1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
|
/**************************************************************************/
/* gltf_document_extension_physics.cpp */
/**************************************************************************/
/* This file is part of: */
/* REDOT ENGINE */
/* https://redotengine.org */
/**************************************************************************/
/* Copyright (c) 2024-present Redot Engine contributors */
/* (see REDOT_AUTHORS.md) */
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "gltf_document_extension_physics.h"
#include "scene/3d/physics/area_3d.h"
#include "scene/3d/physics/rigid_body_3d.h"
#include "scene/3d/physics/static_body_3d.h"
using GLTFShapeIndex = int64_t;
// Import process.
Error GLTFDocumentExtensionPhysics::import_preflight(Ref<GLTFState> p_state, Vector<String> p_extensions) {
if (!p_extensions.has("OMI_collider") && !p_extensions.has("OMI_physics_body") && !p_extensions.has("OMI_physics_shape")) {
return ERR_SKIP;
}
Dictionary state_json = p_state->get_json();
if (state_json.has("extensions")) {
Dictionary state_extensions = state_json["extensions"];
if (state_extensions.has("OMI_physics_shape")) {
Dictionary omi_physics_shape_ext = state_extensions["OMI_physics_shape"];
if (omi_physics_shape_ext.has("shapes")) {
Array state_shape_dicts = omi_physics_shape_ext["shapes"];
if (state_shape_dicts.size() > 0) {
Array state_shapes;
for (int i = 0; i < state_shape_dicts.size(); i++) {
state_shapes.push_back(GLTFPhysicsShape::from_dictionary(state_shape_dicts[i]));
}
p_state->set_additional_data(StringName("GLTFPhysicsShapes"), state_shapes);
}
}
#ifndef DISABLE_DEPRECATED
} else if (state_extensions.has("OMI_collider")) {
Dictionary omi_collider_ext = state_extensions["OMI_collider"];
if (omi_collider_ext.has("colliders")) {
Array state_collider_dicts = omi_collider_ext["colliders"];
if (state_collider_dicts.size() > 0) {
Array state_colliders;
for (int i = 0; i < state_collider_dicts.size(); i++) {
state_colliders.push_back(GLTFPhysicsShape::from_dictionary(state_collider_dicts[i]));
}
p_state->set_additional_data(StringName("GLTFPhysicsShapes"), state_colliders);
}
}
#endif // DISABLE_DEPRECATED
}
}
return OK;
}
Vector<String> GLTFDocumentExtensionPhysics::get_supported_extensions() {
Vector<String> ret;
ret.push_back("OMI_collider");
ret.push_back("OMI_physics_body");
ret.push_back("OMI_physics_shape");
return ret;
}
Error GLTFDocumentExtensionPhysics::parse_node_extensions(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Dictionary &p_extensions) {
#ifndef DISABLE_DEPRECATED
if (p_extensions.has("OMI_collider")) {
Dictionary node_collider_ext = p_extensions["OMI_collider"];
if (node_collider_ext.has("collider")) {
// "collider" is the index of the collider in the state colliders array.
int node_collider_index = node_collider_ext["collider"];
Array state_colliders = p_state->get_additional_data(StringName("GLTFPhysicsShapes"));
ERR_FAIL_INDEX_V_MSG(node_collider_index, state_colliders.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the collider index " + itos(node_collider_index) + " is not in the state colliders (size: " + itos(state_colliders.size()) + ").");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsShape"), state_colliders[node_collider_index]);
} else {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsShape"), GLTFPhysicsShape::from_dictionary(node_collider_ext));
}
}
#endif // DISABLE_DEPRECATED
if (p_extensions.has("OMI_physics_body")) {
Dictionary physics_body_ext = p_extensions["OMI_physics_body"];
if (physics_body_ext.has("collider")) {
Dictionary node_collider = physics_body_ext["collider"];
// "shape" is the index of the shape in the state shapes array.
int node_shape_index = node_collider.get("shape", -1);
if (node_shape_index != -1) {
Array state_shapes = p_state->get_additional_data(StringName("GLTFPhysicsShapes"));
ERR_FAIL_INDEX_V_MSG(node_shape_index, state_shapes.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the shape index " + itos(node_shape_index) + " is not in the state shapes (size: " + itos(state_shapes.size()) + ").");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShape"), state_shapes[node_shape_index]);
p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShapeIndex"), node_shape_index);
} else {
// If this node is a collider but does not have a collider
// shape, then it only serves to combine together shapes.
p_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundCollider"), true);
}
}
if (physics_body_ext.has("trigger")) {
Dictionary node_trigger = physics_body_ext["trigger"];
// "shape" is the index of the shape in the state shapes array.
int node_shape_index = node_trigger.get("shape", -1);
if (node_shape_index != -1) {
Array state_shapes = p_state->get_additional_data(StringName("GLTFPhysicsShapes"));
ERR_FAIL_INDEX_V_MSG(node_shape_index, state_shapes.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the shape index " + itos(node_shape_index) + " is not in the state shapes (size: " + itos(state_shapes.size()) + ").");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShape"), state_shapes[node_shape_index]);
p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"), node_shape_index);
} else {
// If this node is a trigger but does not have a trigger shape,
// then it's a trigger body, what Godot calls an Area3D node.
Ref<GLTFPhysicsBody> trigger_body;
trigger_body.instantiate();
trigger_body->set_body_type("trigger");
p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), trigger_body);
}
// If this node defines explicit member shape nodes, save this information.
if (node_trigger.has("nodes")) {
Array compound_trigger_nodes = node_trigger["nodes"];
p_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"), compound_trigger_nodes);
}
}
if (physics_body_ext.has("motion") || physics_body_ext.has("type")) {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), GLTFPhysicsBody::from_dictionary(physics_body_ext));
}
}
return OK;
}
bool _will_gltf_shape_become_subnode(Ref<GLTFState> p_state, const Ref<GLTFNode> p_gltf_node, GLTFNodeIndex p_gltf_node_index) {
if (p_gltf_node->has_additional_data(StringName("GLTFPhysicsBody"))) {
return true;
}
const TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
const GLTFNodeIndex parent_index = p_gltf_node->get_parent();
if (parent_index == -1 || parent_index >= state_gltf_nodes.size()) {
return true;
}
const Ref<GLTFNode> parent_gltf_node = state_gltf_nodes[parent_index];
const Variant parent_body_maybe = parent_gltf_node->get_additional_data(StringName("GLTFPhysicsBody"));
if (parent_body_maybe.get_type() != Variant::NIL) {
Ref<GLTFPhysicsBody> parent_body = parent_body_maybe;
// If the parent matches the triggerness, then this node will be generated as a shape (CollisionShape3D).
// Otherwise, if there is a mismatch, a body will be generated for this node, and a subnode will also be generated for the shape.
if (parent_body->get_body_type() == "trigger") {
return p_gltf_node->has_additional_data(StringName("GLTFPhysicsColliderShape"));
} else {
return p_gltf_node->has_additional_data(StringName("GLTFPhysicsTriggerShape"));
}
}
if (parent_gltf_node->has_additional_data(StringName("GLTFPhysicsColliderShape"))) {
return false;
}
if (parent_gltf_node->has_additional_data(StringName("GLTFPhysicsTriggerShape"))) {
return false;
}
Variant compound_trigger_maybe = parent_gltf_node->has_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"));
if (compound_trigger_maybe.get_type() != Variant::NIL) {
Array compound_trigger_nodes = compound_trigger_maybe;
// Remember, JSON only has numbers, not integers, so must cast to double.
return !compound_trigger_nodes.has((double)p_gltf_node_index);
}
return true;
}
NodePath _get_scene_node_path_for_shape_index(Ref<GLTFState> p_state, const GLTFNodeIndex p_shape_index) {
TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
for (GLTFNodeIndex node_index = 0; node_index < state_gltf_nodes.size(); node_index++) {
const Ref<GLTFNode> gltf_node = state_gltf_nodes[node_index];
ERR_CONTINUE(gltf_node.is_null());
// Check if this node has a shape index and if it matches the one we are looking for.
Variant shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex"));
if (shape_index_maybe.get_type() != Variant::INT) {
shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"));
if (shape_index_maybe.get_type() != Variant::INT) {
continue;
}
}
const GLTFShapeIndex shape_index = shape_index_maybe;
if (shape_index != p_shape_index) {
continue;
}
NodePath node_path = gltf_node->get_scene_node_path(p_state);
// At this point, we have found a node with the shape index we were looking for.
if (_will_gltf_shape_become_subnode(p_state, gltf_node, node_index)) {
Vector<StringName> sname_path = node_path.get_names();
sname_path.append(gltf_node->get_name() + "Shape");
node_path = NodePath(sname_path, false);
}
return node_path;
}
return NodePath();
}
Ref<GLTFObjectModelProperty> GLTFDocumentExtensionPhysics::import_object_model_property(Ref<GLTFState> p_state, const PackedStringArray &p_split_json_pointer, const TypedArray<NodePath> &p_partial_paths) {
Ref<GLTFObjectModelProperty> ret;
if (p_split_json_pointer.size() != 6) {
// The only properties this class cares about are exactly 6 levels deep.
return ret;
}
ret.instantiate();
const String &prop_name = p_split_json_pointer[5];
if (p_split_json_pointer[0] == "extensions" && p_split_json_pointer[2] == "shapes") {
if (p_split_json_pointer[1] == "OMI_physics_shape" || p_split_json_pointer[1] == "KHR_collision_shapes") {
const GLTFNodeIndex shape_index = p_split_json_pointer[3].to_int();
NodePath node_path = _get_scene_node_path_for_shape_index(p_state, shape_index);
if (node_path.is_empty()) {
return ret;
}
String godot_prop_name = prop_name;
if (prop_name == "size") {
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "height" || prop_name == "radius") {
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (prop_name == "radiusBottom" || prop_name == "radiusTop") {
godot_prop_name = "radius";
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else {
// Not something we handle, return without appending a NodePath.
return ret;
}
// Example: `A/B/C/CollisionShape3D:shape:radius`.
Vector<StringName> subnames;
subnames.append("shape");
subnames.append(godot_prop_name);
node_path = NodePath(node_path.get_names(), subnames, false);
ret->append_node_path(node_path);
}
} else if (p_split_json_pointer[0] == "nodes" && p_split_json_pointer[2] == "extensions" && p_split_json_pointer[4] == "motion") {
if (p_split_json_pointer[3] == "OMI_physics_body" || p_split_json_pointer[3] == "KHR_physics_rigid_bodies") {
const GLTFNodeIndex node_index = p_split_json_pointer[1].to_int();
const TypedArray<GLTFNode> all_gltf_nodes = p_state->get_nodes();
ERR_FAIL_INDEX_V_MSG(node_index, all_gltf_nodes.size(), ret, "GLTF Physics: The node index " + itos(node_index) + " is not in the state nodes (size: " + itos(all_gltf_nodes.size()) + ").");
const Ref<GLTFNode> gltf_node = all_gltf_nodes[node_index];
NodePath node_path;
if (p_partial_paths.is_empty()) {
node_path = gltf_node->get_scene_node_path(p_state);
} else {
// The path is already computed for us, just grab it.
node_path = p_partial_paths[0];
}
if (prop_name == "mass") {
ret->append_path_to_property(node_path, "mass");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (prop_name == "linearVelocity") {
ret->append_path_to_property(node_path, "linear_velocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "angularVelocity") {
ret->append_path_to_property(node_path, "angular_velocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "centerOfMass") {
ret->append_path_to_property(node_path, "center_of_mass");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "inertiaDiagonal") {
ret->append_path_to_property(node_path, "inertia");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (prop_name == "inertiaOrientation") {
WARN_PRINT("GLTF Physics: The 'inertiaOrientation' property is not supported by Godot.");
} else {
// Not something we handle, return without appending a NodePath.
return ret;
}
}
}
return ret;
}
void _setup_shape_mesh_resource_from_index_if_needed(Ref<GLTFState> p_state, Ref<GLTFPhysicsShape> p_gltf_shape) {
GLTFMeshIndex shape_mesh_index = p_gltf_shape->get_mesh_index();
if (shape_mesh_index == -1) {
return; // No mesh for this shape.
}
Ref<ImporterMesh> importer_mesh = p_gltf_shape->get_importer_mesh();
if (importer_mesh.is_valid()) {
return; // The mesh resource is already set up.
}
TypedArray<GLTFMesh> state_meshes = p_state->get_meshes();
ERR_FAIL_INDEX_MSG(shape_mesh_index, state_meshes.size(), "glTF Physics: When importing '" + p_state->get_scene_name() + "', the shape mesh index " + itos(shape_mesh_index) + " is not in the state meshes (size: " + itos(state_meshes.size()) + ").");
Ref<GLTFMesh> gltf_mesh = state_meshes[shape_mesh_index];
ERR_FAIL_COND(gltf_mesh.is_null());
importer_mesh = gltf_mesh->get_mesh();
ERR_FAIL_COND(importer_mesh.is_null());
p_gltf_shape->set_importer_mesh(importer_mesh);
}
#ifndef DISABLE_DEPRECATED
CollisionObject3D *_generate_shape_with_body(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Ref<GLTFPhysicsShape> p_physics_shape, Ref<GLTFPhysicsBody> p_physics_body) {
print_verbose("glTF: Creating shape with body for: " + p_gltf_node->get_name());
bool is_trigger = p_physics_shape->get_is_trigger();
// This method is used for the case where we must generate a parent body.
// This is can happen for multiple reasons. One possibility is that this
// glTF file is using OMI_collider but not OMI_physics_body, or at least
// this particular node is not using it. Another possibility is that the
// physics body information is set up on the same glTF node, not a parent.
CollisionObject3D *body;
if (p_physics_body.is_valid()) {
// This code is run when the physics body is on the same glTF node.
body = p_physics_body->to_node();
if (is_trigger && (p_physics_body->get_body_type() != "trigger")) {
// Edge case: If the body's trigger and the collider's trigger
// are in disagreement, we need to create another new body.
CollisionObject3D *child = _generate_shape_with_body(p_state, p_gltf_node, p_physics_shape, nullptr);
child->set_name(p_gltf_node->get_name() + (is_trigger ? String("Trigger") : String("Solid")));
body->add_child(child);
return body;
}
} else if (is_trigger) {
body = memnew(Area3D);
} else {
body = memnew(StaticBody3D);
}
CollisionShape3D *shape = p_physics_shape->to_node();
shape->set_name(p_gltf_node->get_name() + "Shape");
body->add_child(shape);
return body;
}
#endif // DISABLE_DEPRECATED
CollisionObject3D *_get_ancestor_collision_object(Node *p_scene_parent) {
// Note: Despite the name of the method, at the moment this only checks
// the direct parent. Only check more later if Godot adds support for it.
if (p_scene_parent) {
CollisionObject3D *co = Object::cast_to<CollisionObject3D>(p_scene_parent);
if (likely(co)) {
return co;
}
}
return nullptr;
}
Node3D *_generate_shape_node_and_body_if_needed(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Ref<GLTFPhysicsShape> p_physics_shape, CollisionObject3D *p_col_object, bool p_is_trigger) {
// If we need to generate a body node, do so.
CollisionObject3D *body_node = nullptr;
if (p_is_trigger || p_physics_shape->get_is_trigger()) {
// If the shape wants to be a trigger but it doesn't
// have an Area3D parent, we need to make one.
if (!Object::cast_to<Area3D>(p_col_object)) {
body_node = memnew(Area3D);
}
} else {
if (!Object::cast_to<PhysicsBody3D>(p_col_object)) {
body_node = memnew(StaticBody3D);
}
}
// Generate the shape node.
_setup_shape_mesh_resource_from_index_if_needed(p_state, p_physics_shape);
CollisionShape3D *shape_node = p_physics_shape->to_node(true);
if (body_node) {
shape_node->set_name(p_gltf_node->get_name() + "Shape");
body_node->add_child(shape_node);
return body_node;
}
return shape_node;
}
// Either add the child to the parent, or return the child if there is no parent.
Node3D *_add_physics_node_to_given_node(Node3D *p_current_node, Node3D *p_child, Ref<GLTFNode> p_gltf_node) {
if (!p_current_node) {
return p_child;
}
String suffix;
if (Object::cast_to<CollisionShape3D>(p_child)) {
suffix = "Shape";
} else if (Object::cast_to<Area3D>(p_child)) {
suffix = "Trigger";
} else {
suffix = "Collider";
}
p_child->set_name(p_gltf_node->get_name() + suffix);
p_current_node->add_child(p_child);
return p_current_node;
}
Array _get_ancestor_compound_trigger_nodes(Ref<GLTFState> p_state, TypedArray<GLTFNode> p_state_nodes, CollisionObject3D *p_ancestor_col_obj) {
GLTFNodeIndex ancestor_index = p_state->get_node_index(p_ancestor_col_obj);
ERR_FAIL_INDEX_V(ancestor_index, p_state_nodes.size(), Array());
Ref<GLTFNode> ancestor_gltf_node = p_state_nodes[ancestor_index];
Variant compound_trigger_nodes = ancestor_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"));
if (compound_trigger_nodes.is_array()) {
return compound_trigger_nodes;
}
Array ret;
ancestor_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"), ret);
return ret;
}
Node3D *GLTFDocumentExtensionPhysics::generate_scene_node(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Node *p_scene_parent) {
Ref<GLTFPhysicsBody> gltf_physics_body = p_gltf_node->get_additional_data(StringName("GLTFPhysicsBody"));
#ifndef DISABLE_DEPRECATED
// This deprecated code handles OMI_collider (which we internally name "GLTFPhysicsShape").
Ref<GLTFPhysicsShape> gltf_physics_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsShape"));
if (gltf_physics_shape.is_valid()) {
_setup_shape_mesh_resource_from_index_if_needed(p_state, gltf_physics_shape);
// If this glTF node specifies both a shape and a body, generate both.
if (gltf_physics_body.is_valid()) {
return _generate_shape_with_body(p_state, p_gltf_node, gltf_physics_shape, gltf_physics_body);
}
CollisionObject3D *ancestor_col_obj = _get_ancestor_collision_object(p_scene_parent);
if (gltf_physics_shape->get_is_trigger()) {
// If the shape wants to be a trigger and it already has a
// trigger parent, we only need to make the shape node.
if (Object::cast_to<Area3D>(ancestor_col_obj)) {
return gltf_physics_shape->to_node(true);
}
} else if (ancestor_col_obj != nullptr) {
// If the shape has a valid parent, only make the shape node.
return gltf_physics_shape->to_node(true);
}
// Otherwise, we need to create a new body.
return _generate_shape_with_body(p_state, p_gltf_node, gltf_physics_shape, nullptr);
}
#endif // DISABLE_DEPRECATED
Node3D *ret = nullptr;
CollisionObject3D *ancestor_col_obj = nullptr;
Ref<GLTFPhysicsShape> gltf_physics_collider_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape"));
Ref<GLTFPhysicsShape> gltf_physics_trigger_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape"));
if (gltf_physics_body.is_valid()) {
ancestor_col_obj = gltf_physics_body->to_node();
ret = ancestor_col_obj;
} else {
ancestor_col_obj = _get_ancestor_collision_object(p_scene_parent);
if (Object::cast_to<Area3D>(ancestor_col_obj) && gltf_physics_trigger_shape.is_valid()) {
// At this point, we found an ancestor Area3D node. But do we want to use it for this trigger shape?
TypedArray<GLTFNode> state_nodes = p_state->get_nodes();
GLTFNodeIndex self_index = state_nodes.find(p_gltf_node);
Array compound_trigger_nodes = _get_ancestor_compound_trigger_nodes(p_state, state_nodes, ancestor_col_obj);
// Check if the ancestor specifies compound trigger nodes, and if this node is in there.
// Remember that JSON does not have integers, only "number", aka double-precision floats.
if (compound_trigger_nodes.size() > 0 && !compound_trigger_nodes.has(double(self_index))) {
// If the compound trigger we found is not the intended user of
// this shape node, then we need to create a new Area3D node.
ancestor_col_obj = memnew(Area3D);
ret = ancestor_col_obj;
}
} else if (!Object::cast_to<PhysicsBody3D>(ancestor_col_obj)) {
if (p_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundCollider"))) {
// If the glTF file wants this node to group solid shapes together,
// and there is no parent body, we need to create a static body.
ancestor_col_obj = memnew(StaticBody3D);
ret = ancestor_col_obj;
}
}
}
// Add the shapes to the tree. When an ancestor body is present, use it.
// If an explicit body was specified, it has already been generated and
// set above. If there is no ancestor body, we will either generate an
// Area3D or StaticBody3D implicitly, so prefer an Area3D as the base
// node for best compatibility with signal connections to this node.
bool is_ancestor_col_obj_solid = Object::cast_to<PhysicsBody3D>(ancestor_col_obj);
if (is_ancestor_col_obj_solid && gltf_physics_collider_shape.is_valid()) {
Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_collider_shape, ancestor_col_obj, false);
ret = _add_physics_node_to_given_node(ret, child, p_gltf_node);
}
if (gltf_physics_trigger_shape.is_valid()) {
Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_trigger_shape, ancestor_col_obj, true);
ret = _add_physics_node_to_given_node(ret, child, p_gltf_node);
}
if (!is_ancestor_col_obj_solid && gltf_physics_collider_shape.is_valid()) {
Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_collider_shape, ancestor_col_obj, false);
ret = _add_physics_node_to_given_node(ret, child, p_gltf_node);
}
return ret;
}
// Export process.
bool _are_all_faces_equal(const Vector<Face3> &p_a, const Vector<Face3> &p_b) {
if (p_a.size() != p_b.size()) {
return false;
}
for (int i = 0; i < p_a.size(); i++) {
const Vector3 *a_vertices = p_a[i].vertex;
const Vector3 *b_vertices = p_b[i].vertex;
for (int j = 0; j < 3; j++) {
if (!a_vertices[j].is_equal_approx(b_vertices[j])) {
return false;
}
}
}
return true;
}
GLTFMeshIndex _get_or_insert_mesh_in_state(Ref<GLTFState> p_state, Ref<ImporterMesh> p_mesh) {
ERR_FAIL_COND_V(p_mesh.is_null(), -1);
TypedArray<GLTFMesh> state_meshes = p_state->get_meshes();
Vector<Face3> mesh_faces = p_mesh->get_faces();
// De-duplication: If the state already has the mesh we need, use that one.
for (GLTFMeshIndex i = 0; i < state_meshes.size(); i++) {
Ref<GLTFMesh> state_gltf_mesh = state_meshes[i];
ERR_CONTINUE(state_gltf_mesh.is_null());
Ref<ImporterMesh> state_importer_mesh = state_gltf_mesh->get_mesh();
ERR_CONTINUE(state_importer_mesh.is_null());
if (state_importer_mesh == p_mesh) {
return i;
}
if (_are_all_faces_equal(state_importer_mesh->get_faces(), mesh_faces)) {
return i;
}
}
// After the loop, we have checked that the mesh is not equal to any of the
// meshes in the state. So we insert a new mesh into the state mesh array.
Ref<GLTFMesh> gltf_mesh;
gltf_mesh.instantiate();
gltf_mesh->set_mesh(p_mesh);
GLTFMeshIndex mesh_index = state_meshes.size();
state_meshes.push_back(gltf_mesh);
p_state->set_meshes(state_meshes);
return mesh_index;
}
void GLTFDocumentExtensionPhysics::convert_scene_node(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Node *p_scene_node) {
if (cast_to<CollisionShape3D>(p_scene_node)) {
CollisionShape3D *godot_shape = Object::cast_to<CollisionShape3D>(p_scene_node);
Ref<GLTFPhysicsShape> gltf_shape = GLTFPhysicsShape::from_node(godot_shape);
ERR_FAIL_COND_MSG(gltf_shape.is_null(), "glTF Physics: Could not convert CollisionShape3D to GLTFPhysicsShape. Does it have a valid Shape3D?");
{
Ref<ImporterMesh> importer_mesh = gltf_shape->get_importer_mesh();
if (importer_mesh.is_valid()) {
gltf_shape->set_mesh_index(_get_or_insert_mesh_in_state(p_state, importer_mesh));
}
}
CollisionObject3D *ancestor_col_obj = _get_ancestor_collision_object(p_scene_node->get_parent());
if (cast_to<Area3D>(ancestor_col_obj)) {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShape"), gltf_shape);
// Write explicit member shape nodes to the ancestor compound trigger node.
TypedArray<GLTFNode> state_nodes = p_state->get_nodes();
GLTFNodeIndex self_index = state_nodes.size(); // The current p_gltf_node will be inserted next.
Array compound_trigger_nodes = _get_ancestor_compound_trigger_nodes(p_state, p_state->get_nodes(), ancestor_col_obj);
compound_trigger_nodes.push_back(double(self_index));
} else {
p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShape"), gltf_shape);
}
} else if (cast_to<CollisionObject3D>(p_scene_node)) {
CollisionObject3D *godot_body = Object::cast_to<CollisionObject3D>(p_scene_node);
p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), GLTFPhysicsBody::from_node(godot_body));
}
}
Array _get_or_create_state_shapes_in_state(Ref<GLTFState> p_state) {
Dictionary state_json = p_state->get_json();
Dictionary state_extensions;
if (state_json.has("extensions")) {
state_extensions = state_json["extensions"];
} else {
state_json["extensions"] = state_extensions;
}
Dictionary omi_physics_shape_ext;
if (state_extensions.has("OMI_physics_shape")) {
omi_physics_shape_ext = state_extensions["OMI_physics_shape"];
} else {
state_extensions["OMI_physics_shape"] = omi_physics_shape_ext;
p_state->add_used_extension("OMI_physics_shape");
}
Array state_shapes;
if (omi_physics_shape_ext.has("shapes")) {
state_shapes = omi_physics_shape_ext["shapes"];
} else {
omi_physics_shape_ext["shapes"] = state_shapes;
}
return state_shapes;
}
GLTFShapeIndex _export_node_shape(Ref<GLTFState> p_state, Ref<GLTFPhysicsShape> p_physics_shape) {
Array state_shapes = _get_or_create_state_shapes_in_state(p_state);
GLTFShapeIndex size = state_shapes.size();
Dictionary shape_property;
Dictionary shape_dict = p_physics_shape->to_dictionary();
for (GLTFShapeIndex i = 0; i < size; i++) {
Dictionary other = state_shapes[i];
if (other == shape_dict) {
// De-duplication: If we already have an identical shape,
// set the shape index to the existing one and return.
return i;
}
}
// If we don't have an identical shape, add it to the array.
state_shapes.push_back(shape_dict);
return size;
}
Error GLTFDocumentExtensionPhysics::export_preserialize(Ref<GLTFState> p_state) {
// Note: Need to do _export_node_shape before exporting animations, so export_node is too late.
TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
for (Ref<GLTFNode> gltf_node : state_gltf_nodes) {
Ref<GLTFPhysicsShape> collider_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape"));
if (collider_shape.is_valid()) {
GLTFShapeIndex collider_shape_index = _export_node_shape(p_state, collider_shape);
gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShapeIndex"), collider_shape_index);
}
Ref<GLTFPhysicsShape> trigger_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape"));
if (trigger_shape.is_valid()) {
GLTFShapeIndex trigger_shape_index = _export_node_shape(p_state, trigger_shape);
gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"), trigger_shape_index);
}
}
return OK;
}
Ref<GLTFObjectModelProperty> GLTFDocumentExtensionPhysics::export_object_model_property(Ref<GLTFState> p_state, const NodePath &p_node_path, const Node *p_godot_node, GLTFNodeIndex p_gltf_node_index, const Object *p_target_object, int p_target_depth) {
Ref<GLTFObjectModelProperty> ret;
const Vector<StringName> &path_subnames = p_node_path.get_subnames();
if (path_subnames.is_empty()) {
return ret;
}
ret.instantiate();
const StringName &node_prop = path_subnames[0];
if (Object::cast_to<RigidBody3D>(p_target_object)) {
if (path_subnames.size() != 1) {
return ret;
}
// Example: `/nodes/0/extensions/OMI_physics_body/motion/mass`
PackedStringArray split_json_pointer;
split_json_pointer.append("nodes");
split_json_pointer.append(itos(p_gltf_node_index));
split_json_pointer.append("extensions");
split_json_pointer.append("OMI_physics_body");
split_json_pointer.append("motion");
if (node_prop == StringName("mass")) {
split_json_pointer.append("mass");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (node_prop == StringName("linear_velocity")) {
split_json_pointer.append("linearVelocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == StringName("angular_velocity")) {
split_json_pointer.append("angularVelocity");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == StringName("center_of_mass")) {
split_json_pointer.append("centerOfMass");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == StringName("inertia")) {
split_json_pointer.append("inertiaDiagonal");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else {
// Not something we handle, return without setting the JSON pointer.
return ret;
}
ret->set_json_pointers({ split_json_pointer });
} else if (Object::cast_to<CollisionShape3D>(p_godot_node)) {
if (path_subnames.size() != 2) {
return ret;
}
// Example: `/extensions/OMI_physics_shape/shapes/0/box/size`
PackedStringArray split_json_pointer;
split_json_pointer.append("extensions");
split_json_pointer.append("OMI_physics_shape");
split_json_pointer.append("shapes");
TypedArray<GLTFNode> state_gltf_nodes = p_state->get_nodes();
ERR_FAIL_INDEX_V(p_gltf_node_index, state_gltf_nodes.size(), ret);
Ref<GLTFNode> gltf_node = state_gltf_nodes[p_gltf_node_index];
Variant shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex"));
String shape_type;
if (shape_index_maybe.get_type() == Variant::INT) {
Ref<GLTFPhysicsShape> collider_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape"));
shape_type = collider_shape->get_shape_type();
} else {
shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"));
if (shape_index_maybe.get_type() == Variant::INT) {
Ref<GLTFPhysicsShape> trigger_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape"));
shape_type = trigger_shape->get_shape_type();
}
}
ERR_FAIL_COND_V(shape_index_maybe.get_type() != Variant::INT, ret);
GLTFShapeIndex shape_index = shape_index_maybe;
split_json_pointer.append(itos(shape_index));
split_json_pointer.append(shape_type);
const StringName &shape_prop = path_subnames[1];
if (shape_prop == StringName("size")) {
split_json_pointer.append("size");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (shape_prop == StringName("radius")) {
split_json_pointer.append("radius");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (shape_prop == StringName("height")) {
split_json_pointer.append("height");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else {
// Not something we handle, return without setting the JSON pointer.
return ret;
}
ret->set_json_pointers({ split_json_pointer });
}
return ret;
}
Error GLTFDocumentExtensionPhysics::export_node(Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node, Dictionary &r_node_json, Node *p_node) {
Dictionary physics_body_ext;
Ref<GLTFPhysicsBody> physics_body = p_gltf_node->get_additional_data(StringName("GLTFPhysicsBody"));
if (physics_body.is_valid()) {
physics_body_ext = physics_body->to_dictionary();
Variant compound_trigger_nodes = p_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"));
if (compound_trigger_nodes.is_array()) {
Dictionary trigger_property = physics_body_ext.get_or_add("trigger", {});
trigger_property["nodes"] = compound_trigger_nodes;
}
}
Variant collider_shape_index = p_gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex"));
if (collider_shape_index.get_type() == Variant::INT) {
Dictionary collider_dict;
collider_dict["shape"] = collider_shape_index;
physics_body_ext["collider"] = collider_dict;
}
Variant trigger_shape_index = p_gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"));
if (trigger_shape_index.get_type() == Variant::INT) {
Dictionary trigger_dict = physics_body_ext.get_or_add("trigger", {});
trigger_dict["shape"] = trigger_shape_index;
}
if (!physics_body_ext.is_empty()) {
Dictionary node_extensions = r_node_json["extensions"];
node_extensions["OMI_physics_body"] = physics_body_ext;
p_state->add_used_extension("OMI_physics_body");
}
return OK;
}
|