b+=p_material.emission[ofs].b;
+ emission_accum.r += p_material.emission[ofs].r;
+ emission_accum.g += p_material.emission[ofs].g;
+ emission_accum.b += p_material.emission[ofs].b;
- normal_accum+=normal;
-
- alpha+=1.0;
+ normal_accum += normal;
+ alpha += 1.0;
}
}
-
- if (alpha==0) {
+ if (alpha == 0) {
//could not in any way get texture information.. so use closest point to center
- Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
- Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);
+ Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
+ Vector3 inters = f.get_closest_point_to(p_aabb.pos + p_aabb.size * 0.5);
- Vector2 uv = get_uv(inters,p_vtx,p_uv);
+ Vector2 uv = get_uv(inters, p_vtx, p_uv);
- int uv_x = CLAMP(Math::fposmod(uv.x,1.0f)*bake_texture_size,0,bake_texture_size-1);
- int uv_y = CLAMP(Math::fposmod(uv.y,1.0f)*bake_texture_size,0,bake_texture_size-1);
+ int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+ int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
- int ofs = uv_y*bake_texture_size+uv_x;
+ int ofs = uv_y * bake_texture_size + uv_x;
- alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);
+ alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- albedo_accum.r=p_material.albedo[ofs].r*alpha;
- albedo_accum.g=p_material.albedo[ofs].g*alpha;
- albedo_accum.b=p_material.albedo[ofs].b*alpha;
- albedo_accum.a=p_material.albedo[ofs].a*alpha;
+ albedo_accum.r = p_material.albedo[ofs].r * alpha;
+ albedo_accum.g = p_material.albedo[ofs].g * alpha;
+ albedo_accum.b = p_material.albedo[ofs].b * alpha;
+ albedo_accum.a = p_material.albedo[ofs].a * alpha;
- emission_accum.r=p_material.emission[ofs].r*alpha;
- emission_accum.g=p_material.emission[ofs].g*alpha;
- emission_accum.b=p_material.emission[ofs].b*alpha;
-
- normal_accum*=alpha;
+ emission_accum.r = p_material.emission[ofs].r * alpha;
+ emission_accum.g = p_material.emission[ofs].g * alpha;
+ emission_accum.b = p_material.emission[ofs].b * alpha;
+ normal_accum *= alpha;
} else {
- float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
- alpha*=accdiv;
-
- albedo_accum.r*=accdiv;
- albedo_accum.g*=accdiv;
- albedo_accum.b*=accdiv;
- albedo_accum.a*=accdiv;
+ float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
+ alpha *= accdiv;
- emission_accum.r*=accdiv;
- emission_accum.g*=accdiv;
- emission_accum.b*=accdiv;
+ albedo_accum.r *= accdiv;
+ albedo_accum.g *= accdiv;
+ albedo_accum.b *= accdiv;
+ albedo_accum.a *= accdiv;
- normal_accum*=accdiv;
+ emission_accum.r *= accdiv;
+ emission_accum.g *= accdiv;
+ emission_accum.b *= accdiv;
+ normal_accum *= accdiv;
}
//put this temporarily here, corrected in a later step
- p_baker->bake_cells[p_idx].albedo[0]+=albedo_accum.r;
- p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g;
- p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b;
- p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r;
- p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g;
- p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b;
- p_baker->bake_cells[p_idx].normal[0]+=normal_accum.x;
- p_baker->bake_cells[p_idx].normal[1]+=normal_accum.y;
- p_baker->bake_cells[p_idx].normal[2]+=normal_accum.z;
- p_baker->bake_cells[p_idx].alpha+=alpha;
-
- static const Vector3 side_normals[6]={
+ p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r;
+ p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g;
+ p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b;
+ p_baker->bake_cells[p_idx].emission[0] += emission_accum.r;
+ p_baker->bake_cells[p_idx].emission[1] += emission_accum.g;
+ p_baker->bake_cells[p_idx].emission[2] += emission_accum.b;
+ p_baker->bake_cells[p_idx].normal[0] += normal_accum.x;
+ p_baker->bake_cells[p_idx].normal[1] += normal_accum.y;
+ p_baker->bake_cells[p_idx].normal[2] += normal_accum.z;
+ p_baker->bake_cells[p_idx].alpha += alpha;
+
+ static const Vector3 side_normals[6] = {
Vector3(-1, 0, 0),
- Vector3( 1, 0, 0),
- Vector3( 0,-1, 0),
- Vector3( 0, 1, 0),
- Vector3( 0, 0,-1),
- Vector3( 0, 0, 1),
+ Vector3(1, 0, 0),
+ Vector3(0, -1, 0),
+ Vector3(0, 1, 0),
+ Vector3(0, 0, -1),
+ Vector3(0, 0, 1),
};
/*
@@ -691,104 +685,95 @@ void GIProbe::_plot_face(int p_idx, int p_level,int p_x,int p_y,int p_z, const V
}
}*/
-
} else {
//go down
- int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1);
- for(int i=0;i<8;i++) {
+ int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1);
+ for (int i = 0; i < 8; i++) {
- Rect3 aabb=p_aabb;
- aabb.size*=0.5;
+ Rect3 aabb = p_aabb;
+ aabb.size *= 0.5;
- int nx=p_x;
- int ny=p_y;
- int nz=p_z;
+ int nx = p_x;
+ int ny = p_y;
+ int nz = p_z;
- if (i&1) {
- aabb.pos.x+=aabb.size.x;
- nx+=half;
+ if (i & 1) {
+ aabb.pos.x += aabb.size.x;
+ nx += half;
}
- if (i&2) {
- aabb.pos.y+=aabb.size.y;
- ny+=half;
+ if (i & 2) {
+ aabb.pos.y += aabb.size.y;
+ ny += half;
}
- if (i&4) {
- aabb.pos.z+=aabb.size.z;
- nz+=half;
+ if (i & 4) {
+ aabb.pos.z += aabb.size.z;
+ nz += half;
}
//make sure to not plot beyond limits
- if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2])
+ if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2])
continue;
{
- Rect3 test_aabb=aabb;
+ Rect3 test_aabb = aabb;
//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
- Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test
+ Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
- if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
- //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
+ if (!fast_tri_box_overlap(test_aabb.pos + qsize, qsize, p_vtx)) {
+ //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
//does not fit in child, go on
continue;
}
-
}
- if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) {
+ if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) {
//sub cell must be created
uint32_t child_idx = p_baker->bake_cells.size();
- p_baker->bake_cells[p_idx].childs[i]=child_idx;
- p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1);
- p_baker->bake_cells[child_idx].level=p_level+1;
-
+ p_baker->bake_cells[p_idx].childs[i] = child_idx;
+ p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1);
+ p_baker->bake_cells[child_idx].level = p_level + 1;
}
-
- _plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker);
+ _plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker);
}
}
}
+void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) {
-
-void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker *p_baker) {
-
-
-
- if (p_level==p_baker->cell_subdiv-1) {
+ if (p_level == p_baker->cell_subdiv - 1) {
p_baker->leaf_voxel_count++;
float alpha = p_baker->bake_cells[p_idx].alpha;
- p_baker->bake_cells[p_idx].albedo[0]/=alpha;
- p_baker->bake_cells[p_idx].albedo[1]/=alpha;
- p_baker->bake_cells[p_idx].albedo[2]/=alpha;
+ p_baker->bake_cells[p_idx].albedo[0] /= alpha;
+ p_baker->bake_cells[p_idx].albedo[1] /= alpha;
+ p_baker->bake_cells[p_idx].albedo[2] /= alpha;
//transfer emission to light
- p_baker->bake_cells[p_idx].emission[0]/=alpha;
- p_baker->bake_cells[p_idx].emission[1]/=alpha;
- p_baker->bake_cells[p_idx].emission[2]/=alpha;
+ p_baker->bake_cells[p_idx].emission[0] /= alpha;
+ p_baker->bake_cells[p_idx].emission[1] /= alpha;
+ p_baker->bake_cells[p_idx].emission[2] /= alpha;
- p_baker->bake_cells[p_idx].normal[0]/=alpha;
- p_baker->bake_cells[p_idx].normal[1]/=alpha;
- p_baker->bake_cells[p_idx].normal[2]/=alpha;
+ p_baker->bake_cells[p_idx].normal[0] /= alpha;
+ p_baker->bake_cells[p_idx].normal[1] /= alpha;
+ p_baker->bake_cells[p_idx].normal[2] /= alpha;
- Vector3 n(p_baker->bake_cells[p_idx].normal[0],p_baker->bake_cells[p_idx].normal[1],p_baker->bake_cells[p_idx].normal[2]);
- if (n.length()<0.01) {
+ Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]);
+ if (n.length() < 0.01) {
//too much fight over normal, zero it
- p_baker->bake_cells[p_idx].normal[0]=0;
- p_baker->bake_cells[p_idx].normal[1]=0;
- p_baker->bake_cells[p_idx].normal[2]=0;
+ p_baker->bake_cells[p_idx].normal[0] = 0;
+ p_baker->bake_cells[p_idx].normal[1] = 0;
+ p_baker->bake_cells[p_idx].normal[2] = 0;
} else {
n.normalize();
- p_baker->bake_cells[p_idx].normal[0]=n.x;
- p_baker->bake_cells[p_idx].normal[1]=n.y;
- p_baker->bake_cells[p_idx].normal[2]=n.z;
+ p_baker->bake_cells[p_idx].normal[0] = n.x;
+ p_baker->bake_cells[p_idx].normal[1] = n.y;
+ p_baker->bake_cells[p_idx].normal[2] = n.z;
}
-
- p_baker->bake_cells[p_idx].alpha=1.0;
+ p_baker->bake_cells[p_idx].alpha = 1.0;
/*
//remove neighbours from used sides
@@ -856,60 +841,54 @@ void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker
*/
} else {
-
//go down
- float alpha_average=0;
- int half = (1<<(p_baker->cell_subdiv-1)) >> (p_level+1);
- for(int i=0;i<8;i++) {
+ float alpha_average = 0;
+ int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1);
+ for (int i = 0; i < 8; i++) {
uint32_t child = p_baker->bake_cells[p_idx].childs[i];
- if (child==Baker::CHILD_EMPTY)
+ if (child == Baker::CHILD_EMPTY)
continue;
+ int nx = p_x;
+ int ny = p_y;
+ int nz = p_z;
- int nx=p_x;
- int ny=p_y;
- int nz=p_z;
-
- if (i&1)
- nx+=half;
- if (i&2)
- ny+=half;
- if (i&4)
- nz+=half;
+ if (i & 1)
+ nx += half;
+ if (i & 2)
+ ny += half;
+ if (i & 4)
+ nz += half;
- _fixup_plot(child,p_level+1,nx,ny,nz,p_baker);
- alpha_average+=p_baker->bake_cells[child].alpha;
+ _fixup_plot(child, p_level + 1, nx, ny, nz, p_baker);
+ alpha_average += p_baker->bake_cells[child].alpha;
}
- p_baker->bake_cells[p_idx].alpha=alpha_average/8.0;
- p_baker->bake_cells[p_idx].emission[0]=0;
- p_baker->bake_cells[p_idx].emission[1]=0;
- p_baker->bake_cells[p_idx].emission[2]=0;
- p_baker->bake_cells[p_idx].normal[0]=0;
- p_baker->bake_cells[p_idx].normal[1]=0;
- p_baker->bake_cells[p_idx].normal[2]=0;
- p_baker->bake_cells[p_idx].albedo[0]=0;
- p_baker->bake_cells[p_idx].albedo[1]=0;
- p_baker->bake_cells[p_idx].albedo[2]=0;
-
+ p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0;
+ p_baker->bake_cells[p_idx].emission[0] = 0;
+ p_baker->bake_cells[p_idx].emission[1] = 0;
+ p_baker->bake_cells[p_idx].emission[2] = 0;
+ p_baker->bake_cells[p_idx].normal[0] = 0;
+ p_baker->bake_cells[p_idx].normal[1] = 0;
+ p_baker->bake_cells[p_idx].normal[2] = 0;
+ p_baker->bake_cells[p_idx].albedo[0] = 0;
+ p_baker->bake_cells[p_idx].albedo[1] = 0;
+ p_baker->bake_cells[p_idx].albedo[2] = 0;
}
-
}
-
-
-Vector<Color> GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) {
+Vector<Color> GIProbe::_get_bake_texture(Image &p_image, const Color &p_color) {
Vector<Color> ret;
if (p_image.empty()) {
- ret.resize(bake_texture_size*bake_texture_size);
- for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
- ret[i]=p_color;
+ ret.resize(bake_texture_size * bake_texture_size);
+ for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
+ ret[i] = p_color;
}
return ret;
@@ -920,27 +899,24 @@ Vector<Color> GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) {
p_image.decompress();
}
p_image.convert(Image::FORMAT_RGBA8);
- p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC);
-
+ p_image.resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
PoolVector<uint8_t>::Read r = p_image.get_data().read();
- ret.resize(bake_texture_size*bake_texture_size);
+ ret.resize(bake_texture_size * bake_texture_size);
- for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
+ for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
Color c;
- c.r = r[i*4+0]/255.0;
- c.g = r[i*4+1]/255.0;
- c.b = r[i*4+2]/255.0;
- c.a = r[i*4+3]/255.0;
- ret[i]=c;
-
+ c.r = r[i * 4 + 0] / 255.0;
+ c.g = r[i * 4 + 1] / 255.0;
+ c.b = r[i * 4 + 2] / 255.0;
+ c.a = r[i * 4 + 3] / 255.0;
+ ret[i] = c;
}
return ret;
}
-
-GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material,Baker *p_baker) {
+GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material, Baker *p_baker) {
//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
Ref<FixedSpatialMaterial> mat = p_material;
@@ -962,17 +938,16 @@ GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_mater
img_albedo = albedo_tex->get_data();
} else {
-
}
- mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo());
+ mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo());
Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
- emission_col.r*=mat->get_emission_energy();
- emission_col.g*=mat->get_emission_energy();
- emission_col.b*=mat->get_emission_energy();
+ emission_col.r *= mat->get_emission_energy();
+ emission_col.g *= mat->get_emission_energy();
+ emission_col.b *= mat->get_emission_energy();
Image img_emission;
@@ -981,122 +956,110 @@ GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_mater
img_emission = emission_tex->get_data();
}
- mc.emission=_get_bake_texture(img_emission,emission_col);
+ mc.emission = _get_bake_texture(img_emission, emission_col);
} else {
Image empty;
- mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7));
- mc.emission=_get_bake_texture(empty,Color(0,0,0));
-
-
+ mc.albedo = _get_bake_texture(empty, Color(0.7, 0.7, 0.7));
+ mc.emission = _get_bake_texture(empty, Color(0, 0, 0));
}
- p_baker->material_cache[p_material]=mc;
+ p_baker->material_cache[p_material] = mc;
return mc;
-
-
}
-void GIProbe::_plot_mesh(const Transform& p_xform, Ref<Mesh>& p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
+void GIProbe::_plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
+ for (int i = 0; i < p_mesh->get_surface_count(); i++) {
- for(int i=0;i<p_mesh->get_surface_count();i++) {
-
- if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
+ if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
Ref<Material> src_material;
if (p_override_material.is_valid()) {
- src_material=p_override_material;
- } else if (i<p_materials.size() && p_materials[i].is_valid()) {
- src_material=p_materials[i];
+ src_material = p_override_material;
+ } else if (i < p_materials.size() && p_materials[i].is_valid()) {
+ src_material = p_materials[i];
} else {
- src_material=p_mesh->surface_get_material(i);
-
+ src_material = p_mesh->surface_get_material(i);
}
- Baker::MaterialCache material = _get_material_cache(src_material,p_baker);
+ Baker::MaterialCache material = _get_material_cache(src_material, p_baker);
Array a = p_mesh->surface_get_arrays(i);
-
PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
- PoolVector<Vector3>::Read vr=vertices.read();
+ PoolVector<Vector3>::Read vr = vertices.read();
PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
PoolVector<Vector2>::Read uvr;
PoolVector<int> index = a[Mesh::ARRAY_INDEX];
- bool read_uv=false;
+ bool read_uv = false;
if (uv.size()) {
- uvr=uv.read();
- read_uv=true;
+ uvr = uv.read();
+ read_uv = true;
}
if (index.size()) {
- int facecount = index.size()/3;
- PoolVector<int>::Read ir=index.read();
+ int facecount = index.size() / 3;
+ PoolVector<int>::Read ir = index.read();
- for(int j=0;j<facecount;j++) {
+ for (int j = 0; j < facecount; j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
- for(int k=0;k<3;k++) {
- vtxs[k]=p_xform.xform(vr[ir[j*3+k]]);
+ for (int k = 0; k < 3; k++) {
+ vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
}
if (read_uv) {
- for(int k=0;k<3;k++) {
- uvs[k]=uvr[ir[j*3+k]];
+ for (int k = 0; k < 3; k++) {
+ uvs[k] = uvr[ir[j * 3 + k]];
}
}
//test against original bounds
- if (!fast_tri_box_overlap(-extents,extents*2,vtxs))
+ if (!fast_tri_box_overlap(-extents, extents * 2, vtxs))
continue;
//plot
- _plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker);
+ _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker);
}
-
-
} else {
- int facecount = vertices.size()/3;
+ int facecount = vertices.size() / 3;
- for(int j=0;j<facecount;j++) {
+ for (int j = 0; j < facecount; j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
- for(int k=0;k<3;k++) {
- vtxs[k]=p_xform.xform(vr[j*3+k]);
+ for (int k = 0; k < 3; k++) {
+ vtxs[k] = p_xform.xform(vr[j * 3 + k]);
}
if (read_uv) {
- for(int k=0;k<3;k++) {
- uvs[k]=uvr[j*3+k];
+ for (int k = 0; k < 3; k++) {
+ uvs[k] = uvr[j * 3 + k];
}
}
//test against original bounds
- if (!fast_tri_box_overlap(-extents,extents*2,vtxs))
+ if (!fast_tri_box_overlap(-extents, extents * 2, vtxs))
continue;
//plot face
- _plot_face(0,0,0,0,0,vtxs,uvs,material,p_baker->po2_bounds,p_baker);
+ _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker);
}
-
}
}
}
-
-
-void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){
+void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) {
MeshInstance *mi = p_at_node->cast_to<MeshInstance>();
if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT)) {
@@ -1107,16 +1070,15 @@ void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){
Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform();
- if (Rect3(-extents,extents*2).intersects(xf.xform(aabb))) {
+ if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) {
Baker::PlotMesh pm;
- pm.local_xform=xf;
- pm.mesh=mesh;
- for(int i=0;i<mesh->get_surface_count();i++) {
+ pm.local_xform = xf;
+ pm.mesh = mesh;
+ for (int i = 0; i < mesh->get_surface_count(); i++) {
pm.instance_materials.push_back(mi->get_surface_material(i));
}
- pm.override_material=mi->get_material_override();
+ pm.override_material = mi->get_material_override();
p_baker->mesh_list.push_back(pm);
-
}
}
}
@@ -1125,10 +1087,10 @@ void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){
Spatial *s = p_at_node->cast_to<Spatial>();
Array meshes = p_at_node->call("get_meshes");
- for(int i=0;i<meshes.size();i+=2) {
+ for (int i = 0; i < meshes.size(); i += 2) {
Transform mxf = meshes[i];
- Ref<Mesh> mesh = meshes[i+1];
+ Ref<Mesh> mesh = meshes[i + 1];
if (!mesh.is_valid())
continue;
@@ -1136,166 +1098,151 @@ void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){
Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf);
- if (Rect3(-extents,extents*2).intersects(xf.xform(aabb))) {
+ if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) {
Baker::PlotMesh pm;
- pm.local_xform=xf;
- pm.mesh=mesh;
+ pm.local_xform = xf;
+ pm.mesh = mesh;
p_baker->mesh_list.push_back(pm);
-
}
}
}
- for(int i=0;i<p_at_node->get_child_count();i++) {
+ for (int i = 0; i < p_at_node->get_child_count(); i++) {
Node *child = p_at_node->get_child(i);
if (!child->get_owner())
continue; //maybe a helper
- _find_meshes(child,p_baker);
-
+ _find_meshes(child, p_baker);
}
}
-
-
-
-void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){
+void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
Baker baker;
- static const int subdiv_value[SUBDIV_MAX]={7,8,9,10};
+ static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 };
- baker.cell_subdiv=subdiv_value[subdiv];
+ baker.cell_subdiv = subdiv_value[subdiv];
baker.bake_cells.resize(1);
//find out the actual real bounds, power of 2, which gets the highest subdivision
- baker.po2_bounds=Rect3(-extents,extents*2.0);
+ baker.po2_bounds = Rect3(-extents, extents * 2.0);
int longest_axis = baker.po2_bounds.get_longest_axis_index();
- baker.axis_cell_size[longest_axis]=(1<<(baker.cell_subdiv-1));
- baker.leaf_voxel_count=0;
+ baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1));
+ baker.leaf_voxel_count = 0;
- for(int i=0;i<3;i++) {
+ for (int i = 0; i < 3; i++) {
- if (i==longest_axis)
+ if (i == longest_axis)
continue;
- baker.axis_cell_size[i]=baker.axis_cell_size[longest_axis];
+ baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis];
float axis_size = baker.po2_bounds.size[longest_axis];
//shrink until fit subdiv
- while (axis_size/2.0 >= baker.po2_bounds.size[i]) {
- axis_size/=2.0;
- baker.axis_cell_size[i]>>=1;
+ while (axis_size / 2.0 >= baker.po2_bounds.size[i]) {
+ axis_size /= 2.0;
+ baker.axis_cell_size[i] >>= 1;
}
- baker.po2_bounds.size[i]=baker.po2_bounds.size[longest_axis];
+ baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis];
}
-
-
Transform to_bounds;
- to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis]));
- to_bounds.origin=baker.po2_bounds.pos;
+ to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis]));
+ to_bounds.origin = baker.po2_bounds.pos;
Transform to_grid;
- to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis]));
+ to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis]));
baker.to_cell_space = to_grid * to_bounds.affine_inverse();
+ _find_meshes(p_from_node ? p_from_node : get_parent(), &baker);
- _find_meshes(p_from_node?p_from_node:get_parent(),&baker);
-
-
+ int pmc = 0;
- int pmc=0;
+ for (List<Baker::PlotMesh>::Element *E = baker.mesh_list.front(); E; E = E->next()) {
- for(List<Baker::PlotMesh>::Element *E=baker.mesh_list.front();E;E=E->next()) {
+ print_line("plotting mesh " + itos(pmc++) + "/" + itos(baker.mesh_list.size()));
- print_line("plotting mesh "+itos(pmc++)+"/"+itos(baker.mesh_list.size()));
-
- _plot_mesh(E->get().local_xform,E->get().mesh,&baker,E->get().instance_materials,E->get().override_material);
+ _plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material);
}
- _fixup_plot(0,0,0,0,0,&baker);
+ _fixup_plot(0, 0, 0, 0, 0, &baker);
//create the data for visual server
PoolVector<int> data;
- data.resize( 16+(8+1+1+1+1)*baker.bake_cells.size() ); //4 for header, rest for rest.
+ data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest.
{
PoolVector<int>::Write w = data.write();
- uint32_t * w32 = (uint32_t*)w.ptr();
+ uint32_t *w32 = (uint32_t *)w.ptr();
- w32[0]=0;//version
- w32[1]=baker.cell_subdiv; //subdiv
- w32[2]=baker.axis_cell_size[0];
- w32[3]=baker.axis_cell_size[1];
- w32[4]=baker.axis_cell_size[2];
- w32[5]=baker.bake_cells.size();
- w32[6]=baker.leaf_voxel_count;
+ w32[0] = 0; //version
+ w32[1] = baker.cell_subdiv; //subdiv
+ w32[2] = baker.axis_cell_size[0];
+ w32[3] = baker.axis_cell_size[1];
+ w32[4] = baker.axis_cell_size[2];
+ w32[5] = baker.bake_cells.size();
+ w32[6] = baker.leaf_voxel_count;
- int ofs=16;
+ int ofs = 16;
- for(int i=0;i<baker.bake_cells.size();i++) {
+ for (int i = 0; i < baker.bake_cells.size(); i++) {
- for(int j=0;j<8;j++) {
- w32[ofs++]=baker.bake_cells[i].childs[j];
+ for (int j = 0; j < 8; j++) {
+ w32[ofs++] = baker.bake_cells[i].childs[j];
}
{ //albedo
- uint32_t rgba=uint32_t(CLAMP(baker.bake_cells[i].albedo[0]*255.0,0,255))<<16;
- rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[1]*255.0,0,255))<<8;
- rgba|=uint32_t(CLAMP(baker.bake_cells[i].albedo[2]*255.0,0,255))<<0;
-
- w32[ofs++]=rgba;
-
+ uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
+ rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
+ rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
+ w32[ofs++] = rgba;
}
{ //emission
- Vector3 e(baker.bake_cells[i].emission[0],baker.bake_cells[i].emission[1],baker.bake_cells[i].emission[2]);
+ Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]);
float l = e.length();
- if (l>0) {
+ if (l > 0) {
e.normalize();
- l=CLAMP(l/8.0,0,1.0);
+ l = CLAMP(l / 8.0, 0, 1.0);
}
- uint32_t em=uint32_t(CLAMP(e[0]*255,0,255))<<24;
- em|=uint32_t(CLAMP(e[1]*255,0,255))<<16;
- em|=uint32_t(CLAMP(e[2]*255,0,255))<<8;
- em|=uint32_t(CLAMP(l*255,0,255));
+ uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
+ em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
+ em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
+ em |= uint32_t(CLAMP(l * 255, 0, 255));
- w32[ofs++]=em;
+ w32[ofs++] = em;
}
//w32[ofs++]=baker.bake_cells[i].used_sides;
{ //normal
- Vector3 n(baker.bake_cells[i].normal[0],baker.bake_cells[i].normal[1],baker.bake_cells[i].normal[2]);
- n=n*Vector3(0.5,0.5,0.5)+Vector3(0.5,0.5,0.5);
- uint32_t norm=0;
-
+ Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]);
+ n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
+ uint32_t norm = 0;
- norm|=uint32_t(CLAMP( n.x*255.0, 0, 255))<<16;
- norm|=uint32_t(CLAMP( n.y*255.0, 0, 255))<<8;
- norm|=uint32_t(CLAMP( n.z*255.0, 0, 255))<<0;
+ norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
+ norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
+ norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
- w32[ofs++]=norm;
+ w32[ofs++] = norm;
}
{
- uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha*65535.0),0,65535);
+ uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535);
uint16_t level = baker.bake_cells[i].level;
- w32[ofs++] = (uint32_t(level)<<16)|uint32_t(alpha);
+ w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
}
-
}
-
}
if (p_create_visual_debug) {
@@ -1304,8 +1251,8 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){
Ref<GIProbeData> probe_data;
probe_data.instance();
- probe_data->set_bounds(Rect3(-extents,extents*2.0));
- probe_data->set_cell_size(baker.po2_bounds.size[longest_axis]/baker.axis_cell_size[longest_axis]);
+ probe_data->set_bounds(Rect3(-extents, extents * 2.0));
+ probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]);
probe_data->set_dynamic_data(data);
probe_data->set_dynamic_range(dynamic_range);
probe_data->set_energy(energy);
@@ -1317,54 +1264,44 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){
set_probe_data(probe_data);
}
-
-
-
-
-
}
+void GIProbe::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker) {
-void GIProbe::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb,Ref<MultiMesh> &p_multimesh,int &idx,Baker *p_baker) {
+ if (p_level == p_baker->cell_subdiv - 1) {
-
- if (p_level==p_baker->cell_subdiv-1) {
-
- Vector3 center = p_aabb.pos+p_aabb.size*0.5;
+ Vector3 center = p_aabb.pos + p_aabb.size * 0.5;
Transform xform;
- xform.origin=center;
- xform.basis.scale(p_aabb.size*0.5);
- p_multimesh->set_instance_transform(idx,xform);
- Color col=Color(p_baker->bake_cells[p_idx].albedo[0],p_baker->bake_cells[p_idx].albedo[1],p_baker->bake_cells[p_idx].albedo[2]);
- p_multimesh->set_instance_color(idx,col);
+ xform.origin = center;
+ xform.basis.scale(p_aabb.size * 0.5);
+ p_multimesh->set_instance_transform(idx, xform);
+ Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]);
+ p_multimesh->set_instance_color(idx, col);
idx++;
} else {
- for(int i=0;i<8;i++) {
+ for (int i = 0; i < 8; i++) {
- if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY)
+ if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY)
continue;
- Rect3 aabb=p_aabb;
- aabb.size*=0.5;
+ Rect3 aabb = p_aabb;
+ aabb.size *= 0.5;
- if (i&1)
- aabb.pos.x+=aabb.size.x;
- if (i&2)
- aabb.pos.y+=aabb.size.y;
- if (i&4)
- aabb.pos.z+=aabb.size.z;
+ if (i & 1)
+ aabb.pos.x += aabb.size.x;
+ if (i & 2)
+ aabb.pos.y += aabb.size.y;
+ if (i & 4)
+ aabb.pos.z += aabb.size.z;
- _debug_mesh(p_baker->bake_cells[p_idx].childs[i],p_level+1,aabb,p_multimesh,idx,p_baker);
+ _debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker);
}
-
}
-
}
-
void GIProbe::_create_debug_mesh(Baker *p_baker) {
Ref<MultiMesh> mm;
@@ -1372,7 +1309,7 @@ void GIProbe::_create_debug_mesh(Baker *p_baker) {
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_color_format(MultiMesh::COLOR_8BIT);
- print_line("leaf voxels: "+itos(p_baker->leaf_voxel_count));
+ print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count));
mm->set_instance_count(p_baker->leaf_voxel_count);
Ref<Mesh> mesh;
@@ -1385,76 +1322,72 @@ void GIProbe::_create_debug_mesh(Baker *p_baker) {
PoolVector<Vector3> vertices;
PoolVector<Color> colors;
- int vtx_idx=0;
- #define ADD_VTX(m_idx);\
- vertices.push_back( face_points[m_idx] );\
- colors.push_back( Color(1,1,1,1) );\
- vtx_idx++;\
-
- for (int i=0;i<6;i++) {
+ int vtx_idx = 0;
+#define ADD_VTX(m_idx) \
+ ; \
+ vertices.push_back(face_points[m_idx]); \
+ colors.push_back(Color(1, 1, 1, 1)); \
+ vtx_idx++;
+ for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
- for (int j=0;j<4;j++) {
+ for (int j = 0; j < 4; j++) {
float v[3];
- v[0]=1.0;
- v[1]=1-2*((j>>1)&1);
- v[2]=v[1]*(1-2*(j&1));
+ v[0] = 1.0;
+ v[1] = 1 - 2 * ((j >> 1) & 1);
+ v[2] = v[1] * (1 - 2 * (j & 1));
- for (int k=0;k<3;k++) {
+ for (int k = 0; k < 3; k++) {
- if (i<3)
- face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
+ if (i < 3)
+ face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
else
- face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
+ face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
}
}
- //tri 1
+ //tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
- //tri 2
+ //tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
-
}
-
- arr[Mesh::ARRAY_VERTEX]=vertices;
- arr[Mesh::ARRAY_COLOR]=colors;
- mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr);
+ arr[Mesh::ARRAY_VERTEX] = vertices;
+ arr[Mesh::ARRAY_COLOR] = colors;
+ mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
}
{
Ref<FixedSpatialMaterial> fsm;
fsm.instance();
- fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true);
- fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true);
- fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true);
- fsm->set_albedo(Color(1,1,1,1));
+ fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
+ fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
+ fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED, true);
+ fsm->set_albedo(Color(1, 1, 1, 1));
- mesh->surface_set_material(0,fsm);
+ mesh->surface_set_material(0, fsm);
}
mm->set_mesh(mesh);
+ int idx = 0;
+ _debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker);
- int idx=0;
- _debug_mesh(0,0,p_baker->po2_bounds,mm,idx,p_baker);
-
- MultiMeshInstance *mmi = memnew( MultiMeshInstance );
+ MultiMeshInstance *mmi = memnew(MultiMeshInstance);
mmi->set_multimesh(mm);
add_child(mmi);
#ifdef TOOLS_ENABLED
- if (get_tree()->get_edited_scene_root()==this){
+ if (get_tree()->get_edited_scene_root() == this) {
mmi->set_owner(this);
} else {
mmi->set_owner(get_owner());
-
}
#else
mmi->set_owner(get_owner());
@@ -1463,12 +1396,12 @@ void GIProbe::_create_debug_mesh(Baker *p_baker) {
void GIProbe::_debug_bake() {
- bake(NULL,true);
+ bake(NULL, true);
}
Rect3 GIProbe::get_aabb() const {
- return Rect3(-extents,extents*2);
+ return Rect3(-extents, extents * 2);
}
PoolVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const {
@@ -1478,74 +1411,68 @@ PoolVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const {
void GIProbe::_bind_methods() {
- ClassDB::bind_method(D_METHOD("set_probe_data","data"),&GIProbe::set_probe_data);
- ClassDB::bind_method(D_METHOD("get_probe_data"),&GIProbe::get_probe_data);
+ ClassDB::bind_method(D_METHOD("set_probe_data", "data"), &GIProbe::set_probe_data);
+ ClassDB::bind_method(D_METHOD("get_probe_data"), &GIProbe::get_probe_data);
- ClassDB::bind_method(D_METHOD("set_subdiv","subdiv"),&GIProbe::set_subdiv);
- ClassDB::bind_method(D_METHOD("get_subdiv"),&GIProbe::get_subdiv);
+ ClassDB::bind_method(D_METHOD("set_subdiv", "subdiv"), &GIProbe::set_subdiv);
+ ClassDB::bind_method(D_METHOD("get_subdiv"), &GIProbe::get_subdiv);
- ClassDB::bind_method(D_METHOD("set_extents","extents"),&GIProbe::set_extents);
- ClassDB::bind_method(D_METHOD("get_extents"),&GIProbe::get_extents);
+ ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents);
+ ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents);
- ClassDB::bind_method(D_METHOD("set_dynamic_range","max"),&GIProbe::set_dynamic_range);
- ClassDB::bind_method(D_METHOD("get_dynamic_range"),&GIProbe::get_dynamic_range);
+ ClassDB::bind_method(D_METHOD("set_dynamic_range", "max"), &GIProbe::set_dynamic_range);
+ ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbe::get_dynamic_range);
- ClassDB::bind_method(D_METHOD("set_energy","max"),&GIProbe::set_energy);
- ClassDB::bind_method(D_METHOD("get_energy"),&GIProbe::get_energy);
+ ClassDB::bind_method(D_METHOD("set_energy", "max"), &GIProbe::set_energy);
+ ClassDB::bind_method(D_METHOD("get_energy"), &GIProbe::get_energy);
- ClassDB::bind_method(D_METHOD("set_bias","max"),&GIProbe::set_bias);
- ClassDB::bind_method(D_METHOD("get_bias"),&GIProbe::get_bias);
+ ClassDB::bind_method(D_METHOD("set_bias", "max"), &GIProbe::set_bias);
+ ClassDB::bind_method(D_METHOD("get_bias"), &GIProbe::get_bias);
- ClassDB::bind_method(D_METHOD("set_propagation","max"),&GIProbe::set_propagation);
- ClassDB::bind_method(D_METHOD("get_propagation"),&GIProbe::get_propagation);
+ ClassDB::bind_method(D_METHOD("set_propagation", "max"), &GIProbe::set_propagation);
+ ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbe::get_propagation);
- ClassDB::bind_method(D_METHOD("set_interior","enable"),&GIProbe::set_interior);
- ClassDB::bind_method(D_METHOD("is_interior"),&GIProbe::is_interior);
+ ClassDB::bind_method(D_METHOD("set_interior", "enable"), &GIProbe::set_interior);
+ ClassDB::bind_method(D_METHOD("is_interior"), &GIProbe::is_interior);
- ClassDB::bind_method(D_METHOD("set_compress","enable"),&GIProbe::set_compress);
- ClassDB::bind_method(D_METHOD("is_compressed"),&GIProbe::is_compressed);
+ ClassDB::bind_method(D_METHOD("set_compress", "enable"), &GIProbe::set_compress);
+ ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbe::is_compressed);
- ClassDB::bind_method(D_METHOD("bake","from_node","create_visual_debug"),&GIProbe::bake,DEFVAL(Variant()),DEFVAL(false));
- ClassDB::bind_method(D_METHOD("debug_bake"),&GIProbe::_debug_bake);
- ClassDB::set_method_flags(get_class_static(),_scs_create("debug_bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
+ ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false));
+ ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake);
+ ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
- ADD_PROPERTY( PropertyInfo(Variant::INT,"subdiv",PROPERTY_HINT_ENUM,"64,128,256,512"),"set_subdiv","get_subdiv");
- ADD_PROPERTY( PropertyInfo(Variant::VECTOR3,"extents"),"set_extents","get_extents");
- ADD_PROPERTY( PropertyInfo(Variant::INT,"dynamic_range",PROPERTY_HINT_RANGE,"1,16,1"),"set_dynamic_range","get_dynamic_range");
- ADD_PROPERTY( PropertyInfo(Variant::REAL,"energy",PROPERTY_HINT_RANGE,"0,16,0.01"),"set_energy","get_energy");
- ADD_PROPERTY( PropertyInfo(Variant::REAL,"propagation",PROPERTY_HINT_RANGE,"0,1,0.01"),"set_propagation","get_propagation");
- ADD_PROPERTY( PropertyInfo(Variant::REAL,"bias",PROPERTY_HINT_RANGE,"0,4,0.001"),"set_bias","get_bias");
- ADD_PROPERTY( PropertyInfo(Variant::BOOL,"interior"),"set_interior","is_interior");
- ADD_PROPERTY( PropertyInfo(Variant::BOOL,"compress"),"set_compress","is_compressed");
- ADD_PROPERTY( PropertyInfo(Variant::OBJECT,"data",PROPERTY_HINT_RESOURCE_TYPE,"GIProbeData"),"set_probe_data","get_probe_data");
-
-
- BIND_CONSTANT( SUBDIV_64 );
- BIND_CONSTANT( SUBDIV_128 );
- BIND_CONSTANT( SUBDIV_256 );
- BIND_CONSTANT( SUBDIV_MAX );
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv");
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "1,16,1"), "set_dynamic_range", "get_dynamic_range");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_energy", "get_energy");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation");
+ ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_bias", "get_bias");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress"), "set_compress", "is_compressed");
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData"), "set_probe_data", "get_probe_data");
+ BIND_CONSTANT(SUBDIV_64);
+ BIND_CONSTANT(SUBDIV_128);
+ BIND_CONSTANT(SUBDIV_256);
+ BIND_CONSTANT(SUBDIV_MAX);
}
GIProbe::GIProbe() {
- subdiv=SUBDIV_128;
- dynamic_range=4;
- energy=1.0;
- bias=0.4;
- propagation=1.0;
- extents=Vector3(10,10,10);
- color_scan_cell_width=4;
- bake_texture_size=128;
- interior=false;
- compress=false;
+ subdiv = SUBDIV_128;
+ dynamic_range = 4;
+ energy = 1.0;
+ bias = 0.4;
+ propagation = 1.0;
+ extents = Vector3(10, 10, 10);
+ color_scan_cell_width = 4;
+ bake_texture_size = 128;
+ interior = false;
+ compress = false;
gi_probe = VS::get_singleton()->gi_probe_create();
-
-
}
GIProbe::~GIProbe() {
-
-
}