1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
|
/**************************************************************************/
/* test_vector3.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2024-present Redot Engine contributors */
/* (see REDOT_AUTHORS.md) */
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_VECTOR3_H
#define TEST_VECTOR3_H
#include "core/math/vector3.h"
#include "tests/test_macros.h"
#define Math_SQRT13 0.57735026918962576450914878050196
#define Math_SQRT3 1.7320508075688772935274463415059
namespace TestVector3 {
TEST_CASE("[Vector3] Constructor methods") {
const Vector3 vector_empty = Vector3();
const Vector3 vector_zero = Vector3(0.0, 0.0, 0.0);
CHECK_MESSAGE(
vector_empty == vector_zero,
"Vector3 Constructor with no inputs should return a zero Vector3.");
}
TEST_CASE("[Vector3] Angle methods") {
const Vector3 vector_x = Vector3(1, 0, 0);
const Vector3 vector_y = Vector3(0, 1, 0);
const Vector3 vector_yz = Vector3(0, 1, 1);
CHECK_MESSAGE(
vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
vector_x.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
vector_yz.angle_to(vector_x) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
vector_y.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 8),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
vector_x.signed_angle_to(vector_y, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 signed_angle_to edge case should be positive.");
CHECK_MESSAGE(
vector_x.signed_angle_to(vector_yz, vector_y) == doctest::Approx((real_t)Math_TAU / -4),
"Vector3 signed_angle_to should work as expected.");
CHECK_MESSAGE(
vector_yz.signed_angle_to(vector_x, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 signed_angle_to should work as expected.");
}
TEST_CASE("[Vector3] Axis methods") {
Vector3 vector = Vector3(1.2, 3.4, 5.6);
CHECK_MESSAGE(
vector.max_axis_index() == Vector3::Axis::AXIS_Z,
"Vector3 max_axis_index should work as expected.");
CHECK_MESSAGE(
vector.min_axis_index() == Vector3::Axis::AXIS_X,
"Vector3 min_axis_index should work as expected.");
CHECK_MESSAGE(
vector[vector.max_axis_index()] == (real_t)5.6,
"Vector3 array operator should work as expected.");
CHECK_MESSAGE(
vector[vector.min_axis_index()] == (real_t)1.2,
"Vector3 array operator should work as expected.");
vector[Vector3::Axis::AXIS_Y] = 3.7;
CHECK_MESSAGE(
vector[Vector3::Axis::AXIS_Y] == (real_t)3.7,
"Vector3 array operator setter should work as expected.");
}
TEST_CASE("[Vector3] Interpolation methods") {
const Vector3 vector1 = Vector3(1, 2, 3);
const Vector3 vector2 = Vector3(4, 5, 6);
CHECK_MESSAGE(
vector1.lerp(vector2, 0.5) == Vector3(2.5, 3.5, 4.5),
"Vector3 lerp should work as expected.");
CHECK_MESSAGE(
vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector3(2, 3, 4)),
"Vector3 lerp should work as expected.");
CHECK_MESSAGE(
vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector3(0.363866806030273438, 0.555698215961456299, 0.747529566287994385)),
"Vector3 slerp should work as expected.");
CHECK_MESSAGE(
vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector3(0.332119762897491455, 0.549413740634918213, 0.766707837581634521)),
"Vector3 slerp should work as expected.");
CHECK_MESSAGE(
Vector3(5, 0, 0).slerp(Vector3(0, 3, 4), 0.5).is_equal_approx(Vector3(3.535533905029296875, 2.121320486068725586, 2.828427314758300781)),
"Vector3 slerp with non-normalized values should work as expected.");
CHECK_MESSAGE(
Vector3(1, 1, 1).slerp(Vector3(2, 2, 2), 0.5).is_equal_approx(Vector3(1.5, 1.5, 1.5)),
"Vector3 slerp with colinear inputs should behave as expected.");
CHECK_MESSAGE(
Vector3().slerp(Vector3(), 0.5) == Vector3(),
"Vector3 slerp with both inputs as zero vectors should return a zero vector.");
CHECK_MESSAGE(
Vector3().slerp(Vector3(1, 1, 1), 0.5) == Vector3(0.5, 0.5, 0.5),
"Vector3 slerp with one input as zero should behave like a regular lerp.");
CHECK_MESSAGE(
Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5),
"Vector3 slerp with one input as zero should behave like a regular lerp.");
CHECK_MESSAGE(
Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)),
"Vector3 slerp should work as expected.");
CHECK_MESSAGE(
vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)6.25831088708303172),
"Vector3 slerp with different length input should return a vector with an interpolated length.");
CHECK_MESSAGE(
vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
"Vector3 slerp with different length input should return a vector with an interpolated angle.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625),
"Vector3 cubic_interpolate should work as expected.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector3(1.851851940155029297, 2.962963104248046875, 4.074074268341064453)),
"Vector3 cubic_interpolate should work as expected.");
CHECK_MESSAGE(
Vector3(1, 0, 0).move_toward(Vector3(10, 0, 0), 3) == Vector3(4, 0, 0),
"Vector3 move_toward should work as expected.");
}
TEST_CASE("[Vector3] Length methods") {
const Vector3 vector1 = Vector3(10, 10, 10);
const Vector3 vector2 = Vector3(20, 30, 40);
CHECK_MESSAGE(
vector1.length_squared() == 300,
"Vector3 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT3),
"Vector3 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 2900,
"Vector3 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
vector2.length() == doctest::Approx((real_t)53.8516480713450403125),
"Vector3 length should work as expected.");
CHECK_MESSAGE(
vector1.distance_squared_to(vector2) == 1400,
"Vector3 distance_squared_to should work as expected and return exact result.");
CHECK_MESSAGE(
vector1.distance_to(vector2) == doctest::Approx((real_t)37.41657386773941385584),
"Vector3 distance_to should work as expected.");
}
TEST_CASE("[Vector3] Limiting methods") {
const Vector3 vector = Vector3(10, 10, 10);
CHECK_MESSAGE(
vector.limit_length().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
"Vector3 limit_length should work as expected.");
CHECK_MESSAGE(
vector.limit_length(5).is_equal_approx(5 * Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
"Vector3 limit_length should work as expected.");
CHECK_MESSAGE(
Vector3(-5, 5, 15).clamp(Vector3(), vector) == Vector3(0, 5, 10),
"Vector3 clamp should work as expected.");
CHECK_MESSAGE(
vector.clamp(Vector3(0, 10, 15), Vector3(5, 10, 20)) == Vector3(5, 10, 15),
"Vector3 clamp should work as expected.");
}
TEST_CASE("[Vector3] Normalization methods") {
CHECK_MESSAGE(
Vector3(1, 0, 0).is_normalized() == true,
"Vector3 is_normalized should return true for a normalized vector.");
CHECK_MESSAGE(
Vector3(1, 1, 1).is_normalized() == false,
"Vector3 is_normalized should return false for a non-normalized vector.");
CHECK_MESSAGE(
Vector3(1, 0, 0).normalized() == Vector3(1, 0, 0),
"Vector3 normalized should return the same vector for a normalized vector.");
CHECK_MESSAGE(
Vector3(1, 1, 0).normalized().is_equal_approx(Vector3(Math_SQRT12, Math_SQRT12, 0)),
"Vector3 normalized should work as expected.");
CHECK_MESSAGE(
Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
"Vector3 normalized should work as expected.");
Vector3 vector = Vector3(3.2, -5.4, 6);
vector.normalize();
CHECK_MESSAGE(
vector == Vector3(3.2, -5.4, 6).normalized(),
"Vector3 normalize should convert same way as Vector3 normalized.");
CHECK_MESSAGE(
vector.is_equal_approx(Vector3(0.368522751763902980457, -0.621882143601586279522, 0.6909801595573180883585)),
"Vector3 normalize should work as expected.");
}
TEST_CASE("[Vector3] Operators") {
const Vector3 decimal1 = Vector3(2.3, 4.9, 7.8);
const Vector3 decimal2 = Vector3(1.2, 3.4, 5.6);
const Vector3 power1 = Vector3(0.75, 1.5, 0.625);
const Vector3 power2 = Vector3(0.5, 0.125, 0.25);
const Vector3 int1 = Vector3(4, 5, 9);
const Vector3 int2 = Vector3(1, 2, 3);
CHECK_MESSAGE(
(decimal1 + decimal2).is_equal_approx(Vector3(3.5, 8.3, 13.4)),
"Vector3 addition should behave as expected.");
CHECK_MESSAGE(
(power1 + power2) == Vector3(1.25, 1.625, 0.875),
"Vector3 addition with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 + int2) == Vector3(5, 7, 12),
"Vector3 addition with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 - decimal2).is_equal_approx(Vector3(1.1, 1.5, 2.2)),
"Vector3 subtraction should behave as expected.");
CHECK_MESSAGE(
(power1 - power2) == Vector3(0.25, 1.375, 0.375),
"Vector3 subtraction with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 - int2) == Vector3(3, 3, 6),
"Vector3 subtraction with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 * decimal2).is_equal_approx(Vector3(2.76, 16.66, 43.68)),
"Vector3 multiplication should behave as expected.");
CHECK_MESSAGE(
(power1 * power2) == Vector3(0.375, 0.1875, 0.15625),
"Vector3 multiplication with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 * int2) == Vector3(4, 10, 27),
"Vector3 multiplication with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 / decimal2).is_equal_approx(Vector3(1.91666666666666666, 1.44117647058823529, 1.39285714285714286)),
"Vector3 division should behave as expected.");
CHECK_MESSAGE(
(power1 / power2) == Vector3(1.5, 12.0, 2.5),
"Vector3 division with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 / int2) == Vector3(4, 2.5, 3),
"Vector3 division with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 * 2).is_equal_approx(Vector3(4.6, 9.8, 15.6)),
"Vector3 multiplication should behave as expected.");
CHECK_MESSAGE(
(power1 * 2) == Vector3(1.5, 3, 1.25),
"Vector3 multiplication with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 * 2) == Vector3(8, 10, 18),
"Vector3 multiplication with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 / 2).is_equal_approx(Vector3(1.15, 2.45, 3.9)),
"Vector3 division should behave as expected.");
CHECK_MESSAGE(
(power1 / 2) == Vector3(0.375, 0.75, 0.3125),
"Vector3 division with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 / 2) == Vector3(2, 2.5, 4.5),
"Vector3 division with integers should give exact results.");
CHECK_MESSAGE(
((Vector3i)decimal1) == Vector3i(2, 4, 7),
"Vector3 cast to Vector3i should work as expected.");
CHECK_MESSAGE(
((Vector3i)decimal2) == Vector3i(1, 3, 5),
"Vector3 cast to Vector3i should work as expected.");
CHECK_MESSAGE(
Vector3(Vector3i(1, 2, 3)) == Vector3(1, 2, 3),
"Vector3 constructed from Vector3i should work as expected.");
CHECK_MESSAGE(
((String)decimal1) == "(2.3, 4.9, 7.8)",
"Vector3 cast to String should work as expected.");
CHECK_MESSAGE(
((String)decimal2) == "(1.2, 3.4, 5.6)",
"Vector3 cast to String should work as expected.");
CHECK_MESSAGE(
((String)Vector3(9.7, 9.8, 9.9)) == "(9.7, 9.8, 9.9)",
"Vector3 cast to String should work as expected.");
#ifdef REAL_T_IS_DOUBLE
CHECK_MESSAGE(
((String)Vector3(Math_E, Math_SQRT2, Math_SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888)",
"Vector3 cast to String should print the correct amount of digits for real_t = double.");
#else
CHECK_MESSAGE(
((String)Vector3(Math_E, Math_SQRT2, Math_SQRT3)) == "(2.718282, 1.414214, 1.732051)",
"Vector3 cast to String should print the correct amount of digits for real_t = float.");
#endif // REAL_T_IS_DOUBLE
}
TEST_CASE("[Vector3] Other methods") {
const Vector3 vector = Vector3(1.2, 3.4, 5.6);
CHECK_MESSAGE(
vector.direction_to(Vector3()).is_equal_approx(-vector.normalized()),
"Vector3 direction_to should work as expected.");
CHECK_MESSAGE(
Vector3(1, 1, 1).direction_to(Vector3(2, 2, 2)).is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
"Vector3 direction_to should work as expected.");
CHECK_MESSAGE(
vector.inverse().is_equal_approx(Vector3(1 / 1.2, 1 / 3.4, 1 / 5.6)),
"Vector3 inverse should work as expected.");
CHECK_MESSAGE(
vector.posmod(2).is_equal_approx(Vector3(1.2, 1.4, 1.6)),
"Vector3 posmod should work as expected.");
CHECK_MESSAGE(
(-vector).posmod(2).is_equal_approx(Vector3(0.8, 0.6, 0.4)),
"Vector3 posmod should work as expected.");
CHECK_MESSAGE(
vector.posmodv(Vector3(1, 2, 3)).is_equal_approx(Vector3(0.2, 1.4, 2.6)),
"Vector3 posmodv should work as expected.");
CHECK_MESSAGE(
(-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)),
"Vector3 posmodv should work as expected.");
CHECK_MESSAGE(
vector.rotated(Vector3(0, 1, 0), Math_TAU).is_equal_approx(vector),
"Vector3 rotated should work as expected.");
CHECK_MESSAGE(
vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)),
"Vector3 rotated should work as expected.");
CHECK_MESSAGE(
vector.rotated(Vector3(1, 0, 0), Math_TAU / 3).is_equal_approx(Vector3(1.2, -6.54974226119285642, 0.1444863728670914)),
"Vector3 rotated should work as expected.");
CHECK_MESSAGE(
vector.rotated(Vector3(0, 0, 1), Math_TAU / 2).is_equal_approx(vector.rotated(Vector3(0, 0, 1), Math_TAU / -2)),
"Vector3 rotated should work as expected.");
CHECK_MESSAGE(
vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6),
"Vector3 snapped to integers should be the same as rounding.");
CHECK_MESSAGE(
vector.snapped(Vector3(0.25, 0.25, 0.25)) == Vector3(1.25, 3.5, 5.5),
"Vector3 snapped to 0.25 should give exact results.");
CHECK_MESSAGE(
Vector3(1.2, 2.5, 2.0).is_equal_approx(vector.min(Vector3(3.0, 2.5, 2.0))),
"Vector3 min should return expected value.");
CHECK_MESSAGE(
Vector3(5.3, 3.4, 5.6).is_equal_approx(vector.max(Vector3(5.3, 2.0, 3.0))),
"Vector3 max should return expected value.");
}
TEST_CASE("[Vector3] Plane methods") {
const Vector3 vector = Vector3(1.2, 3.4, 5.6);
const Vector3 vector_y = Vector3(0, 1, 0);
const Vector3 vector_normal = Vector3(0.88763458893247992491, 0.26300284116517923701, 0.37806658417494515320);
CHECK_MESSAGE(
vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6),
"Vector3 bounce on a plane with normal of the Y axis should.");
CHECK_MESSAGE(
vector.bounce(vector_normal).is_equal_approx(Vector3(-6.0369629829775736287, 1.25571467171034855444, 2.517589840583626047)),
"Vector3 bounce with normal should return expected value.");
CHECK_MESSAGE(
vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6),
"Vector3 reflect on a plane with normal of the Y axis should.");
CHECK_MESSAGE(
vector.reflect(vector_normal).is_equal_approx(Vector3(6.0369629829775736287, -1.25571467171034855444, -2.517589840583626047)),
"Vector3 reflect with normal should return expected value.");
CHECK_MESSAGE(
vector.project(vector_y) == Vector3(0, 3.4, 0),
"Vector3 projected on the Y axis should only give the Y component.");
CHECK_MESSAGE(
vector.project(vector_normal).is_equal_approx(Vector3(3.61848149148878681437, 1.0721426641448257227776, 1.54120507970818697649)),
"Vector3 projected on a normal should return expected value.");
CHECK_MESSAGE(
vector.slide(vector_y) == Vector3(1.2, 0, 5.6),
"Vector3 slide on a plane with normal of the Y axis should set the Y to zero.");
CHECK_MESSAGE(
vector.slide(vector_normal).is_equal_approx(Vector3(-2.41848149148878681437, 2.32785733585517427722237, 4.0587949202918130235)),
"Vector3 slide with normal should return expected value.");
// There's probably a better way to test these ones?
#ifdef MATH_CHECKS
const Vector3 vector_non_normal = Vector3(5.4, 1.6, 2.3);
ERR_PRINT_OFF;
CHECK_MESSAGE(
vector.bounce(vector_non_normal).is_equal_approx(Vector3()),
"Vector3 bounce should return empty Vector3 with non-normalized input.");
CHECK_MESSAGE(
vector.reflect(vector_non_normal).is_equal_approx(Vector3()),
"Vector3 reflect should return empty Vector3 with non-normalized input.");
CHECK_MESSAGE(
vector.slide(vector_non_normal).is_equal_approx(Vector3()),
"Vector3 slide should return empty Vector3 with non-normalized input.");
ERR_PRINT_ON;
#endif // MATH_CHECKS
}
TEST_CASE("[Vector3] Rounding methods") {
const Vector3 vector1 = Vector3(1.2, 3.4, 5.6);
const Vector3 vector2 = Vector3(1.2, -3.4, -5.6);
CHECK_MESSAGE(
vector1.abs() == vector1,
"Vector3 abs should work as expected.");
CHECK_MESSAGE(
vector2.abs() == vector1,
"Vector3 abs should work as expected.");
CHECK_MESSAGE(
vector1.ceil() == Vector3(2, 4, 6),
"Vector3 ceil should work as expected.");
CHECK_MESSAGE(
vector2.ceil() == Vector3(2, -3, -5),
"Vector3 ceil should work as expected.");
CHECK_MESSAGE(
vector1.floor() == Vector3(1, 3, 5),
"Vector3 floor should work as expected.");
CHECK_MESSAGE(
vector2.floor() == Vector3(1, -4, -6),
"Vector3 floor should work as expected.");
CHECK_MESSAGE(
vector1.round() == Vector3(1, 3, 6),
"Vector3 round should work as expected.");
CHECK_MESSAGE(
vector2.round() == Vector3(1, -3, -6),
"Vector3 round should work as expected.");
CHECK_MESSAGE(
vector1.sign() == Vector3(1, 1, 1),
"Vector3 sign should work as expected.");
CHECK_MESSAGE(
vector2.sign() == Vector3(1, -1, -1),
"Vector3 sign should work as expected.");
}
TEST_CASE("[Vector3] Linear algebra methods") {
const Vector3 vector_x = Vector3(1, 0, 0);
const Vector3 vector_y = Vector3(0, 1, 0);
const Vector3 vector_z = Vector3(0, 0, 1);
const Vector3 a = Vector3(3.5, 8.5, 2.3);
const Vector3 b = Vector3(5.2, 4.6, 7.8);
CHECK_MESSAGE(
vector_x.cross(vector_y) == vector_z,
"Vector3 cross product of X and Y should give Z.");
CHECK_MESSAGE(
vector_y.cross(vector_x) == -vector_z,
"Vector3 cross product of Y and X should give negative Z.");
CHECK_MESSAGE(
vector_y.cross(vector_z) == vector_x,
"Vector3 cross product of Y and Z should give X.");
CHECK_MESSAGE(
vector_z.cross(vector_x) == vector_y,
"Vector3 cross product of Z and X should give Y.");
CHECK_MESSAGE(
a.cross(b).is_equal_approx(Vector3(55.72, -15.34, -28.1)),
"Vector3 cross should return expected value.");
CHECK_MESSAGE(
Vector3(-a.x, a.y, -a.z).cross(Vector3(b.x, -b.y, b.z)).is_equal_approx(Vector3(55.72, 15.34, -28.1)),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
vector_x.dot(vector_y) == 0.0,
"Vector3 dot product of perpendicular vectors should be zero.");
CHECK_MESSAGE(
vector_x.dot(vector_x) == 1.0,
"Vector3 dot product of identical unit vectors should be one.");
CHECK_MESSAGE(
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector3 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
a.dot(b) == doctest::Approx((real_t)75.24),
"Vector3 dot should return expected value.");
CHECK_MESSAGE(
Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)) == doctest::Approx((real_t)-75.24),
"Vector3 dot should return expected value.");
}
TEST_CASE("[Vector3] Finite number checks") {
const double infinite[] = { NAN, INFINITY, -INFINITY };
CHECK_MESSAGE(
Vector3(0, 1, 2).is_finite(),
"Vector3(0, 1, 2) should be finite");
for (double x : infinite) {
CHECK_FALSE_MESSAGE(
Vector3(x, 1, 2).is_finite(),
"Vector3 with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Vector3(0, x, 2).is_finite(),
"Vector3 with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Vector3(0, 1, x).is_finite(),
"Vector3 with one component infinite should not be finite.");
}
for (double x : infinite) {
for (double y : infinite) {
CHECK_FALSE_MESSAGE(
Vector3(x, y, 2).is_finite(),
"Vector3 with two components infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Vector3(x, 1, y).is_finite(),
"Vector3 with two components infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Vector3(0, x, y).is_finite(),
"Vector3 with two components infinite should not be finite.");
}
}
for (double x : infinite) {
for (double y : infinite) {
for (double z : infinite) {
CHECK_FALSE_MESSAGE(
Vector3(x, y, z).is_finite(),
"Vector3 with three components infinite should not be finite.");
}
}
}
}
} // namespace TestVector3
#endif // TEST_VECTOR3_H
|