diff options
author | Bastiaan Olij <mux213@gmail.com> | 2021-09-01 13:11:10 +1000 |
---|---|---|
committer | Bastiaan Olij <mux213@gmail.com> | 2021-09-27 23:08:10 +1000 |
commit | 46c63af715cf42a6e27feb48a3e7ed6d6dd9458c (patch) | |
tree | 14b3049fc155209d617b89fb3e45b95269519f9f /src/variant | |
parent | 3a5bd210921ac668949e20c494976660a986ea4a (diff) | |
download | redot-cpp-46c63af715cf42a6e27feb48a3e7ed6d6dd9458c.tar.gz |
Re-introduce build-in type code for core types
Diffstat (limited to 'src/variant')
-rw-r--r-- | src/variant/aabb.cpp | 355 | ||||
-rw-r--r-- | src/variant/basis.cpp | 1113 | ||||
-rw-r--r-- | src/variant/char_string.cpp | 8 | ||||
-rw-r--r-- | src/variant/color.cpp | 532 | ||||
-rw-r--r-- | src/variant/packed_arrays.cpp | 97 | ||||
-rw-r--r-- | src/variant/plane.cpp | 127 | ||||
-rw-r--r-- | src/variant/quaternion.cpp | 203 | ||||
-rw-r--r-- | src/variant/rect2.cpp | 241 | ||||
-rw-r--r-- | src/variant/rect2i.cpp | 3 | ||||
-rw-r--r-- | src/variant/transform2d.cpp | 248 | ||||
-rw-r--r-- | src/variant/transform3d.cpp | 185 | ||||
-rw-r--r-- | src/variant/variant.cpp | 13 | ||||
-rw-r--r-- | src/variant/vector2.cpp | 168 | ||||
-rw-r--r-- | src/variant/vector2i.cpp | 80 | ||||
-rw-r--r-- | src/variant/vector3.cpp | 94 | ||||
-rw-r--r-- | src/variant/vector3i.cpp | 29 |
16 files changed, 3483 insertions, 13 deletions
diff --git a/src/variant/aabb.cpp b/src/variant/aabb.cpp new file mode 100644 index 0000000..586ec5b --- /dev/null +++ b/src/variant/aabb.cpp @@ -0,0 +1,355 @@ +#include <godot_cpp/variant/aabb.hpp> + +#include <godot_cpp/core/defs.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +real_t AABB::get_area() const { + return size.x * size.y * size.z; +} + +bool AABB::operator==(const AABB &p_rval) const { + return ((position == p_rval.position) && (size == p_rval.size)); +} + +bool AABB::operator!=(const AABB &p_rval) const { + return ((position != p_rval.position) || (size != p_rval.size)); +} + +void AABB::merge_with(const AABB &p_aabb) { + Vector3 beg_1, beg_2; + Vector3 end_1, end_2; + Vector3 min, max; + + beg_1 = position; + beg_2 = p_aabb.position; + end_1 = Vector3(size.x, size.y, size.z) + beg_1; + end_2 = Vector3(p_aabb.size.x, p_aabb.size.y, p_aabb.size.z) + beg_2; + + min.x = (beg_1.x < beg_2.x) ? beg_1.x : beg_2.x; + min.y = (beg_1.y < beg_2.y) ? beg_1.y : beg_2.y; + min.z = (beg_1.z < beg_2.z) ? beg_1.z : beg_2.z; + + max.x = (end_1.x > end_2.x) ? end_1.x : end_2.x; + max.y = (end_1.y > end_2.y) ? end_1.y : end_2.y; + max.z = (end_1.z > end_2.z) ? end_1.z : end_2.z; + + position = min; + size = max - min; +} + +bool AABB::is_equal_approx(const AABB &p_aabb) const { + return position.is_equal_approx(p_aabb.position) && size.is_equal_approx(p_aabb.size); +} + +AABB AABB::intersection(const AABB &p_aabb) const { + Vector3 src_min = position; + Vector3 src_max = position + size; + Vector3 dst_min = p_aabb.position; + Vector3 dst_max = p_aabb.position + p_aabb.size; + + Vector3 min, max; + + if (src_min.x > dst_max.x || src_max.x < dst_min.x) { + return AABB(); + } else { + min.x = (src_min.x > dst_min.x) ? src_min.x : dst_min.x; + max.x = (src_max.x < dst_max.x) ? src_max.x : dst_max.x; + } + + if (src_min.y > dst_max.y || src_max.y < dst_min.y) { + return AABB(); + } else { + min.y = (src_min.y > dst_min.y) ? src_min.y : dst_min.y; + max.y = (src_max.y < dst_max.y) ? src_max.y : dst_max.y; + } + + if (src_min.z > dst_max.z || src_max.z < dst_min.z) { + return AABB(); + } else { + min.z = (src_min.z > dst_min.z) ? src_min.z : dst_min.z; + max.z = (src_max.z < dst_max.z) ? src_max.z : dst_max.z; + } + + return AABB(min, max - min); +} + +bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const { + Vector3 c1, c2; + Vector3 end = position + size; + real_t near = -1e20; + real_t far = 1e20; + int axis = 0; + + for (int i = 0; i < 3; i++) { + if (p_dir[i] == 0) { + if ((p_from[i] < position[i]) || (p_from[i] > end[i])) { + return false; + } + } else { // ray not parallel to planes in this direction + c1[i] = (position[i] - p_from[i]) / p_dir[i]; + c2[i] = (end[i] - p_from[i]) / p_dir[i]; + + if (c1[i] > c2[i]) { + SWAP(c1, c2); + } + if (c1[i] > near) { + near = c1[i]; + axis = i; + } + if (c2[i] < far) { + far = c2[i]; + } + if ((near > far) || (far < 0)) { + return false; + } + } + } + + if (r_clip) { + *r_clip = c1; + } + if (r_normal) { + *r_normal = Vector3(); + (*r_normal)[axis] = p_dir[axis] ? -1 : 1; + } + + return true; +} + +bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip, Vector3 *r_normal) const { + real_t min = 0, max = 1; + int axis = 0; + real_t sign = 0; + + for (int i = 0; i < 3; i++) { + real_t seg_from = p_from[i]; + real_t seg_to = p_to[i]; + real_t box_begin = position[i]; + real_t box_end = box_begin + size[i]; + real_t cmin, cmax; + real_t csign; + + if (seg_from < seg_to) { + if (seg_from > box_end || seg_to < box_begin) { + return false; + } + real_t length = seg_to - seg_from; + cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; + cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; + csign = -1.0; + + } else { + if (seg_to > box_end || seg_from < box_begin) { + return false; + } + real_t length = seg_to - seg_from; + cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; + cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; + csign = 1.0; + } + + if (cmin > min) { + min = cmin; + axis = i; + sign = csign; + } + if (cmax < max) { + max = cmax; + } + if (max < min) { + return false; + } + } + + Vector3 rel = p_to - p_from; + + if (r_normal) { + Vector3 normal; + normal[axis] = sign; + *r_normal = normal; + } + + if (r_clip) { + *r_clip = p_from + rel * min; + } + + return true; +} + +bool AABB::intersects_plane(const Plane &p_plane) const { + Vector3 points[8] = { + Vector3(position.x, position.y, position.z), + Vector3(position.x, position.y, position.z + size.z), + Vector3(position.x, position.y + size.y, position.z), + Vector3(position.x, position.y + size.y, position.z + size.z), + Vector3(position.x + size.x, position.y, position.z), + Vector3(position.x + size.x, position.y, position.z + size.z), + Vector3(position.x + size.x, position.y + size.y, position.z), + Vector3(position.x + size.x, position.y + size.y, position.z + size.z), + }; + + bool over = false; + bool under = false; + + for (int i = 0; i < 8; i++) { + if (p_plane.distance_to(points[i]) > 0) { + over = true; + } else { + under = true; + } + } + + return under && over; +} + +Vector3 AABB::get_longest_axis() const { + Vector3 axis(1, 0, 0); + real_t max_size = size.x; + + if (size.y > max_size) { + axis = Vector3(0, 1, 0); + max_size = size.y; + } + + if (size.z > max_size) { + axis = Vector3(0, 0, 1); + } + + return axis; +} + +int AABB::get_longest_axis_index() const { + int axis = 0; + real_t max_size = size.x; + + if (size.y > max_size) { + axis = 1; + max_size = size.y; + } + + if (size.z > max_size) { + axis = 2; + } + + return axis; +} + +Vector3 AABB::get_shortest_axis() const { + Vector3 axis(1, 0, 0); + real_t max_size = size.x; + + if (size.y < max_size) { + axis = Vector3(0, 1, 0); + max_size = size.y; + } + + if (size.z < max_size) { + axis = Vector3(0, 0, 1); + } + + return axis; +} + +int AABB::get_shortest_axis_index() const { + int axis = 0; + real_t max_size = size.x; + + if (size.y < max_size) { + axis = 1; + max_size = size.y; + } + + if (size.z < max_size) { + axis = 2; + } + + return axis; +} + +AABB AABB::merge(const AABB &p_with) const { + AABB aabb = *this; + aabb.merge_with(p_with); + return aabb; +} + +AABB AABB::expand(const Vector3 &p_vector) const { + AABB aabb = *this; + aabb.expand_to(p_vector); + return aabb; +} + +AABB AABB::grow(real_t p_by) const { + AABB aabb = *this; + aabb.grow_by(p_by); + return aabb; +} + +void AABB::get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const { + ERR_FAIL_INDEX(p_edge, 12); + switch (p_edge) { + case 0: { + r_from = Vector3(position.x + size.x, position.y, position.z); + r_to = Vector3(position.x, position.y, position.z); + } break; + case 1: { + r_from = Vector3(position.x + size.x, position.y, position.z + size.z); + r_to = Vector3(position.x + size.x, position.y, position.z); + } break; + case 2: { + r_from = Vector3(position.x, position.y, position.z + size.z); + r_to = Vector3(position.x + size.x, position.y, position.z + size.z); + + } break; + case 3: { + r_from = Vector3(position.x, position.y, position.z); + r_to = Vector3(position.x, position.y, position.z + size.z); + + } break; + case 4: { + r_from = Vector3(position.x, position.y + size.y, position.z); + r_to = Vector3(position.x + size.x, position.y + size.y, position.z); + } break; + case 5: { + r_from = Vector3(position.x + size.x, position.y + size.y, position.z); + r_to = Vector3(position.x + size.x, position.y + size.y, position.z + size.z); + } break; + case 6: { + r_from = Vector3(position.x + size.x, position.y + size.y, position.z + size.z); + r_to = Vector3(position.x, position.y + size.y, position.z + size.z); + + } break; + case 7: { + r_from = Vector3(position.x, position.y + size.y, position.z + size.z); + r_to = Vector3(position.x, position.y + size.y, position.z); + + } break; + case 8: { + r_from = Vector3(position.x, position.y, position.z + size.z); + r_to = Vector3(position.x, position.y + size.y, position.z + size.z); + + } break; + case 9: { + r_from = Vector3(position.x, position.y, position.z); + r_to = Vector3(position.x, position.y + size.y, position.z); + + } break; + case 10: { + r_from = Vector3(position.x + size.x, position.y, position.z); + r_to = Vector3(position.x + size.x, position.y + size.y, position.z); + + } break; + case 11: { + r_from = Vector3(position.x + size.x, position.y, position.z + size.z); + r_to = Vector3(position.x + size.x, position.y + size.y, position.z + size.z); + + } break; + } +} + +AABB::operator String() const { + return position.operator String() + " - " + size.operator String(); +} + +} // namespace godot diff --git a/src/variant/basis.cpp b/src/variant/basis.cpp new file mode 100644 index 0000000..6fa7de9 --- /dev/null +++ b/src/variant/basis.cpp @@ -0,0 +1,1113 @@ +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/variant/basis.hpp> +#include <godot_cpp/variant/string.hpp> + +#define cofac(row1, col1, row2, col2) \ + (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) + +namespace godot { + +void Basis::from_z(const Vector3 &p_z) { + if (Math::abs(p_z.z) > Math_SQRT12) { + // choose p in y-z plane + real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; + real_t k = 1.0 / Math::sqrt(a); + elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); + elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); + } else { + // choose p in x-y plane + real_t a = p_z.x * p_z.x + p_z.y * p_z.y; + real_t k = 1.0 / Math::sqrt(a); + elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); + elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); + } + elements[2] = p_z; +} + +void Basis::invert() { + real_t co[3] = { + cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) + }; + real_t det = elements[0][0] * co[0] + + elements[0][1] * co[1] + + elements[0][2] * co[2]; +#ifdef MATH_CHECKS + ERR_FAIL_COND(det == 0); +#endif + real_t s = 1.0 / det; + + set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, + co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, + co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); +} + +void Basis::orthonormalize() { + // Gram-Schmidt Process + + Vector3 x = get_axis(0); + Vector3 y = get_axis(1); + Vector3 z = get_axis(2); + + x.normalize(); + y = (y - x * (x.dot(y))); + y.normalize(); + z = (z - x * (x.dot(z)) - y * (y.dot(z))); + z.normalize(); + + set_axis(0, x); + set_axis(1, y); + set_axis(2, z); +} + +Basis Basis::orthonormalized() const { + Basis c = *this; + c.orthonormalize(); + return c; +} + +bool Basis::is_orthogonal() const { + Basis identity; + Basis m = (*this) * transposed(); + + return m.is_equal_approx(identity); +} + +bool Basis::is_diagonal() const { + return ( + Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) && + Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) && + Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1])); +} + +bool Basis::is_rotation() const { + return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); +} + +#ifdef MATH_CHECKS +// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. +bool Basis::is_symmetric() const { + if (!Math::is_equal_approx(elements[0][1], elements[1][0])) { + return false; + } + if (!Math::is_equal_approx(elements[0][2], elements[2][0])) { + return false; + } + if (!Math::is_equal_approx(elements[1][2], elements[2][1])) { + return false; + } + + return true; +} +#endif + +Basis Basis::diagonalize() { +//NOTE: only implemented for symmetric matrices +//with the Jacobi iterative method method +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_symmetric(), Basis()); +#endif + const int ite_max = 1024; + + real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; + + int ite = 0; + Basis acc_rot; + while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { + real_t el01_2 = elements[0][1] * elements[0][1]; + real_t el02_2 = elements[0][2] * elements[0][2]; + real_t el12_2 = elements[1][2] * elements[1][2]; + // Find the pivot element + int i, j; + if (el01_2 > el02_2) { + if (el12_2 > el01_2) { + i = 1; + j = 2; + } else { + i = 0; + j = 1; + } + } else { + if (el12_2 > el02_2) { + i = 1; + j = 2; + } else { + i = 0; + j = 2; + } + } + + // Compute the rotation angle + real_t angle; + if (Math::is_equal_approx(elements[j][j], elements[i][i])) { + angle = Math_PI / 4; + } else { + angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); + } + + // Compute the rotation matrix + Basis rot; + rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); + rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle)); + + // Update the off matrix norm + off_matrix_norm_2 -= elements[i][j] * elements[i][j]; + + // Apply the rotation + *this = rot * *this * rot.transposed(); + acc_rot = rot * acc_rot; + } + + return acc_rot; +} + +Basis Basis::inverse() const { + Basis inv = *this; + inv.invert(); + return inv; +} + +void Basis::transpose() { + SWAP(elements[0][1], elements[1][0]); + SWAP(elements[0][2], elements[2][0]); + SWAP(elements[1][2], elements[2][1]); +} + +Basis Basis::transposed() const { + Basis tr = *this; + tr.transpose(); + return tr; +} + +// Multiplies the matrix from left by the scaling matrix: M -> S.M +// See the comment for Basis::rotated for further explanation. +void Basis::scale(const Vector3 &p_scale) { + elements[0][0] *= p_scale.x; + elements[0][1] *= p_scale.x; + elements[0][2] *= p_scale.x; + elements[1][0] *= p_scale.y; + elements[1][1] *= p_scale.y; + elements[1][2] *= p_scale.y; + elements[2][0] *= p_scale.z; + elements[2][1] *= p_scale.z; + elements[2][2] *= p_scale.z; +} + +Basis Basis::scaled(const Vector3 &p_scale) const { + Basis m = *this; + m.scale(p_scale); + return m; +} + +void Basis::scale_local(const Vector3 &p_scale) { + // performs a scaling in object-local coordinate system: + // M -> (M.S.Minv).M = M.S. + *this = scaled_local(p_scale); +} + +float Basis::get_uniform_scale() const { + return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; +} + +void Basis::make_scale_uniform() { + float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; + for (int i = 0; i < 3; i++) { + elements[i].normalize(); + elements[i] *= l; + } +} + +Basis Basis::scaled_local(const Vector3 &p_scale) const { + Basis b; + b.set_diagonal(p_scale); + + return (*this) * b; +} + +Vector3 Basis::get_scale_abs() const { + return Vector3( + Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), + Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), + Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); +} + +Vector3 Basis::get_scale_local() const { + real_t det_sign = Math::sign(determinant()); + return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length()); +} + +// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. +Vector3 Basis::get_scale() const { + // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. + // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and + // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). + // + // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition + // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where + // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, + // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, + // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. + // Therefore, we are going to do this decomposition by sticking to a particular convention. + // This may lead to confusion for some users though. + // + // The convention we use here is to absorb the sign flip into the scaling matrix. + // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ... + // + // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) + // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the + // matrix elements. + // + // The rotation part of this decomposition is returned by get_rotation* functions. + real_t det_sign = Math::sign(determinant()); + return det_sign * Vector3( + Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), + Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), + Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); +} + +// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. +// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3. +// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so. +Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(determinant() == 0, Vector3()); + + Basis m = transposed() * (*this); + ERR_FAIL_COND_V(!m.is_diagonal(), Vector3()); +#endif + Vector3 scale = get_scale(); + Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale + rotref = (*this) * inv_scale; + +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3()); +#endif + return scale.abs(); +} + +// Multiplies the matrix from left by the rotation matrix: M -> R.M +// Note that this does *not* rotate the matrix itself. +// +// The main use of Basis is as Transform3D.basis, which is used a the transformation matrix +// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), +// not the matrix itself (which is R * (*this) * R.transposed()). +Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { + return Basis(p_axis, p_phi) * (*this); +} + +void Basis::rotate(const Vector3 &p_axis, real_t p_phi) { + *this = rotated(p_axis, p_phi); +} + +void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { + // performs a rotation in object-local coordinate system: + // M -> (M.R.Minv).M = M.R. + *this = rotated_local(p_axis, p_phi); +} + +Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { + return (*this) * Basis(p_axis, p_phi); +} + +Basis Basis::rotated(const Vector3 &p_euler) const { + return Basis(p_euler) * (*this); +} + +void Basis::rotate(const Vector3 &p_euler) { + *this = rotated(p_euler); +} + +Basis Basis::rotated(const Quaternion &p_quat) const { + return Basis(p_quat) * (*this); +} + +void Basis::rotate(const Quaternion &p_quat) { + *this = rotated(p_quat); +} + +Vector3 Basis::get_rotation_euler() const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + return m.get_euler(); +} + +Quaternion Basis::get_rotation_quat() const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + return m.get_quat(); +} + +void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + m.get_axis_angle(p_axis, p_angle); +} + +void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = transposed(); + m.orthonormalize(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + m.get_axis_angle(p_axis, p_angle); + p_angle = -p_angle; +} + +// get_euler_xyz returns a vector containing the Euler angles in the format +// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last +// (following the convention they are commonly defined in the literature). +// +// The current implementation uses XYZ convention (Z is the first rotation), +// so euler.z is the angle of the (first) rotation around Z axis and so on, +// +// And thus, assuming the matrix is a rotation matrix, this function returns +// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates +// around the z-axis by a and so on. +Vector3 Basis::get_euler_xyz() const { + // Euler angles in XYZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz -cy*sz sy + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy + + Vector3 euler; + real_t sy = elements[0][2]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + // is this a pure Y rotation? + if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = 0; + euler.y = atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } else { + euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.y = Math::asin(sy); + euler.z = Math::atan2(-elements[0][1], elements[0][0]); + } + } else { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = -Math_PI / 2.0; + euler.z = 0.0; + } + } else { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math_PI / 2.0; + euler.z = 0.0; + } + return euler; +} + +// set_euler_xyz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// The current implementation uses XYZ convention (Z is the first rotation). +void Basis::set_euler_xyz(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + //optimizer will optimize away all this anyway + *this = xmat * (ymat * zmat); +} + +Vector3 Basis::get_euler_xzy() const { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = elements[0][1]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_xzy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = xmat * zmat * ymat; +} + +Vector3 Basis::get_euler_yzx() const { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = elements[1][0]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(-elements[1][2], elements[1][1]); + euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_yzx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = ymat * zmat * xmat; +} + +// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, +// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned +// as the x, y, and z components of a Vector3 respectively. +Vector3 Basis::get_euler_yxz() const { + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; + + real_t m12 = elements[1][2]; + + if (m12 < (1 - CMP_EPSILON)) { + if (m12 > -(1 - CMP_EPSILON)) { + // is this a pure X rotation? + if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = atan2(-m12, elements[1][1]); + euler.y = 0; + euler.z = 0; + } else { + euler.x = asin(-m12); + euler.y = atan2(elements[0][2], elements[2][2]); + euler.z = atan2(elements[1][0], elements[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5; + euler.y = atan2(elements[0][1], elements[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5; + euler.y = -atan2(elements[0][1], elements[0][0]); + euler.z = 0; + } + + return euler; +} + +// set_euler_yxz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// The current implementation uses YXZ convention (Z is the first rotation). +void Basis::set_euler_yxz(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + //optimizer will optimize away all this anyway + *this = ymat * xmat * zmat; +} + +Vector3 Basis::get_euler_zxy() const { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = elements[2][1]; + if (sx < (1.0 - CMP_EPSILON)) { + if (sx > -(1.0 - CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-elements[2][0], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + return euler; +} + +void Basis::set_euler_zxy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * xmat * ymat; +} + +Vector3 Basis::get_euler_zyx() const { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = elements[2][0]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(elements[1][0], elements[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); + } + } else { + // It's 1 + euler.x = 0; + euler.y = -Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); + } + return euler; +} + +void Basis::set_euler_zyx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * ymat * xmat; +} + +bool Basis::is_equal_approx(const Basis &p_basis) const { + return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); +} + +bool Basis::operator==(const Basis &p_matrix) const { + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + if (elements[i][j] != p_matrix.elements[i][j]) { + return false; + } + } + } + + return true; +} + +bool Basis::operator!=(const Basis &p_matrix) const { + return (!(*this == p_matrix)); +} + +Basis::operator String() const { + String mtx; + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + if (i != 0 || j != 0) { + mtx = mtx + ", "; + } + + mtx = mtx + String::num(elements[j][i]); //matrix is stored transposed for performance, so print it transposed + } + } + + return mtx; +} + +Quaternion Basis::get_quat() const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_rotation(), Quaternion()); +#endif + /* Allow getting a quaternion from an unnormalized transform */ + Basis m = *this; + real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; + real_t temp[4]; + + if (trace > 0.0) { + real_t s = Math::sqrt(trace + 1.0); + temp[3] = (s * 0.5); + s = 0.5 / s; + + temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s); + temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); + temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); + } else { + int i = m.elements[0][0] < m.elements[1][1] ? + (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : + (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + int j = (i + 1) % 3; + int k = (i + 2) % 3; + + real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); + temp[i] = s * 0.5; + s = 0.5 / s; + + temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; + temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; + temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; + } + + return Quaternion(temp[0], temp[1], temp[2], temp[3]); +} + +static const Basis _ortho_bases[24] = { + Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), + Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), + Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), + Basis(0, 1, 0, -1, 0, 0, 0, 0, 1), + Basis(1, 0, 0, 0, 0, -1, 0, 1, 0), + Basis(0, 0, 1, 1, 0, 0, 0, 1, 0), + Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0), + Basis(0, 0, -1, -1, 0, 0, 0, 1, 0), + Basis(1, 0, 0, 0, -1, 0, 0, 0, -1), + Basis(0, 1, 0, 1, 0, 0, 0, 0, -1), + Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1), + Basis(0, -1, 0, -1, 0, 0, 0, 0, -1), + Basis(1, 0, 0, 0, 0, 1, 0, -1, 0), + Basis(0, 0, -1, 1, 0, 0, 0, -1, 0), + Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0), + Basis(0, 0, 1, -1, 0, 0, 0, -1, 0), + Basis(0, 0, 1, 0, 1, 0, -1, 0, 0), + Basis(0, -1, 0, 0, 0, 1, -1, 0, 0), + Basis(0, 0, -1, 0, -1, 0, -1, 0, 0), + Basis(0, 1, 0, 0, 0, -1, -1, 0, 0), + Basis(0, 0, 1, 0, -1, 0, 1, 0, 0), + Basis(0, 1, 0, 0, 0, 1, 1, 0, 0), + Basis(0, 0, -1, 0, 1, 0, 1, 0, 0), + Basis(0, -1, 0, 0, 0, -1, 1, 0, 0) +}; + +int Basis::get_orthogonal_index() const { + //could be sped up if i come up with a way + Basis orth = *this; + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + real_t v = orth[i][j]; + if (v > 0.5) { + v = 1.0; + } else if (v < -0.5) { + v = -1.0; + } else { + v = 0; + } + + orth[i][j] = v; + } + } + + for (int i = 0; i < 24; i++) { + if (_ortho_bases[i] == orth) { + return i; + } + } + + return 0; +} + +void Basis::set_orthogonal_index(int p_index) { + //there only exist 24 orthogonal bases in r3 + ERR_FAIL_INDEX(p_index, 24); + + *this = _ortho_bases[p_index]; +} + +void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { + /* checking this is a bad idea, because obtaining from scaled transform is a valid use case +#ifdef MATH_CHECKS + ERR_FAIL_COND(!is_rotation()); +#endif +*/ + real_t angle, x, y, z; // variables for result + real_t epsilon = 0.01; // margin to allow for rounding errors + real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees + + if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonaland zero in other terms + if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { + // this singularity is identity matrix so angle = 0 + r_axis = Vector3(0, 1, 0); + r_angle = 0; + return; + } + // otherwise this singularity is angle = 180 + angle = Math_PI; + real_t xx = (elements[0][0] + 1) / 2; + real_t yy = (elements[1][1] + 1) / 2; + real_t zz = (elements[2][2] + 1) / 2; + real_t xy = (elements[1][0] + elements[0][1]) / 4; + real_t xz = (elements[2][0] + elements[0][2]) / 4; + real_t yz = (elements[2][1] + elements[1][2]) / 4; + if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term + if (xx < epsilon) { + x = 0; + y = Math_SQRT12; + z = Math_SQRT12; + } else { + x = Math::sqrt(xx); + y = xy / x; + z = xz / x; + } + } else if (yy > zz) { // elements[1][1] is the largest diagonal term + if (yy < epsilon) { + x = Math_SQRT12; + y = 0; + z = Math_SQRT12; + } else { + y = Math::sqrt(yy); + x = xy / y; + z = yz / y; + } + } else { // elements[2][2] is the largest diagonal term so base result on this + if (zz < epsilon) { + x = Math_SQRT12; + y = Math_SQRT12; + z = 0; + } else { + z = Math::sqrt(zz); + x = xz / z; + y = yz / z; + } + } + r_axis = Vector3(x, y, z); + r_angle = angle; + return; + } + // as we have reached here there are no singularities so we can handle normally + real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise + + angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); + if (angle < 0) { + s = -s; + } + x = (elements[2][1] - elements[1][2]) / s; + y = (elements[0][2] - elements[2][0]) / s; + z = (elements[1][0] - elements[0][1]) / s; + + r_axis = Vector3(x, y, z); + r_angle = angle; +} + +void Basis::set_quat(const Quaternion &p_quat) { + real_t d = p_quat.length_squared(); + real_t s = 2.0 / d; + real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; + real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; + real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; + real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; + set(1.0 - (yy + zz), xy - wz, xz + wy, + xy + wz, 1.0 - (xx + zz), yz - wx, + xz - wy, yz + wx, 1.0 - (xx + yy)); +} + +void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { +// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle +#ifdef MATH_CHECKS + ERR_FAIL_COND(!p_axis.is_normalized()); +#endif + Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); + real_t cosine = Math::cos(p_phi); + elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); + elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); + elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); + + real_t sine = Math::sin(p_phi); + real_t t = 1 - cosine; + + real_t xyzt = p_axis.x * p_axis.y * t; + real_t zyxs = p_axis.z * sine; + elements[0][1] = xyzt - zyxs; + elements[1][0] = xyzt + zyxs; + + xyzt = p_axis.x * p_axis.z * t; + zyxs = p_axis.y * sine; + elements[0][2] = xyzt + zyxs; + elements[2][0] = xyzt - zyxs; + + xyzt = p_axis.y * p_axis.z * t; + zyxs = p_axis.x * sine; + elements[1][2] = xyzt - zyxs; + elements[2][1] = xyzt + zyxs; +} + +void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_axis, p_phi); +} + +void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_euler); +} + +void Basis::set_quat_scale(const Quaternion &p_quat, const Vector3 &p_scale) { + set_diagonal(p_scale); + rotate(p_quat); +} + +void Basis::set_diagonal(const Vector3 &p_diag) { + elements[0][0] = p_diag.x; + elements[0][1] = 0; + elements[0][2] = 0; + + elements[1][0] = 0; + elements[1][1] = p_diag.y; + elements[1][2] = 0; + + elements[2][0] = 0; + elements[2][1] = 0; + elements[2][2] = p_diag.z; +} + +Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { + //consider scale + Quaternion from(*this); + Quaternion to(p_to); + + Basis b(from.slerp(to, p_weight)); + b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight); + b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight); + b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight); + + return b; +} + +void Basis::rotate_sh(real_t *p_values) { + // code by John Hable + // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ + // this code is Public Domain + + const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) + const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) + const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) + + const static real_t s_c_scale = 1.0 / 0.91529123286551084; + const static real_t s_c_scale_inv = 0.91529123286551084; + + const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; + const static real_t s_c4_div_c3 = s_c4 / s_c3; + const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; + + const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; + const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; + + real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; + + real_t m00 = elements[0][0]; + real_t m01 = elements[0][1]; + real_t m02 = elements[0][2]; + real_t m10 = elements[1][0]; + real_t m11 = elements[1][1]; + real_t m12 = elements[1][2]; + real_t m20 = elements[2][0]; + real_t m21 = elements[2][1]; + real_t m22 = elements[2][2]; + + p_values[0] = src[0]; + p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; + p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; + p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; + + real_t sh0 = src[7] + src[8] + src[8] - src[5]; + real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; + real_t sh2 = src[4]; + real_t sh3 = -src[7]; + real_t sh4 = -src[5]; + + // Rotations. R0 and R1 just use the raw matrix columns + real_t r2x = m00 + m01; + real_t r2y = m10 + m11; + real_t r2z = m20 + m21; + + real_t r3x = m00 + m02; + real_t r3y = m10 + m12; + real_t r3z = m20 + m22; + + real_t r4x = m01 + m02; + real_t r4y = m11 + m12; + real_t r4z = m21 + m22; + + // dense matrix multiplication one column at a time + + // column 0 + real_t sh0_x = sh0 * m00; + real_t sh0_y = sh0 * m10; + real_t d0 = sh0_x * m10; + real_t d1 = sh0_y * m20; + real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); + real_t d3 = sh0_x * m20; + real_t d4 = sh0_x * m00 - sh0_y * m10; + + // column 1 + real_t sh1_x = sh1 * m02; + real_t sh1_y = sh1 * m12; + d0 += sh1_x * m12; + d1 += sh1_y * m22; + d2 += sh1 * (m22 * m22 + s_c4_div_c3); + d3 += sh1_x * m22; + d4 += sh1_x * m02 - sh1_y * m12; + + // column 2 + real_t sh2_x = sh2 * r2x; + real_t sh2_y = sh2 * r2y; + d0 += sh2_x * r2y; + d1 += sh2_y * r2z; + d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); + d3 += sh2_x * r2z; + d4 += sh2_x * r2x - sh2_y * r2y; + + // column 3 + real_t sh3_x = sh3 * r3x; + real_t sh3_y = sh3 * r3y; + d0 += sh3_x * r3y; + d1 += sh3_y * r3z; + d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); + d3 += sh3_x * r3z; + d4 += sh3_x * r3x - sh3_y * r3y; + + // column 4 + real_t sh4_x = sh4 * r4x; + real_t sh4_y = sh4 * r4y; + d0 += sh4_x * r4y; + d1 += sh4_y * r4z; + d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); + d3 += sh4_x * r4z; + d4 += sh4_x * r4x - sh4_y * r4y; + + // extra multipliers + p_values[4] = d0; + p_values[5] = -d1; + p_values[6] = d2 * s_scale_dst2; + p_values[7] = -d3; + p_values[8] = d4 * s_scale_dst4; +} + +} // namespace godot diff --git a/src/variant/char_string.cpp b/src/variant/char_string.cpp index 19c99b4..72f4a6c 100644 --- a/src/variant/char_string.cpp +++ b/src/variant/char_string.cpp @@ -192,6 +192,14 @@ bool String::operator!=(const char32_t *p_str) const { return *this != String(p_str); } +const char32_t &String::operator[](int p_index) const { + return *internal::interface->string_operator_index_const((GDNativeStringPtr) this, p_index); +} + +char32_t &String::operator[](int p_index) { + return *internal::interface->string_operator_index((GDNativeStringPtr) this, p_index); +} + bool operator==(const char *p_chr, const String &p_str) { return p_str == String(p_chr); } diff --git a/src/variant/color.cpp b/src/variant/color.cpp new file mode 100644 index 0000000..6af55a6 --- /dev/null +++ b/src/variant/color.cpp @@ -0,0 +1,532 @@ +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/variant/color.hpp> +#include <godot_cpp/variant/color_names.inc.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +uint32_t Color::to_argb32() const { + uint32_t c = (uint8_t)Math::round(a * 255); + c <<= 8; + c |= (uint8_t)Math::round(r * 255); + c <<= 8; + c |= (uint8_t)Math::round(g * 255); + c <<= 8; + c |= (uint8_t)Math::round(b * 255); + + return c; +} + +uint32_t Color::to_abgr32() const { + uint32_t c = (uint8_t)Math::round(a * 255); + c <<= 8; + c |= (uint8_t)Math::round(b * 255); + c <<= 8; + c |= (uint8_t)Math::round(g * 255); + c <<= 8; + c |= (uint8_t)Math::round(r * 255); + + return c; +} + +uint32_t Color::to_rgba32() const { + uint32_t c = (uint8_t)Math::round(r * 255); + c <<= 8; + c |= (uint8_t)Math::round(g * 255); + c <<= 8; + c |= (uint8_t)Math::round(b * 255); + c <<= 8; + c |= (uint8_t)Math::round(a * 255); + + return c; +} + +uint64_t Color::to_abgr64() const { + uint64_t c = (uint16_t)Math::round(a * 65535); + c <<= 16; + c |= (uint16_t)Math::round(b * 65535); + c <<= 16; + c |= (uint16_t)Math::round(g * 65535); + c <<= 16; + c |= (uint16_t)Math::round(r * 65535); + + return c; +} + +uint64_t Color::to_argb64() const { + uint64_t c = (uint16_t)Math::round(a * 65535); + c <<= 16; + c |= (uint16_t)Math::round(r * 65535); + c <<= 16; + c |= (uint16_t)Math::round(g * 65535); + c <<= 16; + c |= (uint16_t)Math::round(b * 65535); + + return c; +} + +uint64_t Color::to_rgba64() const { + uint64_t c = (uint16_t)Math::round(r * 65535); + c <<= 16; + c |= (uint16_t)Math::round(g * 65535); + c <<= 16; + c |= (uint16_t)Math::round(b * 65535); + c <<= 16; + c |= (uint16_t)Math::round(a * 65535); + + return c; +} + +float Color::get_h() const { + float min = Math::min(r, g); + min = Math::min(min, b); + float max = Math::max(r, g); + max = Math::max(max, b); + + float delta = max - min; + + if (delta == 0) { + return 0; + } + + float h; + if (r == max) { + h = (g - b) / delta; // between yellow & magenta + } else if (g == max) { + h = 2 + (b - r) / delta; // between cyan & yellow + } else { + h = 4 + (r - g) / delta; // between magenta & cyan + } + + h /= 6.0; + if (h < 0) { + h += 1.0; + } + + return h; +} + +float Color::get_s() const { + float min = Math::min(r, g); + min = Math::min(min, b); + float max = Math::max(r, g); + max = Math::max(max, b); + + float delta = max - min; + + return (max != 0) ? (delta / max) : 0; +} + +float Color::get_v() const { + float max = Math::max(r, g); + max = Math::max(max, b); + return max; +} + +void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) { + int i; + float f, p, q, t; + a = p_alpha; + + if (p_s == 0) { + // Achromatic (grey) + r = g = b = p_v; + return; + } + + p_h *= 6.0; + p_h = Math::fmod(p_h, 6); + i = Math::floor(p_h); + + f = p_h - i; + p = p_v * (1 - p_s); + q = p_v * (1 - p_s * f); + t = p_v * (1 - p_s * (1 - f)); + + switch (i) { + case 0: // Red is the dominant color + r = p_v; + g = t; + b = p; + break; + case 1: // Green is the dominant color + r = q; + g = p_v; + b = p; + break; + case 2: + r = p; + g = p_v; + b = t; + break; + case 3: // Blue is the dominant color + r = p; + g = q; + b = p_v; + break; + case 4: + r = t; + g = p; + b = p_v; + break; + default: // (5) Red is the dominant color + r = p_v; + g = p; + b = q; + break; + } +} + +bool Color::is_equal_approx(const Color &p_color) const { + return Math::is_equal_approx(r, p_color.r) && Math::is_equal_approx(g, p_color.g) && Math::is_equal_approx(b, p_color.b) && Math::is_equal_approx(a, p_color.a); +} + +void Color::invert() { + r = 1.0 - r; + g = 1.0 - g; + b = 1.0 - b; +} + +Color Color::hex(uint32_t p_hex) { + float a = (p_hex & 0xFF) / 255.0; + p_hex >>= 8; + float b = (p_hex & 0xFF) / 255.0; + p_hex >>= 8; + float g = (p_hex & 0xFF) / 255.0; + p_hex >>= 8; + float r = (p_hex & 0xFF) / 255.0; + + return Color(r, g, b, a); +} + +Color Color::hex64(uint64_t p_hex) { + float a = (p_hex & 0xFFFF) / 65535.0; + p_hex >>= 16; + float b = (p_hex & 0xFFFF) / 65535.0; + p_hex >>= 16; + float g = (p_hex & 0xFFFF) / 65535.0; + p_hex >>= 16; + float r = (p_hex & 0xFFFF) / 65535.0; + + return Color(r, g, b, a); +} + +Color Color::from_rgbe9995(uint32_t p_rgbe) { + float r = p_rgbe & 0x1ff; + float g = (p_rgbe >> 9) & 0x1ff; + float b = (p_rgbe >> 18) & 0x1ff; + float e = (p_rgbe >> 27); + float m = Math::pow(2, e - 15.0 - 9.0); + + float rd = r * m; + float gd = g * m; + float bd = b * m; + + return Color(rd, gd, bd, 1.0f); +} + +static int _parse_col4(const String &p_str, int p_ofs) { + char character = p_str[p_ofs]; + + if (character >= '0' && character <= '9') { + return character - '0'; + } else if (character >= 'a' && character <= 'f') { + return character + (10 - 'a'); + } else if (character >= 'A' && character <= 'F') { + return character + (10 - 'A'); + } + return -1; +} + +static int _parse_col8(const String &p_str, int p_ofs) { + return _parse_col4(p_str, p_ofs) * 16 + _parse_col4(p_str, p_ofs + 1); +} + +Color Color::inverted() const { + Color c = *this; + c.invert(); + return c; +} + +Color Color::html(const String &p_rgba) { + String color = p_rgba; + if (color.length() == 0) { + return Color(); + } + if (color[0] == '#') { + color = color.substr(1); + } + + // If enabled, use 1 hex digit per channel instead of 2. + // Other sizes aren't in the HTML/CSS spec but we could add them if desired. + bool is_shorthand = color.length() < 5; + bool alpha = false; + + if (color.length() == 8) { + alpha = true; + } else if (color.length() == 6) { + alpha = false; + } else if (color.length() == 4) { + alpha = true; + } else if (color.length() == 3) { + alpha = false; + } else { + ERR_FAIL_V(Color()); + } + + float r, g, b, a = 1.0; + if (is_shorthand) { + r = _parse_col4(color, 0) / 15.0; + g = _parse_col4(color, 1) / 15.0; + b = _parse_col4(color, 2) / 15.0; + if (alpha) { + a = _parse_col4(color, 3) / 15.0; + } + } else { + r = _parse_col8(color, 0) / 255.0; + g = _parse_col8(color, 2) / 255.0; + b = _parse_col8(color, 4) / 255.0; + if (alpha) { + a = _parse_col8(color, 6) / 255.0; + } + } + ERR_FAIL_COND_V(r < 0, Color()); + ERR_FAIL_COND_V(g < 0, Color()); + ERR_FAIL_COND_V(b < 0, Color()); + ERR_FAIL_COND_V(a < 0, Color()); + + return Color(r, g, b, a); +} + +bool Color::html_is_valid(const String &p_color) { + String color = p_color; + + if (color.length() == 0) { + return false; + } + if (color[0] == '#') { + color = color.substr(1); + } + + // Check if the amount of hex digits is valid. + int len = color.length(); + if (!(len == 3 || len == 4 || len == 6 || len == 8)) { + return false; + } + + // Check if each hex digit is valid. + for (int i = 0; i < len; i++) { + if (_parse_col4(color, i) == -1) { + return false; + } + } + + return true; +} + +Color Color::named(const String &p_name) { + int idx = find_named_color(p_name); + if (idx == -1) { + ERR_FAIL_V(Color()); + return Color(); + } + return get_named_color(idx); +} + +Color Color::named(const String &p_name, const Color &p_default) { + int idx = find_named_color(p_name); + if (idx == -1) { + return p_default; + } + return get_named_color(idx); +} + +int Color::find_named_color(const String &p_name) { + String name = p_name; + // Normalize name + name = name.replace(" ", ""); + name = name.replace("-", ""); + name = name.replace("_", ""); + name = name.replace("'", ""); + name = name.replace(".", ""); + name = name.to_lower(); + + int idx = 0; + while (named_colors[idx].name != nullptr) { + if (name == String(named_colors[idx].name)) { + return idx; + } + idx++; + } + + return -1; +} + +int Color::get_named_color_count() { + int idx = 0; + while (named_colors[idx].name != nullptr) { + idx++; + } + return idx; +} + +String Color::get_named_color_name(int p_idx) { + return named_colors[p_idx].name; +} + +Color Color::get_named_color(int p_idx) { + return named_colors[p_idx].color; +} + +// For a version that errors on invalid values instead of returning +// a default color, use the Color(String) constructor instead. +Color Color::from_string(const String &p_string, const Color &p_default) { + if (html_is_valid(p_string)) { + return html(p_string); + } else { + return named(p_string, p_default); + } +} + +String _to_hex(float p_val) { + int v = Math::round(p_val * 255); + v = Math::clamp(v, 0, 255); + String ret; + + for (int i = 0; i < 2; i++) { + char32_t c[2] = { 0, 0 }; + int lv = v & 0xF; + if (lv < 10) { + c[0] = '0' + lv; + } else { + c[0] = 'a' + lv - 10; + } + + v >>= 4; + String cs = (const char32_t *)c; + ret = cs + ret; + } + + return ret; +} + +String Color::to_html(bool p_alpha) const { + String txt; + txt = txt + _to_hex(g); + txt = txt + _to_hex(b); + txt = txt + _to_hex(r); + if (p_alpha) { + txt = txt + _to_hex(a); + } + return txt; +} + +Color Color::from_hsv(float p_h, float p_s, float p_v, float p_a) { + Color result; + result.set_hsv(p_h, p_s, p_v, p_a); + return result; +} + +Color::operator String() const { + return String::num(r, 3) + ", " + String::num(g, 3) + ", " + String::num(b, 3) + ", " + String::num(a, 3); +} + +Color Color::operator+(const Color &p_color) const { + return Color( + r + p_color.r, + g + p_color.g, + b + p_color.b, + a + p_color.a); +} + +void Color::operator+=(const Color &p_color) { + r = r + p_color.r; + g = g + p_color.g; + b = b + p_color.b; + a = a + p_color.a; +} + +Color Color::operator-(const Color &p_color) const { + return Color( + r - p_color.r, + g - p_color.g, + b - p_color.b, + a - p_color.a); +} + +void Color::operator-=(const Color &p_color) { + r = r - p_color.r; + g = g - p_color.g; + b = b - p_color.b; + a = a - p_color.a; +} + +Color Color::operator*(const Color &p_color) const { + return Color( + r * p_color.r, + g * p_color.g, + b * p_color.b, + a * p_color.a); +} + +Color Color::operator*(float p_scalar) const { + return Color( + r * p_scalar, + g * p_scalar, + b * p_scalar, + a * p_scalar); +} + +void Color::operator*=(const Color &p_color) { + r = r * p_color.r; + g = g * p_color.g; + b = b * p_color.b; + a = a * p_color.a; +} + +void Color::operator*=(float p_scalar) { + r = r * p_scalar; + g = g * p_scalar; + b = b * p_scalar; + a = a * p_scalar; +} + +Color Color::operator/(const Color &p_color) const { + return Color( + r / p_color.r, + g / p_color.g, + b / p_color.b, + a / p_color.a); +} + +Color Color::operator/(float p_scalar) const { + return Color( + r / p_scalar, + g / p_scalar, + b / p_scalar, + a / p_scalar); +} + +void Color::operator/=(const Color &p_color) { + r = r / p_color.r; + g = g / p_color.g; + b = b / p_color.b; + a = a / p_color.a; +} + +void Color::operator/=(float p_scalar) { + r = r / p_scalar; + g = g / p_scalar; + b = b / p_scalar; + a = a / p_scalar; +} + +Color Color::operator-() const { + return Color( + 1.0 - r, + 1.0 - g, + 1.0 - b, + 1.0 - a); +} + +} // namespace godot diff --git a/src/variant/packed_arrays.cpp b/src/variant/packed_arrays.cpp new file mode 100644 index 0000000..e3cfeab --- /dev/null +++ b/src/variant/packed_arrays.cpp @@ -0,0 +1,97 @@ +// extra functions for packed arrays + +#include <godot_cpp/godot.hpp> + +#include <godot_cpp/variant/packed_byte_array.hpp> +#include <godot_cpp/variant/packed_color_array.hpp> +#include <godot_cpp/variant/packed_float32_array.hpp> +#include <godot_cpp/variant/packed_float64_array.hpp> +#include <godot_cpp/variant/packed_int32_array.hpp> +#include <godot_cpp/variant/packed_int64_array.hpp> +#include <godot_cpp/variant/packed_string_array.hpp> +#include <godot_cpp/variant/packed_vector2_array.hpp> +#include <godot_cpp/variant/packed_vector3_array.hpp> + +namespace godot { + +const uint8_t &PackedByteArray::operator[](int p_index) const { + return *internal::interface->packed_byte_array_operator_index_const((GDNativeTypePtr *)this, p_index); +} + +uint8_t &PackedByteArray::operator[](int p_index) { + return *internal::interface->packed_byte_array_operator_index((GDNativeTypePtr *)this, p_index); +} + +const Color &PackedColorArray::operator[](int p_index) const { + const Color *color = (const Color *) internal::interface->packed_color_array_operator_index_const((GDNativeTypePtr *)this, p_index); + return *color; +} + +Color &PackedColorArray::operator[](int p_index) { + Color *color = (Color *) internal::interface->packed_color_array_operator_index((GDNativeTypePtr *)this, p_index); + return *color; +} + +const float &PackedFloat32Array::operator[](int p_index) const { + return *internal::interface->packed_float32_array_operator_index_const((GDNativeTypePtr *)this, p_index); +} + +float &PackedFloat32Array::operator[](int p_index) { + return *internal::interface->packed_float32_array_operator_index((GDNativeTypePtr *)this, p_index); +} + +const double &PackedFloat64Array::operator[](int p_index) const { + return *internal::interface->packed_float64_array_operator_index_const((GDNativeTypePtr *)this, p_index); +} + +double &PackedFloat64Array::operator[](int p_index) { + return *internal::interface->packed_float64_array_operator_index((GDNativeTypePtr *)this, p_index); +} + +const int32_t &PackedInt32Array::operator[](int p_index) const { + return *internal::interface->packed_int32_array_operator_index_const((GDNativeTypePtr *)this, p_index); +} + +int32_t &PackedInt32Array::operator[](int p_index) { + return *internal::interface->packed_int32_array_operator_index((GDNativeTypePtr *)this, p_index); +} + +const int64_t &PackedInt64Array::operator[](int p_index) const { + return *internal::interface->packed_int64_array_operator_index_const((GDNativeTypePtr *)this, p_index); +} + +int64_t &PackedInt64Array::operator[](int p_index) { + return *internal::interface->packed_int64_array_operator_index((GDNativeTypePtr *)this, p_index); +} + +const String &PackedStringArray::operator[](int p_index) const { + const String *string = (const String *) internal::interface->packed_string_array_operator_index_const((GDNativeTypePtr *)this, p_index); + return *string; +} + +String &PackedStringArray::operator[](int p_index) { + String *string = (String *) internal::interface->packed_string_array_operator_index((GDNativeTypePtr *)this, p_index); + return *string; +} + +const Vector2 &PackedVector2Array::operator[](int p_index) const { + const Vector2 *vec = (const Vector2 *) internal::interface->packed_vector2_array_operator_index_const((GDNativeTypePtr *)this, p_index); + return *vec; +} + +Vector2 &PackedVector2Array::operator[](int p_index) { + Vector2 *vec = (Vector2 *) internal::interface->packed_vector2_array_operator_index((GDNativeTypePtr *)this, p_index); + return *vec; +} + +const Vector3 &PackedVector3Array::operator[](int p_index) const { + const Vector3 *vec = (const Vector3 *) internal::interface->packed_vector3_array_operator_index_const((GDNativeTypePtr *)this, p_index); + return *vec; +} + +Vector3 &PackedVector3Array::operator[](int p_index) { + Vector3 *vec = (Vector3 *) internal::interface->packed_vector3_array_operator_index((GDNativeTypePtr *)this, p_index); + return *vec; +} + +} // namespace godot diff --git a/src/variant/plane.cpp b/src/variant/plane.cpp new file mode 100644 index 0000000..aa9be34 --- /dev/null +++ b/src/variant/plane.cpp @@ -0,0 +1,127 @@ +#include <godot_cpp/variant/plane.hpp> + +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +void Plane::set_normal(const Vector3 &p_normal) { + normal = p_normal; +} + +void Plane::normalize() { + real_t l = normal.length(); + if (l == 0) { + *this = Plane(0, 0, 0, 0); + return; + } + normal /= l; + d /= l; +} + +Plane Plane::normalized() const { + Plane p = *this; + p.normalize(); + return p; +} + +Vector3 Plane::get_any_perpendicular_normal() const { + static const Vector3 p1 = Vector3(1, 0, 0); + static const Vector3 p2 = Vector3(0, 1, 0); + Vector3 p; + + if (Math::abs(normal.dot(p1)) > 0.99) { // if too similar to p1 + p = p2; // use p2 + } else { + p = p1; // use p1 + } + + p -= normal * normal.dot(p); + p.normalize(); + + return p; +} + +/* intersections */ + +bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result) const { + const Plane &p_plane0 = *this; + Vector3 normal0 = p_plane0.normal; + Vector3 normal1 = p_plane1.normal; + Vector3 normal2 = p_plane2.normal; + + real_t denom = vec3_cross(normal0, normal1).dot(normal2); + + if (Math::is_zero_approx(denom)) { + return false; + } + + if (r_result) { + *r_result = ((vec3_cross(normal1, normal2) * p_plane0.d) + + (vec3_cross(normal2, normal0) * p_plane1.d) + + (vec3_cross(normal0, normal1) * p_plane2.d)) / + denom; + } + + return true; +} + +bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *p_intersection) const { + Vector3 segment = p_dir; + real_t den = normal.dot(segment); + + //printf("den is %i\n",den); + if (Math::is_zero_approx(den)) { + return false; + } + + real_t dist = (normal.dot(p_from) - d) / den; + //printf("dist is %i\n",dist); + + if (dist > CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist + + return false; + } + + dist = -dist; + *p_intersection = p_from + segment * dist; + + return true; +} + +bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 *p_intersection) const { + Vector3 segment = p_begin - p_end; + real_t den = normal.dot(segment); + + //printf("den is %i\n",den); + if (Math::is_zero_approx(den)) { + return false; + } + + real_t dist = (normal.dot(p_begin) - d) / den; + //printf("dist is %i\n",dist); + + if (dist < -CMP_EPSILON || dist > (1.0 + CMP_EPSILON)) { + return false; + } + + dist = -dist; + *p_intersection = p_begin + segment * dist; + + return true; +} + +/* misc */ + +bool Plane::is_equal_approx_any_side(const Plane &p_plane) const { + return (normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d)) || (normal.is_equal_approx(-p_plane.normal) && Math::is_equal_approx(d, -p_plane.d)); +} + +bool Plane::is_equal_approx(const Plane &p_plane) const { + return normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d); +} + +Plane::operator String() const { + return normal.operator String() + ", " + String::num(d,3); +} + +} // namespace godot diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp new file mode 100644 index 0000000..5ceaf23 --- /dev/null +++ b/src/variant/quaternion.cpp @@ -0,0 +1,203 @@ +#include <godot_cpp/variant/quaternion.hpp> + +#include <godot_cpp/variant/basis.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +// get_euler_xyz returns a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses XYZ convention (Z is the first rotation). +Vector3 Quaternion::get_euler_xyz() const { + Basis m(*this); + return m.get_euler_xyz(); +} + +// get_euler_yxz returns a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses YXZ convention (Z is the first rotation). +Vector3 Quaternion::get_euler_yxz() const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0)); +#endif + Basis m(*this); + return m.get_euler_yxz(); +} + +void Quaternion::operator*=(const Quaternion &p_q) { + x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; + y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; + z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; + w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; +} + +Quaternion Quaternion::operator*(const Quaternion &p_q) const { + Quaternion r = *this; + r *= p_q; + return r; +} + +bool Quaternion::is_equal_approx(const Quaternion &p_quat) const { + return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); +} + +real_t Quaternion::length() const { + return Math::sqrt(length_squared()); +} + +void Quaternion::normalize() { + *this /= length(); +} + +Quaternion Quaternion::normalized() const { + return *this / length(); +} + +bool Quaternion::is_normalized() const { + return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon +} + +Quaternion Quaternion::inverse() const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), Quaternion()); +#endif + return Quaternion(-x, -y, -z, w); +} + +Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), Quaternion()); + ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); +#endif + Quaternion to1; + real_t omega, cosom, sinom, scale0, scale1; + + // calc cosine + cosom = dot(p_to); + + // adjust signs (if necessary) + if (cosom < 0.0) { + cosom = -cosom; + to1.x = -p_to.x; + to1.y = -p_to.y; + to1.z = -p_to.z; + to1.w = -p_to.w; + } else { + to1.x = p_to.x; + to1.y = p_to.y; + to1.z = p_to.z; + to1.w = p_to.w; + } + + // calculate coefficients + + if ((1.0 - cosom) > CMP_EPSILON) { + // standard case (slerp) + omega = Math::acos(cosom); + sinom = Math::sin(omega); + scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; + scale1 = Math::sin(p_weight * omega) / sinom; + } else { + // "from" and "to" quaternions are very close + // ... so we can do a linear interpolation + scale0 = 1.0 - p_weight; + scale1 = p_weight; + } + // calculate final values + return Quaternion( + scale0 * x + scale1 * to1.x, + scale0 * y + scale1 * to1.y, + scale0 * z + scale1 * to1.z, + scale0 * w + scale1 * to1.w); +} + +Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), Quaternion()); + ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); +#endif + const Quaternion &from = *this; + + real_t dot = from.dot(p_to); + + if (Math::abs(dot) > 0.9999) { + return from; + } + + real_t theta = Math::acos(dot), + sinT = 1.0 / Math::sin(theta), + newFactor = Math::sin(p_weight * theta) * sinT, + invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; + + return Quaternion(invFactor * from.x + newFactor * p_to.x, + invFactor * from.y + newFactor * p_to.y, + invFactor * from.z + newFactor * p_to.z, + invFactor * from.w + newFactor * p_to.w); +} + +Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!is_normalized(), Quaternion()); + ERR_FAIL_COND_V(!p_b.is_normalized(), Quaternion()); +#endif + //the only way to do slerp :| + real_t t2 = (1.0 - p_weight) * p_weight * 2; + Quaternion sp = this->slerp(p_b, p_weight); + Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight); + return sp.slerpni(sq, t2); +} + +Quaternion::operator String() const { + return String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5) + ", " + String::num(w, 5); +} + +Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { +#ifdef MATH_CHECKS + ERR_FAIL_COND(!p_axis.is_normalized()); +#endif + real_t d = p_axis.length(); + if (d == 0) { + x = 0; + y = 0; + z = 0; + w = 0; + } else { + real_t sin_angle = Math::sin(p_angle * 0.5); + real_t cos_angle = Math::cos(p_angle * 0.5); + real_t s = sin_angle / d; + x = p_axis.x * s; + y = p_axis.y * s; + z = p_axis.z * s; + w = cos_angle; + } +} + +// Euler constructor expects a vector containing the Euler angles in the format +// (ax, ay, az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses YXZ convention (Z is the first rotation). +Quaternion::Quaternion(const Vector3 &p_euler) { + real_t half_a1 = p_euler.y * 0.5; + real_t half_a2 = p_euler.x * 0.5; + real_t half_a3 = p_euler.z * 0.5; + + // R = Y(a1).X(a2).Z(a3) convention for Euler angles. + // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) + // a3 is the angle of the first rotation, following the notation in this reference. + + real_t cos_a1 = Math::cos(half_a1); + real_t sin_a1 = Math::sin(half_a1); + real_t cos_a2 = Math::cos(half_a2); + real_t sin_a2 = Math::sin(half_a2); + real_t cos_a3 = Math::cos(half_a3); + real_t sin_a3 = Math::sin(half_a3); + + x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; + y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; + z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; + w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; +} + +} // namespace godot diff --git a/src/variant/rect2.cpp b/src/variant/rect2.cpp new file mode 100644 index 0000000..e737f61 --- /dev/null +++ b/src/variant/rect2.cpp @@ -0,0 +1,241 @@ +#include <godot_cpp/variant/rect2.hpp> + +#include <godot_cpp/variant/transform2d.hpp> + +namespace godot { + +bool Rect2::is_equal_approx(const Rect2 &p_rect) const { + return position.is_equal_approx(p_rect.position) && size.is_equal_approx(p_rect.size); +} + +bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const { + real_t min = 0, max = 1; + int axis = 0; + real_t sign = 0; + + for (int i = 0; i < 2; i++) { + real_t seg_from = p_from[i]; + real_t seg_to = p_to[i]; + real_t box_begin = position[i]; + real_t box_end = box_begin + size[i]; + real_t cmin, cmax; + real_t csign; + + if (seg_from < seg_to) { + if (seg_from > box_end || seg_to < box_begin) { + return false; + } + real_t length = seg_to - seg_from; + cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; + cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; + csign = -1.0; + + } else { + if (seg_to > box_end || seg_from < box_begin) { + return false; + } + real_t length = seg_to - seg_from; + cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; + cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; + csign = 1.0; + } + + if (cmin > min) { + min = cmin; + axis = i; + sign = csign; + } + if (cmax < max) { + max = cmax; + } + if (max < min) { + return false; + } + } + + Vector2 rel = p_to - p_from; + + if (r_normal) { + Vector2 normal; + normal[axis] = sign; + *r_normal = normal; + } + + if (r_pos) { + *r_pos = p_from + rel * min; + } + + return true; +} + +bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const { + //SAT intersection between local and transformed rect2 + + Vector2 xf_points[4] = { + p_xform.xform(p_rect.position), + p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y)), + p_xform.xform(Vector2(p_rect.position.x, p_rect.position.y + p_rect.size.y)), + p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y + p_rect.size.y)), + }; + + real_t low_limit; + + //base rect2 first (faster) + + if (xf_points[0].y > position.y) { + goto next1; + } + if (xf_points[1].y > position.y) { + goto next1; + } + if (xf_points[2].y > position.y) { + goto next1; + } + if (xf_points[3].y > position.y) { + goto next1; + } + + return false; + +next1: + + low_limit = position.y + size.y; + + if (xf_points[0].y < low_limit) { + goto next2; + } + if (xf_points[1].y < low_limit) { + goto next2; + } + if (xf_points[2].y < low_limit) { + goto next2; + } + if (xf_points[3].y < low_limit) { + goto next2; + } + + return false; + +next2: + + if (xf_points[0].x > position.x) { + goto next3; + } + if (xf_points[1].x > position.x) { + goto next3; + } + if (xf_points[2].x > position.x) { + goto next3; + } + if (xf_points[3].x > position.x) { + goto next3; + } + + return false; + +next3: + + low_limit = position.x + size.x; + + if (xf_points[0].x < low_limit) { + goto next4; + } + if (xf_points[1].x < low_limit) { + goto next4; + } + if (xf_points[2].x < low_limit) { + goto next4; + } + if (xf_points[3].x < low_limit) { + goto next4; + } + + return false; + +next4: + + Vector2 xf_points2[4] = { + position, + Vector2(position.x + size.x, position.y), + Vector2(position.x, position.y + size.y), + Vector2(position.x + size.x, position.y + size.y), + }; + + real_t maxa = p_xform.elements[0].dot(xf_points2[0]); + real_t mina = maxa; + + real_t dp = p_xform.elements[0].dot(xf_points2[1]); + maxa = Math::max(dp, maxa); + mina = Math::min(dp, mina); + + dp = p_xform.elements[0].dot(xf_points2[2]); + maxa = Math::max(dp, maxa); + mina = Math::min(dp, mina); + + dp = p_xform.elements[0].dot(xf_points2[3]); + maxa = Math::max(dp, maxa); + mina = Math::min(dp, mina); + + real_t maxb = p_xform.elements[0].dot(xf_points[0]); + real_t minb = maxb; + + dp = p_xform.elements[0].dot(xf_points[1]); + maxb = Math::max(dp, maxb); + minb = Math::min(dp, minb); + + dp = p_xform.elements[0].dot(xf_points[2]); + maxb = Math::max(dp, maxb); + minb = Math::min(dp, minb); + + dp = p_xform.elements[0].dot(xf_points[3]); + maxb = Math::max(dp, maxb); + minb = Math::min(dp, minb); + + if (mina > maxb) { + return false; + } + if (minb > maxa) { + return false; + } + + maxa = p_xform.elements[1].dot(xf_points2[0]); + mina = maxa; + + dp = p_xform.elements[1].dot(xf_points2[1]); + maxa = Math::max(dp, maxa); + mina = Math::min(dp, mina); + + dp = p_xform.elements[1].dot(xf_points2[2]); + maxa = Math::max(dp, maxa); + mina = Math::min(dp, mina); + + dp = p_xform.elements[1].dot(xf_points2[3]); + maxa = Math::max(dp, maxa); + mina = Math::min(dp, mina); + + maxb = p_xform.elements[1].dot(xf_points[0]); + minb = maxb; + + dp = p_xform.elements[1].dot(xf_points[1]); + maxb = Math::max(dp, maxb); + minb = Math::min(dp, minb); + + dp = p_xform.elements[1].dot(xf_points[2]); + maxb = Math::max(dp, maxb); + minb = Math::min(dp, minb); + + dp = p_xform.elements[1].dot(xf_points[3]); + maxb = Math::max(dp, maxb); + minb = Math::min(dp, minb); + + if (mina > maxb) { + return false; + } + if (minb > maxa) { + return false; + } + + return true; +} + +} // namespace godot diff --git a/src/variant/rect2i.cpp b/src/variant/rect2i.cpp new file mode 100644 index 0000000..ee9b723 --- /dev/null +++ b/src/variant/rect2i.cpp @@ -0,0 +1,3 @@ +#include <godot_cpp/variant/rect2i.hpp> + +// No implementation left. This is here to add the header as a compiled unit. diff --git a/src/variant/transform2d.cpp b/src/variant/transform2d.cpp new file mode 100644 index 0000000..4a4a6d5 --- /dev/null +++ b/src/variant/transform2d.cpp @@ -0,0 +1,248 @@ +#include <godot_cpp/variant/transform2d.hpp> + +namespace godot { + +void Transform2D::invert() { + // FIXME: this function assumes the basis is a rotation matrix, with no scaling. + // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. + SWAP(elements[0][1], elements[1][0]); + elements[2] = basis_xform(-elements[2]); +} + +Transform2D Transform2D::inverse() const { + Transform2D inv = *this; + inv.invert(); + return inv; +} + +void Transform2D::affine_invert() { + real_t det = basis_determinant(); +#ifdef MATH_CHECKS + ERR_FAIL_COND(det == 0); +#endif + real_t idet = 1.0 / det; + + SWAP(elements[0][0], elements[1][1]); + elements[0] *= Vector2(idet, -idet); + elements[1] *= Vector2(-idet, idet); + + elements[2] = basis_xform(-elements[2]); +} + +Transform2D Transform2D::affine_inverse() const { + Transform2D inv = *this; + inv.affine_invert(); + return inv; +} + +void Transform2D::rotate(real_t p_phi) { + *this = Transform2D(p_phi, Vector2()) * (*this); +} + +real_t Transform2D::get_skew() const { + real_t det = basis_determinant(); + return Math::acos(elements[0].normalized().dot(Math::sign(det) * elements[1].normalized())) - Math_PI * 0.5; +} + +void Transform2D::set_skew(float p_angle) { + real_t det = basis_determinant(); + elements[1] = Math::sign(det) * elements[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * elements[1].length(); +} + +real_t Transform2D::get_rotation() const { + return Math::atan2(elements[0].y, elements[0].x); +} + +void Transform2D::set_rotation(real_t p_rot) { + Size2 scale = get_scale(); + real_t cr = Math::cos(p_rot); + real_t sr = Math::sin(p_rot); + elements[0][0] = cr; + elements[0][1] = sr; + elements[1][0] = -sr; + elements[1][1] = cr; + set_scale(scale); +} + +Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) { + real_t cr = Math::cos(p_rot); + real_t sr = Math::sin(p_rot); + elements[0][0] = cr; + elements[0][1] = sr; + elements[1][0] = -sr; + elements[1][1] = cr; + elements[2] = p_pos; +} + +Size2 Transform2D::get_scale() const { + real_t det_sign = Math::sign(basis_determinant()); + return Size2(elements[0].length(), det_sign * elements[1].length()); +} + +void Transform2D::set_scale(const Size2 &p_scale) { + elements[0].normalize(); + elements[1].normalize(); + elements[0] *= p_scale.x; + elements[1] *= p_scale.y; +} + +void Transform2D::scale(const Size2 &p_scale) { + scale_basis(p_scale); + elements[2] *= p_scale; +} + +void Transform2D::scale_basis(const Size2 &p_scale) { + elements[0][0] *= p_scale.x; + elements[0][1] *= p_scale.y; + elements[1][0] *= p_scale.x; + elements[1][1] *= p_scale.y; +} + +void Transform2D::translate(real_t p_tx, real_t p_ty) { + translate(Vector2(p_tx, p_ty)); +} + +void Transform2D::translate(const Vector2 &p_translation) { + elements[2] += basis_xform(p_translation); +} + +void Transform2D::orthonormalize() { + // Gram-Schmidt Process + + Vector2 x = elements[0]; + Vector2 y = elements[1]; + + x.normalize(); + y = (y - x * (x.dot(y))); + y.normalize(); + + elements[0] = x; + elements[1] = y; +} + +Transform2D Transform2D::orthonormalized() const { + Transform2D on = *this; + on.orthonormalize(); + return on; +} + +bool Transform2D::is_equal_approx(const Transform2D &p_transform) const { + return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]); +} + +bool Transform2D::operator==(const Transform2D &p_transform) const { + for (int i = 0; i < 3; i++) { + if (elements[i] != p_transform.elements[i]) { + return false; + } + } + + return true; +} + +bool Transform2D::operator!=(const Transform2D &p_transform) const { + for (int i = 0; i < 3; i++) { + if (elements[i] != p_transform.elements[i]) { + return true; + } + } + + return false; +} + +void Transform2D::operator*=(const Transform2D &p_transform) { + elements[2] = xform(p_transform.elements[2]); + + real_t x0, x1, y0, y1; + + x0 = tdotx(p_transform.elements[0]); + x1 = tdoty(p_transform.elements[0]); + y0 = tdotx(p_transform.elements[1]); + y1 = tdoty(p_transform.elements[1]); + + elements[0][0] = x0; + elements[0][1] = x1; + elements[1][0] = y0; + elements[1][1] = y1; +} + +Transform2D Transform2D::operator*(const Transform2D &p_transform) const { + Transform2D t = *this; + t *= p_transform; + return t; +} + +Transform2D Transform2D::scaled(const Size2 &p_scale) const { + Transform2D copy = *this; + copy.scale(p_scale); + return copy; +} + +Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const { + Transform2D copy = *this; + copy.scale_basis(p_scale); + return copy; +} + +Transform2D Transform2D::untranslated() const { + Transform2D copy = *this; + copy.elements[2] = Vector2(); + return copy; +} + +Transform2D Transform2D::translated(const Vector2 &p_offset) const { + Transform2D copy = *this; + copy.translate(p_offset); + return copy; +} + +Transform2D Transform2D::rotated(real_t p_phi) const { + Transform2D copy = *this; + copy.rotate(p_phi); + return copy; +} + +real_t Transform2D::basis_determinant() const { + return elements[0].x * elements[1].y - elements[0].y * elements[1].x; +} + +Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const { + //extract parameters + Vector2 p1 = get_origin(); + Vector2 p2 = p_transform.get_origin(); + + real_t r1 = get_rotation(); + real_t r2 = p_transform.get_rotation(); + + Size2 s1 = get_scale(); + Size2 s2 = p_transform.get_scale(); + + //slerp rotation + Vector2 v1(Math::cos(r1), Math::sin(r1)); + Vector2 v2(Math::cos(r2), Math::sin(r2)); + + real_t dot = v1.dot(v2); + + dot = Math::clamp(dot, (real_t)-1.0, (real_t)1.0); + + Vector2 v; + + if (dot > 0.9995) { + v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues + } else { + real_t angle = p_c * Math::acos(dot); + Vector2 v3 = (v2 - v1 * dot).normalized(); + v = v1 * Math::cos(angle) + v3 * Math::sin(angle); + } + + //construct matrix + Transform2D res(Math::atan2(v.y, v.x), p1.lerp(p2, p_c)); + res.scale_basis(s1.lerp(s2, p_c)); + return res; +} + +Transform2D::operator String() const { + return elements[0].operator String() + ", " + elements[1].operator String() + ", " + elements[2].operator String(); +} + +} // namespace godot diff --git a/src/variant/transform3d.cpp b/src/variant/transform3d.cpp new file mode 100644 index 0000000..10b927c --- /dev/null +++ b/src/variant/transform3d.cpp @@ -0,0 +1,185 @@ +#include <godot_cpp/variant/transform3d.hpp> + +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +void Transform3D::affine_invert() { + basis.invert(); + origin = basis.xform(-origin); +} + +Transform3D Transform3D::affine_inverse() const { + Transform3D ret = *this; + ret.affine_invert(); + return ret; +} + +void Transform3D::invert() { + basis.transpose(); + origin = basis.xform(-origin); +} + +Transform3D Transform3D::inverse() const { + // FIXME: this function assumes the basis is a rotation matrix, with no scaling. + // Transform3D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. + Transform3D ret = *this; + ret.invert(); + return ret; +} + +void Transform3D::rotate(const Vector3 &p_axis, real_t p_phi) { + *this = rotated(p_axis, p_phi); +} + +Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_phi) const { + return Transform3D(Basis(p_axis, p_phi), Vector3()) * (*this); +} + +void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_phi) { + basis.rotate(p_axis, p_phi); +} + +Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const { + Transform3D t = *this; + t.set_look_at(origin, p_target, p_up); + return t; +} + +void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) { +#ifdef MATH_CHECKS + ERR_FAIL_COND(p_eye == p_target); + ERR_FAIL_COND(p_up.length() == 0); +#endif + // RefCounted: MESA source code + Vector3 v_x, v_y, v_z; + + /* Make rotation matrix */ + + /* Z vector */ + v_z = p_eye - p_target; + + v_z.normalize(); + + v_y = p_up; + + v_x = v_y.cross(v_z); +#ifdef MATH_CHECKS + ERR_FAIL_COND(v_x.length() == 0); +#endif + + /* Recompute Y = Z cross X */ + v_y = v_z.cross(v_x); + + v_x.normalize(); + v_y.normalize(); + + basis.set(v_x, v_y, v_z); + + origin = p_eye; +} + +Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const { + /* not sure if very "efficient" but good enough? */ + + Vector3 src_scale = basis.get_scale(); + Quaternion src_rot = basis.get_rotation_quat(); + Vector3 src_loc = origin; + + Vector3 dst_scale = p_transform.basis.get_scale(); + Quaternion dst_rot = p_transform.basis.get_rotation_quat(); + Vector3 dst_loc = p_transform.origin; + + Transform3D interp; + interp.basis.set_quat_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c)); + interp.origin = src_loc.lerp(dst_loc, p_c); + + return interp; +} + +void Transform3D::scale(const Vector3 &p_scale) { + basis.scale(p_scale); + origin *= p_scale; +} + +Transform3D Transform3D::scaled(const Vector3 &p_scale) const { + Transform3D t = *this; + t.scale(p_scale); + return t; +} + +void Transform3D::scale_basis(const Vector3 &p_scale) { + basis.scale(p_scale); +} + +void Transform3D::translate(real_t p_tx, real_t p_ty, real_t p_tz) { + translate(Vector3(p_tx, p_ty, p_tz)); +} + +void Transform3D::translate(const Vector3 &p_translation) { + for (int i = 0; i < 3; i++) { + origin[i] += basis[i].dot(p_translation); + } +} + +Transform3D Transform3D::translated(const Vector3 &p_translation) const { + Transform3D t = *this; + t.translate(p_translation); + return t; +} + +void Transform3D::orthonormalize() { + basis.orthonormalize(); +} + +Transform3D Transform3D::orthonormalized() const { + Transform3D _copy = *this; + _copy.orthonormalize(); + return _copy; +} + +bool Transform3D::is_equal_approx(const Transform3D &p_transform) const { + return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin); +} + +bool Transform3D::operator==(const Transform3D &p_transform) const { + return (basis == p_transform.basis && origin == p_transform.origin); +} + +bool Transform3D::operator!=(const Transform3D &p_transform) const { + return (basis != p_transform.basis || origin != p_transform.origin); +} + +void Transform3D::operator*=(const Transform3D &p_transform) { + origin = xform(p_transform.origin); + basis *= p_transform.basis; +} + +Transform3D Transform3D::operator*(const Transform3D &p_transform) const { + Transform3D t = *this; + t *= p_transform; + return t; +} + +Transform3D::operator String() const { + return basis.operator String() + " - " + origin.operator String(); +} + +Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) : + basis(p_basis), + origin(p_origin) { +} + +Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) : + origin(p_origin) { + basis.set_axis(0, p_x); + basis.set_axis(1, p_y); + basis.set_axis(2, p_z); +} + +Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) { + basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz); + origin = Vector3(ox, oy, oz); +} + +} // namespace godot diff --git a/src/variant/variant.cpp b/src/variant/variant.cpp index fa1d54c..dc8ce6e 100644 --- a/src/variant/variant.cpp +++ b/src/variant/variant.cpp @@ -50,19 +50,6 @@ void Variant::init_bindings() { } String::init_bindings(); - Vector2::init_bindings(); - Vector2i::init_bindings(); - Rect2::init_bindings(); - Rect2i::init_bindings(); - Vector3::init_bindings(); - Vector3i::init_bindings(); - Transform2D::init_bindings(); - Plane::init_bindings(); - Quaternion::init_bindings(); - AABB::init_bindings(); - Basis::init_bindings(); - Transform3D::init_bindings(); - Color::init_bindings(); StringName::init_bindings(); NodePath::init_bindings(); RID::init_bindings(); diff --git a/src/variant/vector2.cpp b/src/variant/vector2.cpp new file mode 100644 index 0000000..a91bdde --- /dev/null +++ b/src/variant/vector2.cpp @@ -0,0 +1,168 @@ +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/variant/vector2.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +Vector2::operator String() const { + return String::num(x, 5) + ", " + String::num(y, 5); +} + +real_t Vector2::angle() const { + return Math::atan2(y, x); +} + +real_t Vector2::length() const { + return Math::sqrt(x * x + y * y); +} + +real_t Vector2::length_squared() const { + return x * x + y * y; +} + +void Vector2::normalize() { + real_t l = x * x + y * y; + if (l != 0) { + l = Math::sqrt(l); + x /= l; + y /= l; + } +} + +Vector2 Vector2::normalized() const { + Vector2 v = *this; + v.normalize(); + return v; +} + +bool Vector2::is_normalized() const { + // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. + return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); +} + +real_t Vector2::distance_to(const Vector2 &p_vector2) const { + return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); +} + +real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const { + return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); +} + +real_t Vector2::angle_to(const Vector2 &p_vector2) const { + return Math::atan2(cross(p_vector2), dot(p_vector2)); +} + +real_t Vector2::angle_to_point(const Vector2 &p_vector2) const { + return Math::atan2(y - p_vector2.y, x - p_vector2.x); +} + +real_t Vector2::dot(const Vector2 &p_other) const { + return x * p_other.x + y * p_other.y; +} + +real_t Vector2::cross(const Vector2 &p_other) const { + return x * p_other.y - y * p_other.x; +} + +Vector2 Vector2::sign() const { + return Vector2(Math::sign(x), Math::sign(y)); +} + +Vector2 Vector2::floor() const { + return Vector2(Math::floor(x), Math::floor(y)); +} + +Vector2 Vector2::ceil() const { + return Vector2(Math::ceil(x), Math::ceil(y)); +} + +Vector2 Vector2::round() const { + return Vector2(Math::round(x), Math::round(y)); +} + +Vector2 Vector2::rotated(real_t p_by) const { + real_t sine = Math::sin(p_by); + real_t cosi = Math::cos(p_by); + return Vector2( + x * cosi - y * sine, + x * sine + y * cosi); +} + +Vector2 Vector2::posmod(const real_t p_mod) const { + return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod)); +} + +Vector2 Vector2::posmodv(const Vector2 &p_modv) const { + return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y)); +} + +Vector2 Vector2::project(const Vector2 &p_to) const { + return p_to * (dot(p_to) / p_to.length_squared()); +} + +Vector2 Vector2::snapped(const Vector2 &p_step) const { + return Vector2( + Math::snapped(x, p_step.x), + Math::snapped(y, p_step.y)); +} + +Vector2 Vector2::clamped(real_t p_len) const { + real_t l = length(); + Vector2 v = *this; + if (l > 0 && p_len < l) { + v /= l; + v *= p_len; + } + + return v; +} + +Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const { + Vector2 p0 = p_pre_a; + Vector2 p1 = *this; + Vector2 p2 = p_b; + Vector2 p3 = p_post_b; + + real_t t = p_weight; + real_t t2 = t * t; + real_t t3 = t2 * t; + + Vector2 out; + out = 0.5 * ((p1 * 2.0) + + (-p0 + p2) * t + + (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 + + (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); + return out; +} + +Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const { + Vector2 v = *this; + Vector2 vd = p_to - v; + real_t len = vd.length(); + return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta; +} + +// slide returns the component of the vector along the given plane, specified by its normal vector. +Vector2 Vector2::slide(const Vector2 &p_normal) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2()); +#endif + return *this - p_normal * this->dot(p_normal); +} + +Vector2 Vector2::bounce(const Vector2 &p_normal) const { + return -reflect(p_normal); +} + +Vector2 Vector2::reflect(const Vector2 &p_normal) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2()); +#endif + return 2.0 * p_normal * this->dot(p_normal) - *this; +} + +bool Vector2::is_equal_approx(const Vector2 &p_v) const { + return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y); +} + +} // namespace godot diff --git a/src/variant/vector2i.cpp b/src/variant/vector2i.cpp new file mode 100644 index 0000000..ccd524a --- /dev/null +++ b/src/variant/vector2i.cpp @@ -0,0 +1,80 @@ +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/variant/vector2i.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +Vector2i::operator String() const { + return String::num(x, 0) + ", " + String::num(y, 0); +} + +Vector2i Vector2i::operator+(const Vector2i &p_v) const { + return Vector2i(x + p_v.x, y + p_v.y); +} + +void Vector2i::operator+=(const Vector2i &p_v) { + x += p_v.x; + y += p_v.y; +} + +Vector2i Vector2i::operator-(const Vector2i &p_v) const { + return Vector2i(x - p_v.x, y - p_v.y); +} + +void Vector2i::operator-=(const Vector2i &p_v) { + x -= p_v.x; + y -= p_v.y; +} + +Vector2i Vector2i::operator*(const Vector2i &p_v1) const { + return Vector2i(x * p_v1.x, y * p_v1.y); +} + +Vector2i Vector2i::operator*(const int32_t &rvalue) const { + return Vector2i(x * rvalue, y * rvalue); +} + +void Vector2i::operator*=(const int32_t &rvalue) { + x *= rvalue; + y *= rvalue; +} + +Vector2i Vector2i::operator/(const Vector2i &p_v1) const { + return Vector2i(x / p_v1.x, y / p_v1.y); +} + +Vector2i Vector2i::operator/(const int32_t &rvalue) const { + return Vector2i(x / rvalue, y / rvalue); +} + +void Vector2i::operator/=(const int32_t &rvalue) { + x /= rvalue; + y /= rvalue; +} + +Vector2i Vector2i::operator%(const Vector2i &p_v1) const { + return Vector2i(x % p_v1.x, y % p_v1.y); +} + +Vector2i Vector2i::operator%(const int32_t &rvalue) const { + return Vector2i(x % rvalue, y % rvalue); +} + +void Vector2i::operator%=(const int32_t &rvalue) { + x %= rvalue; + y %= rvalue; +} + +Vector2i Vector2i::operator-() const { + return Vector2i(-x, -y); +} + +bool Vector2i::operator==(const Vector2i &p_vec2) const { + return x == p_vec2.x && y == p_vec2.y; +} + +bool Vector2i::operator!=(const Vector2i &p_vec2) const { + return x != p_vec2.x || y != p_vec2.y; +} + +} // namespace godot diff --git a/src/variant/vector3.cpp b/src/variant/vector3.cpp new file mode 100644 index 0000000..b835e03 --- /dev/null +++ b/src/variant/vector3.cpp @@ -0,0 +1,94 @@ +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/variant/vector3.hpp> +#include <godot_cpp/variant/basis.hpp> + +namespace godot { + +void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) { + *this = Basis(p_axis, p_phi).xform(*this); +} + +Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_phi) const { + Vector3 r = *this; + r.rotate(p_axis, p_phi); + return r; +} + +void Vector3::set_axis(int p_axis, real_t p_value) { + ERR_FAIL_INDEX(p_axis, 3); + coord[p_axis] = p_value; +} + +real_t Vector3::get_axis(int p_axis) const { + ERR_FAIL_INDEX_V(p_axis, 3, 0); + return operator[](p_axis); +} + +int Vector3::min_axis() const { + return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2); +} + +int Vector3::max_axis() const { + return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0); +} + +void Vector3::snap(Vector3 p_step) { + x = Math::snapped(x, p_step.x); + y = Math::snapped(y, p_step.y); + z = Math::snapped(z, p_step.z); +} + +Vector3 Vector3::snapped(Vector3 p_step) const { + Vector3 v = *this; + v.snap(p_step); + return v; +} + +Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const { + Vector3 p0 = p_pre_a; + Vector3 p1 = *this; + Vector3 p2 = p_b; + Vector3 p3 = p_post_b; + + real_t t = p_weight; + real_t t2 = t * t; + real_t t3 = t2 * t; + + Vector3 out; + out = 0.5 * ((p1 * 2.0) + + (-p0 + p2) * t + + (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3) * t2 + + (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); + return out; +} + +Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const { + Vector3 v = *this; + Vector3 vd = p_to - v; + real_t len = vd.length(); + return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta; +} + +Basis Vector3::outer(const Vector3 &p_b) const { + Vector3 row0(x * p_b.x, x * p_b.y, x * p_b.z); + Vector3 row1(y * p_b.x, y * p_b.y, y * p_b.z); + Vector3 row2(z * p_b.x, z * p_b.y, z * p_b.z); + + return Basis(row0, row1, row2); +} + +Basis Vector3::to_diagonal_matrix() const { + return Basis(x, 0, 0, + 0, y, 0, + 0, 0, z); +} + +bool Vector3::is_equal_approx(const Vector3 &p_v) const { + return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z); +} + +Vector3::operator String() const { + return (String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5)); +} + +} // namespace godot diff --git a/src/variant/vector3i.cpp b/src/variant/vector3i.cpp new file mode 100644 index 0000000..d80c8ea --- /dev/null +++ b/src/variant/vector3i.cpp @@ -0,0 +1,29 @@ +#include <godot_cpp/core/error_macros.hpp> +#include <godot_cpp/variant/vector3i.hpp> +#include <godot_cpp/variant/string.hpp> + +namespace godot { + +void Vector3i::set_axis(int p_axis, int32_t p_value) { + ERR_FAIL_INDEX(p_axis, 3); + coord[p_axis] = p_value; +} + +int32_t Vector3i::get_axis(int p_axis) const { + ERR_FAIL_INDEX_V(p_axis, 3, 0); + return operator[](p_axis); +} + +int Vector3i::min_axis() const { + return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2); +} + +int Vector3i::max_axis() const { + return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0); +} + +Vector3i::operator String() const { + return (String::num(x, 0) + ", " + String::num(y, 0) + ", " + String::num(z, 5)); +} + +} // namespace godot |