summaryrefslogtreecommitdiffstats
path: root/core/math/delaunay_3d.h
blob: 4f21a665de7f24b891d9e93321ef8a83cc14b7d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/**************************************************************************/
/*  delaunay_3d.h                                                         */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef DELAUNAY_3D_H
#define DELAUNAY_3D_H

#include "core/io/file_access.h"
#include "core/math/aabb.h"
#include "core/math/projection.h"
#include "core/math/vector3.h"
#include "core/templates/local_vector.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/vector.h"
#include "core/variant/variant.h"

#include "thirdparty/misc/r128.h"

class Delaunay3D {
	struct Simplex;

	enum {
		ACCEL_GRID_SIZE = 16,
		QUANTIZATION_MAX = 1 << 16 // A power of two smaller than the 23 bit significand of a float.
	};
	struct GridPos {
		Vector3i pos;
		List<Simplex *>::Element *E = nullptr;
	};

	struct Simplex {
		uint32_t points[4];
		R128 circum_center_x;
		R128 circum_center_y;
		R128 circum_center_z;
		R128 circum_r2;
		LocalVector<GridPos> grid_positions;
		List<Simplex *>::Element *SE = nullptr;

		_FORCE_INLINE_ Simplex() {}
		_FORCE_INLINE_ Simplex(uint32_t p_a, uint32_t p_b, uint32_t p_c, uint32_t p_d) {
			points[0] = p_a;
			points[1] = p_b;
			points[2] = p_c;
			points[3] = p_d;
		}
	};

	struct Triangle {
		uint32_t triangle[3];
		bool bad = false;
		_FORCE_INLINE_ bool operator==(const Triangle &p_triangle) const {
			return triangle[0] == p_triangle.triangle[0] && triangle[1] == p_triangle.triangle[1] && triangle[2] == p_triangle.triangle[2];
		}

		_FORCE_INLINE_ Triangle() {}
		_FORCE_INLINE_ Triangle(uint32_t p_a, uint32_t p_b, uint32_t p_c) {
			if (p_a > p_b) {
				SWAP(p_a, p_b);
			}
			if (p_b > p_c) {
				SWAP(p_b, p_c);
			}
			if (p_a > p_b) {
				SWAP(p_a, p_b);
			}

			triangle[0] = p_a;
			triangle[1] = p_b;
			triangle[2] = p_c;
		}
	};

	struct TriangleHasher {
		_FORCE_INLINE_ static uint32_t hash(const Triangle &p_triangle) {
			uint32_t h = hash_djb2_one_32(p_triangle.triangle[0]);
			h = hash_djb2_one_32(p_triangle.triangle[1], h);
			return hash_fmix32(hash_djb2_one_32(p_triangle.triangle[2], h));
		}
	};

	_FORCE_INLINE_ static void circum_sphere_compute(const Vector3 *p_points, Simplex *p_simplex) {
		// The only part in the algorithm where there may be precision errors is this one,
		// so ensure that we do it with the maximum precision possible.

		R128 v0_x = p_points[p_simplex->points[0]].x;
		R128 v0_y = p_points[p_simplex->points[0]].y;
		R128 v0_z = p_points[p_simplex->points[0]].z;
		R128 v1_x = p_points[p_simplex->points[1]].x;
		R128 v1_y = p_points[p_simplex->points[1]].y;
		R128 v1_z = p_points[p_simplex->points[1]].z;
		R128 v2_x = p_points[p_simplex->points[2]].x;
		R128 v2_y = p_points[p_simplex->points[2]].y;
		R128 v2_z = p_points[p_simplex->points[2]].z;
		R128 v3_x = p_points[p_simplex->points[3]].x;
		R128 v3_y = p_points[p_simplex->points[3]].y;
		R128 v3_z = p_points[p_simplex->points[3]].z;

		// Create the rows of our "unrolled" 3x3 matrix.
		R128 row1_x = v1_x - v0_x;
		R128 row1_y = v1_y - v0_y;
		R128 row1_z = v1_z - v0_z;

		R128 row2_x = v2_x - v0_x;
		R128 row2_y = v2_y - v0_y;
		R128 row2_z = v2_z - v0_z;

		R128 row3_x = v3_x - v0_x;
		R128 row3_y = v3_y - v0_y;
		R128 row3_z = v3_z - v0_z;

		R128 sq_lenght1 = row1_x * row1_x + row1_y * row1_y + row1_z * row1_z;
		R128 sq_lenght2 = row2_x * row2_x + row2_y * row2_y + row2_z * row2_z;
		R128 sq_lenght3 = row3_x * row3_x + row3_y * row3_y + row3_z * row3_z;

		// Compute the determinant of said matrix.
		R128 determinant = row1_x * (row2_y * row3_z - row3_y * row2_z) - row2_x * (row1_y * row3_z - row3_y * row1_z) + row3_x * (row1_y * row2_z - row2_y * row1_z);

		// Compute the volume of the tetrahedron, and precompute a scalar quantity for reuse in the formula.
		R128 volume = determinant / R128(6.f);
		R128 i12volume = R128(1.f) / (volume * R128(12.f));

		R128 center_x = v0_x + i12volume * ((row2_y * row3_z - row3_y * row2_z) * sq_lenght1 - (row1_y * row3_z - row3_y * row1_z) * sq_lenght2 + (row1_y * row2_z - row2_y * row1_z) * sq_lenght3);
		R128 center_y = v0_y + i12volume * (-(row2_x * row3_z - row3_x * row2_z) * sq_lenght1 + (row1_x * row3_z - row3_x * row1_z) * sq_lenght2 - (row1_x * row2_z - row2_x * row1_z) * sq_lenght3);
		R128 center_z = v0_z + i12volume * ((row2_x * row3_y - row3_x * row2_y) * sq_lenght1 - (row1_x * row3_y - row3_x * row1_y) * sq_lenght2 + (row1_x * row2_y - row2_x * row1_y) * sq_lenght3);

		// Once we know the center, the radius is clearly the distance to any vertex.
		R128 rel1_x = center_x - v0_x;
		R128 rel1_y = center_y - v0_y;
		R128 rel1_z = center_z - v0_z;

		R128 radius1 = rel1_x * rel1_x + rel1_y * rel1_y + rel1_z * rel1_z;

		p_simplex->circum_center_x = center_x;
		p_simplex->circum_center_y = center_y;
		p_simplex->circum_center_z = center_z;
		p_simplex->circum_r2 = radius1;
	}

	_FORCE_INLINE_ static bool simplex_contains(const Vector3 *p_points, const Simplex &p_simplex, uint32_t p_vertex) {
		R128 v_x = p_points[p_vertex].x;
		R128 v_y = p_points[p_vertex].y;
		R128 v_z = p_points[p_vertex].z;

		R128 rel2_x = p_simplex.circum_center_x - v_x;
		R128 rel2_y = p_simplex.circum_center_y - v_y;
		R128 rel2_z = p_simplex.circum_center_z - v_z;

		R128 radius2 = rel2_x * rel2_x + rel2_y * rel2_y + rel2_z * rel2_z;

		return radius2 < (p_simplex.circum_r2 - R128(0.0000000001));
		// When this tolerance is too big, it can result in overlapping simplices.
		// When it's too small, large amounts of planar simplices are created.
	}

	static bool simplex_is_coplanar(const Vector3 *p_points, const Simplex &p_simplex) {
		// Checking every possible distance like this is overkill, but only checking
		// one is not enough. If the simplex is almost planar then the vectors p1-p2
		// and p1-p3 can be practically collinear, which makes Plane unreliable.
		for (uint32_t i = 0; i < 4; i++) {
			Plane p(p_points[p_simplex.points[i]], p_points[p_simplex.points[(i + 1) % 4]], p_points[p_simplex.points[(i + 2) % 4]]);
			// This tolerance should not be smaller than the one used with
			// Plane::has_point() when creating the LightmapGI probe BSP tree.
			if (ABS(p.distance_to(p_points[p_simplex.points[(i + 3) % 4]])) < 0.001) {
				return true;
			}
		}

		return false;
	}

public:
	struct OutputSimplex {
		uint32_t points[4];
	};

	static Vector<OutputSimplex> tetrahedralize(const Vector<Vector3> &p_points) {
		uint32_t point_count = p_points.size();
		Vector3 *points = (Vector3 *)memalloc(sizeof(Vector3) * (point_count + 4));
		const Vector3 *src_points = p_points.ptr();
		Vector3 proportions;

		{
			AABB rect;
			for (uint32_t i = 0; i < point_count; i++) {
				Vector3 point = src_points[i];
				if (i == 0) {
					rect.position = point;
				} else {
					rect.expand_to(point);
				}
			}

			real_t longest_axis = rect.size[rect.get_longest_axis_index()];
			proportions = Vector3(longest_axis, longest_axis, longest_axis) / rect.size;

			for (uint32_t i = 0; i < point_count; i++) {
				// Scale points to the unit cube to better utilize R128 precision
				// and quantize to stabilize triangulation over a wide range of
				// distances.
				points[i] = Vector3(Vector3i((src_points[i] - rect.position) / longest_axis * QUANTIZATION_MAX)) / QUANTIZATION_MAX;
			}

			const real_t delta_max = Math::sqrt(2.0) * 100.0;
			Vector3 center = Vector3(0.5, 0.5, 0.5);

			// The larger the root simplex is, the more likely it is that the
			// triangulation is convex. If it's not absolutely huge, there can
			// be missing simplices that are not created for the outermost faces
			// of the point cloud if the point density is very low there.
			points[point_count + 0] = center + Vector3(0, 1, 0) * delta_max;
			points[point_count + 1] = center + Vector3(0, -1, 1) * delta_max;
			points[point_count + 2] = center + Vector3(1, -1, -1) * delta_max;
			points[point_count + 3] = center + Vector3(-1, -1, -1) * delta_max;
		}

		List<Simplex *> acceleration_grid[ACCEL_GRID_SIZE][ACCEL_GRID_SIZE][ACCEL_GRID_SIZE];

		List<Simplex *> simplex_list;
		{
			//create root simplex
			Simplex *root = memnew(Simplex(point_count + 0, point_count + 1, point_count + 2, point_count + 3));
			root->SE = simplex_list.push_back(root);

			for (uint32_t i = 0; i < ACCEL_GRID_SIZE; i++) {
				for (uint32_t j = 0; j < ACCEL_GRID_SIZE; j++) {
					for (uint32_t k = 0; k < ACCEL_GRID_SIZE; k++) {
						GridPos gp;
						gp.E = acceleration_grid[i][j][k].push_back(root);
						gp.pos = Vector3i(i, j, k);
						root->grid_positions.push_back(gp);
					}
				}
			}

			circum_sphere_compute(points, root);
		}

		OAHashMap<Triangle, uint32_t, TriangleHasher> triangles_inserted;
		LocalVector<Triangle> triangles;

		for (uint32_t i = 0; i < point_count; i++) {
			bool unique = true;
			for (uint32_t j = i + 1; j < point_count; j++) {
				if (points[i] == points[j]) {
					unique = false;
					break;
				}
			}
			if (!unique) {
				continue;
			}

			Vector3i grid_pos = Vector3i(points[i] * proportions * ACCEL_GRID_SIZE);
			grid_pos = grid_pos.clampi(0, ACCEL_GRID_SIZE - 1);

			for (List<Simplex *>::Element *E = acceleration_grid[grid_pos.x][grid_pos.y][grid_pos.z].front(); E;) {
				List<Simplex *>::Element *N = E->next(); //may be deleted

				Simplex *simplex = E->get();

				if (simplex_contains(points, *simplex, i)) {
					static const uint32_t triangle_order[4][3] = {
						{ 0, 1, 2 },
						{ 0, 1, 3 },
						{ 0, 2, 3 },
						{ 1, 2, 3 },
					};

					for (uint32_t k = 0; k < 4; k++) {
						Triangle t = Triangle(simplex->points[triangle_order[k][0]], simplex->points[triangle_order[k][1]], simplex->points[triangle_order[k][2]]);
						uint32_t *p = triangles_inserted.lookup_ptr(t);
						if (p) {
							// This Delaunay implementation uses the Bowyer-Watson algorithm.
							// The rule is that you don't reuse any triangles that were
							// shared by any of the retriangulated simplices.
							triangles[*p].bad = true;
						} else {
							triangles_inserted.insert(t, triangles.size());
							triangles.push_back(t);
						}
					}

					simplex_list.erase(simplex->SE);

					for (const GridPos &gp : simplex->grid_positions) {
						Vector3i p = gp.pos;
						acceleration_grid[p.x][p.y][p.z].erase(gp.E);
					}
					memdelete(simplex);
				}
				E = N;
			}

			for (const Triangle &triangle : triangles) {
				if (triangle.bad) {
					continue;
				}
				Simplex *new_simplex = memnew(Simplex(triangle.triangle[0], triangle.triangle[1], triangle.triangle[2], i));
				circum_sphere_compute(points, new_simplex);
				new_simplex->SE = simplex_list.push_back(new_simplex);
				{
					Vector3 center;
					center.x = double(new_simplex->circum_center_x);
					center.y = double(new_simplex->circum_center_y);
					center.z = double(new_simplex->circum_center_z);

					const real_t radius2 = Math::sqrt(double(new_simplex->circum_r2)) + 0.0001;
					Vector3 extents = Vector3(radius2, radius2, radius2);
					Vector3i from = Vector3i((center - extents) * proportions * ACCEL_GRID_SIZE);
					Vector3i to = Vector3i((center + extents) * proportions * ACCEL_GRID_SIZE);
					from = from.clampi(0, ACCEL_GRID_SIZE - 1);
					to = to.clampi(0, ACCEL_GRID_SIZE - 1);

					for (int32_t x = from.x; x <= to.x; x++) {
						for (int32_t y = from.y; y <= to.y; y++) {
							for (int32_t z = from.z; z <= to.z; z++) {
								GridPos gp;
								gp.pos = Vector3(x, y, z);
								gp.E = acceleration_grid[x][y][z].push_back(new_simplex);
								new_simplex->grid_positions.push_back(gp);
							}
						}
					}
				}
			}

			triangles.clear();
			triangles_inserted.clear();
		}

		//print_line("end with simplices: " + itos(simplex_list.size()));
		Vector<OutputSimplex> ret_simplices;
		ret_simplices.resize(simplex_list.size());
		OutputSimplex *ret_simplicesw = ret_simplices.ptrw();
		uint32_t simplices_written = 0;

		for (Simplex *simplex : simplex_list) {
			bool invalid = false;
			for (int j = 0; j < 4; j++) {
				if (simplex->points[j] >= point_count) {
					invalid = true;
					break;
				}
			}
			if (invalid || simplex_is_coplanar(src_points, *simplex)) {
				memdelete(simplex);
				continue;
			}

			ret_simplicesw[simplices_written].points[0] = simplex->points[0];
			ret_simplicesw[simplices_written].points[1] = simplex->points[1];
			ret_simplicesw[simplices_written].points[2] = simplex->points[2];
			ret_simplicesw[simplices_written].points[3] = simplex->points[3];
			simplices_written++;
			memdelete(simplex);
		}

		ret_simplices.resize(simplices_written);

		memfree(points);

		return ret_simplices;
	}
};

#endif // DELAUNAY_3D_H