diff options
author | Rémi Verschelde <rverschelde@gmail.com> | 2024-04-04 14:31:02 +0200 |
---|---|---|
committer | Rémi Verschelde <rverschelde@gmail.com> | 2024-04-04 14:31:02 +0200 |
commit | acfcdbd291174ea6a03ca77cf374dda9f2b300ff (patch) | |
tree | f001960b859c27dcecae15fccef5658ec528b715 /thirdparty/embree/common | |
parent | 2c65bf0d6986b420ec20393fa27f7c38f0814082 (diff) | |
parent | c43eab55a417162624f47aed6bbbd0a4bd41c607 (diff) | |
download | redot-engine-acfcdbd291174ea6a03ca77cf374dda9f2b300ff.tar.gz |
Merge pull request #88783 from Chubercik/embree-4.3.1
embree: Update to 4.3.1
Diffstat (limited to 'thirdparty/embree/common')
57 files changed, 4990 insertions, 928 deletions
diff --git a/thirdparty/embree/common/algorithms/parallel_any_of.h b/thirdparty/embree/common/algorithms/parallel_any_of.h index a64e4a1889..a95c1f6490 100644 --- a/thirdparty/embree/common/algorithms/parallel_any_of.h +++ b/thirdparty/embree/common/algorithms/parallel_any_of.h @@ -12,7 +12,8 @@ namespace embree template<typename Index, class UnaryPredicate> __forceinline bool parallel_any_of (Index first, Index last, UnaryPredicate pred) { - bool ret = false; + std::atomic_bool ret; + ret = false; #if defined(TASKING_TBB) #if TBB_INTERFACE_VERSION >= 12002 diff --git a/thirdparty/embree/common/algorithms/parallel_for.h b/thirdparty/embree/common/algorithms/parallel_for.h index 6d411e4852..fd5213e70a 100644 --- a/thirdparty/embree/common/algorithms/parallel_for.h +++ b/thirdparty/embree/common/algorithms/parallel_for.h @@ -5,7 +5,7 @@ #include "../tasking/taskscheduler.h" #include "../sys/array.h" -#include "../math/math.h" +#include "../math/emath.h" #include "../math/range.h" namespace embree @@ -14,17 +14,17 @@ namespace embree template<typename Index, typename Func> __forceinline void parallel_for( const Index N, const Func& func) { -#if defined(TASKING_INTERNAL) +#if defined(TASKING_INTERNAL) && !defined(TASKING_TBB) if (N) { + TaskScheduler::TaskGroupContext context; TaskScheduler::spawn(Index(0),N,Index(1),[&] (const range<Index>& r) { assert(r.size() == 1); func(r.begin()); - }); - if (!TaskScheduler::wait()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + },&context); + TaskScheduler::wait(); + if (context.cancellingException != nullptr) { + std::rethrow_exception(context.cancellingException); + } } #elif defined(TASKING_TBB) #if TBB_INTERFACE_VERSION >= 12002 @@ -33,19 +33,13 @@ namespace embree func(i); },context); if (context.is_group_execution_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #else tbb::parallel_for(Index(0),N,Index(1),[&](Index i) { func(i); }); if (tbb::task::self().is_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #endif #elif defined(TASKING_PPL) @@ -62,13 +56,13 @@ namespace embree __forceinline void parallel_for( const Index first, const Index last, const Index minStepSize, const Func& func) { assert(first <= last); -#if defined(TASKING_INTERNAL) - TaskScheduler::spawn(first,last,minStepSize,func); - if (!TaskScheduler::wait()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- +#if defined(TASKING_INTERNAL) && !defined(TASKING_TBB) + TaskScheduler::TaskGroupContext context; + TaskScheduler::spawn(first,last,minStepSize,func,&context); + TaskScheduler::wait(); + if (context.cancellingException != nullptr) { + std::rethrow_exception(context.cancellingException); + } #elif defined(TASKING_TBB) #if TBB_INTERFACE_VERSION >= 12002 @@ -77,19 +71,13 @@ namespace embree func(range<Index>(r.begin(),r.end())); },context); if (context.is_group_execution_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #else tbb::parallel_for(tbb::blocked_range<Index>(first,last,minStepSize),[&](const tbb::blocked_range<Index>& r) { func(range<Index>(r.begin(),r.end())); }); if (tbb::task::self().is_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #endif #elif defined(TASKING_PPL) @@ -121,19 +109,13 @@ namespace embree func(i); },tbb::simple_partitioner(),context); if (context.is_group_execution_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #else tbb::parallel_for(Index(0),N,Index(1),[&](Index i) { func(i); },tbb::simple_partitioner()); if (tbb::task::self().is_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #endif } @@ -148,19 +130,13 @@ namespace embree func(i); },ap,context); if (context.is_group_execution_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #else tbb::parallel_for(Index(0),N,Index(1),[&](Index i) { func(i); },ap); if (tbb::task::self().is_cancelled()) - // -- GODOT start -- - // throw std::runtime_error("task cancelled"); - abort(); - // -- GODOT end -- + throw std::runtime_error("task cancelled"); #endif } diff --git a/thirdparty/embree/common/algorithms/parallel_partition.h b/thirdparty/embree/common/algorithms/parallel_partition.h index a1cbdc8e04..53d4d6f0db 100644 --- a/thirdparty/embree/common/algorithms/parallel_partition.h +++ b/thirdparty/embree/common/algorithms/parallel_partition.h @@ -175,8 +175,8 @@ namespace embree /* calculate all left and right ranges that are on the wrong global side */ size_t numMisplacedRangesLeft = 0; size_t numMisplacedRangesRight = 0; - size_t numMisplacedItemsLeft = 0; - size_t numMisplacedItemsRight = 0; + size_t numMisplacedItemsLeft MAYBE_UNUSED = 0; + size_t numMisplacedItemsRight MAYBE_UNUSED = 0; for (size_t i=0; i<numTasks; i++) { diff --git a/thirdparty/embree/common/algorithms/parallel_reduce.h b/thirdparty/embree/common/algorithms/parallel_reduce.h index cd0078f2e6..51ec0a6405 100644 --- a/thirdparty/embree/common/algorithms/parallel_reduce.h +++ b/thirdparty/embree/common/algorithms/parallel_reduce.h @@ -43,7 +43,7 @@ namespace embree template<typename Index, typename Value, typename Func, typename Reduction> __forceinline Value parallel_reduce( const Index first, const Index last, const Index minStepSize, const Value& identity, const Func& func, const Reduction& reduction ) { -#if defined(TASKING_INTERNAL) +#if defined(TASKING_INTERNAL) && !defined(TASKING_TBB) /* fast path for small number of iterations */ Index taskCount = (last-first+minStepSize-1)/minStepSize; diff --git a/thirdparty/embree/common/lexers/stream.h b/thirdparty/embree/common/lexers/stream.h index a40c15f8eb..9ad72af4e6 100644 --- a/thirdparty/embree/common/lexers/stream.h +++ b/thirdparty/embree/common/lexers/stream.h @@ -6,7 +6,7 @@ #include "../sys/platform.h" #include "../sys/ref.h" #include "../sys/filename.h" -#include "../sys/string.h" +#include "../sys/estring.h" #include <vector> #include <iostream> @@ -122,17 +122,16 @@ namespace embree class FileStream : public Stream<int> { public: - - FileStream (FILE* file, const std::string& name = "file") - : file(file), lineNumber(1), colNumber(0), charNumber(0), name(std::shared_ptr<std::string>(new std::string(name))) {} - FileStream (const FileName& fileName) : lineNumber(1), colNumber(0), charNumber(0), name(std::shared_ptr<std::string>(new std::string(fileName.str()))) { - file = fopen(fileName.c_str(),"r"); - if (file == nullptr) THROW_RUNTIME_ERROR("cannot open file " + fileName.str()); + if (ifs) ifs.close(); + ifs.open(fileName.str()); + if (!ifs.is_open()) THROW_RUNTIME_ERROR("cannot open file " + fileName.str()); + } + ~FileStream() { + if (ifs) ifs.close(); } - ~FileStream() { if (file) fclose(file); } public: ParseLocation location() { @@ -140,14 +139,15 @@ namespace embree } int next() { - int c = fgetc(file); + int c = ifs.get(); if (c == '\n') { lineNumber++; colNumber = 0; } else if (c != '\r') colNumber++; charNumber++; return c; } + private: - FILE* file; + std::ifstream ifs; ssize_t lineNumber; /// the line number the token is from ssize_t colNumber; /// the character number in the current line ssize_t charNumber; /// the character in the file diff --git a/thirdparty/embree/common/lexers/stringstream.cpp b/thirdparty/embree/common/lexers/stringstream.cpp index a037869506..c93da0b420 100644 --- a/thirdparty/embree/common/lexers/stringstream.cpp +++ b/thirdparty/embree/common/lexers/stringstream.cpp @@ -41,7 +41,9 @@ namespace embree int c = cin->get(); // -- GODOT start -- // if (!isValidChar(c)) throw std::runtime_error("invalid character "+std::string(1,c)+" in input"); - if (!isValidChar(c)) abort(); + if (!isValidChar(c)) { + abort(); + } // -- GODOT end -- str.push_back((char)c); } diff --git a/thirdparty/embree/common/lexers/tokenstream.cpp b/thirdparty/embree/common/lexers/tokenstream.cpp index 6ed6f2045a..fe9de641db 100644 --- a/thirdparty/embree/common/lexers/tokenstream.cpp +++ b/thirdparty/embree/common/lexers/tokenstream.cpp @@ -2,7 +2,7 @@ // SPDX-License-Identifier: Apache-2.0 #include "tokenstream.h" -#include "../math/math.h" +#include "../math/emath.h" namespace embree { diff --git a/thirdparty/embree/common/math/affinespace.h b/thirdparty/embree/common/math/affinespace.h index 9d4a0f0846..f3e5404639 100644 --- a/thirdparty/embree/common/math/affinespace.h +++ b/thirdparty/embree/common/math/affinespace.h @@ -337,7 +337,7 @@ namespace embree if (D) *D = sqrtf(D_x); return true; } - + __forceinline void AffineSpace3fa_store_unaligned(const AffineSpace3fa &source, AffineSpace3fa* ptr) { Vec3fa::storeu(&ptr->l.vx, source.l.vx); diff --git a/thirdparty/embree/common/math/bbox.h b/thirdparty/embree/common/math/bbox.h index e4eb3df9a4..651b29a8fe 100644 --- a/thirdparty/embree/common/math/bbox.h +++ b/thirdparty/embree/common/math/bbox.h @@ -56,6 +56,11 @@ namespace embree return BBox(min(a.lower, b.lower), max(a.upper, b.upper)); } + /*! intersects two boxes */ + __forceinline static const BBox intersect (const BBox& a, const BBox& b) { + return BBox(max(a.lower, b.lower), min(a.upper, b.upper)); + } + /*! enlarge box by some scaling factor */ __forceinline BBox enlarge_by(const float a) const { return BBox(lower - T(a)*abs(lower), upper + T(a)*abs(upper)); diff --git a/thirdparty/embree/common/math/col3.h b/thirdparty/embree/common/math/col3.h index 3f50c04393..4576bc517d 100644 --- a/thirdparty/embree/common/math/col3.h +++ b/thirdparty/embree/common/math/col3.h @@ -3,7 +3,7 @@ #pragma once -#include "math.h" +#include "emath.h" namespace embree { diff --git a/thirdparty/embree/common/math/col4.h b/thirdparty/embree/common/math/col4.h index 788508516b..4ef916cc3a 100644 --- a/thirdparty/embree/common/math/col4.h +++ b/thirdparty/embree/common/math/col4.h @@ -3,7 +3,7 @@ #pragma once -#include "math.h" +#include "emath.h" namespace embree { diff --git a/thirdparty/embree/common/math/color.h b/thirdparty/embree/common/math/color.h index e62e4ad2a4..8b28ff9447 100644 --- a/thirdparty/embree/common/math/color.h +++ b/thirdparty/embree/common/math/color.h @@ -3,6 +3,10 @@ #pragma once +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +# include "color_sycl.h" +#else + #include "constants.h" #include "col3.h" #include "col4.h" @@ -64,6 +68,10 @@ namespace embree d.b = (unsigned char)(s[2]); d.a = (unsigned char)(s[3]); } + __forceinline void set(float &f) const + { + f = 0.2126f*r+0.7125f*g+0.0722f*b; // sRGB luminance. + } //////////////////////////////////////////////////////////////////////////////// /// Constants @@ -256,3 +264,5 @@ namespace embree return cout << "(" << a.r << ", " << a.g << ", " << a.b << ")"; } } + +#endif diff --git a/thirdparty/embree/common/math/color_sycl.h b/thirdparty/embree/common/math/color_sycl.h new file mode 100644 index 0000000000..41b89ddecc --- /dev/null +++ b/thirdparty/embree/common/math/color_sycl.h @@ -0,0 +1,219 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "constants.h" +#include "col3.h" +#include "col4.h" + +#include "../simd/sse.h" + +namespace embree +{ + //////////////////////////////////////////////////////////////////////////////// + /// SSE RGBA Color Class + //////////////////////////////////////////////////////////////////////////////// + + struct Color4 + { + struct { float r,g,b,a; }; + + //////////////////////////////////////////////////////////////////////////////// + /// Construction + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Color4 () {} + //__forceinline Color4 ( const __m128 a ) : m128(a) {} + + __forceinline explicit Color4 (const float v) : r(v), g(v), b(v), a(v) {} + __forceinline Color4 (const float r, const float g, const float b, const float a) : r(r), g(g), b(b), a(a) {} + + __forceinline explicit Color4 ( const Col3uc& other ) : r(other.r/255.0f), g(other.g/255.0f), b(other.b/255.0f), a(1.0f) {} + __forceinline explicit Color4 ( const Col3f& other ) : r(other.r), g(other.g), b(other.b), a(1.0f) {} + __forceinline explicit Color4 ( const Col4uc& other ) : r(other.r/255.0f), g(other.g/255.0f), b(other.b/255.0f), a(other.a/255.0f) {} + __forceinline explicit Color4 ( const Col4f& other ) : r(other.r), g(other.g), b(other.b), a(other.a) {} + + //__forceinline Color4 ( const Color4& other ) : m128(other.m128) {} + //__forceinline Color4& operator=( const Color4& other ) { m128 = other.m128; return *this; } + + //__forceinline operator const __m128&() const { return m128; } + //__forceinline operator __m128&() { return m128; } + + //////////////////////////////////////////////////////////////////////////////// + /// Set + //////////////////////////////////////////////////////////////////////////////// + + __forceinline void set(Col3f& d) const { d.r = r; d.g = g; d.b = b; } + __forceinline void set(Col4f& d) const { d.r = r; d.g = g; d.b = b; d.a = a; } + + __forceinline void set(Col3uc& d) const + { + d.r = (unsigned char)(clamp(r)*255.0f); + d.g = (unsigned char)(clamp(g)*255.0f); + d.b = (unsigned char)(clamp(b)*255.0f); + } + + __forceinline void set(Col4uc& d) const + { + d.r = (unsigned char)(clamp(r)*255.0f); + d.g = (unsigned char)(clamp(g)*255.0f); + d.b = (unsigned char)(clamp(b)*255.0f); + d.a = (unsigned char)(clamp(a)*255.0f); + } + __forceinline void set(float &f) const + { + f = 0.2126f*r+0.7125f*g+0.0722f*b; // sRGB luminance. + } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Color4( ZeroTy ) : r(0.0f), g(0.0f), b(0.0f), a(0.0f) {} + __forceinline Color4( OneTy ) : r(1.0f), g(1.0f), b(1.0f), a(1.0f) {} + //__forceinline Color4( PosInfTy ) : m128(_mm_set1_ps(pos_inf)) {} + //__forceinline Color4( NegInfTy ) : m128(_mm_set1_ps(neg_inf)) {} + }; + + //////////////////////////////////////////////////////////////////////////////// + /// SSE RGB Color Class + //////////////////////////////////////////////////////////////////////////////// + + struct Color + { + struct { float r,g,b; }; + + //////////////////////////////////////////////////////////////////////////////// + /// Construction + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Color () {} + //__forceinline Color ( const __m128 a ) : m128(a) {} + + __forceinline explicit Color (const float v) : r(v), g(v), b(v) {} + __forceinline Color (const float r, const float g, const float b) : r(r), g(g), b(b) {} + + //__forceinline Color ( const Color& other ) : m128(other.m128) {} + //__forceinline Color& operator=( const Color& other ) { m128 = other.m128; return *this; } + + //__forceinline Color ( const Color4& other ) : m128(other.m128) {} + //__forceinline Color& operator=( const Color4& other ) { m128 = other.m128; return *this; } + + //__forceinline operator const __m128&() const { return m128; } + //__forceinline operator __m128&() { return m128; } + + //////////////////////////////////////////////////////////////////////////////// + /// Set + //////////////////////////////////////////////////////////////////////////////// + + __forceinline void set(Col3f& d) const { d.r = r; d.g = g; d.b = b; } + __forceinline void set(Col4f& d) const { d.r = r; d.g = g; d.b = b; d.a = 1.0f; } + +#if 0 + __forceinline void set(Col3uc& d) const + { + vfloat4 s = clamp(vfloat4(m128))*255.0f; + d.r = (unsigned char)(s[0]); + d.g = (unsigned char)(s[1]); + d.b = (unsigned char)(s[2]); + } + __forceinline void set(Col4uc& d) const + { + vfloat4 s = clamp(vfloat4(m128))*255.0f; + d.r = (unsigned char)(s[0]); + d.g = (unsigned char)(s[1]); + d.b = (unsigned char)(s[2]); + d.a = 255; + } +#endif + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Color( ZeroTy ) : r(0.0f), g(0.0f), b(0.0f) {} + __forceinline Color( OneTy ) : r(1.0f), g(1.0f), b(1.0f) {} + //__forceinline Color( PosInfTy ) : m128(_mm_set1_ps(pos_inf)) {} + //__forceinline Color( NegInfTy ) : m128(_mm_set1_ps(neg_inf)) {} + }; + + //////////////////////////////////////////////////////////////////////////////// + /// Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const Color operator +( const Color& a ) { return a; } + __forceinline const Color operator -( const Color& a ) { return Color(-a.r, -a.g, -a.b); } + __forceinline const Color abs ( const Color& a ) { return Color(abs(a.r), abs(a.g), abs(a.b)); } + __forceinline const Color rcp ( const Color& a ) { return Color(1.0f/a.r, 1.0f/a.g, 1.0f/a.b); } + __forceinline const Color rsqrt( const Color& a ) { return Color(1.0f/sqrt(a.r), 1.0f/sqrt(a.g), 1.0f/sqrt(a.b)); } + __forceinline const Color sqrt ( const Color& a ) { return Color(sqrt(a.r), sqrt(a.g), sqrt(a.b)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const Color operator +( const Color& a, const Color& b ) { return Color(a.r+b.r, a.g+b.g, a.b+b.b); } + __forceinline const Color operator -( const Color& a, const Color& b ) { return Color(a.r-b.r, a.g-b.g, a.b-b.b); } + __forceinline const Color operator *( const Color& a, const Color& b ) { return Color(a.r*b.r, a.g*b.g, a.b*b.b); } + __forceinline const Color operator *( const Color& a, const float b ) { return a * Color(b); } + __forceinline const Color operator *( const float a, const Color& b ) { return Color(a) * b; } + __forceinline const Color operator /( const Color& a, const Color& b ) { return a * rcp(b); } + __forceinline const Color operator /( const Color& a, const float b ) { return a * rcp(b); } + + __forceinline const Color min( const Color& a, const Color& b ) { return Color(min(a.r,b.r), min(a.g,b.g), min(a.b,b.b)); } + __forceinline const Color max( const Color& a, const Color& b ) { return Color(max(a.r,b.r), max(a.g,b.g), max(a.b,b.b)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Assignment Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const Color operator+=(Color& a, const Color& b) { return a = a + b; } + __forceinline const Color operator-=(Color& a, const Color& b) { return a = a - b; } + __forceinline const Color operator*=(Color& a, const Color& b) { return a = a * b; } + __forceinline const Color operator/=(Color& a, const Color& b) { return a = a / b; } + __forceinline const Color operator*=(Color& a, const float b ) { return a = a * b; } + __forceinline const Color operator/=(Color& a, const float b ) { return a = a / b; } + + //////////////////////////////////////////////////////////////////////////////// + /// Reductions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float reduce_add(const Color& v) { return v.r+v.g+v.b; } + __forceinline float reduce_mul(const Color& v) { return v.r*v.g*v.b; } + __forceinline float reduce_min(const Color& v) { return min(v.r,v.g,v.b); } + __forceinline float reduce_max(const Color& v) { return max(v.r,v.g,v.b); } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool operator ==( const Color& a, const Color& b ) { return a.r == b.r && a.g == b.g && a.b == b.b; } + __forceinline bool operator !=( const Color& a, const Color& b ) { return a.r != b.r || a.g != b.g || a.b != b.b; } + __forceinline bool operator < ( const Color& a, const Color& b ) { + if (a.r != b.r) return a.r < b.r; + if (a.g != b.g) return a.g < b.g; + if (a.b != b.b) return a.b < b.b; + return false; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const Color select( bool s, const Color& t, const Color& f ) { + return s ? t : f; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Special Operators + //////////////////////////////////////////////////////////////////////////////// + + /*! computes luminance of a color */ + __forceinline float luminance (const Color& a) { return madd(0.212671f,a.r,madd(0.715160f,a.g,0.072169f*a.b)); } + + /*! output operator */ + inline std::ostream& operator<<(std::ostream& cout, const Color& a) { + return cout << "(" << a.r << ", " << a.g << ", " << a.b << ")"; + } +} diff --git a/thirdparty/embree/common/math/math.h b/thirdparty/embree/common/math/emath.h index 7930c17727..22a89a7669 100644 --- a/thirdparty/embree/common/math/math.h +++ b/thirdparty/embree/common/math/emath.h @@ -8,6 +8,10 @@ #include "constants.h" #include <cmath> +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +# include "math_sycl.h" +#else + #if defined(__ARM_NEON) #include "../simd/arm/emulation.h" #else @@ -44,6 +48,9 @@ namespace embree __forceinline int toInt (const float& a) { return int(a); } __forceinline float toFloat(const int& a) { return float(a); } + __forceinline int asInt (const float& a) { return *((int*)&a); } + __forceinline float asFloat(const int& a) { return *((float*)&a); } + #if defined(__WIN32__) __forceinline bool finite ( const float x ) { return _finite(x) != 0; } #endif @@ -351,7 +358,11 @@ __forceinline float nmsub ( const float a, const float b, const float c) { retur __forceinline int select(bool s, int t, int f) { return s ? t : f; } __forceinline float select(bool s, float t, float f) { return s ? t : f; } - __forceinline bool all(bool s) { return s; } + __forceinline bool none(bool s) { return !s; } + __forceinline bool all (bool s) { return s; } + __forceinline bool any (bool s) { return s; } + + __forceinline unsigned movemask (bool s) { return (unsigned)s; } __forceinline float lerp(const float v0, const float v1, const float t) { return madd(1.0f-t,v0,t*v1); @@ -453,3 +464,5 @@ __forceinline float nmsub ( const float a, const float b, const float c) { retur return x | (y << 1) | (z << 2); } } + +#endif diff --git a/thirdparty/embree/common/math/lbbox.h b/thirdparty/embree/common/math/lbbox.h index 2b397a05c8..7619199780 100644 --- a/thirdparty/embree/common/math/lbbox.h +++ b/thirdparty/embree/common/math/lbbox.h @@ -179,6 +179,48 @@ namespace embree bounds1 = b1; } + /*! calculates the linear bounds for target_time_range of primitive with it's time_range_in and bounds */ + __forceinline LBBox(const BBox1f& time_range_in, const LBBox<T> lbounds, const BBox1f& target_time_range) + { + const BBox3f bounds0 = lbounds.bounds0; + const BBox3f bounds1 = lbounds.bounds1; + + /* normalize global target_time_range to local time_range_in */ + const BBox1f time_range((target_time_range.lower-time_range_in.lower)/time_range_in.size(), + (target_time_range.upper-time_range_in.lower)/time_range_in.size()); + + const BBox1f clipped_time_range(max(0.0f,time_range.lower), min(1.0f,time_range.upper)); + + /* compute bounds at begin and end of clipped time range */ + BBox<T> b0 = lerp(bounds0,bounds1,clipped_time_range.lower); + BBox<T> b1 = lerp(bounds0,bounds1,clipped_time_range.upper); + + /* make sure that b0 is properly bounded at time_range_in.lower */ + { + const BBox<T> bt = lerp(b0, b1, (0.0f - time_range.lower) / time_range.size()); + const T dlower = min(bounds0.lower-bt.lower, T(zero)); + const T dupper = max(bounds0.upper-bt.upper, T(zero)); + b0.lower += dlower; b1.lower += dlower; + b0.upper += dupper; b1.upper += dupper; + } + + /* make sure that b1 is properly bounded at time_range_in.upper */ + { + const BBox<T> bt = lerp(b0, b1, (1.0f - time_range.lower) / time_range.size()); + const T dlower = min(bounds1.lower-bt.lower, T(zero)); + const T dupper = max(bounds1.upper-bt.upper, T(zero)); + b0.lower += dlower; b1.lower += dlower; + b0.upper += dupper; b1.upper += dupper; + } + + this->bounds0 = b0; + this->bounds1 = b1; + } + + /*! calculates the linear bounds for target_time_range of primitive with it's time_range_in and bounds */ + __forceinline LBBox(const BBox1f& time_range_in, const BBox<T>& bounds0, const BBox<T>& bounds1, const BBox1f& target_time_range) + : LBBox(time_range_in,LBBox(bounds0,bounds1),target_time_range) {} + public: __forceinline bool empty() const { diff --git a/thirdparty/embree/common/math/linearspace2.h b/thirdparty/embree/common/math/linearspace2.h index 184ee695fb..e58f61ea6b 100644 --- a/thirdparty/embree/common/math/linearspace2.h +++ b/thirdparty/embree/common/math/linearspace2.h @@ -18,6 +18,7 @@ namespace embree /*! default matrix constructor */ __forceinline LinearSpace2 ( ) {} + __forceinline LinearSpace2 ( const LinearSpace2& other ) { vx = other.vx; vy = other.vy; } __forceinline LinearSpace2& operator=( const LinearSpace2& other ) { vx = other.vx; vy = other.vy; return *this; } diff --git a/thirdparty/embree/common/math/linearspace3.h b/thirdparty/embree/common/math/linearspace3.h index 9eaa2cc2bb..f6d2318fa0 100644 --- a/thirdparty/embree/common/math/linearspace3.h +++ b/thirdparty/embree/common/math/linearspace3.h @@ -19,6 +19,7 @@ namespace embree /*! default matrix constructor */ __forceinline LinearSpace3 ( ) {} + __forceinline LinearSpace3 ( const LinearSpace3& other ) { vx = other.vx; vy = other.vy; vz = other.vz; } __forceinline LinearSpace3& operator=( const LinearSpace3& other ) { vx = other.vx; vy = other.vy; vz = other.vz; return *this; } @@ -90,17 +91,20 @@ namespace embree Vector vx,vy,vz; }; +#if !defined(__SYCL_DEVICE_ONLY__) + /*! compute transposed matrix */ template<> __forceinline const LinearSpace3<Vec3fa> LinearSpace3<Vec3fa>::transposed() const { vfloat4 rx,ry,rz; transpose((vfloat4&)vx,(vfloat4&)vy,(vfloat4&)vz,vfloat4(zero),rx,ry,rz); return LinearSpace3<Vec3fa>(Vec3fa(rx),Vec3fa(ry),Vec3fa(rz)); } - +#endif + template<typename T> __forceinline const LinearSpace3<T> transposed(const LinearSpace3<T>& xfm) { return xfm.transposed(); } - + //////////////////////////////////////////////////////////////////////////////// // Unary Operators //////////////////////////////////////////////////////////////////////////////// diff --git a/thirdparty/embree/common/math/math_sycl.h b/thirdparty/embree/common/math/math_sycl.h new file mode 100644 index 0000000000..ffb047569c --- /dev/null +++ b/thirdparty/embree/common/math/math_sycl.h @@ -0,0 +1,279 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../sys/platform.h" +#include "../sys/intrinsics.h" +#include "constants.h" +#include <cmath> + +namespace embree +{ + __forceinline bool isvalid ( const float& v ) { + return (v > -FLT_LARGE) & (v < +FLT_LARGE); + } + + __forceinline int cast_f2i(float f) { + return __builtin_bit_cast(int,f); + } + + __forceinline float cast_i2f(int i) { + return __builtin_bit_cast(float,i); + } + + __forceinline int toInt (const float& a) { return int(a); } + __forceinline float toFloat(const int& a) { return float(a); } + + __forceinline float asFloat(const int a) { return __builtin_bit_cast(float,a); } + __forceinline int asInt (const float a) { return __builtin_bit_cast(int,a); } + + //__forceinline bool finite ( const float x ) { return _finite(x) != 0; } + __forceinline float sign ( const float x ) { return x<0?-1.0f:1.0f; } + __forceinline float sqr ( const float x ) { return x*x; } + + __forceinline float rcp ( const float x ) { + return sycl::native::recip(x); + } + + __forceinline float signmsk(const float a) { return asFloat(asInt(a) & 0x80000000); } + //__forceinline float signmsk ( const float x ) { + // return _mm_cvtss_f32(_mm_and_ps(_mm_set_ss(x),_mm_castsi128_ps(_mm_set1_epi32(0x80000000)))); + //} + //__forceinline float xorf( const float x, const float y ) { + // return _mm_cvtss_f32(_mm_xor_ps(_mm_set_ss(x),_mm_set_ss(y))); + //} + //__forceinline float andf( const float x, const unsigned y ) { + // return _mm_cvtss_f32(_mm_and_ps(_mm_set_ss(x),_mm_castsi128_ps(_mm_set1_epi32(y)))); + //} + + __forceinline float rsqrt( const float x ) { + return sycl::rsqrt(x); + } + + //__forceinline float nextafter(float x, float y) { if ((x<y) == (x>0)) return x*(1.1f+float(ulp)); else return x*(0.9f-float(ulp)); } + //__forceinline double nextafter(double x, double y) { return _nextafter(x, y); } + //__forceinline int roundf(float f) { return (int)(f + 0.5f); } + + __forceinline float abs ( const float x ) { return sycl::fabs(x); } + __forceinline float acos ( const float x ) { return sycl::acos(x); } + __forceinline float asin ( const float x ) { return sycl::asin(x); } + __forceinline float atan ( const float x ) { return sycl::atan(x); } + __forceinline float atan2( const float y, const float x ) { return sycl::atan2(y, x); } + __forceinline float cos ( const float x ) { return sycl::cos(x); } + __forceinline float cosh ( const float x ) { return sycl::cosh(x); } + __forceinline float exp ( const float x ) { return sycl::exp(x); } + __forceinline float fmod ( const float x, const float y ) { return sycl::fmod(x, y); } + __forceinline float log ( const float x ) { return sycl::log(x); } + __forceinline float log10( const float x ) { return sycl::log10(x); } + __forceinline float pow ( const float x, const float y ) { return sycl::pow(x, y); } + __forceinline float sin ( const float x ) { return sycl::sin(x); } + __forceinline float sinh ( const float x ) { return sycl::sinh(x); } + __forceinline float sqrt ( const float x ) { return sycl::sqrt(x); } + __forceinline float tan ( const float x ) { return sycl::tan(x); } + __forceinline float tanh ( const float x ) { return sycl::tanh(x); } + __forceinline float floor( const float x ) { return sycl::floor(x); } + __forceinline float ceil ( const float x ) { return sycl::ceil(x); } + __forceinline float frac ( const float x ) { return x-floor(x); } + + //__forceinline double abs ( const double x ) { return ::fabs(x); } + //__forceinline double sign ( const double x ) { return x<0?-1.0:1.0; } + //__forceinline double acos ( const double x ) { return ::acos (x); } + //__forceinline double asin ( const double x ) { return ::asin (x); } + //__forceinline double atan ( const double x ) { return ::atan (x); } + //__forceinline double atan2( const double y, const double x ) { return ::atan2(y, x); } + //__forceinline double cos ( const double x ) { return ::cos (x); } + //__forceinline double cosh ( const double x ) { return ::cosh (x); } + //__forceinline double exp ( const double x ) { return ::exp (x); } + //__forceinline double fmod ( const double x, const double y ) { return ::fmod (x, y); } + //__forceinline double log ( const double x ) { return ::log (x); } + //__forceinline double log10( const double x ) { return ::log10(x); } + //__forceinline double pow ( const double x, const double y ) { return ::pow (x, y); } + //__forceinline double rcp ( const double x ) { return 1.0/x; } + //__forceinline double rsqrt( const double x ) { return 1.0/::sqrt(x); } + //__forceinline double sin ( const double x ) { return ::sin (x); } + //__forceinline double sinh ( const double x ) { return ::sinh (x); } + //__forceinline double sqr ( const double x ) { return x*x; } + //__forceinline double sqrt ( const double x ) { return ::sqrt (x); } + //__forceinline double tan ( const double x ) { return ::tan (x); } + //__forceinline double tanh ( const double x ) { return ::tanh (x); } + //__forceinline double floor( const double x ) { return ::floor (x); } + //__forceinline double ceil ( const double x ) { return ::ceil (x); } + +/* +#if defined(__SSE4_1__) + __forceinline float mini(float a, float b) { + const __m128i ai = _mm_castps_si128(_mm_set_ss(a)); + const __m128i bi = _mm_castps_si128(_mm_set_ss(b)); + const __m128i ci = _mm_min_epi32(ai,bi); + return _mm_cvtss_f32(_mm_castsi128_ps(ci)); + } +#endif + +#if defined(__SSE4_1__) + __forceinline float maxi(float a, float b) { + const __m128i ai = _mm_castps_si128(_mm_set_ss(a)); + const __m128i bi = _mm_castps_si128(_mm_set_ss(b)); + const __m128i ci = _mm_max_epi32(ai,bi); + return _mm_cvtss_f32(_mm_castsi128_ps(ci)); + } +#endif +*/ + + template<typename T> + __forceinline T twice(const T& a) { return a+a; } + + __forceinline int min(int a, int b) { return sycl::min(a,b); } + __forceinline unsigned min(unsigned a, unsigned b) { return sycl::min(a,b); } + __forceinline int64_t min(int64_t a, int64_t b) { return sycl::min(a,b); } + __forceinline float min(float a, float b) { return sycl::fmin(a,b); } + __forceinline double min(double a, double b) { return sycl::fmin(a,b); } +#if defined(__X86_64__) + __forceinline size_t min(size_t a, size_t b) { return sycl::min(a,b); } +#endif + + template<typename T> __forceinline T min(const T& a, const T& b, const T& c) { return min(min(a,b),c); } + template<typename T> __forceinline T min(const T& a, const T& b, const T& c, const T& d) { return min(min(a,b),min(c,d)); } + template<typename T> __forceinline T min(const T& a, const T& b, const T& c, const T& d, const T& e) { return min(min(min(a,b),min(c,d)),e); } + +// template<typename T> __forceinline T mini(const T& a, const T& b, const T& c) { return mini(mini(a,b),c); } +// template<typename T> __forceinline T mini(const T& a, const T& b, const T& c, const T& d) { return mini(mini(a,b),mini(c,d)); } +// template<typename T> __forceinline T mini(const T& a, const T& b, const T& c, const T& d, const T& e) { return mini(mini(mini(a,b),mini(c,d)),e); } + + __forceinline int max(int a, int b) { return sycl::max(a,b); } + __forceinline unsigned max(unsigned a, unsigned b) { return sycl::max(a,b); } + __forceinline int64_t max(int64_t a, int64_t b) { return sycl::max(a,b); } + __forceinline float max(float a, float b) { return sycl::fmax(a,b); } + __forceinline double max(double a, double b) { return sycl::fmax(a,b); } +#if defined(__X86_64__) + __forceinline size_t max(size_t a, size_t b) { return sycl::max(a,b); } +#endif + + template<typename T> __forceinline T max(const T& a, const T& b, const T& c) { return max(max(a,b),c); } + template<typename T> __forceinline T max(const T& a, const T& b, const T& c, const T& d) { return max(max(a,b),max(c,d)); } + template<typename T> __forceinline T max(const T& a, const T& b, const T& c, const T& d, const T& e) { return max(max(max(a,b),max(c,d)),e); } + +// template<typename T> __forceinline T maxi(const T& a, const T& b, const T& c) { return maxi(maxi(a,b),c); } +// template<typename T> __forceinline T maxi(const T& a, const T& b, const T& c, const T& d) { return maxi(maxi(a,b),maxi(c,d)); } +// template<typename T> __forceinline T maxi(const T& a, const T& b, const T& c, const T& d, const T& e) { return maxi(maxi(maxi(a,b),maxi(c,d)),e); } + + template<typename T> __forceinline T clamp(const T& x, const T& lower = T(zero), const T& upper = T(one)) { return max(min(x,upper),lower); } + template<typename T> __forceinline T clampz(const T& x, const T& upper) { return max(T(zero), min(x,upper)); } + + template<typename T> __forceinline T deg2rad ( const T& x ) { return x * T(1.74532925199432957692e-2f); } + template<typename T> __forceinline T rad2deg ( const T& x ) { return x * T(5.72957795130823208768e1f); } + template<typename T> __forceinline T sin2cos ( const T& x ) { return sqrt(max(T(zero),T(one)-x*x)); } + template<typename T> __forceinline T cos2sin ( const T& x ) { return sin2cos(x); } + + __forceinline float madd ( const float a, const float b, const float c) { return +sycl::fma(+a,b,+c); } + __forceinline float msub ( const float a, const float b, const float c) { return +sycl::fma(+a,b,-c); } + __forceinline float nmadd ( const float a, const float b, const float c) { return +sycl::fma(-a,b,+c); } + __forceinline float nmsub ( const float a, const float b, const float c) { return -sycl::fma(+a,b,+c); } + + /*! random functions */ +/* + template<typename T> T random() { return T(0); } + template<> __forceinline int random() { return int(rand()); } + template<> __forceinline uint32_t random() { return uint32_t(rand()) ^ (uint32_t(rand()) << 16); } + template<> __forceinline float random() { return rand()/float(RAND_MAX); } + template<> __forceinline double random() { return rand()/double(RAND_MAX); } +*/ + + /*! selects */ + __forceinline bool select(bool s, bool t , bool f) { return s ? t : f; } + __forceinline int select(bool s, int t, int f) { return s ? t : f; } + __forceinline float select(bool s, float t, float f) { return s ? t : f; } + + __forceinline bool none(bool s) { return !s; } + __forceinline bool all (bool s) { return s; } + __forceinline bool any (bool s) { return s; } + + __forceinline unsigned movemask (bool s) { return (unsigned)s; } + + __forceinline float lerp(const float v0, const float v1, const float t) { + return madd(1.0f-t,v0,t*v1); + } + + template<typename T> + __forceinline T lerp2(const float x0, const float x1, const float x2, const float x3, const T& u, const T& v) { + return madd((1.0f-u),madd((1.0f-v),T(x0),v*T(x2)),u*madd((1.0f-v),T(x1),v*T(x3))); + } + + /*! exchange */ + template<typename T> __forceinline void xchg ( T& a, T& b ) { const T tmp = a; a = b; b = tmp; } + + /* load/store */ + template<typename Ty> struct mem; + + template<> struct mem<float> { + static __forceinline float load (bool mask, const void* ptr) { return mask ? *(float*)ptr : 0.0f; } + static __forceinline float loadu(bool mask, const void* ptr) { return mask ? *(float*)ptr : 0.0f; } + + static __forceinline void store (bool mask, void* ptr, const float v) { if (mask) *(float*)ptr = v; } + static __forceinline void storeu(bool mask, void* ptr, const float v) { if (mask) *(float*)ptr = v; } + }; + + /*! bit reverse operation */ + template<class T> + __forceinline T bitReverse(const T& vin) + { + T v = vin; + v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); + v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); + v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); + v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); + v = ( v >> 16 ) | ( v << 16); + return v; + } + + /*! bit interleave operation */ + template<class T> + __forceinline T bitInterleave(const T& xin, const T& yin, const T& zin) + { + T x = xin, y = yin, z = zin; + x = (x | (x << 16)) & 0x030000FF; + x = (x | (x << 8)) & 0x0300F00F; + x = (x | (x << 4)) & 0x030C30C3; + x = (x | (x << 2)) & 0x09249249; + + y = (y | (y << 16)) & 0x030000FF; + y = (y | (y << 8)) & 0x0300F00F; + y = (y | (y << 4)) & 0x030C30C3; + y = (y | (y << 2)) & 0x09249249; + + z = (z | (z << 16)) & 0x030000FF; + z = (z | (z << 8)) & 0x0300F00F; + z = (z | (z << 4)) & 0x030C30C3; + z = (z | (z << 2)) & 0x09249249; + + return x | (y << 1) | (z << 2); + } + + /*! bit interleave operation for 64bit data types*/ + template<class T> + __forceinline T bitInterleave64(const T& xin, const T& yin, const T& zin){ + T x = xin & 0x1fffff; + T y = yin & 0x1fffff; + T z = zin & 0x1fffff; + + x = (x | x << 32) & 0x1f00000000ffff; + x = (x | x << 16) & 0x1f0000ff0000ff; + x = (x | x << 8) & 0x100f00f00f00f00f; + x = (x | x << 4) & 0x10c30c30c30c30c3; + x = (x | x << 2) & 0x1249249249249249; + + y = (y | y << 32) & 0x1f00000000ffff; + y = (y | y << 16) & 0x1f0000ff0000ff; + y = (y | y << 8) & 0x100f00f00f00f00f; + y = (y | y << 4) & 0x10c30c30c30c30c3; + y = (y | y << 2) & 0x1249249249249249; + + z = (z | z << 32) & 0x1f00000000ffff; + z = (z | z << 16) & 0x1f0000ff0000ff; + z = (z | z << 8) & 0x100f00f00f00f00f; + z = (z | z << 4) & 0x10c30c30c30c30c3; + z = (z | z << 2) & 0x1249249249249249; + + return x | (y << 1) | (z << 2); + } +} diff --git a/thirdparty/embree/common/math/range.h b/thirdparty/embree/common/math/range.h index 909fadb995..f397615ea2 100644 --- a/thirdparty/embree/common/math/range.h +++ b/thirdparty/embree/common/math/range.h @@ -4,7 +4,7 @@ #pragma once #include "../sys/platform.h" -#include "../math/math.h" +#include "../math/emath.h" namespace embree { diff --git a/thirdparty/embree/common/math/vec2.h b/thirdparty/embree/common/math/vec2.h index f6d98ffa0d..4e641ec249 100644 --- a/thirdparty/embree/common/math/vec2.h +++ b/thirdparty/embree/common/math/vec2.h @@ -3,7 +3,7 @@ #pragma once -#include "math.h" +#include "emath.h" namespace embree { @@ -34,7 +34,7 @@ namespace embree __forceinline Vec2( const T& x, const T& y ) : x(x), y(y) {} __forceinline Vec2( const Vec2& other ) { x = other.x; y = other.y; } - __forceinline Vec2( const Vec2fa& other ); + Vec2( const Vec2fa& other ); template<typename T1> __forceinline Vec2( const Vec2<T1>& a ) : x(T(a.x)), y(T(a.y)) {} template<typename T1> __forceinline Vec2& operator =( const Vec2<T1>& other ) { x = other.x; y = other.y; return *this; } @@ -232,4 +232,5 @@ namespace embree #if defined(__AVX512F__) template<> __forceinline Vec2<vfloat16>::Vec2(const Vec2fa& a) : x(a.x), y(a.y) {} #endif + } diff --git a/thirdparty/embree/common/math/vec2fa.h b/thirdparty/embree/common/math/vec2fa.h index 4f222894c2..d57e549e68 100644 --- a/thirdparty/embree/common/math/vec2fa.h +++ b/thirdparty/embree/common/math/vec2fa.h @@ -4,7 +4,12 @@ #pragma once #include "../sys/alloc.h" -#include "math.h" +#include "emath.h" + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +# include "vec2fa_sycl.h" +#else + #include "../simd/sse.h" namespace embree @@ -316,3 +321,5 @@ namespace embree typedef Vec2fa Vec2fa_t; } + +#endif diff --git a/thirdparty/embree/common/math/vec2fa_sycl.h b/thirdparty/embree/common/math/vec2fa_sycl.h new file mode 100644 index 0000000000..62d62bdd01 --- /dev/null +++ b/thirdparty/embree/common/math/vec2fa_sycl.h @@ -0,0 +1,270 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../sys/alloc.h" +#include "emath.h" +#include "../simd/sse.h" + +namespace embree +{ + struct Vec3fa; + + //////////////////////////////////////////////////////////////////////////////// + /// SSE Vec2fa Type + //////////////////////////////////////////////////////////////////////////////// + + struct __aligned(16) Vec2fa + { + //ALIGNED_STRUCT_(16); + + typedef float Scalar; + enum { N = 2 }; + struct { float x,y; }; + + //////////////////////////////////////////////////////////////////////////////// + /// Constructors, Assignment & Cast Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa( ) {} + //__forceinline Vec2fa( const __m128 a ) : m128(a) {} + explicit Vec2fa(const Vec3fa& a); + + __forceinline explicit Vec2fa( const vfloat<4>& a ) { + x = a[0]; + y = a[1]; + } + + __forceinline Vec2fa ( const Vec2<float>& other ) { x = other.x; y = other.y; } + __forceinline Vec2fa& operator =( const Vec2<float>& other ) { x = other.x; y = other.y; return *this; } + + __forceinline Vec2fa ( const Vec2fa& other ) { x = other.x; y = other.y; } + __forceinline Vec2fa& operator =( const Vec2fa& other ) { x = other.x; y = other.y; return *this; } + + __forceinline explicit Vec2fa( const float a ) : x(a), y(a) {} + __forceinline Vec2fa( const float x, const float y) : x(x), y(y) {} + + //__forceinline explicit Vec2fa( const __m128i a ) : m128(_mm_cvtepi32_ps(a)) {} + + //__forceinline operator const __m128&() const { return m128; } + //__forceinline operator __m128&() { return m128; } + + //////////////////////////////////////////////////////////////////////////////// + /// Loads and Stores + //////////////////////////////////////////////////////////////////////////////// + + static __forceinline Vec2fa load( const void* const a ) { + const float* ptr = (const float*)a; + return Vec2fa(ptr[0],ptr[1]); + } + + static __forceinline Vec2fa loadu( const void* const a ) { + const float* ptr = (const float*)a; + return Vec2fa(ptr[0],ptr[1]); + } + + static __forceinline void storeu ( void* a, const Vec2fa& v ) { + float* ptr = (float*)a; + ptr[0] = v.x; ptr[1] = v.y; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa( ZeroTy ) : x(0.0f), y(0.0f) {} + __forceinline Vec2fa( OneTy ) : x(1.0f), y(1.0f) {} + __forceinline Vec2fa( PosInfTy ) : x(+INFINITY), y(+INFINITY) {} + __forceinline Vec2fa( NegInfTy ) : x(-INFINITY), y(-INFINITY) {} + + //////////////////////////////////////////////////////////////////////////////// + /// Array Access + //////////////////////////////////////////////////////////////////////////////// + + //__forceinline const float& operator []( const size_t index ) const { assert(index < 2); return (&x)[index]; } + //__forceinline float& operator []( const size_t index ) { assert(index < 2); return (&x)[index]; } + }; + + //////////////////////////////////////////////////////////////////////////////// + /// Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa operator +( const Vec2fa& a ) { return a; } + __forceinline Vec2fa operator -( const Vec2fa& a ) { return Vec2fa(-a.x,-a.y); } + __forceinline Vec2fa abs ( const Vec2fa& a ) { return Vec2fa(sycl::fabs(a.x),sycl::fabs(a.y)); } + __forceinline Vec2fa sign ( const Vec2fa& a ) { return Vec2fa(sycl::sign(a.x),sycl::sign(a.y)); } + + //__forceinline Vec2fa rcp ( const Vec2fa& a ) { return Vec2fa(sycl::recip(a.x),sycl::recip(a.y)); } + __forceinline Vec2fa rcp ( const Vec2fa& a ) { return Vec2fa(__sycl_std::__invoke_native_recip<float>(a.x),__sycl_std::__invoke_native_recip<float>(a.y)); } + __forceinline Vec2fa sqrt ( const Vec2fa& a ) { return Vec2fa(sycl::sqrt(a.x),sycl::sqrt(a.y)); } + __forceinline Vec2fa sqr ( const Vec2fa& a ) { return Vec2fa(a.x*a.x,a.y*a.y); } + + __forceinline Vec2fa rsqrt( const Vec2fa& a ) { return Vec2fa(sycl::rsqrt(a.x),sycl::rsqrt(a.y)); } + + __forceinline Vec2fa zero_fix(const Vec2fa& a) { + const float x = sycl::fabs(a.x) < min_rcp_input ? min_rcp_input : a.x; + const float y = sycl::fabs(a.y) < min_rcp_input ? min_rcp_input : a.y; + return Vec2fa(x,y); + } + __forceinline Vec2fa rcp_safe(const Vec2fa& a) { + return rcp(zero_fix(a)); + } + __forceinline Vec2fa log ( const Vec2fa& a ) { + return Vec2fa(sycl::log(a.x),sycl::log(a.y)); + } + + __forceinline Vec2fa exp ( const Vec2fa& a ) { + return Vec2fa(sycl::exp(a.x),sycl::exp(a.y)); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa operator +( const Vec2fa& a, const Vec2fa& b ) { return Vec2fa(a.x+b.x, a.y+b.y); } + __forceinline Vec2fa operator -( const Vec2fa& a, const Vec2fa& b ) { return Vec2fa(a.x-b.x, a.y-b.y); } + __forceinline Vec2fa operator *( const Vec2fa& a, const Vec2fa& b ) { return Vec2fa(a.x*b.x, a.y*b.y); } + __forceinline Vec2fa operator *( const Vec2fa& a, const float b ) { return a * Vec2fa(b); } + __forceinline Vec2fa operator *( const float a, const Vec2fa& b ) { return Vec2fa(a) * b; } + __forceinline Vec2fa operator /( const Vec2fa& a, const Vec2fa& b ) { return Vec2fa(a.x/b.x, a.y/b.y); } + __forceinline Vec2fa operator /( const Vec2fa& a, const float b ) { return Vec2fa(a.x/b, a.y/b); } + __forceinline Vec2fa operator /( const float a, const Vec2fa& b ) { return Vec2fa(a/b.x, a/b.y); } + + __forceinline Vec2fa min( const Vec2fa& a, const Vec2fa& b ) { + return Vec2fa(sycl::fmin(a.x,b.x), sycl::fmin(a.y,b.y)); + } + __forceinline Vec2fa max( const Vec2fa& a, const Vec2fa& b ) { + return Vec2fa(sycl::fmax(a.x,b.x), sycl::fmax(a.y,b.y)); + } + +/* +#if defined(__SSE4_1__) + __forceinline Vec2fa mini(const Vec2fa& a, const Vec2fa& b) { + const vint4 ai = _mm_castps_si128(a); + const vint4 bi = _mm_castps_si128(b); + const vint4 ci = _mm_min_epi32(ai,bi); + return _mm_castsi128_ps(ci); + } +#endif + +#if defined(__SSE4_1__) + __forceinline Vec2fa maxi(const Vec2fa& a, const Vec2fa& b) { + const vint4 ai = _mm_castps_si128(a); + const vint4 bi = _mm_castps_si128(b); + const vint4 ci = _mm_max_epi32(ai,bi); + return _mm_castsi128_ps(ci); + } +#endif + + __forceinline Vec2fa pow ( const Vec2fa& a, const float& b ) { + return Vec2fa(powf(a.x,b),powf(a.y,b)); + } +*/ + + //////////////////////////////////////////////////////////////////////////////// + /// Ternary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa madd ( const Vec2fa& a, const Vec2fa& b, const Vec2fa& c) { return Vec2fa(madd(a.x,b.x,c.x), madd(a.y,b.y,c.y)); } + __forceinline Vec2fa msub ( const Vec2fa& a, const Vec2fa& b, const Vec2fa& c) { return Vec2fa(msub(a.x,b.x,c.x), msub(a.y,b.y,c.y)); } + __forceinline Vec2fa nmadd ( const Vec2fa& a, const Vec2fa& b, const Vec2fa& c) { return Vec2fa(nmadd(a.x,b.x,c.x), nmadd(a.y,b.y,c.y)); } + __forceinline Vec2fa nmsub ( const Vec2fa& a, const Vec2fa& b, const Vec2fa& c) { return Vec2fa(nmsub(a.x,b.x,c.x), nmsub(a.y,b.y,c.y)); } + + __forceinline Vec2fa madd ( const float a, const Vec2fa& b, const Vec2fa& c) { return madd(Vec2fa(a),b,c); } + __forceinline Vec2fa msub ( const float a, const Vec2fa& b, const Vec2fa& c) { return msub(Vec2fa(a),b,c); } + __forceinline Vec2fa nmadd ( const float a, const Vec2fa& b, const Vec2fa& c) { return nmadd(Vec2fa(a),b,c); } + __forceinline Vec2fa nmsub ( const float a, const Vec2fa& b, const Vec2fa& c) { return nmsub(Vec2fa(a),b,c); } + + //////////////////////////////////////////////////////////////////////////////// + /// Assignment Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa& operator +=( Vec2fa& a, const Vec2fa& b ) { return a = a + b; } + __forceinline Vec2fa& operator -=( Vec2fa& a, const Vec2fa& b ) { return a = a - b; } + __forceinline Vec2fa& operator *=( Vec2fa& a, const Vec2fa& b ) { return a = a * b; } + __forceinline Vec2fa& operator *=( Vec2fa& a, const float b ) { return a = a * b; } + __forceinline Vec2fa& operator /=( Vec2fa& a, const Vec2fa& b ) { return a = a / b; } + __forceinline Vec2fa& operator /=( Vec2fa& a, const float b ) { return a = a / b; } + + //////////////////////////////////////////////////////////////////////////////// + /// Reductions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float reduce_add(const Vec2fa& v) { return v.x+v.y; } + __forceinline float reduce_mul(const Vec2fa& v) { return v.x*v.y; } + __forceinline float reduce_min(const Vec2fa& v) { return sycl::fmin(v.x,v.y); } + __forceinline float reduce_max(const Vec2fa& v) { return sycl::fmax(v.x,v.y); } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool operator ==( const Vec2fa& a, const Vec2fa& b ) { return a.x == b.x && a.y == b.y; } + __forceinline bool operator !=( const Vec2fa& a, const Vec2fa& b ) { return a.x != b.x || a.y != b.y; } + + //////////////////////////////////////////////////////////////////////////////// + /// Euclidian Space Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float dot ( const Vec2fa& a, const Vec2fa& b ) { + return reduce_add(a*b); + } + + __forceinline Vec2fa cross ( const Vec2fa& a ) { + return Vec2fa(-a.y,a.x); + } + + __forceinline float sqr_length ( const Vec2fa& a ) { return dot(a,a); } + __forceinline float rcp_length ( const Vec2fa& a ) { return rsqrt(dot(a,a)); } + __forceinline float rcp_length2( const Vec2fa& a ) { return rcp(dot(a,a)); } + __forceinline float length ( const Vec2fa& a ) { return sqrt(dot(a,a)); } + __forceinline Vec2fa normalize( const Vec2fa& a ) { return a*rsqrt(dot(a,a)); } + __forceinline float distance ( const Vec2fa& a, const Vec2fa& b ) { return length(a-b); } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa select( bool s, const Vec2fa& t, const Vec2fa& f ) { + return Vec2fa(s ? t.x : f.x, s ? t.y : f.y); + } + + __forceinline Vec2fa lerp(const Vec2fa& v0, const Vec2fa& v1, const float t) { + return madd(1.0f-t,v0,t*v1); + } + + __forceinline int maxDim ( const Vec2fa& a ) + { + const Vec2fa b = abs(a); + if (b.x > b.y) return 0; + else return 1; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Rounding Functions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec2fa trunc( const Vec2fa& a ) { return Vec2fa(sycl::trunc(a.x),sycl::trunc(a.y)); } + __forceinline Vec2fa floor( const Vec2fa& a ) { return Vec2fa(sycl::floor(a.x),sycl::floor(a.y)); } + __forceinline Vec2fa ceil ( const Vec2fa& a ) { return Vec2fa(sycl::ceil (a.x),sycl::ceil (a.y)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Output Operators + //////////////////////////////////////////////////////////////////////////////// + + inline embree_ostream operator<<(embree_ostream cout, const Vec2fa& a) { + return cout << "(" << a.x << ", " << a.y << ")"; + } + + /*template<> + __forceinline vfloat_impl<4>::vfloat_impl(const Vec2fa& a) + { + v = 0; + const unsigned int lid = get_sub_group_local_id(); + if (lid == 0) v = a.x; + if (lid == 1) v = a.y; + }*/ + + typedef Vec2fa Vec2fa_t; +} diff --git a/thirdparty/embree/common/math/vec3.h b/thirdparty/embree/common/math/vec3.h index 254f6c4011..d5e78befe8 100644 --- a/thirdparty/embree/common/math/vec3.h +++ b/thirdparty/embree/common/math/vec3.h @@ -3,7 +3,7 @@ #pragma once -#include "math.h" +#include "emath.h" namespace embree { @@ -286,6 +286,8 @@ namespace embree template<> __forceinline Vec3<float>::Vec3(const Vec3fa& a) { x = a.x; y = a.y; z = a.z; } +#if !defined(__SYCL_DEVICE_ONLY__) + #if defined(__AVX__) template<> __forceinline Vec3<vfloat4>::Vec3(const Vec3fa& a) { x = a.x; y = a.y; z = a.z; @@ -333,4 +335,23 @@ namespace embree #if defined(__AVX512F__) template<> __forceinline Vec3<vfloat16>::Vec3(const Vec3fa& a) : x(a.x), y(a.y), z(a.z) {} #endif + +#else + +#if defined(__SSE__) + template<> __forceinline Vec3<vfloat4>::Vec3(const Vec3fa& a) { + x = a.x; y = a.y; z = a.z; + } +#endif +#if defined(__AVX__) + template<> __forceinline Vec3<vfloat8>::Vec3(const Vec3fa& a) { + x = a.x; y = a.y; z = a.z; + } +#endif +#if defined(__AVX512F__) + template<> __forceinline Vec3<vfloat16>::Vec3(const Vec3fa& a) { + x = a.x; y = a.y; z = a.z; + } +#endif +#endif } diff --git a/thirdparty/embree/common/math/vec3ba.h b/thirdparty/embree/common/math/vec3ba.h index a021b522dc..bf24a2a3b6 100644 --- a/thirdparty/embree/common/math/vec3ba.h +++ b/thirdparty/embree/common/math/vec3ba.h @@ -4,7 +4,12 @@ #pragma once #include "../sys/alloc.h" -#include "math.h" +#include "emath.h" + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +# include "vec3ba_sycl.h" +#else + #include "../simd/sse.h" namespace embree @@ -118,3 +123,5 @@ namespace embree return cout << "(" << (a.x ? "1" : "0") << ", " << (a.y ? "1" : "0") << ", " << (a.z ? "1" : "0") << ")"; } } + +#endif diff --git a/thirdparty/embree/common/math/vec3ba_sycl.h b/thirdparty/embree/common/math/vec3ba_sycl.h new file mode 100644 index 0000000000..a2fa13de6c --- /dev/null +++ b/thirdparty/embree/common/math/vec3ba_sycl.h @@ -0,0 +1,115 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../sys/alloc.h" +#include "emath.h" +#include "../simd/sse.h" + +namespace embree +{ + //////////////////////////////////////////////////////////////////////////////// + /// SSE Vec3ba Type + //////////////////////////////////////////////////////////////////////////////// + + struct __aligned(16) Vec3ba + { + //ALIGNED_STRUCT_(16); + + struct { bool x,y,z; }; + + typedef bool Scalar; + enum { N = 3 }; + + //////////////////////////////////////////////////////////////////////////////// + /// Constructors, Assignment & Cast Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ba( ) {} + //__forceinline Vec3ba( const __m128 input ) : m128(input) {} + + __forceinline Vec3ba( const Vec3ba& other ) : x(other.x), y(other.y), z(other.z) {} + __forceinline Vec3ba& operator =(const Vec3ba& other) { x = other.x; y = other.y; z = other.z; return *this; } + + __forceinline explicit Vec3ba( bool a ) : x(a), y(a), z(a) {} + __forceinline Vec3ba( bool a, bool b, bool c) : x(a), y(b), z(c) {} + + //__forceinline operator const __m128&() const { return m128; } + //__forceinline operator __m128&() { return m128; } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ba( FalseTy ) : x(false), y(false), z(false) {} + __forceinline Vec3ba( TrueTy ) : x(true), y(true), z(true) {} + + //////////////////////////////////////////////////////////////////////////////// + /// Array Access + //////////////////////////////////////////////////////////////////////////////// + + //__forceinline const int& operator []( const size_t index ) const { assert(index < 3); return (&x)[index]; } + //__forceinline int& operator []( const size_t index ) { assert(index < 3); return (&x)[index]; } + }; + + + //////////////////////////////////////////////////////////////////////////////// + /// Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ba operator !( const Vec3ba& a ) { return Vec3ba(!a.x,!a.y,!a.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ba operator &( const Vec3ba& a, const Vec3ba& b ) { return Vec3ba(a.x & b.x, a.y & b.y, a.z & b.z); } + __forceinline Vec3ba operator |( const Vec3ba& a, const Vec3ba& b ) { return Vec3ba(a.x | b.x, a.y | b.y, a.z | b.z); } + __forceinline Vec3ba operator ^( const Vec3ba& a, const Vec3ba& b ) { return Vec3ba(a.x != b.x, a.y != b.y, a.z != b.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Assignment Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ba& operator &=( Vec3ba& a, const Vec3ba& b ) { return a = a & b; } + __forceinline Vec3ba& operator |=( Vec3ba& a, const Vec3ba& b ) { return a = a | b; } + __forceinline Vec3ba& operator ^=( Vec3ba& a, const Vec3ba& b ) { return a = a ^ b; } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + Select + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool operator ==( const Vec3ba& a, const Vec3ba& b ) { + return a.x == b.x && a.y == b.y && a.z == b.z; + } + __forceinline bool operator !=( const Vec3ba& a, const Vec3ba& b ) { + return a.x != b.x || a.y != b.y || a.z != b.z; + } +/* + __forceinline bool operator < ( const Vec3ba& a, const Vec3ba& b ) { + if (a.x != b.x) return a.x < b.x; + if (a.y != b.y) return a.y < b.y; + if (a.z != b.z) return a.z < b.z; + return false; + } +*/ + //////////////////////////////////////////////////////////////////////////////// + /// Reduction Operations + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool reduce_and( const Vec3ba& a ) { return a.x & a.y & a.z; } + __forceinline bool reduce_or ( const Vec3ba& a ) { return a.x | a.y | a.z; } + + __forceinline bool all ( const Vec3ba& b ) { return reduce_and(b); } + __forceinline bool any ( const Vec3ba& b ) { return reduce_or(b); } + __forceinline bool none ( const Vec3ba& b ) { return !reduce_or(b); } + + //////////////////////////////////////////////////////////////////////////////// + /// Output Operators + //////////////////////////////////////////////////////////////////////////////// + + inline embree_ostream operator<<(embree_ostream cout, const Vec3ba& a) { + return cout; + } +} diff --git a/thirdparty/embree/common/math/vec3fa.h b/thirdparty/embree/common/math/vec3fa.h index 8564cf6d10..967e75da74 100644 --- a/thirdparty/embree/common/math/vec3fa.h +++ b/thirdparty/embree/common/math/vec3fa.h @@ -4,7 +4,12 @@ #pragma once #include "../sys/alloc.h" -#include "math.h" +#include "emath.h" + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +# include "vec3fa_sycl.h" +#else + #include "../simd/sse.h" namespace embree @@ -441,7 +446,6 @@ namespace embree //__forceinline Vec3fx& operator =( const Vec3<float>& other ) { m128 = _mm_set_ps(0, other.z, other.y, other.x); return *this; } __forceinline Vec3fx ( const Vec3fx& other ) { m128 = other.m128; } - __forceinline Vec3fx& operator =( const Vec3fx& other ) { m128 = other.m128; return *this; } __forceinline explicit Vec3fx( const float a ) : m128(_mm_set1_ps(a)) {} @@ -783,3 +787,5 @@ namespace embree typedef Vec3fx Vec3ff; } + +#endif diff --git a/thirdparty/embree/common/math/vec3fa_sycl.h b/thirdparty/embree/common/math/vec3fa_sycl.h new file mode 100644 index 0000000000..5fdb00ab99 --- /dev/null +++ b/thirdparty/embree/common/math/vec3fa_sycl.h @@ -0,0 +1,617 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../sys/alloc.h" +#include "emath.h" +#include "../simd/sse.h" + +namespace embree +{ + //////////////////////////////////////////////////////////////////////////////// + /// SSE Vec3fa Type + //////////////////////////////////////////////////////////////////////////////// + + struct __aligned(16) Vec3fa + { + //ALIGNED_STRUCT_(16); + + typedef float Scalar; + enum { N = 3 }; + struct { float x,y,z, do_not_use; }; + + //////////////////////////////////////////////////////////////////////////////// + /// Constructors, Assignment & Cast Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa( ) {} + //__forceinline Vec3fa( const __m128 a ) : m128(a) {} + //__forceinline explicit Vec3fa(const vfloat4& a) : x(a[0]), y(a[1]), z(a[2]) {} + + __forceinline Vec3fa ( const Vec3<float>& other ) { x = other.x; y = other.y; z = other.z; } + //__forceinline Vec3fa& operator =( const Vec3<float>& other ) { x = other.x; y = other.y; z = other.z; return *this; } + + __forceinline Vec3fa ( const Vec3fa& other ) { x = other.x; y = other.y; z = other.z; } + __forceinline Vec3fa& operator =( const Vec3fa& other ) { x = other.x; y = other.y; z = other.z; return *this; } + + __forceinline explicit Vec3fa( const float a ) : x(a), y(a), z(a) {} + __forceinline Vec3fa( const float x, const float y, const float z) : x(x), y(y), z(z) {} + + __forceinline explicit Vec3fa( const Vec3ia& a ) : x((float)a.x), y((float)a.y), z((float)a.z) {} + + //__forceinline operator const __m128&() const { return m128; } + //__forceinline operator __m128&() { return m128; } + __forceinline operator vfloat4() const { return vfloat4(x,y,z,0.0f); } // FIXME: we should not need this!! + + //friend __forceinline Vec3fa copy_a( const Vec3fa& a, const Vec3fa& b ) { Vec3fa c = a; c.a = b.a; return c; } + + //////////////////////////////////////////////////////////////////////////////// + /// Loads and Stores + //////////////////////////////////////////////////////////////////////////////// + + static __forceinline Vec3fa load( const void* const a ) { + const float* ptr = (const float*)a; + return Vec3fa(ptr[0],ptr[1],ptr[2]); + } + + static __forceinline Vec3fa loadu( const void* const a ) { + const float* ptr = (const float*)a; + return Vec3fa(ptr[0],ptr[1],ptr[2]); + } + + static __forceinline void storeu ( void* a, const Vec3fa& v ) { + float* ptr = (float*)a; + ptr[0] = v.x; ptr[1] = v.y; ptr[2] = v.z; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa( ZeroTy ) : x(0.0f), y(0.0f), z(0.0f) {} + __forceinline Vec3fa( OneTy ) : x(1.0f), y(1.0f), z(1.0f) {} + __forceinline Vec3fa( PosInfTy ) : x(+INFINITY), y(+INFINITY), z(+INFINITY) {} + __forceinline Vec3fa( NegInfTy ) : x(-INFINITY), y(-INFINITY), z(-INFINITY) {} + + //////////////////////////////////////////////////////////////////////////////// + /// Array Access + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const float& operator []( const size_t index ) const { assert(index < 3); return (&x)[index]; } + __forceinline float& operator []( const size_t index ) { assert(index < 3); return (&x)[index]; } + }; + + //////////////////////////////////////////////////////////////////////////////// + /// Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa operator +( const Vec3fa& a ) { return a; } + __forceinline Vec3fa operator -( const Vec3fa& a ) { return Vec3fa(-a.x,-a.y,-a.z); } + __forceinline Vec3fa abs ( const Vec3fa& a ) { return Vec3fa(sycl::fabs(a.x),sycl::fabs(a.y),sycl::fabs(a.z)); } + __forceinline Vec3fa sign ( const Vec3fa& a ) { return Vec3fa(sycl::sign(a.x),sycl::sign(a.y),sycl::sign(a.z)); } + + //__forceinline Vec3fa rcp ( const Vec3fa& a ) { return Vec3fa(sycl::recip(a.x),sycl::recip(a.y),sycl::recip(a.z)); } + __forceinline Vec3fa rcp ( const Vec3fa& a ) { return Vec3fa(__sycl_std::__invoke_native_recip<float>(a.x),__sycl_std::__invoke_native_recip<float>(a.y),__sycl_std::__invoke_native_recip<float>(a.z)); } + __forceinline Vec3fa sqrt ( const Vec3fa& a ) { return Vec3fa(sycl::sqrt(a.x),sycl::sqrt(a.y),sycl::sqrt(a.z)); } + __forceinline Vec3fa sqr ( const Vec3fa& a ) { return Vec3fa(a.x*a.x,a.y*a.y,a.z*a.z); } + + __forceinline Vec3fa rsqrt( const Vec3fa& a ) { return Vec3fa(sycl::rsqrt(a.x),sycl::rsqrt(a.y),sycl::rsqrt(a.z)); } + + __forceinline Vec3fa zero_fix(const Vec3fa& a) { + const float x = sycl::fabs(a.x) < min_rcp_input ? min_rcp_input : a.x; + const float y = sycl::fabs(a.y) < min_rcp_input ? min_rcp_input : a.y; + const float z = sycl::fabs(a.z) < min_rcp_input ? min_rcp_input : a.z; + return Vec3fa(x,y,z); + } + __forceinline Vec3fa rcp_safe(const Vec3fa& a) { + return rcp(zero_fix(a)); + } + __forceinline Vec3fa log ( const Vec3fa& a ) { + return Vec3fa(sycl::log(a.x),sycl::log(a.y),sycl::log(a.z)); + } + + __forceinline Vec3fa exp ( const Vec3fa& a ) { + return Vec3fa(sycl::exp(a.x),sycl::exp(a.y),sycl::exp(a.z)); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa operator +( const Vec3fa& a, const Vec3fa& b ) { return Vec3fa(a.x+b.x, a.y+b.y, a.z+b.z); } + __forceinline Vec3fa operator -( const Vec3fa& a, const Vec3fa& b ) { return Vec3fa(a.x-b.x, a.y-b.y, a.z-b.z); } + __forceinline Vec3fa operator *( const Vec3fa& a, const Vec3fa& b ) { return Vec3fa(a.x*b.x, a.y*b.y, a.z*b.z); } + __forceinline Vec3fa operator *( const Vec3fa& a, const float b ) { return a * Vec3fa(b); } + __forceinline Vec3fa operator *( const float a, const Vec3fa& b ) { return Vec3fa(a) * b; } + __forceinline Vec3fa operator /( const Vec3fa& a, const Vec3fa& b ) { return Vec3fa(a.x/b.x, a.y/b.y, a.z/b.z); } + __forceinline Vec3fa operator /( const Vec3fa& a, const float b ) { return Vec3fa(a.x/b, a.y/b, a.z/b); } + __forceinline Vec3fa operator /( const float a, const Vec3fa& b ) { return Vec3fa(a/b.x, a/b.y, a/b.z); } + + __forceinline Vec3fa min( const Vec3fa& a, const Vec3fa& b ) { + return Vec3fa(sycl::fmin(a.x,b.x), sycl::fmin(a.y,b.y), sycl::fmin(a.z,b.z)); + } + __forceinline Vec3fa max( const Vec3fa& a, const Vec3fa& b ) { + return Vec3fa(sycl::fmax(a.x,b.x), sycl::fmax(a.y,b.y), sycl::fmax(a.z,b.z)); + } + +/* +#if defined(__SSE4_1__) + __forceinline Vec3fa mini(const Vec3fa& a, const Vec3fa& b) { + const vint4 ai = _mm_castps_si128(a); + const vint4 bi = _mm_castps_si128(b); + const vint4 ci = _mm_min_epi32(ai,bi); + return _mm_castsi128_ps(ci); + } +#endif + +#if defined(__SSE4_1__) + __forceinline Vec3fa maxi(const Vec3fa& a, const Vec3fa& b) { + const vint4 ai = _mm_castps_si128(a); + const vint4 bi = _mm_castps_si128(b); + const vint4 ci = _mm_max_epi32(ai,bi); + return _mm_castsi128_ps(ci); + } +#endif +*/ + __forceinline Vec3fa pow ( const Vec3fa& a, const float& b ) { + return Vec3fa(powf(a.x,b),powf(a.y,b),powf(a.z,b)); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Ternary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa madd ( const Vec3fa& a, const Vec3fa& b, const Vec3fa& c) { return Vec3fa(madd(a.x,b.x,c.x), madd(a.y,b.y,c.y), madd(a.z,b.z,c.z)); } + __forceinline Vec3fa msub ( const Vec3fa& a, const Vec3fa& b, const Vec3fa& c) { return Vec3fa(msub(a.x,b.x,c.x), msub(a.y,b.y,c.y), msub(a.z,b.z,c.z)); } + __forceinline Vec3fa nmadd ( const Vec3fa& a, const Vec3fa& b, const Vec3fa& c) { return Vec3fa(nmadd(a.x,b.x,c.x), nmadd(a.y,b.y,c.y), nmadd(a.z,b.z,c.z)); } + __forceinline Vec3fa nmsub ( const Vec3fa& a, const Vec3fa& b, const Vec3fa& c) { return Vec3fa(nmsub(a.x,b.x,c.x), nmsub(a.y,b.y,c.y), nmsub(a.z,b.z,c.z)); } + + __forceinline Vec3fa madd ( const float a, const Vec3fa& b, const Vec3fa& c) { return madd(Vec3fa(a),b,c); } + __forceinline Vec3fa msub ( const float a, const Vec3fa& b, const Vec3fa& c) { return msub(Vec3fa(a),b,c); } + __forceinline Vec3fa nmadd ( const float a, const Vec3fa& b, const Vec3fa& c) { return nmadd(Vec3fa(a),b,c); } + __forceinline Vec3fa nmsub ( const float a, const Vec3fa& b, const Vec3fa& c) { return nmsub(Vec3fa(a),b,c); } + + //////////////////////////////////////////////////////////////////////////////// + /// Assignment Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa& operator +=( Vec3fa& a, const Vec3fa& b ) { return a = a + b; } + __forceinline Vec3fa& operator -=( Vec3fa& a, const Vec3fa& b ) { return a = a - b; } + __forceinline Vec3fa& operator *=( Vec3fa& a, const Vec3fa& b ) { return a = a * b; } + __forceinline Vec3fa& operator *=( Vec3fa& a, const float b ) { return a = a * b; } + __forceinline Vec3fa& operator /=( Vec3fa& a, const Vec3fa& b ) { return a = a / b; } + __forceinline Vec3fa& operator /=( Vec3fa& a, const float b ) { return a = a / b; } + + //////////////////////////////////////////////////////////////////////////////// + /// Reductions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float reduce_add(const Vec3fa& v) { return v.x+v.y+v.z; } + __forceinline float reduce_mul(const Vec3fa& v) { return v.x*v.y*v.z; } + __forceinline float reduce_min(const Vec3fa& v) { return sycl::fmin(sycl::fmin(v.x,v.y),v.z); } + __forceinline float reduce_max(const Vec3fa& v) { return sycl::fmax(sycl::fmax(v.x,v.y),v.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool operator ==( const Vec3fa& a, const Vec3fa& b ) { return a.x == b.x && a.y == b.y && a.z == b.z; } + __forceinline bool operator !=( const Vec3fa& a, const Vec3fa& b ) { return a.x != b.x || a.y != b.y || a.z != b.z; } + + __forceinline Vec3ba eq_mask( const Vec3fa& a, const Vec3fa& b ) { return Vec3ba(a.x == b.x, a.y == b.y, a.z == b.z); } + __forceinline Vec3ba neq_mask(const Vec3fa& a, const Vec3fa& b ) { return Vec3ba(a.x != b.x, a.y != b.y, a.z != b.z); } + __forceinline Vec3ba lt_mask( const Vec3fa& a, const Vec3fa& b ) { return Vec3ba(a.x < b.x, a.y < b.y, a.z < b.z); } + __forceinline Vec3ba le_mask( const Vec3fa& a, const Vec3fa& b ) { return Vec3ba(a.x <= b.x, a.y <= b.y, a.z <= b.z); } + __forceinline Vec3ba gt_mask( const Vec3fa& a, const Vec3fa& b ) { return Vec3ba(a.x > b.x, a.y > b.y, a.z > b.z); } + __forceinline Vec3ba ge_mask( const Vec3fa& a, const Vec3fa& b ) { return Vec3ba(a.x >= b.x, a.y >= b.y, a.z >= b.z); } + + __forceinline bool isvalid ( const Vec3fa& v ) { + return all(gt_mask(v,Vec3fa(-FLT_LARGE)) & lt_mask(v,Vec3fa(+FLT_LARGE))); + } + + __forceinline bool is_finite ( const Vec3fa& a ) { + return all(ge_mask(a,Vec3fa(-FLT_MAX)) & le_mask(a,Vec3fa(+FLT_MAX))); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Euclidian Space Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float dot ( const Vec3fa& a, const Vec3fa& b ) { + return reduce_add(a*b); + } + + __forceinline Vec3fa cross ( const Vec3fa& a, const Vec3fa& b ) { + return Vec3fa(msub(a.y,b.z,a.z*b.y), msub(a.z,b.x,a.x*b.z), msub(a.x,b.y,a.y*b.x)); + } + + __forceinline float sqr_length ( const Vec3fa& a ) { return dot(a,a); } + __forceinline float rcp_length ( const Vec3fa& a ) { return rsqrt(dot(a,a)); } + __forceinline float rcp_length2( const Vec3fa& a ) { return rcp(dot(a,a)); } + __forceinline float length ( const Vec3fa& a ) { return sqrt(dot(a,a)); } + __forceinline Vec3fa normalize( const Vec3fa& a ) { return a*rsqrt(dot(a,a)); } + __forceinline float distance ( const Vec3fa& a, const Vec3fa& b ) { return length(a-b); } + __forceinline float halfArea ( const Vec3fa& d ) { return madd(d.x,(d.y+d.z),d.y*d.z); } + __forceinline float area ( const Vec3fa& d ) { return 2.0f*halfArea(d); } + + __forceinline Vec3fa normalize_safe( const Vec3fa& a ) { + const float d = dot(a,a); if (unlikely(d == 0.0f)) return a; else return a*rsqrt(d); + } + + /*! differentiated normalization */ + __forceinline Vec3fa dnormalize(const Vec3fa& p, const Vec3fa& dp) + { + const float pp = dot(p,p); + const float pdp = dot(p,dp); + return (pp*dp-pdp*p)*rcp(pp)*rsqrt(pp); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa select( bool s, const Vec3fa& t, const Vec3fa& f ) { + return Vec3fa(s ? t.x : f.x, s ? t.y : f.y, s ? t.z : f.z); + } + + __forceinline Vec3fa select( const Vec3ba& s, const Vec3fa& t, const Vec3fa& f ) { + return Vec3fa(s.x ? t.x : f.x, s.y ? t.y : f.y, s.z ? t.z : f.z); + } + + __forceinline Vec3fa lerp(const Vec3fa& v0, const Vec3fa& v1, const float t) { + return madd(1.0f-t,v0,t*v1); + } + + __forceinline int maxDim ( const Vec3fa& a ) + { + const Vec3fa b = abs(a); + if (b.x > b.y) { + if (b.x > b.z) return 0; else return 2; + } else { + if (b.y > b.z) return 1; else return 2; + } + } + + //////////////////////////////////////////////////////////////////////////////// + /// Rounding Functions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fa trunc( const Vec3fa& a ) { return Vec3fa(sycl::trunc(a.x),sycl::trunc(a.y),sycl::trunc(a.z)); } + __forceinline Vec3fa floor( const Vec3fa& a ) { return Vec3fa(sycl::floor(a.x),sycl::floor(a.y),sycl::floor(a.z)); } + __forceinline Vec3fa ceil ( const Vec3fa& a ) { return Vec3fa(sycl::ceil (a.x),sycl::ceil (a.y),sycl::ceil (a.z)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Output Operators + //////////////////////////////////////////////////////////////////////////////// + + inline embree_ostream operator<<(embree_ostream cout, const Vec3fa& a) { + return cout << "(" << a.x << ", " << a.y << ", " << a.z << ")"; + } + + __forceinline Vec2fa::Vec2fa(const Vec3fa& a) + : x(a.x), y(a.y) {} + + __forceinline Vec3ia::Vec3ia( const Vec3fa& a ) + : x((int)a.x), y((int)a.y), z((int)a.z) {} + + typedef Vec3fa Vec3fa_t; + + + + //////////////////////////////////////////////////////////////////////////////// + /// SSE Vec3fx Type + //////////////////////////////////////////////////////////////////////////////// + + struct __aligned(16) Vec3fx + { + //ALIGNED_STRUCT_(16); + + typedef float Scalar; + enum { N = 3 }; + struct { float x,y,z; union { int a; unsigned u; float w; }; }; + + //////////////////////////////////////////////////////////////////////////////// + /// Constructors, Assignment & Cast Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx( ) {} + //__forceinline Vec3fx( const __m128 a ) : m128(a) {} + __forceinline explicit Vec3fx(const vfloat4& a) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {} + + __forceinline explicit Vec3fx(const Vec3fa& v) : x(v.x), y(v.y), z(v.z), w(0.0f) {} + __forceinline operator Vec3fa() const { return Vec3fa(x,y,z); } + + __forceinline explicit Vec3fx ( const Vec3<float>& other ) { x = other.x; y = other.y; z = other.z; } + //__forceinline Vec3fx& operator =( const Vec3<float>& other ) { x = other.x; y = other.y; z = other.z; return *this; } + + //__forceinline Vec3fx ( const Vec3fx& other ) { *(sycl::float4*)this = *(const sycl::float4*)&other; } + //__forceinline Vec3fx& operator =( const Vec3fx& other ) { *(sycl::float4*)this = *(const sycl::float4*)&other; return *this; } + + __forceinline explicit Vec3fx( const float a ) : x(a), y(a), z(a), w(a) {} + __forceinline Vec3fx( const float x, const float y, const float z) : x(x), y(y), z(z), w(z) {} + + __forceinline Vec3fx( const Vec3fa& other, const int a1) : x(other.x), y(other.y), z(other.z), a(a1) {} + __forceinline Vec3fx( const Vec3fa& other, const unsigned a1) : x(other.x), y(other.y), z(other.z), u(a1) {} + __forceinline Vec3fx( const Vec3fa& other, const float w1) : x(other.x), y(other.y), z(other.z), w(w1) {} + + //__forceinline Vec3fx( const float x, const float y, const float z, const int a) : x(x), y(y), z(z), a(a) {} // not working properly! + //__forceinline Vec3fx( const float x, const float y, const float z, const unsigned a) : x(x), y(y), z(z), u(a) {} // not working properly! + __forceinline Vec3fx( const float x, const float y, const float z, const float w) : x(x), y(y), z(z), w(w) {} + + __forceinline explicit Vec3fx( const Vec3ia& a ) : x((float)a.x), y((float)a.y), z((float)a.z), w(0.0f) {} + + //__forceinline operator const __m128&() const { return m128; } + //__forceinline operator __m128&() { return m128; } + __forceinline operator vfloat4() const { return vfloat4(x,y,z,w); } + + //friend __forceinline Vec3fx copy_a( const Vec3fx& a, const Vec3fx& b ) { Vec3fx c = a; c.a = b.a; return c; } + + //////////////////////////////////////////////////////////////////////////////// + /// Loads and Stores + //////////////////////////////////////////////////////////////////////////////// + + static __forceinline Vec3fx load( const void* const a ) { + const float* ptr = (const float*)a; + return Vec3fx(ptr[0],ptr[1],ptr[2],ptr[3]); + } + + static __forceinline Vec3fx loadu( const void* const a ) { + const float* ptr = (const float*)a; + return Vec3fx(ptr[0],ptr[1],ptr[2],ptr[3]); + } + + static __forceinline void storeu ( void* a, const Vec3fx& v ) { + float* ptr = (float*)a; + ptr[0] = v.x; ptr[1] = v.y; ptr[2] = v.z; ptr[3] = v.w; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx( ZeroTy ) : x(0.0f), y(0.0f), z(0.0f), w(0.0f) {} + __forceinline Vec3fx( OneTy ) : x(1.0f), y(1.0f), z(1.0f), w(1.0f) {} + __forceinline Vec3fx( PosInfTy ) : x(+INFINITY), y(+INFINITY), z(+INFINITY), w(+INFINITY) {} + __forceinline Vec3fx( NegInfTy ) : x(-INFINITY), y(-INFINITY), z(-INFINITY), w(-INFINITY) {} + + //////////////////////////////////////////////////////////////////////////////// + /// Array Access + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const float& operator []( const size_t index ) const { assert(index < 3); return (&x)[index]; } + __forceinline float& operator []( const size_t index ) { assert(index < 3); return (&x)[index]; } + }; + + //////////////////////////////////////////////////////////////////////////////// + /// Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx operator +( const Vec3fx& a ) { return a; } + __forceinline Vec3fx operator -( const Vec3fx& a ) { return Vec3fx(-a.x,-a.y,-a.z,-a.w); } + __forceinline Vec3fx abs ( const Vec3fx& a ) { return Vec3fx(sycl::fabs(a.x),sycl::fabs(a.y),sycl::fabs(a.z),sycl::fabs(a.w)); } + __forceinline Vec3fx sign ( const Vec3fx& a ) { return Vec3fx(sycl::sign(a.x),sycl::sign(a.y),sycl::sign(a.z),sycl::sign(a.z)); } + + //__forceinline Vec3fx rcp ( const Vec3fx& a ) { return Vec3fx(sycl::recip(a.x),sycl::recip(a.y),sycl::recip(a.z)); } + __forceinline Vec3fx rcp ( const Vec3fx& a ) { return Vec3fx(__sycl_std::__invoke_native_recip<float>(a.x),__sycl_std::__invoke_native_recip<float>(a.y),__sycl_std::__invoke_native_recip<float>(a.z),__sycl_std::__invoke_native_recip<float>(a.w)); } + __forceinline Vec3fx sqrt ( const Vec3fx& a ) { return Vec3fx(sycl::sqrt(a.x),sycl::sqrt(a.y),sycl::sqrt(a.z),sycl::sqrt(a.w)); } + __forceinline Vec3fx sqr ( const Vec3fx& a ) { return Vec3fx(a.x*a.x,a.y*a.y,a.z*a.z,a.w*a.w); } + + __forceinline Vec3fx rsqrt( const Vec3fx& a ) { return Vec3fx(sycl::rsqrt(a.x),sycl::rsqrt(a.y),sycl::rsqrt(a.z),sycl::rsqrt(a.w)); } + + __forceinline Vec3fx zero_fix(const Vec3fx& a) { + const float x = sycl::fabs(a.x) < min_rcp_input ? min_rcp_input : a.x; + const float y = sycl::fabs(a.y) < min_rcp_input ? min_rcp_input : a.y; + const float z = sycl::fabs(a.z) < min_rcp_input ? min_rcp_input : a.z; + return Vec3fx(x,y,z); + } + __forceinline Vec3fx rcp_safe(const Vec3fx& a) { + return rcp(zero_fix(a)); + } + __forceinline Vec3fx log ( const Vec3fx& a ) { + return Vec3fx(sycl::log(a.x),sycl::log(a.y),sycl::log(a.z)); + } + + __forceinline Vec3fx exp ( const Vec3fx& a ) { + return Vec3fx(sycl::exp(a.x),sycl::exp(a.y),sycl::exp(a.z)); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx operator +( const Vec3fx& a, const Vec3fx& b ) { return Vec3fx(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } + __forceinline Vec3fx operator -( const Vec3fx& a, const Vec3fx& b ) { return Vec3fx(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); } + __forceinline Vec3fx operator *( const Vec3fx& a, const Vec3fx& b ) { return Vec3fx(a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w); } + __forceinline Vec3fx operator *( const Vec3fx& a, const float b ) { return a * Vec3fx(b); } + __forceinline Vec3fx operator *( const float a, const Vec3fx& b ) { return Vec3fx(a) * b; } + __forceinline Vec3fx operator /( const Vec3fx& a, const Vec3fx& b ) { return Vec3fx(a.x/b.x, a.y/b.y, a.z/b.z, a.w/b.w); } + __forceinline Vec3fx operator /( const Vec3fx& a, const float b ) { return Vec3fx(a.x/b, a.y/b, a.z/b, a.w/b); } + __forceinline Vec3fx operator /( const float a, const Vec3fx& b ) { return Vec3fx(a/b.x, a/b.y, a/b.z, a/b.w); } + + __forceinline Vec3fx min( const Vec3fx& a, const Vec3fx& b ) { + return Vec3fx(sycl::fmin(a.x,b.x), sycl::fmin(a.y,b.y), sycl::fmin(a.z,b.z), sycl::fmin(a.w,b.w)); + } + __forceinline Vec3fx max( const Vec3fx& a, const Vec3fx& b ) { + return Vec3fx(sycl::fmax(a.x,b.x), sycl::fmax(a.y,b.y), sycl::fmax(a.z,b.z), sycl::fmax(a.w,b.w)); + } + +/* +#if defined(__SSE4_1__) + __forceinline Vec3fx mini(const Vec3fx& a, const Vec3fx& b) { + const vint4 ai = _mm_castps_si128(a); + const vint4 bi = _mm_castps_si128(b); + const vint4 ci = _mm_min_epi32(ai,bi); + return _mm_castsi128_ps(ci); + } +#endif + +#if defined(__SSE4_1__) + __forceinline Vec3fx maxi(const Vec3fx& a, const Vec3fx& b) { + const vint4 ai = _mm_castps_si128(a); + const vint4 bi = _mm_castps_si128(b); + const vint4 ci = _mm_max_epi32(ai,bi); + return _mm_castsi128_ps(ci); + } +#endif + + __forceinline Vec3fx pow ( const Vec3fx& a, const float& b ) { + return Vec3fx(powf(a.x,b),powf(a.y,b),powf(a.z,b)); + } +*/ + + //////////////////////////////////////////////////////////////////////////////// + /// Ternary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx madd ( const Vec3fx& a, const Vec3fx& b, const Vec3fx& c) { return Vec3fx(madd(a.x,b.x,c.x), madd(a.y,b.y,c.y), madd(a.z,b.z,c.z), madd(a.w,b.w,c.w)); } + __forceinline Vec3fx msub ( const Vec3fx& a, const Vec3fx& b, const Vec3fx& c) { return Vec3fx(msub(a.x,b.x,c.x), msub(a.y,b.y,c.y), msub(a.z,b.z,c.z), msub(a.w,b.w,c.w)); } + __forceinline Vec3fx nmadd ( const Vec3fx& a, const Vec3fx& b, const Vec3fx& c) { return Vec3fx(nmadd(a.x,b.x,c.x), nmadd(a.y,b.y,c.y), nmadd(a.z,b.z,c.z), nmadd(a.w,b.w,c.w)); } + __forceinline Vec3fx nmsub ( const Vec3fx& a, const Vec3fx& b, const Vec3fx& c) { return Vec3fx(nmsub(a.x,b.x,c.x), nmsub(a.y,b.y,c.y), nmsub(a.z,b.z,c.z), nmsub(a.w,b.w,c.w)); } + + __forceinline Vec3fx madd ( const float a, const Vec3fx& b, const Vec3fx& c) { return madd(Vec3fx(a),b,c); } + __forceinline Vec3fx msub ( const float a, const Vec3fx& b, const Vec3fx& c) { return msub(Vec3fx(a),b,c); } + __forceinline Vec3fx nmadd ( const float a, const Vec3fx& b, const Vec3fx& c) { return nmadd(Vec3fx(a),b,c); } + __forceinline Vec3fx nmsub ( const float a, const Vec3fx& b, const Vec3fx& c) { return nmsub(Vec3fx(a),b,c); } + + //////////////////////////////////////////////////////////////////////////////// + /// Assignment Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx& operator +=( Vec3fx& a, const Vec3fx& b ) { return a = a + b; } + __forceinline Vec3fx& operator -=( Vec3fx& a, const Vec3fx& b ) { return a = a - b; } + __forceinline Vec3fx& operator *=( Vec3fx& a, const Vec3fx& b ) { return a = a * b; } + __forceinline Vec3fx& operator *=( Vec3fx& a, const float b ) { return a = a * b; } + __forceinline Vec3fx& operator /=( Vec3fx& a, const Vec3fx& b ) { return a = a / b; } + __forceinline Vec3fx& operator /=( Vec3fx& a, const float b ) { return a = a / b; } + + //////////////////////////////////////////////////////////////////////////////// + /// Reductions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float reduce_add(const Vec3fx& v) { return v.x+v.y+v.z; } + __forceinline float reduce_mul(const Vec3fx& v) { return v.x*v.y*v.z; } + __forceinline float reduce_min(const Vec3fx& v) { return sycl::fmin(sycl::fmin(v.x,v.y),v.z); } + __forceinline float reduce_max(const Vec3fx& v) { return sycl::fmax(sycl::fmax(v.x,v.y),v.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool operator ==( const Vec3fx& a, const Vec3fx& b ) { return a.x == b.x && a.y == b.y && a.z == b.z; } + __forceinline bool operator !=( const Vec3fx& a, const Vec3fx& b ) { return a.x != b.x || a.y != b.y || a.z != b.z; } + + __forceinline Vec3ba eq_mask( const Vec3fx& a, const Vec3fx& b ) { return Vec3ba(a.x == b.x, a.y == b.y, a.z == b.z); } + __forceinline Vec3ba neq_mask(const Vec3fx& a, const Vec3fx& b ) { return Vec3ba(a.x != b.x, a.y != b.y, a.z != b.z); } + __forceinline Vec3ba lt_mask( const Vec3fx& a, const Vec3fx& b ) { return Vec3ba(a.x < b.x, a.y < b.y, a.z < b.z); } + __forceinline Vec3ba le_mask( const Vec3fx& a, const Vec3fx& b ) { return Vec3ba(a.x <= b.x, a.y <= b.y, a.z <= b.z); } + __forceinline Vec3ba gt_mask( const Vec3fx& a, const Vec3fx& b ) { return Vec3ba(a.x > b.x, a.y > b.y, a.z > b.z); } + __forceinline Vec3ba ge_mask( const Vec3fx& a, const Vec3fx& b ) { return Vec3ba(a.x >= b.x, a.y >= b.y, a.z >= b.z); } + + __forceinline bool isvalid ( const Vec3fx& v ) { + return all(gt_mask(v,Vec3fx(-FLT_LARGE)) & lt_mask(v,Vec3fx(+FLT_LARGE))); + } + + __forceinline bool is_finite ( const Vec3fx& a ) { + return all(ge_mask(a,Vec3fx(-FLT_MAX)) & le_mask(a,Vec3fx(+FLT_MAX))); + } + + __forceinline bool isvalid4 ( const Vec3fx& v ) { + const bool valid_x = v.x >= -FLT_LARGE & v.x <= +FLT_LARGE; + const bool valid_y = v.y >= -FLT_LARGE & v.y <= +FLT_LARGE; + const bool valid_z = v.z >= -FLT_LARGE & v.z <= +FLT_LARGE; + const bool valid_w = v.w >= -FLT_LARGE & v.w <= +FLT_LARGE; + return valid_x & valid_y & valid_z & valid_w; + } + + __forceinline bool is_finite4 ( const Vec3fx& v ) { + const bool finite_x = v.x >= -FLT_MAX & v.x <= +FLT_MAX; + const bool finite_y = v.y >= -FLT_MAX & v.y <= +FLT_MAX; + const bool finite_z = v.z >= -FLT_MAX & v.z <= +FLT_MAX; + const bool finite_w = v.w >= -FLT_MAX & v.w <= +FLT_MAX; + return finite_x & finite_y & finite_z & finite_w; + } + + //////////////////////////////////////////////////////////////////////////////// + /// Euclidian Space Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline float dot ( const Vec3fx& a, const Vec3fx& b ) { + return reduce_add(a*b); + } + + __forceinline Vec3fx cross ( const Vec3fx& a, const Vec3fx& b ) { + return Vec3fx(msub(a.y,b.z,a.z*b.y), msub(a.z,b.x,a.x*b.z), msub(a.x,b.y,a.y*b.x)); + } + + __forceinline float sqr_length ( const Vec3fx& a ) { return dot(a,a); } + __forceinline float rcp_length ( const Vec3fx& a ) { return rsqrt(dot(a,a)); } + __forceinline float rcp_length2( const Vec3fx& a ) { return rcp(dot(a,a)); } + __forceinline float length ( const Vec3fx& a ) { return sqrt(dot(a,a)); } + __forceinline Vec3fx normalize( const Vec3fx& a ) { return a*rsqrt(dot(a,a)); } + __forceinline float distance ( const Vec3fx& a, const Vec3fx& b ) { return length(a-b); } + __forceinline float halfArea ( const Vec3fx& d ) { return madd(d.x,(d.y+d.z),d.y*d.z); } + __forceinline float area ( const Vec3fx& d ) { return 2.0f*halfArea(d); } + + __forceinline Vec3fx normalize_safe( const Vec3fx& a ) { + const float d = dot(a,a); if (unlikely(d == 0.0f)) return a; else return a*rsqrt(d); + } + + /*! differentiated normalization */ + __forceinline Vec3fx dnormalize(const Vec3fx& p, const Vec3fx& dp) + { + const float pp = dot(p,p); + const float pdp = dot(p,dp); + return (pp*dp-pdp*p)*rcp(pp)*rsqrt(pp); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx select( bool s, const Vec3fx& t, const Vec3fx& f ) { + return Vec3fx(s ? t.x : f.x, s ? t.y : f.y, s ? t.z : f.z, s ? t.w : f.w); + } + + __forceinline Vec3fx select( const Vec3ba& s, const Vec3fx& t, const Vec3fx& f ) { + return Vec3fx(s.x ? t.x : f.x, s.y ? t.y : f.y, s.z ? t.z : f.z); + } + + __forceinline Vec3fx lerp(const Vec3fx& v0, const Vec3fx& v1, const float t) { + return madd(1.0f-t,v0,t*v1); + } + + __forceinline int maxDim ( const Vec3fx& a ) + { + const Vec3fx b = abs(a); + if (b.x > b.y) { + if (b.x > b.z) return 0; else return 2; + } else { + if (b.y > b.z) return 1; else return 2; + } + } + + //////////////////////////////////////////////////////////////////////////////// + /// Rounding Functions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3fx trunc( const Vec3fx& a ) { return Vec3fx(sycl::trunc(a.x),sycl::trunc(a.y),sycl::trunc(a.z),sycl::trunc(a.w)); } + __forceinline Vec3fx floor( const Vec3fx& a ) { return Vec3fx(sycl::floor(a.x),sycl::floor(a.y),sycl::floor(a.z),sycl::floor(a.w)); } + __forceinline Vec3fx ceil ( const Vec3fx& a ) { return Vec3fx(sycl::ceil (a.x),sycl::ceil (a.y),sycl::ceil (a.z),sycl::ceil (a.w)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Output Operators + //////////////////////////////////////////////////////////////////////////////// + + inline embree_ostream operator<<(embree_ostream cout, const Vec3fx& a) { + return cout << "(" << a.x << ", " << a.y << ", " << a.z << "," << a.w << ")"; + } + + typedef Vec3fx Vec3ff; + + //__forceinline Vec2fa::Vec2fa(const Vec3fx& a) + // : x(a.x), y(a.y) {} + + //__forceinline Vec3ia::Vec3ia( const Vec3fx& a ) + // : x((int)a.x), y((int)a.y), z((int)a.z) {} +} diff --git a/thirdparty/embree/common/math/vec3ia.h b/thirdparty/embree/common/math/vec3ia.h index d4cc3125cd..1472fe9135 100644 --- a/thirdparty/embree/common/math/vec3ia.h +++ b/thirdparty/embree/common/math/vec3ia.h @@ -4,7 +4,12 @@ #pragma once #include "../sys/alloc.h" -#include "math.h" +#include "emath.h" + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +# include "vec3ia_sycl.h" +#else + #include "../simd/sse.h" namespace embree @@ -194,3 +199,5 @@ namespace embree return cout << "(" << a.x << ", " << a.y << ", " << a.z << ")"; } } + +#endif diff --git a/thirdparty/embree/common/math/vec3ia_sycl.h b/thirdparty/embree/common/math/vec3ia_sycl.h new file mode 100644 index 0000000000..5a3d396373 --- /dev/null +++ b/thirdparty/embree/common/math/vec3ia_sycl.h @@ -0,0 +1,178 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../sys/alloc.h" +#include "emath.h" +#include "../simd/sse.h" + +namespace embree +{ + //////////////////////////////////////////////////////////////////////////////// + /// SSE Vec3ia Type + //////////////////////////////////////////////////////////////////////////////// + + struct __aligned(16) Vec3ia + { + ALIGNED_STRUCT_(16); + + struct { int x,y,z; }; + + typedef int Scalar; + enum { N = 3 }; + + //////////////////////////////////////////////////////////////////////////////// + /// Constructors, Assignment & Cast Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ia( ) {} + //__forceinline Vec3ia( const __m128i a ) : m128(a) {} + + __forceinline Vec3ia( const Vec3ia& other ) : x(other.x), y(other.y), z(other.z) {} + __forceinline Vec3ia& operator =(const Vec3ia& other) { x = other.x; y = other.y; z = other.z; return *this; } + + __forceinline explicit Vec3ia( const int a ) : x(a), y(a), z(a) {} + __forceinline Vec3ia( const int x, const int y, const int z) : x(x), y(y), z(z) {} + //__forceinline explicit Vec3ia( const __m128 a ) : m128(_mm_cvtps_epi32(a)) {} + __forceinline explicit Vec3ia(const vint4& a) : x(a[0]), y(a[1]), z(a[2]) {} + + __forceinline explicit Vec3ia( const Vec3fa& a ); + + //__forceinline operator const __m128i&() const { return m128; } + //__forceinline operator __m128i&() { return m128; } + __forceinline operator vint4() const { return vint4(x,y,z,z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ia( ZeroTy ) : x(0), y(0), z(0) {} + __forceinline Vec3ia( OneTy ) : x(1), y(1), z(1) {} + __forceinline Vec3ia( PosInfTy ) : x(0x7FFFFFFF), y(0x7FFFFFFF), z(0x7FFFFFFF) {} + __forceinline Vec3ia( NegInfTy ) : x(0x80000000), y(0x80000000), z(0x80000000) {} + + //////////////////////////////////////////////////////////////////////////////// + /// Array Access + //////////////////////////////////////////////////////////////////////////////// + + __forceinline const int& operator []( const size_t index ) const { assert(index < 3); return (&x)[index]; } + __forceinline int& operator []( const size_t index ) { assert(index < 3); return (&x)[index]; } + }; + + + //////////////////////////////////////////////////////////////////////////////// + /// Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ia operator +( const Vec3ia& a ) { return Vec3ia(+a.x,+a.y,+a.z); } + __forceinline Vec3ia operator -( const Vec3ia& a ) { return Vec3ia(-a.x,-a.y,-a.z); } + __forceinline Vec3ia abs ( const Vec3ia& a ) { return Vec3ia(sycl::abs(a.x),sycl::abs(a.y),sycl::abs(a.z)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ia operator +( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(a.x+b.x, a.y+b.y, a.z+b.z); } + __forceinline Vec3ia operator +( const Vec3ia& a, const int b ) { return a+Vec3ia(b); } + __forceinline Vec3ia operator +( const int a, const Vec3ia& b ) { return Vec3ia(a)+b; } + + __forceinline Vec3ia operator -( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(a.x-b.x, a.y-b.y, a.z-b.z); } + __forceinline Vec3ia operator -( const Vec3ia& a, const int b ) { return a-Vec3ia(b); } + __forceinline Vec3ia operator -( const int a, const Vec3ia& b ) { return Vec3ia(a)-b; } + + __forceinline Vec3ia operator *( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(a.x*b.x, a.y*b.y, a.z*b.z); } + __forceinline Vec3ia operator *( const Vec3ia& a, const int b ) { return a * Vec3ia(b); } + __forceinline Vec3ia operator *( const int a, const Vec3ia& b ) { return Vec3ia(a) * b; } + + __forceinline Vec3ia operator &( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(a.x&b.x, a.y&b.y, a.z&b.z); } + __forceinline Vec3ia operator &( const Vec3ia& a, const int b ) { return a & Vec3ia(b); } + __forceinline Vec3ia operator &( const int a, const Vec3ia& b ) { return Vec3ia(a) & b; } + + __forceinline Vec3ia operator |( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(a.x|b.x, a.y|b.y, a.z|b.z); } + __forceinline Vec3ia operator |( const Vec3ia& a, const int b ) { return a | Vec3ia(b); } + __forceinline Vec3ia operator |( const int a, const Vec3ia& b ) { return Vec3ia(a) | b; } + + __forceinline Vec3ia operator ^( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(a.x^b.x, a.y^b.y, a.z^b.z); } + __forceinline Vec3ia operator ^( const Vec3ia& a, const int b ) { return a ^ Vec3ia(b); } + __forceinline Vec3ia operator ^( const int a, const Vec3ia& b ) { return Vec3ia(a) ^ b; } + + __forceinline Vec3ia operator <<( const Vec3ia& a, const int n ) { return Vec3ia(a.x<<n, a.y<<n, a.z<<n); } + __forceinline Vec3ia operator >>( const Vec3ia& a, const int n ) { return Vec3ia(a.x>>n, a.y>>n, a.z>>n); } + + __forceinline Vec3ia sll ( const Vec3ia& a, const int b ) { return Vec3ia(a.x<<b, a.y<<b, a.z<<b); } + __forceinline Vec3ia sra ( const Vec3ia& a, const int b ) { return Vec3ia(a.x>>b, a.y>>b, a.z>>b); } + __forceinline Vec3ia srl ( const Vec3ia& a, const int b ) { return Vec3ia(unsigned(a.x)>>b, unsigned(a.y)>>b, unsigned(a.z)>>b); } + + //////////////////////////////////////////////////////////////////////////////// + /// Assignment Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ia& operator +=( Vec3ia& a, const Vec3ia& b ) { return a = a + b; } + __forceinline Vec3ia& operator +=( Vec3ia& a, const int& b ) { return a = a + b; } + + __forceinline Vec3ia& operator -=( Vec3ia& a, const Vec3ia& b ) { return a = a - b; } + __forceinline Vec3ia& operator -=( Vec3ia& a, const int& b ) { return a = a - b; } + + __forceinline Vec3ia& operator *=( Vec3ia& a, const Vec3ia& b ) { return a = a * b; } + __forceinline Vec3ia& operator *=( Vec3ia& a, const int& b ) { return a = a * b; } + + __forceinline Vec3ia& operator &=( Vec3ia& a, const Vec3ia& b ) { return a = a & b; } + __forceinline Vec3ia& operator &=( Vec3ia& a, const int& b ) { return a = a & b; } + + __forceinline Vec3ia& operator |=( Vec3ia& a, const Vec3ia& b ) { return a = a | b; } + __forceinline Vec3ia& operator |=( Vec3ia& a, const int& b ) { return a = a | b; } + + __forceinline Vec3ia& operator <<=( Vec3ia& a, const int& b ) { return a = a << b; } + __forceinline Vec3ia& operator >>=( Vec3ia& a, const int& b ) { return a = a >> b; } + + //////////////////////////////////////////////////////////////////////////////// + /// Reductions + //////////////////////////////////////////////////////////////////////////////// + + __forceinline int reduce_add(const Vec3ia& v) { return v.x+v.y+v.z; } + __forceinline int reduce_mul(const Vec3ia& v) { return v.x*v.y*v.z; } + __forceinline int reduce_min(const Vec3ia& v) { return sycl::min(sycl::min(v.x,v.y),v.z); } + __forceinline int reduce_max(const Vec3ia& v) { return sycl::max(sycl::max(v.x,v.y),v.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + __forceinline bool operator ==( const Vec3ia& a, const Vec3ia& b ) { return a.x == b.x & a.y == b.y & a.z == b.z; } + __forceinline bool operator !=( const Vec3ia& a, const Vec3ia& b ) { return a.x != b.x & a.y != b.y & a.z != b.z; } + +/* + __forceinline bool operator < ( const Vec3ia& a, const Vec3ia& b ) { + if (a.x != b.x) return a.x < b.x; + if (a.y != b.y) return a.y < b.y; + if (a.z != b.z) return a.z < b.z; + return false; + } +*/ + __forceinline Vec3ba eq_mask( const Vec3ia& a, const Vec3ia& b ) { return Vec3ba(a.x == b.x, a.y == b.y, a.z == b.z); } + __forceinline Vec3ba lt_mask( const Vec3ia& a, const Vec3ia& b ) { return Vec3ba(a.x < b.x, a.y < b.y, a.z < b.z); } + __forceinline Vec3ba gt_mask( const Vec3ia& a, const Vec3ia& b ) { return Vec3ba(a.x > b.x, a.y > b.y, a.z > b.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + __forceinline Vec3ia select( const Vec3ba& m, const Vec3ia& t, const Vec3ia& f ) { + const int x = m.x ? t.x : f.x; + const int y = m.y ? t.y : f.y; + const int z = m.z ? t.z : f.z; + return Vec3ia(x,y,z); + } + + __forceinline Vec3ia min( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(sycl::min(a.x,b.x), sycl::min(a.y,b.y), sycl::min(a.z,b.z)); } + __forceinline Vec3ia max( const Vec3ia& a, const Vec3ia& b ) { return Vec3ia(sycl::max(a.x,b.x), sycl::max(a.y,b.y), sycl::max(a.z,b.z)); } + + //////////////////////////////////////////////////////////////////////////////// + /// Output Operators + //////////////////////////////////////////////////////////////////////////////// + + inline embree_ostream operator<<(embree_ostream cout, const Vec3ia& a) { + return cout; + } +} diff --git a/thirdparty/embree/common/math/vec4.h b/thirdparty/embree/common/math/vec4.h index 10c53f47b4..5647859257 100644 --- a/thirdparty/embree/common/math/vec4.h +++ b/thirdparty/embree/common/math/vec4.h @@ -3,7 +3,7 @@ #pragma once -#include "math.h" +#include "emath.h" #include "vec3.h" namespace embree @@ -221,6 +221,8 @@ namespace embree { template<> __forceinline Vec4<float>::Vec4( const Vec3fx& a ) { x = a.x; y = a.y; z = a.z; w = a.w; } +#if !defined(__SYCL_DEVICE_ONLY__) + #if defined(__AVX__) template<> __forceinline Vec4<vfloat4>::Vec4( const Vec3fx& a ) { x = a.x; y = a.y; z = a.z; w = a.w; @@ -240,4 +242,25 @@ namespace embree #if defined(__AVX512F__) template<> __forceinline Vec4<vfloat16>::Vec4( const Vec3fx& a ) : x(a.x), y(a.y), z(a.z), w(a.w) {} #endif + +#else + +#if defined(__SSE__) + template<> __forceinline Vec4<vfloat4>::Vec4(const Vec3fx& a) { + x = a.x; y = a.y; z = a.z; w = a.w; + } +#endif +#if defined(__AVX__) + template<> __forceinline Vec4<vfloat8>::Vec4(const Vec3fx& a) { + x = a.x; y = a.y; z = a.z; w = a.w; + } +#endif +#if defined(__AVX512F__) + template<> __forceinline Vec4<vfloat16>::Vec4(const Vec3fx& a) { + x = a.x; y = a.y; z = a.z; w = a.w; + } +#endif + +#endif } + diff --git a/thirdparty/embree/common/simd/arm/emulation.h b/thirdparty/embree/common/simd/arm/emulation.h index 4327298019..8eea1ffe71 100644 --- a/thirdparty/embree/common/simd/arm/emulation.h +++ b/thirdparty/embree/common/simd/arm/emulation.h @@ -34,6 +34,7 @@ __forceinline __m128 _mm_broadcast_ss (float const * mem_addr) #define _MM_SET_EXCEPTION_MASK(x) // #define _MM_SET_FLUSH_ZERO_MODE(x) +/* __forceinline int _mm_getcsr() { return 0; @@ -43,6 +44,7 @@ __forceinline void _mm_mfence() { __sync_synchronize(); } +*/ __forceinline __m128i _mm_load4epu8_epi32(__m128i *ptr) { diff --git a/thirdparty/embree/common/simd/arm/sse2neon.h b/thirdparty/embree/common/simd/arm/sse2neon.h index 43416662d7..b18d41e783 100644 --- a/thirdparty/embree/common/simd/arm/sse2neon.h +++ b/thirdparty/embree/common/simd/arm/sse2neon.h @@ -4,8 +4,6 @@ // This header file provides a simple API translation layer // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions // -// This header file does not yet translate all of the SSE intrinsics. -// // Contributors to this work are: // John W. Ratcliff <jratcliffscarab@gmail.com> // Brandon Rowlett <browlett@nvidia.com> @@ -13,8 +11,8 @@ // Eric van Beurden <evanbeurden@nvidia.com> // Alexander Potylitsin <apotylitsin@nvidia.com> // Hasindu Gamaarachchi <hasindu2008@gmail.com> -// Jim Huang <jserv@biilabs.io> -// Mark Cheng <marktwtn@biilabs.io> +// Jim Huang <jserv@ccns.ncku.edu.tw> +// Mark Cheng <marktwtn@gmail.com> // Malcolm James MacLeod <malcolm@gulden.com> // Devin Hussey (easyaspi314) <husseydevin@gmail.com> // Sebastian Pop <spop@amazon.com> @@ -22,9 +20,12 @@ // Danila Kutenin <danilak@google.com> // François Turban (JishinMaster) <francois.turban@gmail.com> // Pei-Hsuan Hung <afcidk@gmail.com> -// Yang-Hao Yuan <yanghau@biilabs.io> +// Yang-Hao Yuan <yuanyanghau@gmail.com> // Syoyo Fujita <syoyo@lighttransport.com> // Brecht Van Lommel <brecht@blender.org> +// Jonathan Hue <jhue@adobe.com> +// Cuda Chen <clh960524@gmail.com> +// Aymen Qader <aymen.qader@arm.com> /* * sse2neon is freely redistributable under the MIT License. @@ -54,7 +55,7 @@ * This would slow down the computation a bit, but gives consistent result with * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result) */ -/* _mm_min_ps and _mm_max_ps */ +/* _mm_min|max_ps|ss|pd|sd */ #ifndef SSE2NEON_PRECISE_MINMAX #define SSE2NEON_PRECISE_MINMAX (0) #endif @@ -91,9 +92,61 @@ #define _sse2neon_unlikely(x) (x) #endif +/* C language does not allow initializing a variable with a function call. */ +#ifdef __cplusplus +#define _sse2neon_const static const +#else +#define _sse2neon_const const +#endif + #include <stdint.h> #include <stdlib.h> +#if defined(_WIN32) +/* Definitions for _mm_{malloc,free} are provided by <malloc.h> + * from both MinGW-w64 and MSVC. + */ +#define SSE2NEON_ALLOC_DEFINED +#endif + +/* If using MSVC */ +#ifdef _MSC_VER +#include <intrin.h> +#if (defined(_M_AMD64) || defined(__x86_64__)) || \ + (defined(_M_ARM) || defined(__arm__)) +#define SSE2NEON_HAS_BITSCAN64 +#endif +#endif + +/* Compiler barrier */ +#define SSE2NEON_BARRIER() \ + do { \ + __asm__ __volatile__("" ::: "memory"); \ + (void) 0; \ + } while (0) + +/* Memory barriers + * __atomic_thread_fence does not include a compiler barrier; instead, + * the barrier is part of __atomic_load/__atomic_store's "volatile-like" + * semantics. + */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +#include <stdatomic.h> +#endif + +FORCE_INLINE void _sse2neon_smp_mb(void) +{ + SSE2NEON_BARRIER(); +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ + !defined(__STDC_NO_ATOMICS__) + atomic_thread_fence(memory_order_seq_cst); +#elif defined(__GNUC__) || defined(__clang__) + __atomic_thread_fence(__ATOMIC_SEQ_CST); +#else + /* FIXME: MSVC support */ +#endif +} + /* Architecture-specific build options */ /* FIXME: #pragma GCC push_options is only available on GCC */ #if defined(__GNUC__) @@ -114,27 +167,70 @@ #pragma GCC push_options #pragma GCC target("+simd") #endif +#elif __ARM_ARCH == 8 +#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) +#error \ + "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." +#endif +#if !defined(__clang__) +#pragma GCC push_options +#endif #else #error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A." #endif #endif #include <arm_neon.h> +#if !defined(__aarch64__) && (__ARM_ARCH == 8) +#if defined __has_include && __has_include(<arm_acle.h>) +#include <arm_acle.h> +#endif +#endif + +/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD + * and other Arm microarchtectures use. + * From sysctl -a on Apple M1: + * hw.cachelinesize: 128 + */ +#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) +#define SSE2NEON_CACHELINE_SIZE 128 +#else +#define SSE2NEON_CACHELINE_SIZE 64 +#endif /* Rounding functions require either Aarch64 instructions or libm failback */ #if !defined(__aarch64__) #include <math.h> #endif +/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only + * or even not accessible in user mode. + * To write or access to these registers in user mode, + * we have to perform syscall instead. + */ +#if !defined(__aarch64__) +#include <sys/time.h> +#endif + /* "__has_builtin" can be used to query support for built-in functions * provided by gcc/clang and other compilers that support it. */ #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */ /* Compatibility with gcc <= 9 */ -#if __GNUC__ <= 9 +#if defined(__GNUC__) && (__GNUC__ <= 9) #define __has_builtin(x) HAS##x #define HAS__builtin_popcount 1 #define HAS__builtin_popcountll 1 + +// __builtin_shuffle introduced in GCC 4.7.0 +#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) +#define HAS__builtin_shuffle 1 +#else +#define HAS__builtin_shuffle 0 +#endif + +#define HAS__builtin_shufflevector 0 +#define HAS__builtin_nontemporal_store 0 #else #define __has_builtin(x) 0 #endif @@ -159,6 +255,26 @@ #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) +#if __has_builtin(__builtin_shufflevector) +#define _sse2neon_shuffle(type, a, b, ...) \ + __builtin_shufflevector(a, b, __VA_ARGS__) +#elif __has_builtin(__builtin_shuffle) +#define _sse2neon_shuffle(type, a, b, ...) \ + __extension__({ \ + type tmp = {__VA_ARGS__}; \ + __builtin_shuffle(a, b, tmp); \ + }) +#endif + +#ifdef _sse2neon_shuffle +#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) +#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) +#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) +#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) +#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) +#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) +#endif + /* Rounding mode macros. */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 @@ -166,6 +282,13 @@ #define _MM_FROUND_TO_ZERO 0x03 #define _MM_FROUND_CUR_DIRECTION 0x04 #define _MM_FROUND_NO_EXC 0x08 +#define _MM_FROUND_RAISE_EXC 0x00 +#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) #define _MM_ROUND_NEAREST 0x0000 #define _MM_ROUND_DOWN 0x2000 #define _MM_ROUND_UP 0x4000 @@ -198,10 +321,17 @@ typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */ #else typedef float32x4_t __m128d; #endif -// Note: upstream sse2neon declares __m128i as int64x2_t. However, there's -// many places within embree that assume __m128i can be indexed as a -// 4 element u32. -typedef int32x4_t __m128i; /* 128-bit vector containing integers */ +typedef int64x2_t __m128i; /* 128-bit vector containing integers */ + +// __int64 is defined in the Intrinsics Guide which maps to different datatype +// in different data model +#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) +#if (defined(__x86_64__) || defined(__i386__)) +#define __int64 long long +#else +#define __int64 int64_t +#endif +#endif /* type-safe casting between types */ @@ -233,28 +363,28 @@ typedef int32x4_t __m128i; /* 128-bit vector containing integers */ #define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x) #define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x) -#define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x) -#define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x) -#define vreinterpretq_m128i_s32(x) (x) -#define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x) +#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x) +#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x) +#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x) +#define vreinterpretq_m128i_s64(x) (x) -#define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x) -#define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x) -#define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x) -#define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x) +#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x) +#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x) +#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x) +#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x) -#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s32(x) -#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s32(x) +#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x) +#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x) -#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x) -#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x) -#define vreinterpretq_s32_m128i(x) (x) -#define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x) +#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x) +#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x) +#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x) +#define vreinterpretq_s64_m128i(x) (x) -#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x) -#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x) -#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x) -#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x) +#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x) +#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x) +#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x) +#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x) #define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x) #define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x) @@ -394,7 +524,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); // Older gcc does not define vld1q_u8_x4 type #if defined(__GNUC__) && !defined(__clang__) && \ - ((__GNUC__ <= 10 && defined(__arm__)) || \ + ((__GNUC__ <= 12 && defined(__arm__)) || \ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ (__GNUC__ <= 9 && defined(__aarch64__))) FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) @@ -414,6 +544,57 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) } #endif +#if !defined(__aarch64__) +/* emulate vaddv u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); + return vget_lane_u8(vreinterpret_u8_u64(v1), 0); +} +#else +// Wraps vaddv_u8 +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + return vaddv_u8(v8); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); + uint8_t res = 0; + for (int i = 0; i < 8; ++i) + res += tmp[i]; + return res; +} +#else +// Wraps vaddvq_u8 +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + return vaddvq_u8(a); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u16 variant */ +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + uint32x4_t m = vpaddlq_u16(a); + uint64x2_t n = vpaddlq_u32(m); + uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); + + return vget_lane_u32((uint32x2_t) o, 0); +} +#else +// Wraps vaddvq_u16 +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + return vaddvq_u16(a); +} +#endif + /* Function Naming Conventions * The naming convention of SSE intrinsics is straightforward. A generic SSE * intrinsic function is given as follows: @@ -491,16 +672,12 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) +------+------+------+------+------+------+-------------+ */ -/* Constants for use with _mm_prefetch. */ +/* Constants for use with _mm_prefetch. */ enum _mm_hint { - _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ - _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ - _MM_HINT_T1 = 2, /* load data to L2 cache only */ - _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ - _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */ - _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */ - _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */ - _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */ + _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ + _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ + _MM_HINT_T1 = 2, /* load data to L2 cache only */ + _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ }; // The bit field mapping to the FPCR(floating-point control register) @@ -661,7 +838,8 @@ FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y) *sum = t; } -#if defined(__ARM_FEATURE_CRYPTO) +#if defined(__ARM_FEATURE_CRYPTO) && \ + (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)) // Wraps vmull_p64 FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) { @@ -970,6 +1148,11 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) vreinterpretq_m128i_s16(ret); \ }) +/* MMX */ + +//_mm_empty is a no-op on arm +FORCE_INLINE void _mm_empty(void) {} + /* SSE */ // Adds the four single-precision, floating-point values of a and b. @@ -1035,7 +1218,7 @@ FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16( @@ -1050,7 +1233,7 @@ FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( @@ -1333,7 +1516,7 @@ FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) // dst[95:64] := a[95:64] // dst[127:96] := a[127:96] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1349,10 +1532,10 @@ FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpret_m64_s32( vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); #else @@ -1368,7 +1551,7 @@ FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) // dst[31:0] := Convert_Int32_To_FP32(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) { return vreinterpretq_m128_f32( @@ -1377,10 +1560,10 @@ FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si FORCE_INLINE int _mm_cvt_ss2si(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), 0); #else @@ -1399,7 +1582,7 @@ FORCE_INLINE int _mm_cvt_ss2si(__m128 a) // dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1415,7 +1598,7 @@ FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) // dst[95:64] := a[95:64] // dst[127:96] := a[127:96] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1425,7 +1608,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) // Convert packed signed 32-bit integers in a to packed single-precision // (32-bit) floating-point elements, store the results in the lower 2 elements -// of dst, then covert the packed signed 32-bit integers in b to +// of dst, then convert the packed signed 32-bit integers in b to // single-precision (32-bit) floating-point element, and store the results in // the upper 2 elements of dst. // @@ -1434,7 +1617,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) // dst[95:64] := Convert_Int32_To_FP32(b[31:0]) // dst[127:96] := Convert_Int32_To_FP32(b[63:32]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1450,7 +1633,7 @@ FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) // dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1472,23 +1655,11 @@ FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) { - const __m128 i16Min = _mm_set_ps1((float) INT16_MIN); - const __m128 i16Max = _mm_set_ps1((float) INT16_MAX); - const __m128 i32Max = _mm_set_ps1((float) INT32_MAX); - const __m128i maxMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpge_ps(a, i16Max), _mm_cmple_ps(a, i32Max))); - const __m128i betweenMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpgt_ps(a, i16Min), _mm_cmplt_ps(a, i16Max))); - const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask), - _mm_setzero_si128()); - __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT16_MAX)); - __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT16_MIN)); - __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a)); - __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt); - return vreinterpret_m64_s16(vmovn_s32(vreinterpretq_s32_m128i(res32))); + return vreinterpret_m64_s16( + vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); } // Convert packed single-precision (32-bit) floating-point elements in a to @@ -1499,7 +1670,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) // Convert packed single-precision (32-bit) floating-point elements in a to @@ -1517,28 +1688,11 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) { - const __m128 i8Min = _mm_set_ps1((float) INT8_MIN); - const __m128 i8Max = _mm_set_ps1((float) INT8_MAX); - const __m128 i32Max = _mm_set_ps1((float) INT32_MAX); - const __m128i maxMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpge_ps(a, i8Max), _mm_cmple_ps(a, i32Max))); - const __m128i betweenMask = _mm_castps_si128( - _mm_and_ps(_mm_cmpgt_ps(a, i8Min), _mm_cmplt_ps(a, i8Max))); - const __m128i minMask = _mm_cmpeq_epi32(_mm_or_si128(maxMask, betweenMask), - _mm_setzero_si128()); - __m128i max = _mm_and_si128(maxMask, _mm_set1_epi32(INT8_MAX)); - __m128i min = _mm_and_si128(minMask, _mm_set1_epi32(INT8_MIN)); - __m128i cvt = _mm_and_si128(betweenMask, _mm_cvtps_epi32(a)); - __m128i res32 = _mm_or_si128(_mm_or_si128(max, min), cvt); - int16x4_t res16 = vmovn_s32(vreinterpretq_s32_m128i(res32)); - int8x8_t res8 = vmovn_s16(vcombine_s16(res16, res16)); - uint32_t bitMask[2] = {0xFFFFFFFF, 0}; - int8x8_t mask = vreinterpret_s8_u32(vld1_u32(bitMask)); - - return vreinterpret_m64_s8(vorr_s8(vand_s8(mask, res8), vdup_n_s8(0))); + return vreinterpret_m64_s8(vqmovn_s16( + vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); } // Convert packed unsigned 16-bit integers in a to packed single-precision @@ -1550,7 +1704,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) // dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1567,7 +1721,7 @@ FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) // dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_u32( @@ -1581,7 +1735,7 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) // dst[31:0] := Convert_Int32_To_FP32(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) // Convert the signed 64-bit integer b to a single-precision (32-bit) @@ -1591,7 +1745,7 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) // dst[31:0] := Convert_Int64_To_FP32(b[63:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) { return vreinterpretq_m128_f32( @@ -1602,7 +1756,7 @@ FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) // // dst[31:0] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 FORCE_INLINE float _mm_cvtss_f32(__m128 a) { return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -1613,7 +1767,7 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a) // // dst[31:0] := Convert_FP32_To_Int32(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a @@ -1621,10 +1775,10 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a) // // dst[63:0] := Convert_FP32_To_Int64(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); #else float32_t data = vgetq_lane_f32( @@ -1641,7 +1795,7 @@ FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) { return vreinterpret_m64_s32( @@ -1653,7 +1807,7 @@ FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) // // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) { return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); @@ -1667,7 +1821,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) // Convert the lower single-precision (32-bit) floating-point element in a to a @@ -1675,7 +1829,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a @@ -1683,7 +1837,7 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // // dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) { return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -1725,21 +1879,23 @@ FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 #define _mm_extract_pi16(a, imm) \ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) // Free aligned memory that was allocated with _mm_malloc. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free +#if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void _mm_free(void *addr) { free(addr); } +#endif // Macro: Get the flush zero bits from the MXCSR control and status register. // The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or // _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() { union { @@ -1752,9 +1908,9 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF; @@ -1763,7 +1919,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() // Macro: Get the rounding mode bits from the MXCSR control and status register. // The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, // _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() { union { @@ -1776,9 +1932,9 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif if (r.field.bit22) { @@ -1790,7 +1946,7 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 #define _mm_insert_pi16(a, b, imm) \ __extension__({ \ vreinterpret_m64_s16( \ @@ -1812,7 +1968,7 @@ FORCE_INLINE __m128 _mm_load_ps(const float *p) // dst[95:64] := MEM[mem_addr+31:mem_addr] // dst[127:96] := MEM[mem_addr+31:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 #define _mm_load_ps1 _mm_load1_ps // Loads an single - precision, floating - point value into the low word and @@ -1873,7 +2029,7 @@ FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) // dst[95:64] := MEM[mem_addr+63:mem_addr+32] // dst[127:96] := MEM[mem_addr+31:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps FORCE_INLINE __m128 _mm_loadr_ps(const float *p) { float32x4_t v = vrev64q_f32(vld1q_f32(p)); @@ -1894,7 +2050,7 @@ FORCE_INLINE __m128 _mm_loadu_ps(const float *p) // dst[15:0] := MEM[mem_addr+15:mem_addr] // dst[MAX:16] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 FORCE_INLINE __m128i _mm_loadu_si16(const void *p) { return vreinterpretq_m128i_s16( @@ -1906,7 +2062,7 @@ FORCE_INLINE __m128i _mm_loadu_si16(const void *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[MAX:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 FORCE_INLINE __m128i _mm_loadu_si64(const void *p) { return vreinterpretq_m128i_s64( @@ -1916,6 +2072,7 @@ FORCE_INLINE __m128i _mm_loadu_si64(const void *p) // Allocate aligned blocks of memory. // https://software.intel.com/en-us/ // cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks +#if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void *_mm_malloc(size_t size, size_t align) { void *ptr; @@ -1927,11 +2084,12 @@ FORCE_INLINE void *_mm_malloc(size_t size, size_t align) return ptr; return NULL; } +#endif // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) { int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); @@ -1945,7 +2103,7 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq #define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) // Compare packed signed 16-bit integers in a and b, and store packed maximum @@ -1956,7 +2114,7 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) // dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -1971,7 +2129,7 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) #if SSE2NEON_PRECISE_MINMAX float32x4_t _a = vreinterpretq_f32_m128(a); float32x4_t _b = vreinterpretq_f32_m128(b); - return vbslq_f32(vcltq_f32(_b, _a), _a, _b); + return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b)); #else return vreinterpretq_m128_f32( vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); @@ -1986,7 +2144,7 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) // dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( @@ -2011,7 +2169,7 @@ FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) // dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -2026,7 +2184,7 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) #if SSE2NEON_PRECISE_MINMAX float32x4_t _a = vreinterpretq_f32_m128(a); float32x4_t _b = vreinterpretq_f32_m128(b); - return vbslq_f32(vcltq_f32(_a, _b), _a, _b); + return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b)); #else return vreinterpretq_m128_f32( vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); @@ -2041,7 +2199,7 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) // dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( @@ -2095,7 +2253,7 @@ FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 FORCE_INLINE int _mm_movemask_pi8(__m64 a) { uint8x8_t input = vreinterpret_u8_m64(a); @@ -2159,7 +2317,7 @@ FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) // dst[31:0] := a[31:0] * b[31:0] // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_mul_ps(a, b)); @@ -2168,7 +2326,7 @@ FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16(vshrn_n_u32( @@ -2192,7 +2350,7 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb #define _m_pavgb(a, b) _mm_avg_pu8(a, b) // Average packed unsigned 16-bit integers in a and b, and store the results in @@ -2203,74 +2361,87 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw #define _m_pavgw(a, b) _mm_avg_pu16(a, b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) // Compare packed signed 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw #define _m_pmaxsw(a, b) _mm_max_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub #define _m_pmaxub(a, b) _mm_max_pu8(a, b) // Compare packed signed 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw #define _m_pminsw(a, b) _mm_min_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub #define _m_pminub(a, b) _mm_min_pu8(a, b) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb #define _m_pmovmskb(a) _mm_movemask_pi8(a) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) -// Loads one cache line of data from address p to a location closer to the -// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx -FORCE_INLINE void _mm_prefetch(const void *p, int i) +// Fetch the line of data from memory that contains address p to a location in +// the cache heirarchy specified by the locality hint i. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch +FORCE_INLINE void _mm_prefetch(char const *p, int i) { - (void) i; - __builtin_prefetch(p); + switch (i) { + case _MM_HINT_NTA: + __builtin_prefetch(p, 0, 0); + break; + case _MM_HINT_T0: + __builtin_prefetch(p, 0, 3); + break; + case _MM_HINT_T1: + __builtin_prefetch(p, 0, 2); + break; + case _MM_HINT_T2: + __builtin_prefetch(p, 0, 1); + break; + } } // Compute the absolute differences of packed unsigned 8-bit integers in a and // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw #define _m_psadbw(a, b) _mm_sad_pu8(a, b) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw #define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) // Compute the approximate reciprocal of packed single-precision (32-bit) // floating-point elements in a, and store the results in dst. The maximum // relative error for this approximation is less than 1.5*2^-12. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) { float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); @@ -2290,7 +2461,7 @@ FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) // dst[31:0] := (1.0 / a[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) { return _mm_move_ss(a, _mm_rcp_ps(a)); @@ -2317,7 +2488,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) // (32-bit) floating-point element in a, store the result in the lower element // of dst, and copy the upper 3 packed elements from a to the upper elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) { return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); @@ -2327,7 +2498,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) { uint64x1_t t = vpaddl_u32(vpaddl_u16( @@ -2339,7 +2510,7 @@ FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) // Macro: Set the flush zero bits of the MXCSR control and status register to // the value in unsigned 32-bit integer a. The flush zero may contain any of the // following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) { // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, @@ -2354,17 +2525,17 @@ FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; #if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ #else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ #endif } @@ -2387,7 +2558,7 @@ FORCE_INLINE __m128 _mm_set_ps1(float _w) // the value in unsigned 32-bit integer a. The rounding mode may contain any of // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, // _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) { union { @@ -2400,9 +2571,9 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif switch (rounding) { @@ -2424,19 +2595,18 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) } #if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ #else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ #endif } // Copy single-precision (32-bit) floating-point element a to the lower element // of dst, and zero the upper 3 elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss FORCE_INLINE __m128 _mm_set_ss(float a) { - float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0}; - return vreinterpretq_m128_f32(vld1q_f32(data)); + return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); } // Sets the four single-precision, floating-point values to w. @@ -2449,11 +2619,18 @@ FORCE_INLINE __m128 _mm_set1_ps(float _w) return vreinterpretq_m128_f32(vdupq_n_f32(_w)); } +// FIXME: _mm_setcsr() implementation supports changing the rounding mode only. FORCE_INLINE void _mm_setcsr(unsigned int a) { _MM_SET_ROUNDING_MODE(a); } +// FIXME: _mm_getcsr() implementation supports reading the rounding mode only. +FORCE_INLINE unsigned int _mm_getcsr() +{ + return _MM_GET_ROUNDING_MODE(); +} + // Sets the four single-precision, floating-point values to the four inputs in // reverse order. // https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx @@ -2472,11 +2649,11 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16 -#if __has_builtin(__builtin_shufflevector) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 +#ifdef _sse2neon_shuffle #define _mm_shuffle_pi16(a, imm) \ __extension__({ \ - vreinterpret_m64_s16(__builtin_shufflevector( \ + vreinterpret_m64_s16(vshuffle_s16( \ vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \ }) @@ -2499,25 +2676,48 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) }) #endif -// Guarantees that every preceding store is globally visible before any -// subsequent store. -// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +// Perform a serializing operation on all store-to-memory instructions that were +// issued prior to this instruction. Guarantees that every store instruction +// that precedes, in program order, is globally visible before any store +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence FORCE_INLINE void _mm_sfence(void) { - __sync_synchronize(); + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory and store-to-memory +// instructions that were issued prior to this instruction. Guarantees that +// every memory access that precedes, in program order, the memory fence +// instruction is globally visible before any memory instruction which follows +// the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence +FORCE_INLINE void _mm_mfence(void) +{ + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory instructions that +// were issued prior to this instruction. Guarantees that every load instruction +// that precedes, in program order, is globally visible before any load +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence +FORCE_INLINE void _mm_lfence(void) +{ + _sse2neon_smp_mb(); } // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) // int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_ps(a, b, imm) \ - __extension__({ \ - float32x4_t _input1 = vreinterpretq_f32_m128(a); \ - float32x4_t _input2 = vreinterpretq_f32_m128(b); \ - float32x4_t _shuf = __builtin_shufflevector( \ - _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128_f32(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shuffle_ps(a, b, imm) \ + __extension__({ \ + float32x4_t _input1 = vreinterpretq_f32_m128(a); \ + float32x4_t _input2 = vreinterpretq_f32_m128(b); \ + float32x4_t _shuf = \ + vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128_f32(_shuf); \ }) #else // generic #define _mm_shuffle_ps(a, b, imm) \ @@ -2652,7 +2852,7 @@ FORCE_INLINE void _mm_store_ps(float *p, __m128 a) // MEM[mem_addr+95:mem_addr+64] := a[31:0] // MEM[mem_addr+127:mem_addr+96] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) { float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -2675,7 +2875,7 @@ FORCE_INLINE void _mm_store_ss(float *p, __m128 a) // MEM[mem_addr+95:mem_addr+64] := a[31:0] // MEM[mem_addr+127:mem_addr+96] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps #define _mm_store1_ps _mm_store_ps1 // Stores the upper two single-precision, floating-point values of a to the @@ -2711,7 +2911,7 @@ FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) // MEM[mem_addr+95:mem_addr+64] := a[63:32] // MEM[mem_addr+127:mem_addr+96] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) { float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); @@ -2727,14 +2927,14 @@ FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) } // Stores 16-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) { vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); } // Stores 64-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) { vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); @@ -2742,7 +2942,7 @@ FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) // Store 64-bits of integer data from a into memory using a non-temporal memory // hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) { vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); @@ -2750,11 +2950,11 @@ FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) // Store 128-bits (composed of 4 packed single-precision (32-bit) floating- // point elements) from a into memory using a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) { #if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); + __builtin_nontemporal_store(reinterpret_cast<float32x4_t>(a), (float32x4_t *) p); #else vst1q_f32(p, vreinterpretq_f32_m128(a)); #endif @@ -2782,7 +2982,7 @@ FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) // dst[31:0] := a[31:0] - b[31:0] // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_sub_ps(a, b)); @@ -2791,7 +2991,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the // transposed matrix in these vectors (row0 now contains column 0, etc.). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ do { \ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ @@ -2816,7 +3016,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) #define _mm_ucomineq_ss _mm_comineq_ss // Return vector of type __m128i with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 FORCE_INLINE __m128i _mm_undefined_si128(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2831,7 +3031,7 @@ FORCE_INLINE __m128i _mm_undefined_si128(void) } // Return vector of type __m128 with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps FORCE_INLINE __m128 _mm_undefined_ps(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2944,7 +3144,7 @@ FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) // Add packed double-precision (64-bit) floating-point elements in a and b, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -2967,7 +3167,7 @@ FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) // dst[63:0] := a[63:0] + b[63:0] // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -2986,7 +3186,7 @@ FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) // // dst[63:0] := a[63:0] + b[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( @@ -3016,7 +3216,7 @@ FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) // dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -3025,7 +3225,7 @@ FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) // Add packed unsigned 16-bit integers in a and b using saturation, and store // the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -3049,7 +3249,7 @@ FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) // dst[i+63:i] := a[i+63:i] AND b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( @@ -3072,11 +3272,11 @@ FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) // elements in a and then AND with b, and store the results in dst. // // FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) +// i := j*64 +// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) { // *NOTE* argument swap @@ -3129,17 +3329,17 @@ FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) // Shift a left by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 #define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) // Shift a right by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 #define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) // Cast vector of type __m128d to type __m128. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) { return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); @@ -3147,7 +3347,7 @@ FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) // Cast vector of type __m128d to type __m128i. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) { return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); @@ -3155,7 +3355,7 @@ FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) // Cast vector of type __m128 to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd FORCE_INLINE __m128d _mm_castps_pd(__m128 a) { return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); @@ -3171,7 +3371,7 @@ FORCE_INLINE __m128i _mm_castps_si128(__m128 a) // Cast vector of type __m128i to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) { #if defined(__aarch64__) @@ -3189,13 +3389,29 @@ FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); } -// Cache line containing p is flushed and invalidated from all caches in the -// coherency domain. : -// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +// Invalidate and flush the cache line that contains p from all levels of the +// cache hierarchy. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush +#if defined(__APPLE__) +#include <libkern/OSCacheControl.h> +#endif FORCE_INLINE void _mm_clflush(void const *p) { (void) p; - // no corollary for Neon? + + /* sys_icache_invalidate is supported since macOS 10.5. + * However, it does not work on non-jailbroken iOS devices, although the + * compilation is successful. + */ +#if defined(__APPLE__) + sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); +#elif defined(__GNUC__) || defined(__clang__) + uintptr_t ptr = (uintptr_t) p; + __builtin___clear_cache((char *) ptr, + (char *) ptr + SSE2NEON_CACHELINE_SIZE); +#else + /* FIXME: MSVC support */ +#endif } // Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or @@ -3226,7 +3442,7 @@ FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for equality, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3244,7 +3460,7 @@ FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for equality, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); @@ -3252,7 +3468,7 @@ FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3274,7 +3490,7 @@ FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3333,7 +3549,7 @@ FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3355,7 +3571,7 @@ FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3375,7 +3591,7 @@ FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3397,7 +3613,7 @@ FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than-or-equal, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3451,7 +3667,7 @@ FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3473,7 +3689,7 @@ FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3492,7 +3708,7 @@ FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3510,7 +3726,7 @@ FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-equal, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); @@ -3518,7 +3734,7 @@ FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3543,7 +3759,7 @@ FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than-or-equal, store the result in the lower element of // dst, and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); @@ -3551,7 +3767,7 @@ FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3576,7 +3792,7 @@ FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); @@ -3584,7 +3800,7 @@ FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3609,7 +3825,7 @@ FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); @@ -3617,7 +3833,7 @@ FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3642,7 +3858,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); @@ -3650,7 +3866,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if neither is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3682,7 +3898,7 @@ FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if neither is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3704,7 +3920,7 @@ FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if either is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3737,7 +3953,7 @@ FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if either is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3759,7 +3975,7 @@ FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3774,7 +3990,7 @@ FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3789,7 +4005,7 @@ FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3804,7 +4020,7 @@ FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3819,7 +4035,7 @@ FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for equality, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3840,7 +4056,7 @@ FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for not-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) { return !_mm_comieq_sd(a, b); @@ -3855,7 +4071,7 @@ FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) // dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) { #if defined(__aarch64__) @@ -3885,13 +4101,21 @@ FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) // dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) { +// vrnd32xq_f64 not supported on clang +#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) + float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); + int64x2_t integers = vcvtq_s64_f64(rounded); + return vreinterpretq_m128i_s32( + vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); +#else __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); double d0 = ((double *) &rnd)[0]; double d1 = ((double *) &rnd)[1]; return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); +#endif } // Convert packed double-precision (64-bit) floating-point elements in a to @@ -3903,7 +4127,7 @@ FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) // dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) { __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); @@ -3924,7 +4148,7 @@ FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) // ENDFOR // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) { #if defined(__aarch64__) @@ -3946,7 +4170,7 @@ FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) // dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) { #if defined(__aarch64__) @@ -3972,7 +4196,9 @@ FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) // does not support! It is supported on ARMv8-A however. FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) { -#if defined(__aarch64__) +#if defined(__ARM_FEATURE_FRINT) + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); +#elif defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) switch (_MM_GET_ROUNDING_MODE()) { case _MM_ROUND_NEAREST: return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); @@ -4029,7 +4255,7 @@ FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) // dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) { #if defined(__aarch64__) @@ -4046,7 +4272,7 @@ FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 FORCE_INLINE double _mm_cvtsd_f64(__m128d a) { #if defined(__aarch64__) @@ -4061,7 +4287,7 @@ FORCE_INLINE double _mm_cvtsd_f64(__m128d a) // // dst[31:0] := Convert_FP64_To_Int32(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) { #if defined(__aarch64__) @@ -4078,7 +4304,7 @@ FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) { #if defined(__aarch64__) @@ -4095,14 +4321,14 @@ FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x #define _mm_cvtsd_si64x _mm_cvtsd_si64 // Convert the lower double-precision (64-bit) floating-point element in b to a // single-precision (32-bit) floating-point element, store the result in the // lower element of dst, and copy the upper 3 packed elements from a to the // upper elements of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) { #if defined(__aarch64__) @@ -4119,7 +4345,7 @@ FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) // // dst[31:0] := a[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) { return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); @@ -4129,20 +4355,20 @@ FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) { return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); } // Copy the lower 64-bit integer in a to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) // Convert the signed 32-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) { #if defined(__aarch64__) @@ -4159,7 +4385,7 @@ FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) // Moves 32-bit integer a to the least significant 32 bits of an __m128 object, @@ -4179,7 +4405,7 @@ FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) { #if defined(__aarch64__) @@ -4204,13 +4430,13 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) // Copy 64-bit integer a to the lower element of dst, and zero the upper // element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 #define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd #define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) // Convert the lower single-precision (32-bit) floating-point element in b to a @@ -4221,7 +4447,7 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) // dst[63:0] := Convert_FP32_To_FP64(b[31:0]) // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) { double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); @@ -4236,7 +4462,7 @@ FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) { double a0 = ((double *) &a)[0]; @@ -4246,7 +4472,7 @@ FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) { double a0 = ((double *) &a)[0]; @@ -4268,7 +4494,7 @@ FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) // // dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) { double ret = *((double *) &a); @@ -4280,7 +4506,7 @@ FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) { #if defined(__aarch64__) @@ -4296,7 +4522,7 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) // // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) // Divide packed double-precision (64-bit) floating-point elements in a by @@ -4307,7 +4533,7 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) // dst[i+63:i] := a[i+63:i] / b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4327,7 +4553,7 @@ FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) // lower double-precision (64-bit) floating-point element in b, store the result // in the lower element of dst, and copy the upper element from a to the upper // element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4363,7 +4589,7 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) // // dst[127:0] := MEM[mem_addr+127:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd FORCE_INLINE __m128d _mm_load_pd(const double *p) { #if defined(__aarch64__) @@ -4381,7 +4607,7 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 #define _mm_load_pd1 _mm_load1_pd // Load a double-precision (64-bit) floating-point element from memory into the @@ -4391,7 +4617,7 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd FORCE_INLINE __m128d _mm_load_sd(const double *p) { #if defined(__aarch64__) @@ -4416,7 +4642,7 @@ FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd FORCE_INLINE __m128d _mm_load1_pd(const double *p) { #if defined(__aarch64__) @@ -4433,7 +4659,7 @@ FORCE_INLINE __m128d _mm_load1_pd(const double *p) // dst[63:0] := a[63:0] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) { #if defined(__aarch64__) @@ -4446,7 +4672,7 @@ FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) } // Load 64-bit integer from memory into the first element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) { /* Load the lower 64 bits of the value pointed to by p into the @@ -4463,7 +4689,7 @@ FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) { #if defined(__aarch64__) @@ -4483,7 +4709,7 @@ FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) // dst[63:0] := MEM[mem_addr+127:mem_addr+64] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd FORCE_INLINE __m128d _mm_loadr_pd(const double *p) { #if defined(__aarch64__) @@ -4496,7 +4722,7 @@ FORCE_INLINE __m128d _mm_loadr_pd(const double *p) } // Loads two double-precision from unaligned memory, floating-point values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd FORCE_INLINE __m128d _mm_loadu_pd(const double *p) { return _mm_load_pd(p); @@ -4514,7 +4740,7 @@ FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) // dst[31:0] := MEM[mem_addr+31:mem_addr] // dst[MAX:32] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 FORCE_INLINE __m128i _mm_loadu_si32(const void *p) { return vreinterpretq_m128i_s32( @@ -4533,6 +4759,12 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) { int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), vget_low_s16(vreinterpretq_s16_m128i(b))); +#if defined(__aarch64__) + int32x4_t high = + vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); + + return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); +#else int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), vget_high_s16(vreinterpretq_s16_m128i(b))); @@ -4540,13 +4772,14 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); +#endif } // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. mem_addr does not need to be aligned // on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) { int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); @@ -4577,12 +4810,18 @@ FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed maximum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) { #if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b)); +#else return vreinterpretq_m128d_f64( vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif #else uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); @@ -4599,7 +4838,7 @@ FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the maximum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4607,8 +4846,8 @@ FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) #else double *da = (double *) &a; double *db = (double *) &b; - double c[2] = {fmax(da[0], db[0]), da[1]}; - return vld1q_f32((float32_t *) c); + double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); #endif } @@ -4632,12 +4871,18 @@ FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed minimum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) { #if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b)); +#else return vreinterpretq_m128d_f64( vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif #else uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); @@ -4653,7 +4898,7 @@ FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the minimum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4661,8 +4906,8 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) #else double *da = (double *) &a; double *db = (double *) &b; - double c[2] = {fmin(da[0], db[0]), da[1]}; - return vld1q_f32((float32_t *) c); + double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); #endif } @@ -4672,7 +4917,7 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) // dst[63:0] := a[63:0] // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 FORCE_INLINE __m128i _mm_move_epi64(__m128i a) { return vreinterpretq_m128i_s64( @@ -4686,7 +4931,7 @@ FORCE_INLINE __m128i _mm_move_epi64(__m128i a) // dst[63:0] := b[63:0] // dst[127:64] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) { return vreinterpretq_m128d_f32( @@ -4780,7 +5025,7 @@ FORCE_INLINE int _mm_movemask_epi8(__m128i a) // Set each bit of mask dst based on the most significant bit of the // corresponding packed double-precision (64-bit) floating-point element in a. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd FORCE_INLINE int _mm_movemask_pd(__m128d a) { uint64x2_t input = vreinterpretq_u64_m128d(a); @@ -4792,7 +5037,7 @@ FORCE_INLINE int _mm_movemask_pd(__m128d a) // // dst[63:0] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) { return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); @@ -4804,7 +5049,7 @@ FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) // dst[63:0] := a[63:0] // dst[127:64] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) { return vreinterpretq_m128i_s64( @@ -4826,7 +5071,7 @@ FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) // Multiply packed double-precision (64-bit) floating-point elements in a and b, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4845,7 +5090,7 @@ FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) // Multiply the lower double-precision (64-bit) floating-point element in a and // b, store the result in the lower element of dst, and copy the upper element // from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_mul_pd(a, b)); @@ -4856,7 +5101,7 @@ FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) // // dst[63:0] := a[31:0] * b[31:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) { return vreinterpret_m64_u64(vget_low_u64( @@ -4892,7 +5137,7 @@ FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) { uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); @@ -4931,7 +5176,7 @@ FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) // Compute the bitwise OR of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( @@ -5001,7 +5246,7 @@ FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) // Pause the processor. This is typically used in spin-wait loops and depending // on the x86 processor typical values are in the 40-100 cycle range. The -// 'yield' instruction isn't a good fit beacuse it's effectively a nop on most +// 'yield' instruction isn't a good fit because it's effectively a nop on most // Arm cores. Experience with several databases has shown has shown an 'isb' is // a reasonable approximation. FORCE_INLINE void _mm_pause() @@ -5013,7 +5258,7 @@ FORCE_INLINE void _mm_pause() // b, then horizontally sum each consecutive 8 differences to produce two // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of 64-bit elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) { uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); @@ -5089,7 +5334,7 @@ FORCE_INLINE __m128i _mm_set_epi8(signed char b15, // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) { double ALIGN_STRUCT(16) data[2] = {e0, e1}; @@ -5102,15 +5347,19 @@ FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 #define _mm_set_pd1 _mm_set1_pd // Copy double-precision (64-bit) floating-point element a to the lower element // of dst, and zero the upper element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd FORCE_INLINE __m128d _mm_set_sd(double a) { +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); +#else return _mm_set_pd(0, a); +#endif } // Sets the 8 signed 16-bit integer values to w. @@ -5147,7 +5396,7 @@ FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) } // Sets the 2 signed 64-bit integer values to i. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) { return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); @@ -5168,7 +5417,7 @@ FORCE_INLINE __m128i _mm_set1_epi8(signed char w) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd FORCE_INLINE __m128d _mm_set1_pd(double d) { #if defined(__aarch64__) @@ -5207,7 +5456,7 @@ FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) } // Set packed 64-bit integers in dst with the supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) { return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); @@ -5242,14 +5491,14 @@ FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) { return _mm_set_pd(e0, e1); } // Return vector of type __m128d with all elements set to zero. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd FORCE_INLINE __m128d _mm_setzero_pd(void) { #if defined(__aarch64__) @@ -5270,14 +5519,14 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - int32x4_t _input = vreinterpretq_s32_m128i(a); \ - int32x4_t _shuf = __builtin_shufflevector( \ - _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ - vreinterpretq_m128i_s32(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + int32x4_t _input = vreinterpretq_s32_m128i(a); \ + int32x4_t _shuf = \ + vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ + vreinterpretq_m128i_s32(_shuf); \ }) #else // generic #define _mm_shuffle_epi32(a, imm) \ @@ -5340,12 +5589,12 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] // dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_pd(a, b, imm8) \ - vreinterpretq_m128d_s64(__builtin_shufflevector( \ - vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \ - ((imm8 & 0x2) >> 1) + 2)) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pd(a, b, imm8) \ + vreinterpretq_m128d_s64( \ + vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ + imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) #else #define _mm_shuffle_pd(a, b, imm8) \ _mm_castsi128_pd(_mm_set_epi64x( \ @@ -5355,15 +5604,15 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shufflehi_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ - _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ - (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ - (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128i_s16(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shufflehi_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = \ + vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ + (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ + (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128i_s16(_shuf); \ }) #else // generic #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) @@ -5371,11 +5620,11 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, // __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) +#ifdef _sse2neon_shuffle #define _mm_shufflelo_epi16(a, imm) \ __extension__({ \ int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ + int16x8_t _shuf = vshuffleq_s16( \ _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ vreinterpretq_m128i_s16(_shuf); \ @@ -5396,7 +5645,7 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5419,7 +5668,7 @@ FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5442,7 +5691,7 @@ FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5465,7 +5714,7 @@ FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~15)) @@ -5486,7 +5735,7 @@ FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~31)) @@ -5507,7 +5756,7 @@ FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~63)) @@ -5525,19 +5774,23 @@ FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) // FI // dst[127:0] := a[127:0] << (tmp*8) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128 -FORCE_INLINE __m128i _mm_slli_si128(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_m128i(a)}; - return vreinterpretq_m128i_u8( - vld1q_u8(((uint8_t const *) tmp) + (16 - imm))); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 +#define _mm_slli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely(imm == 0)) \ + ret = vreinterpretq_s8_m128i(a); \ + else if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), \ + ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ + vreinterpretq_m128i_s8(ret); \ + }) // Compute the square root of packed double-precision (64-bit) floating-point // elements in a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) { #if defined(__aarch64__) @@ -5552,7 +5805,7 @@ FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) // Compute the square root of the lower double-precision (64-bit) floating-point // element in b, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -5574,7 +5827,7 @@ FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) { int64_t c = (int64_t) vget_low_s64((int64x2_t) count); @@ -5595,7 +5848,7 @@ FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) { int64_t c = (int64_t) vget_low_s64((int64x2_t) count); @@ -5616,7 +5869,7 @@ FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) { const int count = (imm & ~15) ? 15 : imm; @@ -5635,21 +5888,21 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srai_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely((imm) == 0)) { \ - ret = a; \ - } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ - ret = vreinterpretq_m128i_s32( \ - vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \ - } else { \ - ret = vreinterpretq_m128i_s32( \ - vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ - } \ - ret; \ +#define _mm_srai_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) == 0)) { \ + ret = a; \ + } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ + ret = vreinterpretq_m128i_s32( \ + vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \ + } else { \ + ret = vreinterpretq_m128i_s32( \ + vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ + } \ + ret; \ }) // Shift packed 16-bit integers in a right by count while shifting in zeros, and @@ -5664,7 +5917,7 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5687,7 +5940,7 @@ FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5710,7 +5963,7 @@ FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5733,17 +5986,17 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16 -#define _mm_srli_epi16(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely(imm & ~15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u16( \ - vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \ - } \ - ret; \ +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 +#define _mm_srli_epi16(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~15)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u16( \ + vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \ + } \ + ret; \ }) // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and @@ -5758,18 +6011,18 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srli_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely(imm & ~31)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u32( \ - vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \ - } \ - ret; \ +#define _mm_srli_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u32( \ + vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \ + } \ + ret; \ }) // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and @@ -5784,17 +6037,17 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64 -#define _mm_srli_epi64(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (_sse2neon_unlikely(imm & ~63)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_u64( \ - vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \ - } \ - ret; \ +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 +#define _mm_srli_epi64(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~63)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u64( \ + vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \ + } \ + ret; \ }) // Shift a right by imm8 bytes while shifting in zeros, and store the results in @@ -5806,19 +6059,22 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // FI // dst[127:0] := a[127:0] >> (tmp*8) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128 -FORCE_INLINE __m128i _mm_srli_si128(__m128i a, int imm) -{ - if (_sse2neon_unlikely(imm & ~15)) - return _mm_setzero_si128(); - uint8x16_t tmp[2] = {vreinterpretq_u8_m128i(a), vdupq_n_u8(0)}; - return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + imm)); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 +#define _mm_srli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), \ + (imm > 15 ? 0 : imm)); \ + vreinterpretq_m128i_s8(ret); \ + }) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary // or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5831,7 +6087,7 @@ FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5847,7 +6103,7 @@ FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // memory. mem_addr does not need to be aligned on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5867,7 +6123,7 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd #define _mm_store1_pd _mm_store_pd1 // Store the upper double-precision (64-bit) floating-point element from a into @@ -5875,7 +6131,7 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) // // MEM[mem_addr+63:mem_addr] := a[127:64] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5889,9 +6145,7 @@ FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) // https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) { - uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); - uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); - *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); + vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); } // Store the lower double-precision (64-bit) floating-point element from a into @@ -5899,7 +6153,7 @@ FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) // // MEM[mem_addr+63:mem_addr] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5916,7 +6170,7 @@ FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) // MEM[mem_addr+63:mem_addr] := a[127:64] // MEM[mem_addr+127:mem_addr+64] := a[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) { float32x4_t f = vreinterpretq_f32_m128d(a); @@ -5926,21 +6180,21 @@ FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr does not need to be aligned on any // particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) { _mm_store_pd(mem_addr, a); } // Stores 128-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); } // Stores 32-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) { vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); @@ -5950,11 +6204,11 @@ FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) // elements) from a into memory using a non-temporal memory hint. mem_addr must // be aligned on a 16-byte boundary or a general-protection exception may be // generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) { #if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); + __builtin_nontemporal_store(reinterpret_cast<float32x4_t>(a), (float32x4_t *) p); #elif defined(__aarch64__) vst1q_f64(p, vreinterpretq_f64_m128d(a)); #else @@ -5978,15 +6232,24 @@ FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) // Store 32-bit integer a into memory using a non-temporal hint to minimize // cache pollution. If the cache line containing address mem_addr is already in // the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 FORCE_INLINE void _mm_stream_si32(int *p, int a) { vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); } +// Store 64-bit integer a into memory using a non-temporal hint to minimize +// cache pollution. If the cache line containing address mem_addr is already in +// the cache, the cache will be updated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 +FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) +{ + vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); +} + // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -6020,7 +6283,7 @@ FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -6036,7 +6299,7 @@ FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) // dst[i+63:i] := a[i+63:i] - b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6056,7 +6319,7 @@ FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) // the lower double-precision (64-bit) floating-point element in a, store the // result in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_sub_pd(a, b)); @@ -6066,7 +6329,7 @@ FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) // // dst[63:0] := a[63:0] - b[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( @@ -6135,7 +6398,7 @@ FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) #define _mm_ucomineq_sd _mm_comineq_sd // Return vector of type __m128d with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd FORCE_INLINE __m128d _mm_undefined_pd(void) { #if defined(__GNUC__) || defined(__clang__) @@ -6240,7 +6503,7 @@ FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) // } // dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6343,7 +6606,7 @@ FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) // } // dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6364,7 +6627,7 @@ FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) // dst[i+63:i] := a[i+63:i] XOR b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( @@ -6394,10 +6657,10 @@ FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) { - __m128d mask = _mm_set_pd(1.0f, -1.0f); + _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); #if defined(__aarch64__) return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b), @@ -6410,10 +6673,10 @@ FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) // Alternatively add and subtract packed single-precision (32-bit) // floating-point elements in a to/from packed elements in b, and store the // results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) { - __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f}; + _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); #if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */ return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(mask), @@ -6425,7 +6688,7 @@ FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) // Horizontally add adjacent pairs of double-precision (64-bit) floating-point // elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6459,13 +6722,14 @@ FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) // Horizontally subtract adjacent pairs of double-precision (64-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) { #if defined(__aarch64__) - return vreinterpretq_m128d_f64(vsubq_f64( - vuzp1q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)), - vuzp2q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)))); + float64x2_t a = vreinterpretq_f64_m128d(_a); + float64x2_t b = vreinterpretq_f64_m128d(_b); + return vreinterpretq_m128d_f64( + vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); #else double *da = (double *) &_a; double *db = (double *) &_b; @@ -6474,18 +6738,18 @@ FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) #endif } -// Horizontally substract adjacent pairs of single-precision (32-bit) +// Horizontally subtract adjacent pairs of single-precision (32-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) { + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); #if defined(__aarch64__) - return vreinterpretq_m128_f32(vsubq_f32( - vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)), - vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)))); + return vreinterpretq_m128_f32( + vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); #else - float32x4x2_t c = - vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)); + float32x4x2_t c = vuzpq_f32(a, b); return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); #endif } @@ -6496,7 +6760,7 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) // // dst[127:0] := MEM[mem_addr+127:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 #define _mm_lddqu_si128 _mm_loadu_si128 // Load a double-precision (64-bit) floating-point element from memory into both @@ -6505,15 +6769,15 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) // dst[63:0] := MEM[mem_addr+63:mem_addr] // dst[127:64] := MEM[mem_addr+63:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd #define _mm_loaddup_pd _mm_load1_pd // Duplicate the low double-precision (64-bit) floating-point element from a, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) { -#if (__aarch64__) +#if defined(__aarch64__) return vreinterpretq_m128d_f64( vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); #else @@ -6524,11 +6788,14 @@ FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) // Duplicate odd-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) { -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); #else float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); @@ -6540,11 +6807,14 @@ FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) // Duplicate even-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) { -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) + return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); #else float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -6564,7 +6834,7 @@ FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) // dst[i+15:i] := ABS(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) { return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); @@ -6578,7 +6848,7 @@ FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) // dst[i+31:i] := ABS(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) { return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); @@ -6592,7 +6862,7 @@ FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) // dst[i+7:i] := ABS(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) { return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); @@ -6606,7 +6876,7 @@ FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) // dst[i+15:i] := ABS(a[i+15:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) { return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); @@ -6620,7 +6890,7 @@ FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) // dst[i+31:i] := ABS(a[i+31:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) { return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); @@ -6634,7 +6904,7 @@ FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) // dst[i+7:i] := ABS(a[i+7:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) { return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); @@ -6646,24 +6916,21 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) // tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) // dst[127:0] := tmp[127:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8 -FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) -{ - if (_sse2neon_unlikely(imm & ~31)) - return _mm_setzero_si128(); - int idx; - uint8x16_t tmp[2]; - if (imm >= 16) { - idx = imm - 16; - tmp[0] = vreinterpretq_u8_m128i(a); - tmp[1] = vdupq_n_u8(0); - } else { - idx = imm; - tmp[0] = vreinterpretq_u8_m128i(b); - tmp[1] = vreinterpretq_u8_m128i(a); - } - return vreinterpretq_m128i_u8(vld1q_u8(((uint8_t const *) tmp) + idx)); -} +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 +#define _mm_alignr_epi8(a, b, imm) \ + __extension__({ \ + uint8x16_t _a = vreinterpretq_u8_m128i(a); \ + uint8x16_t _b = vreinterpretq_u8_m128i(b); \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) \ + ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + else if (imm >= 16) \ + ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ + else \ + ret = \ + vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ + ret; \ + }) // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift // the result right by imm8 bytes, and store the low 8 bytes in dst. @@ -6671,7 +6938,7 @@ FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) // tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) // dst[63:0] := tmp[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 #define _mm_alignr_pi8(a, b, imm) \ __extension__({ \ __m64 ret; \ @@ -6679,13 +6946,13 @@ FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, int imm) ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ } else { \ uint8x8_t tmp_low, tmp_high; \ - if (imm >= 8) { \ - const int idx = imm - 8; \ + if ((imm) >= 8) { \ + const int idx = (imm) -8; \ tmp_low = vreinterpret_u8_m64(a); \ tmp_high = vdup_n_u8(0); \ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ } else { \ - const int idx = imm; \ + const int idx = (imm); \ tmp_low = vreinterpret_u8_m64(b); \ tmp_high = vreinterpret_u8_m64(a); \ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ @@ -6715,14 +6982,18 @@ FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); +#else return vreinterpretq_m128i_s32( vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); +#endif } // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the // signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -6731,7 +7002,7 @@ FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the // signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) { return vreinterpret_m64_s32( @@ -6762,7 +7033,7 @@ FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) // Horizontally add adjacent pairs of signed 16-bit integers in a and b using // saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -6775,101 +7046,96 @@ FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) #endif } -// Computes pairwise difference of each argument as a 16-bit signed or unsigned -// integer values a and b. +// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack +// the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) { - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Subtract - return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357)); + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1])); +#endif } -// Computes pairwise difference of each argument as a 32-bit signed or unsigned -// integer values a and b. +// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack +// the signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) { - int64x2_t a = vreinterpretq_s64_m128i(_a); - int64x2_t b = vreinterpretq_s64_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|b0|b2] - // [a1|a2|b1|b3] - int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b)); - int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32)); - // Subtract - return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13)); + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); +#else + int32x4x2_t c = vuzpq_s32(a, b); + return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1])); +#endif } // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack // the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) { - int32x4_t ab = - vcombine_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b)); - - int16x4_t ab_low_bits = vmovn_s32(ab); - int16x4_t ab_high_bits = vshrn_n_s32(ab, 16); - - return vreinterpret_m64_s16(vsub_s16(ab_low_bits, ab_high_bits)); + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1])); +#endif } // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack // the signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) { -#if defined(__aarch64__) int32x2_t a = vreinterpret_s32_m64(_a); int32x2_t b = vreinterpret_s32_m64(_b); - return vreinterpret_m64_s32(vsub_s32(vtrn1_s32(a, b), vtrn2_s32(a, b))); +#if defined(__aarch64__) + return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); #else - int32x2x2_t trn_ab = - vtrn_s32(vreinterpret_s32_m64(_a), vreinterpret_s32_m64(_b)); - return vreinterpret_m64_s32(vsub_s32(trn_ab.val[0], trn_ab.val[1])); + int32x2x2_t c = vuzp_s32(a, b); + return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1])); #endif } // Computes saturated pairwise difference of each argument as a 16-bit signed // integer values a and b. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) { -#if defined(__aarch64__) int16x8_t a = vreinterpretq_s16_m128i(_a); int16x8_t b = vreinterpretq_s16_m128i(_b); - return vreinterpretq_s64_s16( +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); #else - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Saturated subtract - return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357)); + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1])); #endif } // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b // using saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); int16x4_t b = vreinterpret_s16_m64(_b); #if defined(__aarch64__) - return vreinterpret_s64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); + return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); #else - int16x4x2_t res = vuzp_s16(a, b); - return vreinterpret_s64_s16(vqsub_s16(res.val[0], res.val[1])); + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1])); #endif } @@ -6921,7 +7187,7 @@ FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) // signed 8-bit integer from b, producing intermediate signed 16-bit integers. // Horizontally add adjacent pairs of intermediate signed 16-bit integers, and // pack the saturated results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) { uint16x4_t a = vreinterpret_u16_m64(_a); @@ -6975,7 +7241,7 @@ FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) // Multiply packed signed 16-bit integers in a and b, producing intermediate // signed 32-bit integers. Truncate each intermediate integer to the 18 most // significant bits, round by adding 1, and store bits [16:1] to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) { int32x4_t mul_extend = @@ -6987,7 +7253,7 @@ FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) // Shuffle packed 8-bit integers in a according to shuffle control mask in the // corresponding 8-bit element of b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) { int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a @@ -7028,11 +7294,11 @@ FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) { const int8x8_t controlMask = - vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t)(0x1 << 7 | 0x07))); + vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07))); int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask); return vreinterpret_m64_s8(res); } @@ -7142,7 +7408,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); #endif - // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a') + // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a') // based on ltMask int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); // res = masked & (~zeroMask) @@ -7166,7 +7432,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -7183,7 +7449,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a') // based on ltMask int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a); // res = masked & (~zeroMask) @@ -7207,7 +7473,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) { int32x2_t a = vreinterpret_s32_m64(_a); @@ -7224,7 +7490,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a') // based on ltMask int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a); // res = masked & (~zeroMask) @@ -7248,7 +7514,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) // FI // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) { int8x8_t a = vreinterpret_s8_m64(_a); @@ -7265,7 +7531,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a') // based on ltMask int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a); // res = masked & (~zeroMask) @@ -7309,7 +7575,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed double-precision (64-bit) floating-point elements from a and b // using control mask imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd #define _mm_blend_pd(a, b, imm) \ __extension__({ \ const uint64_t _mask[2] = { \ @@ -7323,7 +7589,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) { const uint32_t ALIGN_STRUCT(16) @@ -7360,7 +7626,7 @@ FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) // Blend packed double-precision (64-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) { uint64x2_t mask = @@ -7378,7 +7644,7 @@ FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) { // Use a signed shift right to create a mask with the sign bit @@ -7392,7 +7658,7 @@ FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) // Round the packed double-precision (64-bit) floating-point elements in a up // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) { #if defined(__aarch64__) @@ -7406,10 +7672,10 @@ FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) // Round the packed single-precision (32-bit) floating-point elements in a up to // an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); #else float *f = (float *) &a; @@ -7421,7 +7687,7 @@ FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_ceil_pd(b)); @@ -7435,7 +7701,7 @@ FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) // dst[31:0] := CEIL(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_ceil_ps(b)); @@ -7542,7 +7808,7 @@ FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) // Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ @@ -7575,7 +7841,7 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) // Conditionally multiply the packed double-precision (64-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, and // conditionally store the sum in dst using the low 4 bits of imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) { // Generate mask value from constant immediate bit value @@ -7621,7 +7887,7 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) // Conditionally multiply the packed single-precision (32-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, // and conditionally store the sum in dst using the low 4 bits of imm. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) { #if defined(__aarch64__) @@ -7677,7 +7943,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) // Extracts the selected signed or unsigned 8-bit integer from a and zero // extends. // FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) // Extracts the selected single-precision (32-bit) floating-point from a. @@ -7687,7 +7953,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) // Round the packed double-precision (64-bit) floating-point elements in a down // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd FORCE_INLINE __m128d _mm_floor_pd(__m128d a) { #if defined(__aarch64__) @@ -7701,10 +7967,10 @@ FORCE_INLINE __m128d _mm_floor_pd(__m128d a) // Round the packed single-precision (32-bit) floating-point elements in a down // to an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps FORCE_INLINE __m128 _mm_floor_ps(__m128 a) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); #else float *f = (float *) &a; @@ -7716,7 +7982,7 @@ FORCE_INLINE __m128 _mm_floor_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_floor_pd(b)); @@ -7730,7 +7996,7 @@ FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) // dst[31:0] := FLOOR(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_floor_ps(b)); @@ -7769,7 +8035,7 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) // Copy a to tmp, then insert a single-precision (32-bit) floating-point // element from b into tmp using the control in imm8. Store tmp to dst using // the mask in imm8 (elements are zeroed out when the corresponding bit is set). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps #define _mm_insert_ps(a, b, imm8) \ __extension__({ \ float32x4_t tmp1 = \ @@ -7808,7 +8074,7 @@ FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7817,7 +8083,7 @@ FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7826,7 +8092,7 @@ FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( @@ -7851,7 +8117,7 @@ FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7860,7 +8126,7 @@ FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7869,7 +8135,7 @@ FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( @@ -7892,15 +8158,22 @@ FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) // dst[18:16] := index[2:0] // dst[127:19] := 0 // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) { __m128i dst; uint16_t min, idx = 0; - // Find the minimum value #if defined(__aarch64__) + // Find the minimum value min = vminvq_u16(vreinterpretq_u16_m128i(a)); + + // Get the index of the minimum value + static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; + uint16x8_t minv = vdupq_n_u16(min); + uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); + idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); #else + // Find the minimum value __m64 tmp; tmp = vreinterpret_m64_u16( vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), @@ -7910,7 +8183,6 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) tmp = vreinterpret_m64_u16( vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); -#endif // Get the index of the minimum value int i; for (i = 0; i < 8; i++) { @@ -7920,6 +8192,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) } a = _mm_srli_si128(a, 2); } +#endif // Generate result dst = _mm_setzero_si128(); dst = vreinterpretq_m128i_u16( @@ -7935,7 +8208,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) // quadruplets from a. One quadruplet is selected from b starting at on the // offset specified in imm8. Eight quadruplets are formed from sequential 8-bit // integers selected from a starting at the offset specified in imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) { uint8x16_t _a, _b; @@ -7982,13 +8255,13 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) int16x8_t c04, c15, c26, c37; uint8x8_t low_b = vget_low_u8(_b); - c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); + c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); + uint8x16_t _a_1 = vextq_u8(_a, _a, 1); + c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); + uint8x16_t _a_2 = vextq_u8(_a, _a, 2); + c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); + uint8x16_t _a_3 = vextq_u8(_a, _a, 3); + c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); #if defined(__aarch64__) // |0|4|2|6| c04 = vpaddq_s16(c04, c26); @@ -8056,7 +8329,7 @@ FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) // Round the packed double-precision (64-bit) floating-point elements in a using // the rounding parameter, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) { #if defined(__aarch64__) @@ -8128,7 +8401,7 @@ FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) // software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) { -#if defined(__aarch64__) +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) switch (rounding) { case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); @@ -8185,7 +8458,7 @@ FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) // the rounding parameter, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) { return _mm_move_sd(a, _mm_round_pd(b, rounding)); @@ -8205,7 +8478,7 @@ FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) // (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress // exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see // _MM_SET_ROUNDING_MODE -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) { return _mm_move_ss(a, _mm_round_ps(b, rounding)); @@ -8217,7 +8490,7 @@ FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) // // dst[127:0] := MEM[mem_addr+127:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) { #if __has_builtin(__builtin_nontemporal_store) @@ -8229,16 +8502,16 @@ FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) // Compute the bitwise NOT of a and then AND with a 128-bit vector containing // all 1's, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones FORCE_INLINE int _mm_test_all_ones(__m128i a) { - return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == + return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == ~(uint64_t) 0; } // Compute the bitwise AND of 128 bits (representing integer data) in a and // mask, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) { int64x2_t a_and_mask = @@ -8251,7 +8524,7 @@ FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) // the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is // zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) { uint64x2_t zf = @@ -8266,12 +8539,11 @@ FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the CF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) { int64x2_t s64 = - vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))), - vreinterpretq_s64_m128i(b)); + vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); } @@ -8280,14 +8552,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 #define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the ZF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) { int64x2_t s64 = @@ -8297,6 +8569,756 @@ FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) /* SSE4.2 */ +const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; +const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; + +/* specify the source data format */ +#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */ +#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */ +#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */ +#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */ + +/* specify the comparison operation */ +#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */ +#define _SIDD_CMP_RANGES 0x04 /* compare ranges */ +#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */ +#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */ + +/* specify the polarity */ +#define _SIDD_POSITIVE_POLARITY 0x00 +#define _SIDD_MASKED_POSITIVE_POLARITY 0x20 +#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */ +#define _SIDD_MASKED_NEGATIVE_POLARITY \ + 0x30 /* negate results only before end of string */ + +/* specify the output selection in _mm_cmpXstri */ +#define _SIDD_LEAST_SIGNIFICANT 0x00 +#define _SIDD_MOST_SIGNIFICANT 0x40 + +/* specify the output selection in _mm_cmpXstrm */ +#define _SIDD_BIT_MASK 0x00 +#define _SIDD_UNIT_MASK 0x40 + +/* Pattern Matching for C macros. + * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms + */ + +/* catenate */ +#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ +#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b) + +#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c) +/* run the 2nd parameter */ +#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__ +/* run the 1st parameter */ +#define SSE2NEON_IIF_1(t, ...) t + +#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b) +#define SSE2NEON_COMPL_0 1 +#define SSE2NEON_COMPL_1 0 + +#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x) +#define SSE2NEON_DEC_1 0 +#define SSE2NEON_DEC_2 1 +#define SSE2NEON_DEC_3 2 +#define SSE2NEON_DEC_4 3 +#define SSE2NEON_DEC_5 4 +#define SSE2NEON_DEC_6 5 +#define SSE2NEON_DEC_7 6 +#define SSE2NEON_DEC_8 7 +#define SSE2NEON_DEC_9 8 +#define SSE2NEON_DEC_10 9 +#define SSE2NEON_DEC_11 10 +#define SSE2NEON_DEC_12 11 +#define SSE2NEON_DEC_13 12 +#define SSE2NEON_DEC_14 13 +#define SSE2NEON_DEC_15 14 +#define SSE2NEON_DEC_16 15 + +/* detection */ +#define SSE2NEON_CHECK_N(x, n, ...) n +#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, ) +#define SSE2NEON_PROBE(x) x, 1, + +#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x)) +#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~) + +#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x)) +#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c)) + +#define SSE2NEON_EAT(...) +#define SSE2NEON_EXPAND(...) __VA_ARGS__ +#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT) + +/* recursion */ +/* deferred expression */ +#define SSE2NEON_EMPTY() +#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY() +#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)() +#define SSE2NEON_EXPAND(...) __VA_ARGS__ + +#define SSE2NEON_EVAL(...) \ + SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__))) +#define SSE2NEON_EVAL1(...) \ + SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__))) +#define SSE2NEON_EVAL2(...) \ + SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__))) +#define SSE2NEON_EVAL3(...) __VA_ARGS__ + +#define SSE2NEON_REPEAT(count, macro, ...) \ + SSE2NEON_WHEN(count) \ + (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \ + SSE2NEON_DEC(count), macro, \ + __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \ + __VA_ARGS__)) +#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT + +#define SSE2NEON_SIZE_OF_byte 8 +#define SSE2NEON_NUMBER_OF_LANES_byte 16 +#define SSE2NEON_SIZE_OF_word 16 +#define SSE2NEON_NUMBER_OF_LANES_word 8 + +#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \ + mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \ + vreinterpretq_##type##_m128i(a))); + +#define SSE2NEON_FILL_LANE(i, type) \ + vec_b[i] = \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)); + +#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \ + number_of_lanes, byte_or_word) \ + do { \ + SSE2NEON_CAT( \ + data_type_prefix, \ + SSE2NEON_CAT(size, \ + SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \ + vec_b[number_of_lanes]; \ + __m128i mask = SSE2NEON_IIF(byte_or_word)( \ + vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \ + vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \ + SSE2NEON_CAT(type_prefix, size))) \ + for (int i = 0; i < number_of_lanes; i++) { \ + mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \ + size)(SSE2NEON_CAT(vbslq_u, size)( \ + SSE2NEON_CAT(vreinterpretq_u, \ + SSE2NEON_CAT(size, _m128i))(mask), \ + SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))), \ + SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))))); \ + } \ + } while (0) + +#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \ + do { \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \ + SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \ + SSE2NEON_CAT(u, size))) \ + } while (0) + +#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_any_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \ + static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_RANGES( \ + a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_ranges_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \ + __m128i b, int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_ordered_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ + } + +static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) + +static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + __m128i tmp = vreinterpretq_m128i_u32( + vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); + uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), + vreinterpretq_u32_m128i(tmp)); +#if defined(__aarch64__) + int t = vaddvq_u32(vec_res) ? 1 : 0; +#else + uint64x2_t sumh = vpaddlq_u32(vec_res); + int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1); +#endif + res |= (t << j); + } + return res; +} + +static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + __m128i tmp = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); + uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), + vreinterpretq_u16_m128i(tmp)); + int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; + res |= (t << j); + } + return res; +} + +#define SSE2NEON_CMP_RANGES_IS_BYTE 1 +#define SSE2NEON_CMP_RANGES_IS_WORD 0 + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ + prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ + prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ + prefix##IMPL(word, uint, u, prefix##IS_WORD) \ + prefix##IMPL(word, int, s, prefix##IS_WORD) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) + +#undef SSE2NEON_CMP_RANGES_IS_BYTE +#undef SSE2NEON_CMP_RANGES_IS_WORD + +static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint8x16_t mtx = + vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x10000 - (1 << la); + int tb = 0x10000 - (1 << lb); + uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi; + uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi; + vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask); + vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask); + vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask); + vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask); + tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask); + tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask); + + res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx)); + res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx)); + res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo); + res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi); + res_lo = vand_u8(res_lo, vec_mask); + res_hi = vand_u8(res_hi, vec_mask); + + int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); + return res; +} + +static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint16x8_t mtx = + vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x100 - (1 << la); + int tb = 0x100 - (1 << lb); + uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b); + uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask); + uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask); + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask); + mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); + mtx = vbslq_u16(vec1, tmp, mtx); + mtx = vandq_u16(mtx, vec_mask); + return _sse2neon_vaddvq_u16(mtx); +} + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0 + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \ + static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \ + int bound, int la, int lb, __m128i mtx[16]) \ + { \ + int res = 0; \ + int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \ + uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \ + vld1_u##size(_sse2neon_cmpestr_mask##size##b), \ + vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \ + uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \ + vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \ + vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \ + vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \ + uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \ + uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \ + for (int j = 0; j < lb; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \ + vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \ + } \ + for (int j = lb; j < bound; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size( \ + vbslq_u##size(vec1, vec_minusone, vec_zero)); \ + } \ + unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \ + (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \ + for (int i = 0; i < bound; i++) { \ + int val = 1; \ + for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \ + val &= ptr[k * bound + j]; \ + res += val << i; \ + } \ + return res; \ + } + +/* clang-format off */ +#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ + prefix##IMPL(8, 16, prefix##IS_UBYTE) \ + prefix##IMPL(16, 8, prefix##IS_UWORD) +/* clang-format on */ + +SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) + +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD + +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ + +SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) + +#define SSE2NEON_CMPESTR_LIST \ + _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \ + _(CMP_UWORD_RANGES, cmp_uword_ranges) \ + _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \ + _(CMP_SWORD_RANGES, cmp_sword_ranges) \ + _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \ + _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered) + +enum { +#define _(name, func_suffix) name, + SSE2NEON_CMPESTR_LIST +#undef _ +}; +typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb); +static cmpestr_func_t _sse2neon_cmpfunc_table[] = { +#define _(name, func_suffix) _sse2neon_##func_suffix, + SSE2NEON_CMPESTR_LIST +#undef _ +}; + +FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) +{ + switch (imm8 & 0x30) { + case _SIDD_NEGATIVE_POLARITY: + res ^= 0xffffffff; + break; + case _SIDD_MASKED_NEGATIVE_POLARITY: + res ^= (1 << lb) - 1; + break; + default: + break; + } + + return res & ((bound == 8) ? 0xFF : 0xFFFF); +} + +FORCE_INLINE int _sse2neon_clz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanForward(&cnt, x)) + return cnt; + return 32; +#else + return x != 0 ? __builtin_clz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanReverse(&cnt, x)) + return 31 - cnt; + return 32; +#else + return x != 0 ? __builtin_ctz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) +{ +#if _MSC_VER + unsigned long cnt; +#ifdef defined(SSE2NEON_HAS_BITSCAN64) + (defined(_M_AMD64) || defined(__x86_64__)) + if((_BitScanForward64(&cnt, x)) + return (int)(cnt); +#else + if (_BitScanForward(&cnt, (unsigned long) (x))) + return (int) cnt; + if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) + return (int) (cnt + 32); +#endif + return 64; +#else + return x != 0 ? __builtin_ctzll(x) : 64; +#endif +} + +#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) + +#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ + const int var = (imm & 0x01) ? 8 : 16 + +#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ + int tmp1 = la ^ (la >> 31); \ + la = tmp1 - (la >> 31); \ + int tmp2 = lb ^ (lb >> 31); \ + lb = tmp2 - (lb >> 31); \ + la = SSE2NEON_MIN(la, bound); \ + lb = SSE2NEON_MIN(lb, bound) + +// Compare all pairs of character in string a and b, +// then aggregate the result. +// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the +// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of +// string a and b. +#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ + SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ + r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) + +#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ + return (r2 == 0) ? bound \ + : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ + : _sse2neon_ctz(r2)) + +#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ + __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + if (imm8 & 0x40) { \ + if (bound == 8) { \ + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ + vld1q_u16(_sse2neon_cmpestr_mask16b)); \ + dst = vreinterpretq_m128i_u16(vbslq_u16( \ + tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ + } else { \ + uint8x16_t vec_r2 = \ + vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ + uint8x16_t tmp = \ + vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ + dst = vreinterpretq_m128i_u8( \ + vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ + } \ + } else { \ + if (bound == 16) { \ + dst = vreinterpretq_m128i_u16( \ + vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ + } else { \ + dst = vreinterpretq_m128i_u8( \ + vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ + } \ + } \ + return dst + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and returns 1 if b did not contain a null character and the +// resulting mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra +FORCE_INLINE int _mm_cmpestra(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + int lb_cpy = lb; + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return !r2 & (lb_cpy > bound); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc +FORCE_INLINE int _mm_cmpestrc(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 != 0; +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri +FORCE_INLINE int _mm_cmpestri(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm +FORCE_INLINE __m128i +_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro +FORCE_INLINE int _mm_cmpestro(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 & 1; +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs +FORCE_INLINE int _mm_cmpestrs(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return la <= (bound - 1); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz +FORCE_INLINE int _mm_cmpestrz(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return lb <= (bound - 1); +} + +#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ + do { \ + if (imm8 & 0x01) { \ + uint16x8_t equal_mask_##str = \ + vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 3; \ + } else { \ + uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ + vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 2; \ + } \ + } while (0) + +#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ + int la, lb; \ + do { \ + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ + } while (0) + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if b did not contain a null character and the resulting +// mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra +FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return !r2 & (lb >= bound); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc +FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 != 0; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri +FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm +FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro +FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 & 1; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs +FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int la; + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); + return la <= (bound - 1); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz +FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int lb; + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); + return lb <= (bound - 1); +} + // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers // in b for greater than. FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) @@ -8320,6 +9342,8 @@ FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32ch(crc, v); #else crc = _mm_crc32_u8(crc, v & 0xff); crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); @@ -8336,6 +9360,8 @@ FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cw(crc, v); #else crc = _mm_crc32_u16(crc, v & 0xffff); crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); @@ -8353,8 +9379,8 @@ FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) : [c] "+r"(crc) : [v] "r"(v)); #else - crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff); - crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff); + crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); + crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); #endif return crc; } @@ -8368,6 +9394,8 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" : [c] "+r"(crc) : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cb(crc, v); #else crc ^= v; for (int bit = 0; bit < 8; bit++) { @@ -8384,7 +9412,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) #if !defined(__ARM_FEATURE_CRYPTO) /* clang-format off */ -#define SSE2NEON_AES_DATA(w) \ +#define SSE2NEON_AES_SBOX(w) \ { \ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ @@ -8424,53 +9452,115 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ w(0xb0), w(0x54), w(0xbb), w(0x16) \ } +#define SSE2NEON_AES_RSBOX(w) \ + { \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ + w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ + w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ + w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ + w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ + w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ + w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ + w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ + w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ + w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ + w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ + w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ + w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ + w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ + w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ + w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ + w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ + w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ + w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ + w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ + w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ + w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ + w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ + w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ + w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ + w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ + w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ + w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ + w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ + w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ + w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ + w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ + w(0x55), w(0x21), w(0x0c), w(0x7d) \ + } /* clang-format on */ /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ #define SSE2NEON_AES_H0(x) (x) -static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); #undef SSE2NEON_AES_H0 +/* x_time function and matrix multiply function */ +#if !defined(__aarch64__) +#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) +#define SSE2NEON_MULTIPLY(x, y) \ + (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ + ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ + ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ + ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) +#endif + // In the absence of crypto extensions, implement aesenc using regular neon // intrinsics instead. See: // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and // https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52 // for more information Reproduced with permission of the author. -FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) +FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) { #if defined(__aarch64__) - static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9, - 0xe, 0x3, 0x8, 0xd, 0x2, 0x7, - 0xc, 0x1, 0x6, 0xb}; - static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc}; + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(EncBlock); + uint8x16_t w = vreinterpretq_u8_m128i(a); - // shift rows + /* shift rows */ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); - // sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0); - - // mix columns - w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b); + /* sub bytes */ + // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and + // look up each of the table. After each lookup, we load the next table + // which locates at the next 64-bytes. In the meantime, the index in the + // table would be smaller than it was, so the index parameters of + // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + /* mix columns */ + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - // add round key + /* add round key */ return vreinterpretq_m128i_u8(w) ^ RoundKey; -#else /* ARMv7-A NEON implementation */ -#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ - (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \ - (b0)) +#else /* ARMv7-A implementation for a table-based AES */ +#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ + (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ + ((uint32_t) (b1) << 8) | (uint32_t) (b0)) +// muliplying 'x' by 2 in GF(2^8) #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) +// muliplying 'x' by 3 in GF(2^8) #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) #define SSE2NEON_AES_U0(p) \ SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) @@ -8480,11 +9570,14 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) #define SSE2NEON_AES_U3(p) \ SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) + + // this generates a table containing every possible permutation of + // shift_rows() and sub_bytes() with mix_columns(). static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { - SSE2NEON_AES_DATA(SSE2NEON_AES_U0), - SSE2NEON_AES_DATA(SSE2NEON_AES_U1), - SSE2NEON_AES_DATA(SSE2NEON_AES_U2), - SSE2NEON_AES_DATA(SSE2NEON_AES_U3), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), }; #undef SSE2NEON_AES_B2W #undef SSE2NEON_AES_F2 @@ -8494,11 +9587,15 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #undef SSE2NEON_AES_U2 #undef SSE2NEON_AES_U3 - uint32_t x0 = _mm_cvtsi128_si32(EncBlock); - uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55)); - uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA)); - uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF)); + uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] + uint32_t x1 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] + uint32_t x2 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] + uint32_t x3 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] + // finish the modulo addition step in mix_columns() __m128i out = _mm_set_epi32( (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), @@ -8513,34 +9610,210 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #endif } +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // inverse mix columns + // muliplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & + 0x1b); // muliplying 'v' by 2 in GF(2^8) + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + + // add round key + return vreinterpretq_m128i_u8(w) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t i, e, f, g, h, v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + // inverse mix columns + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + // Perform the last round of an AES encryption flow on data (state) in a using // the round key in RoundKey, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { +#if defined(__aarch64__) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // shift rows + w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); + + // sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A implementation */ + uint8_t v[16] = { + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], + }; + + return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; +#endif +} + +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ /* FIXME: optimized for NEON */ - uint8_t v[4][4] = { - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]}, + uint8_t v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (int i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ +#if defined(__aarch64__) + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, }; - for (int i = 0; i < 16; i++) - vreinterpretq_nth_u8_m128i(a, i) = - v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i); - return a; + uint8x16_t v = vreinterpretq_u8_m128i(a); + uint8x16_t w; + + // multiplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + // multiplying 'v' by 2 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + return vreinterpretq_m128i_u8(w); + +#else /* ARMv7-A NEON implementation */ + uint8_t i, e, f, g, h, v[4][4]; + vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); +#endif } // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. @@ -8548,19 +9821,43 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ // for details. // -// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx -FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 +FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { - uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55)); - uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF)); +#if defined(__aarch64__) + uint8x16_t _a = vreinterpretq_u8_m128i(a); + uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); + + uint32x4_t select_mask = {0xffffffff, 0x0, 0xffffffff, 0x0}; + uint64x2_t v_mask = vshrq_n_u64(vreinterpretq_u64_u8(v), 32); + uint32x4_t x = vbslq_u32(select_mask, vreinterpretq_u32_u64(v_mask), + vreinterpretq_u32_u8(v)); + uint32x4_t ror_x = vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 24)); + uint32x4_t ror_xor_x = veorq_u32(ror_x, vdupq_n_u32(rcon)); + + return vreinterpretq_m128i_u32(vbslq_u32(select_mask, x, ror_xor_x)); + +#else /* ARMv7-A NEON implementation */ + uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); + uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); for (int i = 0; i < 4; ++i) { - ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]]; - ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]]; + ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; + ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; } return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); +#endif } -#undef SSE2NEON_AES_DATA +#undef SSE2NEON_AES_SBOX +#undef SSE2NEON_AES_RSBOX + +#if defined(__aarch64__) +#undef SSE2NEON_XT +#undef SSE2NEON_MULTIPLY +#endif #else /* __ARM_FEATURE_CRYPTO */ // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and @@ -8576,7 +9873,19 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) vreinterpretq_u8_m128i(b)); } -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8(veorq_u8( + vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + vreinterpretq_u8_m128i(RoundKey))); +} + +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( @@ -8584,6 +9893,27 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) RoundKey); } +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8( + vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^ + vreinterpretq_u8_m128i(RoundKey); +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ + return vreinterpretq_m128i_u8(vaesimcq_u8(a)); +} + +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst." +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { // AESE does ShiftRows and SubBytes on A @@ -8605,7 +9935,7 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) // Perform a carry-less multiplication of two 64-bit integers, selected from a // and b according to imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) { uint64x2_t a = vreinterpretq_u64_m128i(_a); @@ -8640,9 +9970,9 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF; @@ -8650,7 +9980,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() // Count the number of bits set to 1 in unsigned 32-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 FORCE_INLINE int _mm_popcnt_u32(unsigned int a) { #if defined(__aarch64__) @@ -8677,7 +10007,7 @@ FORCE_INLINE int _mm_popcnt_u32(unsigned int a) // Count the number of bits set to 1 in unsigned 64-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) { #if defined(__aarch64__) @@ -8717,17 +10047,55 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) } r; #if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ #else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ #endif r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; #if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ #else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Return the current 64-bit value of the processor's time-stamp counter. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc + +FORCE_INLINE uint64_t _rdtsc(void) +{ +#if defined(__aarch64__) + uint64_t val; + + /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the + * system counter is at least 56 bits wide; from Armv8.6, the counter + * must be 64 bits wide. So the system counter could be less than 64 + * bits wide and it is attributed with the flag 'cap_user_time_short' + * is true. + */ + __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); + + return val; +#else + uint32_t pmccntr, pmuseren, pmcntenset; + // Read the user mode Performance Monitoring Unit (PMU) + // User Enable Register (PMUSERENR) access permissions. + __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); + if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code. + __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); + if (pmcntenset & 0x80000000UL) { // Is it counting? + __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); + // The counter is set up to count every 64th cycle + return (uint64_t) (pmccntr) << 6; + } + } + + // Fallback to syscall as we can't enable PMUSERENR in user mode. + struct timeval tv; + gettimeofday(&tv, NULL); + return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec; #endif } @@ -8740,4 +10108,4 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) #pragma GCC pop_options #endif -#endif
\ No newline at end of file +#endif diff --git a/thirdparty/embree/common/simd/avx.h b/thirdparty/embree/common/simd/avx.h index d3100306ee..7c63749f56 100644 --- a/thirdparty/embree/common/simd/avx.h +++ b/thirdparty/embree/common/simd/avx.h @@ -31,4 +31,3 @@ #if defined(__AVX512F__) #include "avx512.h" #endif - diff --git a/thirdparty/embree/common/simd/simd.h b/thirdparty/embree/common/simd/simd.h index 34e37b08b1..e777d2df01 100644 --- a/thirdparty/embree/common/simd/simd.h +++ b/thirdparty/embree/common/simd/simd.h @@ -3,7 +3,7 @@ #pragma once -#include "../math/math.h" +#include "../math/emath.h" /* include SSE wrapper classes */ #if defined(__SSE__) || defined(__ARM_NEON) diff --git a/thirdparty/embree/common/simd/varying.h b/thirdparty/embree/common/simd/varying.h index 9b98d326be..20fd3cac48 100644 --- a/thirdparty/embree/common/simd/varying.h +++ b/thirdparty/embree/common/simd/varying.h @@ -15,7 +15,7 @@ namespace embree __forceinline const float& operator [](size_t index) const { assert(index < N); return f[index]; } __forceinline float& operator [](size_t index) { assert(index < N); return f[index]; } }; - + template<int N> struct vdouble_impl { @@ -31,7 +31,7 @@ namespace embree __forceinline const int& operator [](size_t index) const { assert(index < N); return i[index]; } __forceinline int& operator [](size_t index) { assert(index < N); return i[index]; } }; - + template<int N> struct vuint_impl { diff --git a/thirdparty/embree/common/simd/vboolf4_sse2.h b/thirdparty/embree/common/simd/vboolf4_sse2.h index 9e0fdf5c6f..e96525c9a7 100644 --- a/thirdparty/embree/common/simd/vboolf4_sse2.h +++ b/thirdparty/embree/common/simd/vboolf4_sse2.h @@ -119,7 +119,7 @@ namespace embree #if defined(__aarch64__) template<int i0, int i1, int i2, int i3> __forceinline vboolf4 shuffle(const vboolf4& v) { - return vreinterpretq_f32_u8(vqtbl1q_u8( vreinterpretq_u8_s32(v), _MN_SHUFFLE(i0, i1, i2, i3))); + return vreinterpretq_f32_u8(vqtbl1q_u8( vreinterpretq_u8_s32((int32x4_t)v.v), _MN_SHUFFLE(i0, i1, i2, i3))); } template<int i0, int i1, int i2, int i3> diff --git a/thirdparty/embree/common/simd/vfloat16_avx512.h b/thirdparty/embree/common/simd/vfloat16_avx512.h index 75c471cc0c..b6160a438c 100644 --- a/thirdparty/embree/common/simd/vfloat16_avx512.h +++ b/thirdparty/embree/common/simd/vfloat16_avx512.h @@ -316,6 +316,17 @@ namespace embree return madd(t,b-a,a); } + __forceinline bool isvalid (const vfloat16& v) { + return all((v > vfloat16(-FLT_LARGE)) & (v < vfloat16(+FLT_LARGE))); + } + + __forceinline void xchg(vboolf16 m, vfloat16& a, vfloat16& b) + { + vfloat16 c = a; + a = select(m,b,a); + b = select(m,c,b); + } + //////////////////////////////////////////////////////////////////////////////// /// Rounding Functions //////////////////////////////////////////////////////////////////////////////// diff --git a/thirdparty/embree/common/simd/vfloat4_sse2.h b/thirdparty/embree/common/simd/vfloat4_sse2.h index 6d7e11fe72..fccf11fe0c 100644 --- a/thirdparty/embree/common/simd/vfloat4_sse2.h +++ b/thirdparty/embree/common/simd/vfloat4_sse2.h @@ -32,6 +32,8 @@ namespace embree __forceinline vfloat() {} __forceinline vfloat(const vfloat4& other) { v = other.v; } + //__forceinline vfloat(const vfloat4& other) = default; + __forceinline vfloat4& operator =(const vfloat4& other) { v = other.v; return *this; } __forceinline vfloat(__m128 a) : v(a) {} diff --git a/thirdparty/embree/common/simd/vint4_sse2.h b/thirdparty/embree/common/simd/vint4_sse2.h index eea03a771e..e9e4a5a2c2 100644 --- a/thirdparty/embree/common/simd/vint4_sse2.h +++ b/thirdparty/embree/common/simd/vint4_sse2.h @@ -3,7 +3,7 @@ #pragma once -#include "../math/math.h" +#include "../math/emath.h" #define vboolf vboolf_impl #define vboold vboold_impl diff --git a/thirdparty/embree/common/simd/vuint4_sse2.h b/thirdparty/embree/common/simd/vuint4_sse2.h index f7817da6be..c2e86c6633 100644 --- a/thirdparty/embree/common/simd/vuint4_sse2.h +++ b/thirdparty/embree/common/simd/vuint4_sse2.h @@ -3,7 +3,7 @@ #pragma once -#include "../math/math.h" +#include "../math/emath.h" #define vboolf vboolf_impl #define vboold vboold_impl diff --git a/thirdparty/embree/common/sys/alloc.cpp b/thirdparty/embree/common/sys/alloc.cpp index abdd269069..71616a3982 100644 --- a/thirdparty/embree/common/sys/alloc.cpp +++ b/thirdparty/embree/common/sys/alloc.cpp @@ -12,33 +12,177 @@ namespace embree { - void* alignedMalloc(size_t size, size_t align) + size_t total_allocations = 0; + +#if defined(EMBREE_SYCL_SUPPORT) + + __thread sycl::context* tls_context_tutorial = nullptr; + __thread sycl::device* tls_device_tutorial = nullptr; + + __thread sycl::context* tls_context_embree = nullptr; + __thread sycl::device* tls_device_embree = nullptr; + + void enableUSMAllocEmbree(sycl::context* context, sycl::device* device) + { + // -- GODOT start -- + // if (tls_context_embree != nullptr) throw std::runtime_error("USM allocation already enabled"); + // if (tls_device_embree != nullptr) throw std::runtime_error("USM allocation already enabled"); + if (tls_context_embree != nullptr) { + abort(); + } + if (tls_device_embree != nullptr) { + abort(); + } + // -- GODOT end -- + tls_context_embree = context; + tls_device_embree = device; + } + + void disableUSMAllocEmbree() + { + // -- GODOT start -- + // if (tls_context_embree == nullptr) throw std::runtime_error("USM allocation not enabled"); + // if (tls_device_embree == nullptr) throw std::runtime_error("USM allocation not enabled"); + if (tls_context_embree == nullptr) { + abort(); + } + if (tls_device_embree == nullptr) { + abort(); + } + // -- GODOT end -- + tls_context_embree = nullptr; + tls_device_embree = nullptr; + } + + void enableUSMAllocTutorial(sycl::context* context, sycl::device* device) + { + //if (tls_context_tutorial != nullptr) throw std::runtime_error("USM allocation already enabled"); + //if (tls_device_tutorial != nullptr) throw std::runtime_error("USM allocation already enabled"); + tls_context_tutorial = context; + tls_device_tutorial = device; + } + + void disableUSMAllocTutorial() + { + // -- GODOT start -- + // if (tls_context_tutorial == nullptr) throw std::runtime_error("USM allocation not enabled"); + // if (tls_device_tutorial == nullptr) throw std::runtime_error("USM allocation not enabled"); + if (tls_context_tutorial == nullptr) { + abort(); + } + if (tls_device_tutorial == nullptr) { + abort(); + } + // -- GODOT end -- + + tls_context_tutorial = nullptr; + tls_device_tutorial = nullptr; + } + +#endif + + void* alignedMalloc(size_t size, size_t align) { if (size == 0) return nullptr; - + assert((align & (align-1)) == 0); void* ptr = _mm_malloc(size,align); - - if (size != 0 && ptr == nullptr) - // -- GODOT start -- - // throw std::bad_alloc(); + // -- GODOT start -- + // if (size != 0 && ptr == nullptr) + // throw std::bad_alloc(); + if (size != 0 && ptr == nullptr) { abort(); - // -- GODOT end -- - + } + // -- GODOT end -- return ptr; } - + void alignedFree(void* ptr) { if (ptr) _mm_free(ptr); } +#if defined(EMBREE_SYCL_SUPPORT) + + void* alignedSYCLMalloc(sycl::context* context, sycl::device* device, size_t size, size_t align, EmbreeUSMMode mode) + { + assert(context); + assert(device); + + if (size == 0) + return nullptr; + + assert((align & (align-1)) == 0); + total_allocations++; + + void* ptr = nullptr; + if (mode == EMBREE_USM_SHARED_DEVICE_READ_ONLY) + ptr = sycl::aligned_alloc_shared(align,size,*device,*context,sycl::ext::oneapi::property::usm::device_read_only()); + else + ptr = sycl::aligned_alloc_shared(align,size,*device,*context); + + // -- GODOT start -- + // if (size != 0 && ptr == nullptr) + // throw std::bad_alloc(); + if (size != 0 && ptr == nullptr) { + abort(); + } + // -- GODOT end -- + + return ptr; + } + + static MutexSys g_alloc_mutex; + + void* alignedSYCLMalloc(size_t size, size_t align, EmbreeUSMMode mode) + { + if (tls_context_tutorial) return alignedSYCLMalloc(tls_context_tutorial, tls_device_tutorial, size, align, mode); + if (tls_context_embree ) return alignedSYCLMalloc(tls_context_embree, tls_device_embree, size, align, mode); + return nullptr; + } + + void alignedSYCLFree(sycl::context* context, void* ptr) + { + assert(context); + if (ptr) { + sycl::free(ptr,*context); + } + } + + void alignedSYCLFree(void* ptr) + { + if (tls_context_tutorial) return alignedSYCLFree(tls_context_tutorial, ptr); + if (tls_context_embree ) return alignedSYCLFree(tls_context_embree, ptr); + } + +#endif + + void* alignedUSMMalloc(size_t size, size_t align, EmbreeUSMMode mode) + { +#if defined(EMBREE_SYCL_SUPPORT) + if (tls_context_embree || tls_context_tutorial) + return alignedSYCLMalloc(size,align,mode); + else +#endif + return alignedMalloc(size,align); + } + + void alignedUSMFree(void* ptr) + { +#if defined(EMBREE_SYCL_SUPPORT) + if (tls_context_embree || tls_context_tutorial) + return alignedSYCLFree(ptr); + else +#endif + return alignedFree(ptr); + } + static bool huge_pages_enabled = false; static MutexSys os_init_mutex; - __forceinline bool isHugePageCandidate(const size_t bytes) + __forceinline bool isHugePageCandidate(const size_t bytes) { if (!huge_pages_enabled) return false; @@ -133,7 +277,9 @@ namespace embree char* ptr = (char*) VirtualAlloc(nullptr,bytes,flags,PAGE_READWRITE); // -- GODOT start -- // if (ptr == nullptr) throw std::bad_alloc(); - if (ptr == nullptr) abort(); + if (ptr == nullptr) { + abort(); + } // -- GODOT end -- hugepages = false; return ptr; @@ -150,11 +296,13 @@ namespace embree if (bytesNew >= bytesOld) return bytesOld; - if (!VirtualFree((char*)ptr+bytesNew,bytesOld-bytesNew,MEM_DECOMMIT)) - // -- GODOT start -- - // throw std::bad_alloc(); + // -- GODOT start -- + // if (!VirtualFree((char*)ptr+bytesNew,bytesOld-bytesNew,MEM_DECOMMIT)) + // throw std::bad_alloc(); + if (!VirtualFree((char*)ptr+bytesNew,bytesOld-bytesNew,MEM_DECOMMIT)) { abort(); - // -- GODOT end -- + } + // -- GODOT end -- return bytesNew; } @@ -164,11 +312,13 @@ namespace embree if (bytes == 0) return; - if (!VirtualFree(ptr,0,MEM_RELEASE)) - // -- GODOT start -- - // throw std::bad_alloc(); + // -- GODOT start -- + // if (!VirtualFree(ptr,0,MEM_RELEASE)) + // throw std::bad_alloc(); + if (!VirtualFree(ptr,0,MEM_RELEASE)) { abort(); - // -- GODOT end -- + } + // -- GODOT end -- } void os_advise(void *ptr, size_t bytes) @@ -274,7 +424,9 @@ namespace embree void* ptr = (char*) mmap(0, bytes, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); // -- GODOT start -- // if (ptr == MAP_FAILED) throw std::bad_alloc(); - if (ptr == MAP_FAILED) abort(); + if (ptr == MAP_FAILED) { + abort(); + } // -- GODOT end -- hugepages = false; @@ -291,11 +443,13 @@ namespace embree if (bytesNew >= bytesOld) return bytesOld; - if (munmap((char*)ptr+bytesNew,bytesOld-bytesNew) == -1) - // -- GODOT start -- - // throw std::bad_alloc(); + // -- GODOT start -- + // if (munmap((char*)ptr+bytesNew,bytesOld-bytesNew) == -1) + // throw std::bad_alloc(); + if (munmap((char*)ptr+bytesNew,bytesOld-bytesNew) == -1) { abort(); - // -- GODOT end -- + } + // -- GODOT end -- return bytesNew; } @@ -308,11 +462,13 @@ namespace embree /* for hugepages we need to also align the size */ const size_t pageSize = hugepages ? PAGE_SIZE_2M : PAGE_SIZE_4K; bytes = (bytes+pageSize-1) & ~(pageSize-1); - if (munmap(ptr,bytes) == -1) - // -- GODOT start -- - // throw std::bad_alloc(); + // -- GODOT start -- + // if (munmap(ptr,bytes) == -1) + // throw std::bad_alloc(); + if (munmap(ptr,bytes) == -1) { abort(); - // -- GODOT end -- + } + // -- GODOT end -- } /* hint for transparent huge pages (THP) */ diff --git a/thirdparty/embree/common/sys/alloc.h b/thirdparty/embree/common/sys/alloc.h index 4fa474ec1d..28b17f988d 100644 --- a/thirdparty/embree/common/sys/alloc.h +++ b/thirdparty/embree/common/sys/alloc.h @@ -9,20 +9,72 @@ namespace embree { -#define ALIGNED_STRUCT_(align) \ - void* operator new(size_t size) { return alignedMalloc(size,align); } \ - void operator delete(void* ptr) { alignedFree(ptr); } \ +#if defined(EMBREE_SYCL_SUPPORT) + + /* enables SYCL USM allocation */ + void enableUSMAllocEmbree(sycl::context* context, sycl::device* device); + void enableUSMAllocTutorial(sycl::context* context, sycl::device* device); + + /* disables SYCL USM allocation */ + void disableUSMAllocEmbree(); + void disableUSMAllocTutorial(); + +#endif + +#define ALIGNED_STRUCT_(align) \ + void* operator new(size_t size) { return alignedMalloc(size,align); } \ + void operator delete(void* ptr) { alignedFree(ptr); } \ void* operator new[](size_t size) { return alignedMalloc(size,align); } \ void operator delete[](void* ptr) { alignedFree(ptr); } + +#define ALIGNED_STRUCT_USM_(align) \ + void* operator new(size_t size) { return alignedUSMMalloc(size,align); } \ + void operator delete(void* ptr) { alignedUSMFree(ptr); } \ + void* operator new[](size_t size) { return alignedUSMMalloc(size,align); } \ + void operator delete[](void* ptr) { alignedUSMFree(ptr); } + +#define ALIGNED_CLASS_(align) \ + public: \ + ALIGNED_STRUCT_(align) \ + private: -#define ALIGNED_CLASS_(align) \ +#define ALIGNED_CLASS_USM_(align) \ public: \ - ALIGNED_STRUCT_(align) \ + ALIGNED_STRUCT_USM_(align) \ private: + + enum EmbreeUSMMode { + EMBREE_USM_SHARED = 0, + EMBREE_USM_SHARED_DEVICE_READ_WRITE = 0, + EMBREE_USM_SHARED_DEVICE_READ_ONLY = 1 + }; /*! aligned allocation */ void* alignedMalloc(size_t size, size_t align); void alignedFree(void* ptr); + + /*! aligned allocation using SYCL USM */ + void* alignedUSMMalloc(size_t size, size_t align = 16, EmbreeUSMMode mode = EMBREE_USM_SHARED_DEVICE_READ_ONLY); + void alignedUSMFree(void* ptr); + +#if defined(EMBREE_SYCL_SUPPORT) + + /*! aligned allocation using SYCL USM */ + void* alignedSYCLMalloc(sycl::context* context, sycl::device* device, size_t size, size_t align, EmbreeUSMMode mode); + void alignedSYCLFree(sycl::context* context, void* ptr); + + // deleter functor to use as deleter in std unique or shared pointers that + // capture raw pointers created by sycl::malloc and it's variants + template<typename T> + struct sycl_deleter + { + void operator()(T const* ptr) + { + alignedUSMFree((void*)ptr); + } + }; + +#endif /*! allocator that performs aligned allocations */ template<typename T, size_t alignment> @@ -95,6 +147,37 @@ namespace embree bool hugepages; }; + /*! allocator that newer performs allocations */ + template<typename T> + struct no_allocator + { + typedef T value_type; + typedef T* pointer; + typedef const T* const_pointer; + typedef T& reference; + typedef const T& const_reference; + typedef std::size_t size_type; + typedef std::ptrdiff_t difference_type; + + __forceinline pointer allocate( size_type n ) { + // -- GODOT start -- + // throw std::runtime_error("no allocation supported"); + abort(); + // -- GODOT end -- + } + + __forceinline void deallocate( pointer p, size_type n ) { + } + + __forceinline void construct( pointer p, const_reference val ) { + new (p) T(val); + } + + __forceinline void destroy( pointer p ) { + p->~T(); + } + }; + /*! allocator for IDs */ template<typename T, size_t max_id> struct IDPool diff --git a/thirdparty/embree/common/sys/atomic.h b/thirdparty/embree/common/sys/atomic.h index 67af254f36..cf9909aad9 100644 --- a/thirdparty/embree/common/sys/atomic.h +++ b/thirdparty/embree/common/sys/atomic.h @@ -36,7 +36,7 @@ namespace embree }; template<typename T> - __forceinline void atomic_min(std::atomic<T>& aref, const T& bref) + __forceinline void _atomic_min(std::atomic<T>& aref, const T& bref) { const T b = bref.load(); while (true) { @@ -47,7 +47,7 @@ namespace embree } template<typename T> - __forceinline void atomic_max(std::atomic<T>& aref, const T& bref) + __forceinline void _atomic_max(std::atomic<T>& aref, const T& bref) { const T b = bref.load(); while (true) { diff --git a/thirdparty/embree/common/sys/barrier.h b/thirdparty/embree/common/sys/barrier.h index c56513a2ed..e1580f41a9 100644 --- a/thirdparty/embree/common/sys/barrier.h +++ b/thirdparty/embree/common/sys/barrier.h @@ -34,7 +34,7 @@ namespace embree void* opaque; }; - /*! fast active barrier using atomitc counter */ + /*! fast active barrier using atomic counter */ struct BarrierActive { public: diff --git a/thirdparty/embree/common/sys/string.cpp b/thirdparty/embree/common/sys/estring.cpp index f42fdc8536..c66c5c5b84 100644 --- a/thirdparty/embree/common/sys/string.cpp +++ b/thirdparty/embree/common/sys/estring.cpp @@ -1,7 +1,7 @@ // Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 -#include "string.h" +#include "estring.h" #include <algorithm> #include <ctype.h> diff --git a/thirdparty/embree/common/sys/string.h b/thirdparty/embree/common/sys/estring.h index 820076b21c..63051ad3c3 100644 --- a/thirdparty/embree/common/sys/string.h +++ b/thirdparty/embree/common/sys/estring.h @@ -28,6 +28,42 @@ namespace embree std::streamsize precision; }; + struct IndentOStream : public std::streambuf + { + explicit IndentOStream(std::ostream &ostream, int indent = 2) + : streambuf(ostream.rdbuf()) + , start_of_line(true) + , ident_str(indent, ' ') + , stream(&ostream) + { + // set streambuf of ostream to this and save original streambuf + stream->rdbuf(this); + } + + virtual ~IndentOStream() + { + if (stream != NULL) { + // restore old streambuf + stream->rdbuf(streambuf); + } + } + + protected: + virtual int overflow(int ch) { + if (start_of_line && ch != '\n') { + streambuf->sputn(ident_str.data(), ident_str.size()); + } + start_of_line = ch == '\n'; + return streambuf->sputc(ch); + } + + private: + std::streambuf *streambuf; + bool start_of_line; + std::string ident_str; + std::ostream *stream; + }; + std::string toLowerCase(const std::string& s); std::string toUpperCase(const std::string& s); diff --git a/thirdparty/embree/common/sys/intrinsics.h b/thirdparty/embree/common/sys/intrinsics.h index 2c2f6eccda..f5074bb29d 100644 --- a/thirdparty/embree/common/sys/intrinsics.h +++ b/thirdparty/embree/common/sys/intrinsics.h @@ -64,7 +64,7 @@ namespace embree /// Windows Platform //////////////////////////////////////////////////////////////////////////////// -#if defined(__WIN32__) +#if defined(__WIN32__) && !defined(__INTEL_LLVM_COMPILER) __forceinline size_t read_tsc() { @@ -89,7 +89,7 @@ namespace embree #endif } -#if defined(__X86_64__) +#if defined(__X86_64__) || defined (__aarch64__) __forceinline size_t bsf(size_t v) { #if defined(__AVX2__) return _tzcnt_u64(v); @@ -113,7 +113,7 @@ namespace embree return i; } -#if defined(__X86_64__) +#if defined(__X86_64__) || defined (__aarch64__) __forceinline size_t bscf(size_t& v) { size_t i = bsf(v); @@ -138,7 +138,7 @@ namespace embree #endif } -#if defined(__X86_64__) +#if defined(__X86_64__) || defined (__aarch64__) __forceinline size_t bsr(size_t v) { #if defined(__AVX2__) return 63 -_lzcnt_u64(v); @@ -196,49 +196,6 @@ namespace embree #else -#if defined(__i386__) && defined(__PIC__) - - __forceinline void __cpuid(int out[4], int op) - { - asm volatile ("xchg{l}\t{%%}ebx, %1\n\t" - "cpuid\n\t" - "xchg{l}\t{%%}ebx, %1\n\t" - : "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3]) - : "0"(op)); - } - - __forceinline void __cpuid_count(int out[4], int op1, int op2) - { - asm volatile ("xchg{l}\t{%%}ebx, %1\n\t" - "cpuid\n\t" - "xchg{l}\t{%%}ebx, %1\n\t" - : "=a" (out[0]), "=r" (out[1]), "=c" (out[2]), "=d" (out[3]) - : "0" (op1), "2" (op2)); - } - -#elif defined(__X86_ASM__) - - __forceinline void __cpuid(int out[4], int op) { -#if defined(__ARM_NEON) - if (op == 0) { // Get CPU name - out[0] = 0x41524d20; - out[1] = 0x41524d20; - out[2] = 0x41524d20; - out[3] = 0x41524d20; - } -#else - asm volatile ("cpuid" : "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3]) : "a"(op)); -#endif - } - -#if !defined(__ARM_NEON) - __forceinline void __cpuid_count(int out[4], int op1, int op2) { - asm volatile ("cpuid" : "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3]) : "a"(op1), "c"(op2)); - } -#endif - -#endif - __forceinline uint64_t read_tsc() { #if defined(__X86_ASM__) uint32_t high,low; @@ -263,6 +220,13 @@ namespace embree #endif #endif } + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) + __forceinline unsigned int bsf(unsigned v) { + return sycl::ctz(v); + } + +#else #if defined(__64BIT__) __forceinline unsigned bsf(unsigned v) @@ -280,6 +244,13 @@ namespace embree #endif } #endif +#endif + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) + __forceinline size_t bsf(size_t v) { + return sycl::ctz(v); + } +#else __forceinline size_t bsf(size_t v) { #if defined(__AVX2__) && !defined(__aarch64__) @@ -294,6 +265,7 @@ namespace embree return __builtin_ctzl(v); #endif } +#endif __forceinline int bscf(int& v) { @@ -434,6 +406,41 @@ namespace embree #endif +#if !defined(__WIN32__) + +#if defined(__i386__) && defined(__PIC__) + + __forceinline void __cpuid(int out[4], int op) + { + asm volatile ("xchg{l}\t{%%}ebx, %1\n\t" + "cpuid\n\t" + "xchg{l}\t{%%}ebx, %1\n\t" + : "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3]) + : "0"(op)); + } + + __forceinline void __cpuid_count(int out[4], int op1, int op2) + { + asm volatile ("xchg{l}\t{%%}ebx, %1\n\t" + "cpuid\n\t" + "xchg{l}\t{%%}ebx, %1\n\t" + : "=a" (out[0]), "=r" (out[1]), "=c" (out[2]), "=d" (out[3]) + : "0" (op1), "2" (op2)); + } + +#elif defined(__X86_ASM__) + + __forceinline void __cpuid(int out[4], int op) { + asm volatile ("cpuid" : "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3]) : "a"(op)); + } + + __forceinline void __cpuid_count(int out[4], int op1, int op2) { + asm volatile ("cpuid" : "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3]) : "a"(op1), "c"(op2)); + } + +#endif +#endif + //////////////////////////////////////////////////////////////////////////////// /// All Platforms //////////////////////////////////////////////////////////////////////////////// @@ -459,8 +466,16 @@ namespace embree #endif #endif -#if defined(__SSE4_2__) || defined(__ARM_NEON) +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) + __forceinline unsigned int popcnt(unsigned int in) { + return sycl::popcount(in); + } + +#else + +#if defined(__SSE4_2__) || defined(__ARM_NEON) + __forceinline int popcnt(int in) { return _mm_popcnt_u32(in); } @@ -476,6 +491,8 @@ namespace embree #endif #endif + +#endif #if defined(__X86_ASM__) __forceinline uint64_t rdtsc() diff --git a/thirdparty/embree/common/sys/mutex.h b/thirdparty/embree/common/sys/mutex.h index 26af6c582c..0f7345cf45 100644 --- a/thirdparty/embree/common/sys/mutex.h +++ b/thirdparty/embree/common/sys/mutex.h @@ -86,8 +86,8 @@ namespace embree class PaddedSpinLock : public SpinLock { - private: - char padding[CPU_CACHELINE_SIZE - sizeof(SpinLock)]; + private: + MAYBE_UNUSED char padding[CPU_CACHELINE_SIZE - sizeof(SpinLock)]; }; /*! safe mutex lock and unlock helper */ template<typename Mutex> class Lock { diff --git a/thirdparty/embree/common/sys/platform.h b/thirdparty/embree/common/sys/platform.h index 728bf6ed7d..d4a9b9e119 100644 --- a/thirdparty/embree/common/sys/platform.h +++ b/thirdparty/embree/common/sys/platform.h @@ -3,7 +3,9 @@ #pragma once +#if !defined(_CRT_SECURE_NO_WARNINGS) #define _CRT_SECURE_NO_WARNINGS +#endif #include <cstddef> #include <cassert> @@ -18,6 +20,30 @@ #include <cstring> #include <stdint.h> #include <functional> +#include <mutex> + +#if defined(EMBREE_SYCL_SUPPORT) + +#define __SYCL_USE_NON_VARIADIC_SPIRV_OCL_PRINTF__ + +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wdeprecated-declarations" +#pragma clang diagnostic ignored "-W#pragma-messages" + +#include <sycl/sycl.hpp> + +#pragma clang diagnostic pop + +#include "sycl.h" + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) +#define CONSTANT __attribute__((opencl_constant)) +#else +#define CONSTANT +#endif + +#endif + //////////////////////////////////////////////////////////////////////////////// /// detect platform @@ -115,7 +141,7 @@ #else #define __restrict__ //__restrict // causes issues with MSVC #endif -#if !defined(__thread) +#if !defined(__thread) && !defined(__INTEL_LLVM_COMPILER) #define __thread __declspec(thread) #endif #if !defined(__aligned) @@ -148,6 +174,10 @@ #define MAYBE_UNUSED #endif +#if !defined(_unused) +#define _unused(x) ((void)(x)) +#endif + #if defined(_MSC_VER) && (_MSC_VER < 1900) // before VS2015 deleted functions are not supported properly #define DELETED #else @@ -155,7 +185,7 @@ #endif #if !defined(likely) -#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) +#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) || defined(__SYCL_DEVICE_ONLY__) #define likely(expr) (expr) #define unlikely(expr) (expr) #else @@ -171,22 +201,27 @@ /* debug printing macros */ #define STRING(x) #x #define TOSTRING(x) STRING(x) -#define PING embree_cout << __FILE__ << " (" << __LINE__ << "): " << __FUNCTION__ << embree_endl +#define PING embree_cout_uniform << __FILE__ << " (" << __LINE__ << "): " << __FUNCTION__ << embree_endl #define PRINT(x) embree_cout << STRING(x) << " = " << (x) << embree_endl #define PRINT2(x,y) embree_cout << STRING(x) << " = " << (x) << ", " << STRING(y) << " = " << (y) << embree_endl #define PRINT3(x,y,z) embree_cout << STRING(x) << " = " << (x) << ", " << STRING(y) << " = " << (y) << ", " << STRING(z) << " = " << (z) << embree_endl #define PRINT4(x,y,z,w) embree_cout << STRING(x) << " = " << (x) << ", " << STRING(y) << " = " << (y) << ", " << STRING(z) << " = " << (z) << ", " << STRING(w) << " = " << (w) << embree_endl +#define UPRINT(x) embree_cout_uniform << STRING(x) << " = " << (x) << embree_endl +#define UPRINT2(x,y) embree_cout_uniform << STRING(x) << " = " << (x) << ", " << STRING(y) << " = " << (y) << embree_endl +#define UPRINT3(x,y,z) embree_cout_uniform << STRING(x) << " = " << (x) << ", " << STRING(y) << " = " << (y) << ", " << STRING(z) << " = " << (z) << embree_endl +#define UPRINT4(x,y,z,w) embree_cout_uniform << STRING(x) << " = " << (x) << ", " << STRING(y) << " = " << (y) << ", " << STRING(z) << " = " << (z) << ", " << STRING(w) << " = " << (w) << embree_endl + #if defined(DEBUG) // only report file and line in debug mode // -- GODOT start -- - // #define THROW_RUNTIME_ERROR(str) + // #define THROW_RUNTIME_ERROR(str) \ // throw std::runtime_error(std::string(__FILE__) + " (" + toString(__LINE__) + "): " + std::string(str)); #define THROW_RUNTIME_ERROR(str) \ printf("%s (%d): %s", __FILE__, __LINE__, std::string(str).c_str()), abort(); // -- GODOT end -- #else // -- GODOT start -- - // #define THROW_RUNTIME_ERROR(str) + // #define THROW_RUNTIME_ERROR(str) \ // throw std::runtime_error(str); #define THROW_RUNTIME_ERROR(str) \ abort(); @@ -323,13 +358,209 @@ __forceinline std::string toString(long long value) { #define DISABLE_DEPRECATED_WARNING __pragma(warning (disable: 4996)) // warning: function was declared deprecated #define ENABLE_DEPRECATED_WARNING __pragma(warning (enable : 4996)) // warning: function was declared deprecated #endif + +//////////////////////////////////////////////////////////////////////////////// +/// SYCL specific +//////////////////////////////////////////////////////////////////////////////// + + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) + +#define sycl_printf0(format, ...) { \ + static const CONSTANT char fmt[] = format; \ + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) \ + sycl::ext::oneapi::experimental::printf(fmt, __VA_ARGS__ ); \ + } + +#define sycl_printf0_(format) { \ + static const CONSTANT char fmt[] = format; \ + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) \ + sycl::ext::oneapi::experimental::printf(fmt); \ + } + +#else + +#define sycl_printf0(format, ...) { \ + static const CONSTANT char fmt[] = format; \ + sycl::ext::oneapi::experimental::printf(fmt, __VA_ARGS__ ); \ + } + +#define sycl_printf0_(format) { \ + static const CONSTANT char fmt[] = format; \ + sycl::ext::oneapi::experimental::printf(fmt); \ + } + +#endif + +#define sycl_printf(format, ...) { \ + static const CONSTANT char fmt[] = format; \ + sycl::ext::oneapi::experimental::printf(fmt, __VA_ARGS__ ); \ + } + +#define sycl_printf_(format) { \ + static const CONSTANT char fmt[] = format; \ + sycl::ext::oneapi::experimental::printf(fmt); \ + } + +#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) + +namespace embree +{ + struct sycl_ostream_ { + sycl_ostream_ (bool uniform) : uniform(uniform) {} + bool uniform = false; + }; + struct sycl_endl_ {}; + +#define embree_ostream embree::sycl_ostream_ +#define embree_cout embree::sycl_ostream_(false) +#define embree_cout_uniform embree::sycl_ostream_(true) +#define embree_endl embree::sycl_endl_() + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, int i) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%i",i); + } + else + sycl_printf("%i ",i); + + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, unsigned int i) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%u",i); + } else + sycl_printf("%u ",i); + + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, float f) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%f",f); + } else + sycl_printf("%f ",f); + + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, double d) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%f",d); + } else + sycl_printf("%f ",d); + + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, uint64_t l) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%lu",l); + } else + sycl_printf("%lu ",l); + + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, long l) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%l",l); + } else + sycl_printf("%l ",l); + + return cout; + } + + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, void* p) + { + if (cout.uniform) { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%p",p); + } else + sycl_printf("%p ",p); + + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, const char* c) + { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf("%s",c); + return cout; + } + + inline sycl_ostream_ operator <<(sycl_ostream_ cout, sycl_endl_) + { + if (get_sub_group_local_id() == sycl::ctz(intel_sub_group_ballot(true))) + sycl_printf_("\n"); + return cout; + } +} + +#else -/* embree output stream */ #define embree_ostream std::ostream& #define embree_cout std::cout #define embree_cout_uniform std::cout #define embree_endl std::endl - + +#endif + +#if defined(EMBREE_SYCL_SUPPORT) + + /* printing out sycle vector types */ + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::float4& v) { + return out << "(" << v.x() << "," << v.y() << "," << v.z() << "," << v.w() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::float3& v) { + return out << "(" << v.x() << "," << v.y() << "," << v.z() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::float2& v) { + return out << "(" << v.x() << "," << v.y() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::int4& v) { + return out << "(" << v.x() << "," << v.y() << "," << v.z() << "," << v.w() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::int3& v) { + return out << "(" << v.x() << "," << v.y() << "," << v.z() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::int2& v) { + return out << "(" << v.x() << "," << v.y() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::uint4& v) { + return out << "(" << v.x() << "," << v.y() << "," << v.z() << "," << v.w() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::uint3& v) { + return out << "(" << v.x() << "," << v.y() << "," << v.z() << ")"; + } + __forceinline embree_ostream operator<<(embree_ostream out, const sycl::uint2& v) { + return out << "(" << v.x() << "," << v.y() << ")"; + } + +#endif + +inline void tab(std::ostream& cout, int n) { + for (int i=0; i<n; i++) cout << " "; +} + +inline std::string tab(int depth) { + return std::string(2*depth,' '); +} + //////////////////////////////////////////////////////////////////////////////// /// Some macros for static profiling //////////////////////////////////////////////////////////////////////////////// diff --git a/thirdparty/embree/common/sys/sycl.h b/thirdparty/embree/common/sys/sycl.h new file mode 100644 index 0000000000..2558eb052f --- /dev/null +++ b/thirdparty/embree/common/sys/sycl.h @@ -0,0 +1,307 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "platform.h" + +using sycl::float16; +using sycl::float8; +using sycl::float4; +using sycl::float3; +using sycl::float2; +using sycl::int16; +using sycl::int8; +using sycl::int4; +using sycl::int3; +using sycl::int2; +using sycl::uint16; +using sycl::uint8; +using sycl::uint4; +using sycl::uint3; +using sycl::uint2; +using sycl::uchar16; +using sycl::uchar8; +using sycl::uchar4; +using sycl::uchar3; +using sycl::uchar2; +using sycl::ushort16; +using sycl::ushort8; +using sycl::ushort4; +using sycl::ushort3; +using sycl::ushort2; + +#ifdef __SYCL_DEVICE_ONLY__ +#define GLOBAL __attribute__((opencl_global)) +#define LOCAL __attribute__((opencl_local)) + +SYCL_EXTERNAL extern int work_group_reduce_add(int x); +SYCL_EXTERNAL extern float work_group_reduce_min(float x); +SYCL_EXTERNAL extern float work_group_reduce_max(float x); + +SYCL_EXTERNAL extern float atomic_min(volatile GLOBAL float *p, float val); +SYCL_EXTERNAL extern float atomic_min(volatile LOCAL float *p, float val); +SYCL_EXTERNAL extern float atomic_max(volatile GLOBAL float *p, float val); +SYCL_EXTERNAL extern float atomic_max(volatile LOCAL float *p, float val); + +SYCL_EXTERNAL extern "C" unsigned int intel_sub_group_ballot(bool valid); + +SYCL_EXTERNAL extern "C" void __builtin_IB_assume_uniform(void *p); + +// Load message caching control + + enum LSC_LDCC { + LSC_LDCC_DEFAULT, + LSC_LDCC_L1UC_L3UC, // Override to L1 uncached and L3 uncached + LSC_LDCC_L1UC_L3C, // Override to L1 uncached and L3 cached + LSC_LDCC_L1C_L3UC, // Override to L1 cached and L3 uncached + LSC_LDCC_L1C_L3C, // Override to L1 cached and L3 cached + LSC_LDCC_L1S_L3UC, // Override to L1 streaming load and L3 uncached + LSC_LDCC_L1S_L3C, // Override to L1 streaming load and L3 cached + LSC_LDCC_L1IAR_L3C, // Override to L1 invalidate-after-read, and L3 cached + }; + + + +// Store message caching control (also used for atomics) + + enum LSC_STCC { + LSC_STCC_DEFAULT, + LSC_STCC_L1UC_L3UC, // Override to L1 uncached and L3 uncached + LSC_STCC_L1UC_L3WB, // Override to L1 uncached and L3 written back + LSC_STCC_L1WT_L3UC, // Override to L1 written through and L3 uncached + LSC_STCC_L1WT_L3WB, // Override to L1 written through and L3 written back + LSC_STCC_L1S_L3UC, // Override to L1 streaming and L3 uncached + LSC_STCC_L1S_L3WB, // Override to L1 streaming and L3 written back + LSC_STCC_L1WB_L3WB, // Override to L1 written through and L3 written back + }; + + + +/////////////////////////////////////////////////////////////////////// + +// LSC Loads + +/////////////////////////////////////////////////////////////////////// + +SYCL_EXTERNAL /* extern "C" */ uint32_t __builtin_IB_lsc_load_global_uchar_to_uint (const GLOBAL uint8_t *base, int elemOff, enum LSC_LDCC cacheOpt); //D8U32 +SYCL_EXTERNAL /* extern "C" */ uint32_t __builtin_IB_lsc_load_global_ushort_to_uint(const GLOBAL uint16_t *base, int elemOff, enum LSC_LDCC cacheOpt); //D16U32 +SYCL_EXTERNAL /* extern "C" */ uint32_t __builtin_IB_lsc_load_global_uint (const GLOBAL uint32_t *base, int elemOff, enum LSC_LDCC cacheOpt); //D32V1 +SYCL_EXTERNAL /* extern "C" */ sycl::uint2 __builtin_IB_lsc_load_global_uint2 (const GLOBAL sycl::uint2 *base, int elemOff, enum LSC_LDCC cacheOpt); //D32V2 +SYCL_EXTERNAL /* extern "C" */ sycl::uint3 __builtin_IB_lsc_load_global_uint3 (const GLOBAL sycl::uint3 *base, int elemOff, enum LSC_LDCC cacheOpt); //D32V3 +SYCL_EXTERNAL /* extern "C" */ sycl::uint4 __builtin_IB_lsc_load_global_uint4 (const GLOBAL sycl::uint4 *base, int elemOff, enum LSC_LDCC cacheOpt); //D32V4 +SYCL_EXTERNAL /* extern "C" */ sycl::uint8 __builtin_IB_lsc_load_global_uint8 (const GLOBAL sycl::uint8 *base, int elemOff, enum LSC_LDCC cacheOpt); //D32V8 +SYCL_EXTERNAL /* extern "C" */ uint64_t __builtin_IB_lsc_load_global_ulong (const GLOBAL uint64_t *base, int elemOff, enum LSC_LDCC cacheOpt); //D64V1 +SYCL_EXTERNAL /* extern "C" */ sycl::ulong2 __builtin_IB_lsc_load_global_ulong2 (const GLOBAL sycl::ulong2 *base, int elemOff, enum LSC_LDCC cacheOpt); //D64V2 +SYCL_EXTERNAL /* extern "C" */ sycl::ulong3 __builtin_IB_lsc_load_global_ulong3 (const GLOBAL sycl::ulong3 *base, int elemOff, enum LSC_LDCC cacheOpt); //D64V3 +SYCL_EXTERNAL /* extern "C" */ sycl::ulong4 __builtin_IB_lsc_load_global_ulong4 (const GLOBAL sycl::ulong4 *base, int elemOff, enum LSC_LDCC cacheOpt); //D64V4 +SYCL_EXTERNAL /* extern "C" */ sycl::ulong8 __builtin_IB_lsc_load_global_ulong8 (const GLOBAL sycl::ulong8 *base, int elemOff, enum LSC_LDCC cacheOpt); //D64V8 + +// global address space +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_uchar_from_uint (GLOBAL uint8_t *base, int immElemOff, uint32_t val, enum LSC_STCC cacheOpt); //D8U32 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_ushort_from_uint(GLOBAL uint16_t *base, int immElemOff, uint32_t val, enum LSC_STCC cacheOpt); //D16U32 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_uint (GLOBAL uint32_t *base, int immElemOff, uint32_t val, enum LSC_STCC cacheOpt); //D32V1 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_uint2 (GLOBAL sycl::uint2 *base, int immElemOff, sycl::uint2 val, enum LSC_STCC cacheOpt); //D32V2 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_uint3 (GLOBAL sycl::uint3 *base, int immElemOff, sycl::uint3 val, enum LSC_STCC cacheOpt); //D32V3 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_uint4 (GLOBAL sycl::uint4 *base, int immElemOff, sycl::uint4 val, enum LSC_STCC cacheOpt); //D32V4 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_uint8 (GLOBAL sycl::uint8 *base, int immElemOff, sycl::uint8 val, enum LSC_STCC cacheOpt); //D32V8 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_ulong (GLOBAL uint64_t *base, int immElemOff, uint64_t val, enum LSC_STCC cacheOpt); //D64V1 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_ulong2 (GLOBAL sycl::ulong2 *base, int immElemOff, sycl::ulong2 val, enum LSC_STCC cacheOpt); //D64V2 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_ulong3 (GLOBAL sycl::ulong3 *base, int immElemOff, sycl::ulong3 val, enum LSC_STCC cacheOpt); //D64V3 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_ulong4 (GLOBAL sycl::ulong4 *base, int immElemOff, sycl::ulong4 val, enum LSC_STCC cacheOpt); //D64V4 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_store_global_ulong8 (GLOBAL sycl::ulong8 *base, int immElemOff, sycl::ulong8 val, enum LSC_STCC cacheOpt); //D64V8 + +/////////////////////////////////////////////////////////////////////// +// prefetching +/////////////////////////////////////////////////////////////////////// +// +// LSC Pre-Fetch Load functions with CacheControls +// global address space +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_uchar (const GLOBAL uint8_t *base, int immElemOff, enum LSC_LDCC cacheOpt); //D8U32 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_ushort(const GLOBAL uint16_t *base, int immElemOff, enum LSC_LDCC cacheOpt); //D16U32 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_uint (const GLOBAL uint32_t *base, int immElemOff, enum LSC_LDCC cacheOpt); //D32V1 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_uint2 (const GLOBAL sycl::uint2 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D32V2 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_uint3 (const GLOBAL sycl::uint3 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D32V3 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_uint4 (const GLOBAL sycl::uint4 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D32V4 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_uint8 (const GLOBAL sycl::uint8 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D32V8 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_ulong (const GLOBAL uint64_t *base, int immElemOff, enum LSC_LDCC cacheOpt); //D64V1 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_ulong2(const GLOBAL sycl::ulong2 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D64V2 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_ulong3(const GLOBAL sycl::ulong3 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D64V3 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_ulong4(const GLOBAL sycl::ulong4 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D64V4 +SYCL_EXTERNAL extern "C" void __builtin_IB_lsc_prefetch_global_ulong8(const GLOBAL sycl::ulong8 *base, int immElemOff, enum LSC_LDCC cacheOpt); //D64V8 + +#else + +#define GLOBAL +#define LOCAL + +/* dummy functions for host */ +inline int work_group_reduce_add(int x) { return x; } +inline float work_group_reduce_min(float x) { return x; } +inline float work_group_reduce_max(float x) { return x; } + +inline float atomic_min(volatile float *p, float val) { return val; }; +inline float atomic_max(volatile float *p, float val) { return val; }; + +inline uint32_t intel_sub_group_ballot(bool valid) { return 0; } + +#endif + +/* creates a temporary that is enforced to be uniform */ +#define SYCL_UNIFORM_VAR(Ty,tmp,k) \ + Ty tmp##_data; \ + Ty* p##tmp##_data = (Ty*) sub_group_broadcast((uint64_t)&tmp##_data,k); \ + Ty& tmp = *p##tmp##_data; + +#if !defined(__forceinline) +#define __forceinline inline __attribute__((always_inline)) +#endif + +#if __SYCL_COMPILER_VERSION < 20210801 +#define all_of_group all_of +#define any_of_group any_of +#define none_of_group none_of +#define group_broadcast broadcast +#define reduce_over_group reduce +#define exclusive_scan_over_group exclusive_scan +#define inclusive_scan_over_group inclusive_scan +#endif + +namespace embree +{ + template<typename T> + __forceinline T cselect(const bool mask, const T &a, const T &b) + { + return sycl::select(b,a,(int)mask); + } + + template<typename T, typename M> + __forceinline T cselect(const M &mask, const T &a, const T &b) + { + return sycl::select(b,a,mask); + } + + __forceinline const sycl::sub_group this_sub_group() { + return sycl::ext::oneapi::experimental::this_sub_group(); + } + + __forceinline const uint32_t get_sub_group_local_id() { + return this_sub_group().get_local_id()[0]; + } + + __forceinline const uint32_t get_sub_group_size() { + return this_sub_group().get_max_local_range().size(); + } + + __forceinline const uint32_t get_sub_group_id() { + return this_sub_group().get_group_id()[0]; + } + + __forceinline const uint32_t get_num_sub_groups() { + return this_sub_group().get_group_range().size(); + } + + __forceinline uint32_t sub_group_ballot(bool pred) { + return intel_sub_group_ballot(pred); + } + + __forceinline bool sub_group_all_of(bool pred) { + return sycl::all_of_group(this_sub_group(),pred); + } + + __forceinline bool sub_group_any_of(bool pred) { + return sycl::any_of_group(this_sub_group(),pred); + } + + __forceinline bool sub_group_none_of(bool pred) { + return sycl::none_of_group(this_sub_group(),pred); + } + + template <typename T> __forceinline T sub_group_broadcast(T x, sycl::id<1> local_id) { + return sycl::group_broadcast<sycl::sub_group>(this_sub_group(),x,local_id); + } + + template <typename T> __forceinline T sub_group_make_uniform(T x) { + return sub_group_broadcast(x,sycl::ctz(intel_sub_group_ballot(true))); + } + + __forceinline void assume_uniform_array(void* ptr) { +#ifdef __SYCL_DEVICE_ONLY__ + __builtin_IB_assume_uniform(ptr); +#endif + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_reduce(T x, BinaryOperation binary_op) { + return sycl::reduce_over_group<sycl::sub_group>(this_sub_group(),x,binary_op); + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_reduce(T x, T init, BinaryOperation binary_op) { + return sycl::reduce_over_group<sycl::sub_group>(this_sub_group(),x,init,binary_op); + } + + template <typename T> __forceinline T sub_group_reduce_min(T x, T init) { + return sub_group_reduce(x, init, sycl::ext::oneapi::minimum<T>()); + } + + template <typename T> __forceinline T sub_group_reduce_min(T x) { + return sub_group_reduce(x, sycl::ext::oneapi::minimum<T>()); + } + + template <typename T> __forceinline T sub_group_reduce_max(T x) { + return sub_group_reduce(x, sycl::ext::oneapi::maximum<T>()); + } + + template <typename T> __forceinline T sub_group_reduce_add(T x) { + return sub_group_reduce(x, sycl::ext::oneapi::plus<T>()); + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_exclusive_scan(T x, BinaryOperation binary_op) { + return sycl::exclusive_scan_over_group(this_sub_group(),x,binary_op); + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_exclusive_scan_min(T x) { + return sub_group_exclusive_scan(x,sycl::ext::oneapi::minimum<T>()); + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_exclusive_scan(T x, T init, BinaryOperation binary_op) { + return sycl::exclusive_scan_over_group(this_sub_group(),x,init,binary_op); + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_inclusive_scan(T x, BinaryOperation binary_op) { + return sycl::inclusive_scan_over_group(this_sub_group(),x,binary_op); + } + + template <typename T, class BinaryOperation> __forceinline T sub_group_inclusive_scan(T x, BinaryOperation binary_op, T init) { + return sycl::inclusive_scan_over_group(this_sub_group(),x,binary_op,init); + } + + template <typename T> __forceinline T sub_group_shuffle(T x, sycl::id<1> local_id) { + return this_sub_group().shuffle(x, local_id); + } + + template <typename T> __forceinline T sub_group_shuffle_down(T x, uint32_t delta) { + return this_sub_group().shuffle_down(x, delta); + } + + template <typename T> __forceinline T sub_group_shuffle_up(T x, uint32_t delta) { + return this_sub_group().shuffle_up(x, delta); + } + + template <typename T> __forceinline T sub_group_load(const void* src) { + return this_sub_group().load(sycl::multi_ptr<T,sycl::access::address_space::global_space>((T*)src)); + } + + template <typename T> __forceinline void sub_group_store(void* dst, const T& x) { + this_sub_group().store(sycl::multi_ptr<T,sycl::access::address_space::global_space>((T*)dst),x); + } +} + +#if __SYCL_COMPILER_VERSION < 20210801 +#undef all_of_group +#undef any_of_group +#undef none_of_group +#undef group_broadcast +#undef reduce_over_group +#undef exclusive_scan_over_group +#undef inclusive_scan_over_group +#endif diff --git a/thirdparty/embree/common/sys/sysinfo.cpp b/thirdparty/embree/common/sys/sysinfo.cpp index 7f7a009a1e..d01eab3c9d 100644 --- a/thirdparty/embree/common/sys/sysinfo.cpp +++ b/thirdparty/embree/common/sys/sysinfo.cpp @@ -1,9 +1,15 @@ // Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 +#if defined(__INTEL_LLVM_COMPILER) +// prevents "'__thiscall' calling convention is not supported for this target" warning from TBB +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wignored-attributes" +#endif + #include "sysinfo.h" #include "intrinsics.h" -#include "string.h" +#include "estring.h" #include "ref.h" #if defined(__FREEBSD__) #include <sys/cpuset.h> @@ -690,3 +696,6 @@ namespace embree } #endif +#if defined(__INTEL_LLVM_COMPILER) +#pragma clang diagnostic pop +#endif diff --git a/thirdparty/embree/common/sys/thread.cpp b/thirdparty/embree/common/sys/thread.cpp index 530c3c7810..8b072067e6 100644 --- a/thirdparty/embree/common/sys/thread.cpp +++ b/thirdparty/embree/common/sys/thread.cpp @@ -3,7 +3,7 @@ #include "thread.h" #include "sysinfo.h" -#include "string.h" +#include "estring.h" #include <iostream> #if defined(__ARM_NEON) diff --git a/thirdparty/embree/common/sys/vector.h b/thirdparty/embree/common/sys/vector.h index d05e1deb18..226cd34c21 100644 --- a/thirdparty/embree/common/sys/vector.h +++ b/thirdparty/embree/common/sys/vector.h @@ -8,6 +8,8 @@ namespace embree { + class Device; + template<typename T, typename allocator> class vector_t { @@ -25,6 +27,12 @@ namespace embree template<typename M> __forceinline explicit vector_t (M alloc, size_t sz) : alloc(alloc), size_active(0), size_alloced(0), items(nullptr) { internal_resize_init(sz); } + + __forceinline vector_t (Device* alloc) + : vector_t(alloc,0) {} + + __forceinline vector_t(void* data, size_t bytes) + : size_active(0), size_alloced(bytes/sizeof(T)), items((T*)data) {} __forceinline ~vector_t() { clear(); @@ -65,6 +73,10 @@ namespace embree return *this; } + __forceinline allocator& getAlloc() { + return alloc; + } + /********************** Iterators ****************************/ __forceinline iterator begin() { return items; }; @@ -215,6 +227,10 @@ namespace embree if (new_alloced <= size_alloced) return size_alloced; + /* if current size is 0 allocate exact requested size */ + if (size_alloced == 0) + return new_alloced; + /* resize to next power of 2 otherwise */ size_t new_size_alloced = size_alloced; while (new_size_alloced < new_alloced) { @@ -237,8 +253,12 @@ namespace embree /*! vector class that performs aligned allocations */ template<typename T> using avector = vector_t<T,aligned_allocator<T,std::alignment_of<T>::value> >; - + /*! vector class that performs OS allocations */ template<typename T> using ovector = vector_t<T,os_allocator<T> >; + + /*! vector class with externally managed data buffer */ + template<typename T> + using evector = vector_t<T,no_allocator<T>>; } diff --git a/thirdparty/embree/common/tasking/taskscheduler.h b/thirdparty/embree/common/tasking/taskscheduler.h index 8f3dd87689..edfffe0e57 100644 --- a/thirdparty/embree/common/tasking/taskscheduler.h +++ b/thirdparty/embree/common/tasking/taskscheduler.h @@ -3,7 +3,7 @@ #pragma once -#if defined(TASKING_INTERNAL) +#if defined(TASKING_INTERNAL) && !defined(TASKING_TBB) # include "taskschedulerinternal.h" #elif defined(TASKING_TBB) # include "taskschedulertbb.h" diff --git a/thirdparty/embree/common/tasking/taskschedulerinternal.cpp b/thirdparty/embree/common/tasking/taskschedulerinternal.cpp index ad438588a3..88b88a30ec 100644 --- a/thirdparty/embree/common/tasking/taskschedulerinternal.cpp +++ b/thirdparty/embree/common/tasking/taskschedulerinternal.cpp @@ -2,7 +2,7 @@ // SPDX-License-Identifier: Apache-2.0 #include "taskschedulerinternal.h" -#include "../math/math.h" +#include "../math/emath.h" #include "../sys/sysinfo.h" #include <algorithm> @@ -50,11 +50,11 @@ namespace embree thread.task = this; // -- GODOT start -- // try { - // if (thread.scheduler->cancellingException == nullptr) + // if (context->cancellingException == nullptr) closure->execute(); // } catch (...) { - // if (thread.scheduler->cancellingException == nullptr) - // thread.scheduler->cancellingException = std::current_exception(); + // if (context->cancellingException == nullptr) + // context->cancellingException = std::current_exception(); // } // -- GODOT end -- thread.task = prevTask; @@ -152,7 +152,8 @@ namespace embree { Lock<MutexSys> lock(g_mutex); assert(newNumThreads); - newNumThreads = min(newNumThreads, (size_t) getNumberOfLogicalThreads()); + if (newNumThreads == std::numeric_limits<size_t>::max()) + newNumThreads = (size_t) getNumberOfLogicalThreads(); numThreads = newNumThreads; if (!startThreads && !running) return; @@ -232,7 +233,8 @@ namespace embree TaskScheduler::TaskScheduler() : threadCounter(0), anyTasksRunning(0), hasRootTask(false) { - threadLocal.resize(2*getNumberOfLogicalThreads()); // FIXME: this has to be 2x as in the compatibility join mode with rtcCommitScene the worker threads also join. When disallowing rtcCommitScene to join a build we can remove the 2x. + assert(threadPool); + threadLocal.resize(2 * TaskScheduler::threadCount()); // FIXME: this has to be 2x as in the compatibility join mode with rtcCommitScene the worker threads also join. When disallowing rtcCommitScene to join a build we can remove the 2x. for (size_t i=0; i<threadLocal.size(); i++) threadLocal[i].store(nullptr); } @@ -293,11 +295,7 @@ namespace embree size_t threadIndex = allocThreadIndex(); condition.wait(mutex, [&] () { return hasRootTask.load(); }); mutex.unlock(); - // -- GODOT start -- - // std::exception_ptr except = thread_loop(threadIndex); - // if (except != nullptr) std::rethrow_exception(except); thread_loop(threadIndex); - // -- GODOT end -- } void TaskScheduler::reset() { @@ -321,18 +319,15 @@ namespace embree return old; } - dll_export bool TaskScheduler::wait() + dll_export void TaskScheduler::wait() { Thread* thread = TaskScheduler::thread(); - if (thread == nullptr) return true; + if (thread == nullptr) + return; while (thread->tasks.execute_local_internal(*thread,thread->task)) {}; - return thread->scheduler->cancellingException == nullptr; } -// -- GODOT start -- -// std::exception_ptr TaskScheduler::thread_loop(size_t threadIndex) void TaskScheduler::thread_loop(size_t threadIndex) -// -- GODOT end -- { /* allocate thread structure */ std::unique_ptr<Thread> mthread(new Thread(threadIndex,this)); // too large for stack allocation @@ -354,11 +349,6 @@ namespace embree threadLocal[threadIndex].store(nullptr); swapThread(oldThread); - /* remember exception to throw */ - // -- GODOT start -- - // std::exception_ptr except = nullptr; - // if (cancellingException != nullptr) except = cancellingException; - // -- GODOT end -- /* wait for all threads to terminate */ threadCounter--; #if defined(__WIN32__) @@ -376,10 +366,6 @@ namespace embree yield(); #endif } - // -- GODOT start -- - // return except; - return; - // -- GODOT end -- } bool TaskScheduler::steal_from_other_threads(Thread& thread) diff --git a/thirdparty/embree/common/tasking/taskschedulerinternal.h b/thirdparty/embree/common/tasking/taskschedulerinternal.h index 6cc2495195..e72d3b72ba 100644 --- a/thirdparty/embree/common/tasking/taskschedulerinternal.h +++ b/thirdparty/embree/common/tasking/taskschedulerinternal.h @@ -12,7 +12,7 @@ #include "../sys/ref.h" #include "../sys/atomic.h" #include "../math/range.h" -#include "../../include/embree3/rtcore.h" +#include "../../include/embree4/rtcore.h" #include <list> @@ -38,6 +38,13 @@ namespace embree virtual void execute() = 0; }; + + struct TaskGroupContext { + TaskGroupContext() : cancellingException(nullptr) {} + + std::exception_ptr cancellingException; + }; + /*! builds a task interface from a closure */ template<typename Closure> struct ClosureTaskFunction : public TaskFunction @@ -76,16 +83,16 @@ namespace embree : state(DONE) {} /*! construction of new task */ - __forceinline Task (TaskFunction* closure, Task* parent, size_t stackPtr, size_t N) - : dependencies(1), stealable(true), closure(closure), parent(parent), stackPtr(stackPtr), N(N) + __forceinline Task (TaskFunction* closure, Task* parent, TaskGroupContext* context, size_t stackPtr, size_t N) + : dependencies(1), stealable(true), closure(closure), parent(parent), context(context), stackPtr(stackPtr), N(N) { if (parent) parent->add_dependencies(+1); switch_state(DONE,INITIALIZED); } /*! construction of stolen task, stealing thread will decrement initial dependency */ - __forceinline Task (TaskFunction* closure, Task* parent) - : dependencies(1), stealable(false), closure(closure), parent(parent), stackPtr(-1), N(1) + __forceinline Task (TaskFunction* closure, Task* parent, TaskGroupContext* context) + : dependencies(1), stealable(false), closure(closure), parent(parent), context(context), stackPtr(-1), N(1) { switch_state(DONE,INITIALIZED); } @@ -95,7 +102,7 @@ namespace embree { if (!stealable) return false; if (!try_switch_state(INITIALIZED,DONE)) return false; - new (&child) Task(closure, this); + new (&child) Task(closure, this, context); return true; } @@ -110,6 +117,7 @@ namespace embree std::atomic<bool> stealable; //!< true if task can be stolen TaskFunction* closure; //!< the closure to execute Task* parent; //!< parent task to signal when we are finished + TaskGroupContext* context; size_t stackPtr; //!< stack location where closure is stored size_t N; //!< approximative size of task }; @@ -122,28 +130,32 @@ namespace embree __forceinline void* alloc(size_t bytes, size_t align = 64) { size_t ofs = bytes + ((align - stackPtr) & (align-1)); - if (stackPtr + ofs > CLOSURE_STACK_SIZE) - // -- GODOT start -- - // throw std::runtime_error("closure stack overflow"); + // -- GODOT start -- + // if (stackPtr + ofs > CLOSURE_STACK_SIZE) + // throw std::runtime_error("closure stack overflow"); + if (stackPtr + ofs > CLOSURE_STACK_SIZE) { abort(); - // -- GODOT end -- + } + // -- GODOT end -- stackPtr += ofs; return &stack[stackPtr-bytes]; } template<typename Closure> - __forceinline void push_right(Thread& thread, const size_t size, const Closure& closure) + __forceinline void push_right(Thread& thread, const size_t size, const Closure& closure, TaskGroupContext* context) { - if (right >= TASK_STACK_SIZE) - // -- GODOT start -- - // throw std::runtime_error("task stack overflow"); - abort(); - // -- GODOT end -- + // -- GODOT start -- + // if (right >= TASK_STACK_SIZE) + // throw std::runtime_error("task stack overflow"); + if (right >= TASK_STACK_SIZE) { + abort(); + } + // -- GODOT end -- /* allocate new task on right side of stack */ size_t oldStackPtr = stackPtr; TaskFunction* func = new (alloc(sizeof(ClosureTaskFunction<Closure>))) ClosureTaskFunction<Closure>(closure); - new (&(tasks[right.load()])) Task(func,thread.task,oldStackPtr,size); + new (&tasks[right.load()]) Task(func,thread.task,context,oldStackPtr,size); right++; /* also move left pointer */ @@ -178,7 +190,7 @@ namespace embree : threadIndex(threadIndex), task(nullptr), scheduler(scheduler) {} __forceinline size_t threadCount() { - return scheduler->threadCounter; + return scheduler->threadCounter; } size_t threadIndex; //!< ID of this thread @@ -244,10 +256,7 @@ namespace embree void wait_for_threads(size_t threadCount); /*! thread loop for all worker threads */ - // -- GODOT start -- - // std::exception_ptr thread_loop(size_t threadIndex); void thread_loop(size_t threadIndex); - // -- GODOT end -- /*! steals a task from a different thread */ bool steal_from_other_threads(Thread& thread); @@ -257,7 +266,7 @@ namespace embree /* spawn a new task at the top of the threads task stack */ template<typename Closure> - void spawn_root(const Closure& closure, size_t size = 1, bool useThreadPool = true) + void spawn_root(const Closure& closure, TaskGroupContext* context, size_t size = 1, bool useThreadPool = true) { if (useThreadPool) startThreads(); @@ -267,7 +276,7 @@ namespace embree assert(threadLocal[threadIndex].load() == nullptr); threadLocal[threadIndex] = &thread; Thread* oldThread = swapThread(&thread); - thread.tasks.push_right(thread,size,closure); + thread.tasks.push_right(thread,size,closure,context); { Lock<MutexSys> lock(mutex); anyTasksRunning++; @@ -286,51 +295,52 @@ namespace embree /* remember exception to throw */ std::exception_ptr except = nullptr; - if (cancellingException != nullptr) except = cancellingException; + if (context->cancellingException != nullptr) except = context->cancellingException; /* wait for all threads to terminate */ threadCounter--; while (threadCounter > 0) yield(); - cancellingException = nullptr; + context->cancellingException = nullptr; /* re-throw proper exception */ - if (except != nullptr) + if (except != nullptr) { std::rethrow_exception(except); + } } /* spawn a new task at the top of the threads task stack */ template<typename Closure> - static __forceinline void spawn(size_t size, const Closure& closure) + static __forceinline void spawn(size_t size, const Closure& closure, TaskGroupContext* context) { Thread* thread = TaskScheduler::thread(); - if (likely(thread != nullptr)) thread->tasks.push_right(*thread,size,closure); - else instance()->spawn_root(closure,size); + if (likely(thread != nullptr)) thread->tasks.push_right(*thread,size,closure,context); + else instance()->spawn_root(closure,context,size); } /* spawn a new task at the top of the threads task stack */ template<typename Closure> - static __forceinline void spawn(const Closure& closure) { - spawn(1,closure); + static __forceinline void spawn(const Closure& closure, TaskGroupContext* taskGroupContext) { + spawn(1,closure,taskGroupContext); } /* spawn a new task set */ template<typename Index, typename Closure> - static void spawn(const Index begin, const Index end, const Index blockSize, const Closure& closure) + static void spawn(const Index begin, const Index end, const Index blockSize, const Closure& closure, TaskGroupContext* context) { spawn(end-begin, [=]() - { - if (end-begin <= blockSize) { - return closure(range<Index>(begin,end)); - } - const Index center = (begin+end)/2; - spawn(begin,center,blockSize,closure); - spawn(center,end ,blockSize,closure); - wait(); - }); + { + if (end-begin <= blockSize) { + return closure(range<Index>(begin,end)); + } + const Index center = (begin+end)/2; + spawn(begin,center,blockSize,closure,context); + spawn(center,end ,blockSize,closure,context); + wait(); + },context); } /* work on spawned subtasks and wait until all have finished */ - dll_export static bool wait(); + dll_export static void wait(); /* returns the ID of the current thread */ dll_export static size_t threadID(); @@ -366,7 +376,6 @@ namespace embree std::atomic<size_t> threadCounter; std::atomic<size_t> anyTasksRunning; std::atomic<bool> hasRootTask; - std::exception_ptr cancellingException; MutexSys mutex; ConditionSys condition; diff --git a/thirdparty/embree/common/tasking/taskschedulertbb.h b/thirdparty/embree/common/tasking/taskschedulertbb.h index 042ba7bc4c..e1f647eb06 100644 --- a/thirdparty/embree/common/tasking/taskschedulertbb.h +++ b/thirdparty/embree/common/tasking/taskschedulertbb.h @@ -15,6 +15,12 @@ # define NOMINMAX #endif +#if defined(__INTEL_LLVM_COMPILER) +// prevents "'__thiscall' calling convention is not supported for this target" warning from TBB +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wignored-attributes" +#endif + // We need to define these to avoid implicit linkage against // tbb_debug.lib under Windows. When removing these lines debug build // under Windows fails. @@ -25,6 +31,18 @@ #include "tbb/tbb.h" #include "tbb/parallel_sort.h" +#if defined(TASKING_TBB) && (TBB_INTERFACE_VERSION_MAJOR >= 8) +# define USE_TASK_ARENA 1 +#else +# define USE_TASK_ARENA 0 +#endif + +#if defined(TASKING_TBB) && (TBB_INTERFACE_VERSION >= 11009) // TBB 2019 Update 9 +# define TASKING_TBB_USE_TASK_ISOLATION 1 +#else +# define TASKING_TBB_USE_TASK_ISOLATION 0 +#endif + namespace embree { struct TaskScheduler @@ -65,3 +83,7 @@ namespace embree }; }; + +#if defined(__INTEL_LLVM_COMPILER) +#pragma clang diagnostic pop +#endif
\ No newline at end of file |